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ABSTRACT

Link prediction is one of the core problems in network and data

science with widespread applications. While predicting pairwise

nodal interactions (links) in network data has been investigated ex-

tensively, predicting higher-order interactions (higher-order links) is

still not fully understood. Several approaches have been advocated

to predict such higher-order interactions, but no principled method

has been put forth to tackle this challenge so far. Cross-fertilizing

ideas from Volterra series and linear structural equation models, the

present paper introduces self-driven graph Volterra models that can

capture higher-order interactions among nodal observables available

in networked data. The novel model is validated for the higher-order

link prediction task using real interaction data from social networks.

Index Terms— higher-order interactions, link prediction, net-

work data models, structural equation models, Volterra series

1. MOTIVATION AND CONTEXT

Link prediction is the task of predicting missing or future connec-

tions (edge weights) given a set of network observations or the net-

work connectivity at different time instances. In other words, the

goal is to infer whether an edge exists (or will exist) between a pair

of nodes given side information in the form of nodal features [1].

The link prediction task finds applications in several fields. In so-

cial sciences, it is used to study the growth of social networks [2]

and their dynamics, as in e.g., friendship formation. Link predic-

tion is also the cornerstone in recommender system algorithms [3].

Recommending matches in a dating app for instance, is equivalent

to predicting the most likely links between users. Likewise in biol-

ogy, link prediction is used to unveil pairwise interactions between

elements of different ecological niches or to predict interactions that

were not studied due to time or cost constraints [4].

Although pairwise interactions capture part of the underlying

dependencies and dynamics of networked data, several interactions

that occur within a network involve groups comprising more than

two nodes [5]. For example, research works are typically carried

out by a team of authors rather than a pair of co-authors. Molecules

tend to show more interactions among a small group rather than be-

tween single pairs. Finally, in digital communication applications,

information exchanges, emails, text messages, and video calls, oc-

cur between a large group of people as often as from pairs.

Several approaches have been put forth to model, identify and

analyze higher- than second-order relations in networked data. Most

can be categorized into approaches based on sets of systems [6], hy-

pergraphs [7], or simplicial complexes [8–10]. While each provides

a mathematical framework to study higher-order interactions, they

either make use of the network structure directly, as in hypergraph

connections, or, they use domain-specific physics-based notions that

may not hold in all datasets. For instance, simplicial complexes us-

ing cohomology rely on curl and divergence notions [8]. The need

thus arises for a modeling tool based on the networked data itself

to provide both expressibility in terms of higher-order relations, as

well as interpretability for further understanding of the underlying

network dynamics, but also for predicting higher-order links in a

principled manner.

In time series analysis and for a gamut of applications, several

models have been introduced to account for interactions among in-

terconnected entities. Rooted at linear structural equation models

(SEMs) [11] and vector autoregressive models (VARMs) [12], re-

cent advances capture the interactions and dynamics across nodes

and time using partial correlations and graphical kernels [13–19].

Even though these approaches capture complex dynamics present in

networked data, they may fall short when interpreting interactions

beyond pairs of nodes.

Another tool with well-documented merits in time series analy-

sis is the Volterra series [20]. Volterra series has found widespread

application in modeling brain data [21], gene data [22], and com-

munication channels [23], to list a few. Despite well-appreciated

challenges associated with these models, e.g., the complexity grows

exponentially with the model order, it has been shown that the

computational requirements can be tamed by leveraging sparsity

to effect parsimony in the Volterra kernels [22]. In addition, by

using an appropriate basis expansion model for the Volterra ker-

nels, the complexity can be further reduced without losing model

expressibility because the original Volterra kernels can be retrieved

from the corresponding representation on the considered basis [24].

While Volterra series are indeed powerful for modeling nonlinear

dependencies, they have not yet been thoroughly investigated to

model higher-order interactions in networked data. In addition,

Volterra series models (VSMs) only consider input/output maps

but not self-driven relations as SEMs do in successfully describing

spatio-temporal network dynamics.

Building upon SEMs and VSMs, this work presents a novel self-

driven graph Volterra model (SD-GVM) to capture higher-order in-

teractions present in networked data. This model uses graph Volterra

kernels to identify interactions between nodes or groups of nodes,

providing a principled mean of tackling higher-order link predic-

tion. The proposed approach differs from existing higher-order link

prediction methods [25,26], which focus on extending metrics com-

monly used in informal scoring for classical link prediction [1].

2. MODELING INTERACTIONS OVER GRAPHS

Consider a graph G = (V, E) with vertex set V and edge set E
with respective cardinalities |V| = N and |E| = E. A set of

nodal features is collected across time to form the set of endoge-

nous vectors {x(t) ∈ R
N}Tt=1. External (or exogenous) observables

{ζ(t) ∈ R
Q}Tt=1 can be also available corresponding to e.g., extra



nodal features, inputs from different networks [27], and snapshots or

layers of one network [28].

A linear structural equation model (SEM) comprises nodal vec-

tors x(t) and ζ(t), which in the noise-free case are related as [11]

x(t) = Ax(t) + Γζ(t) ∈ R
N

(1)

where Γ ∈ R
N×Q models the mapping of the exogenous input to

the nodal variables in x(t); A ∈ R
N×N corresponds to the inter-

relations among those variables. The per ith entry scalar counterpart

of the noise-free model (1) postulates that the observable at node i

is expressible through a weighted combination of signals at all other

nodes along with the corresponding exogenous variables, as

xi(t) =
∑

j∈V,j 6=i

aijxj(t) +
∑

k∈V

γikζk(t) (2)

where aij and γij are the (i, j)th entry of A and Γ, respectively;

while ζk(t) denotes the kth entry of ζ(t).
Although the SEM in (2) can relate different node variables

through nonzero entries aij of the adjacency matrix A, it only ac-

counts for pairwise dependencies through linear equations. Efforts

to broaden the expressive power of linear SEMs have been made

using nonlinear kernels of nodal variables; see e.g., [17] and refer-

ences therein. Albeit meaningful in several applications, they do not

directly account for the so-termed higher-order interactions present

in networked data via higher-order graph structures [5, 26], includ-

ing subgraphs and k-cliques.1 In the ensuing section, we introduce

a natural way to model such higher-order interactions, and their

descriptors using the widely known Volterra kernels [20].

3. MODELING HIGHER-ORDER INTERACTIONS

Modeling higher-order interactions over graphs calls for a descrip-

tion of the ith nodal feature xi(t) in terms of a set of subsets of

nodes S(i). To model first-order interactions, these subsets of nodes

are single nodes and the set S(i) is nothing but the set of neighbors

of the ith node; that is, the nodes j for which ai,j is nonzero in a

SEM. Modeling higher-order interactions though requires the sub-

sets to consist of more than one node, and hence the set S(i) will

comprise subsets of nodes.

To make this concrete, consider the set S
(i)
P , which contains the

subsets for defining interactions up to order P as

S
(i)
P :=

P
⋃

p=1

S(i)
∗,p , with S(i)

∗,p :=

Lp
⋃

l=1

S
(i)
l,p (3)

where S
(i)
l,p ⊂ V denotes the lth set of p nodes related to the ith node

in the graph. Parameter p here denotes set cardinality, and Lp the

number of order p subsets present.

Using these definitions and dropping the exogenous variable for

simplicity, we put forth the following generic self-driven model

xi(t) = f(x(t),S
(i)
P ) ∀ i ∈ {1, . . . , N} (4)

where f maps x(t) from S
(i)
P to xi(t). If for example S

(i)
1 =

∪L1

l=1S
(i)
l,1 is considered, where S

(i)
l,p only contains the lth neighbor

of the ith node, and assuming a linear f map, (4) boils down to the

linear SEM without exogenous variables (cf. (2)).

1A k-clique is a subset of vertices of an undirected graph, so that every
two distinct vertices in the subset are adjacent.

As most networks exhibit further structure in their node interac-

tions, the subsets in S
(i)
P must capture the gregarious behavior of the

nodes. For social networks having trianges as a building block of

interactions, the subsets {S
(i)
l,2}

L2

l=1 can be defined as those pairs of

nodes that form a triad with the ith node [29]. Likewise, the subsets

{S
(i)
l,p}

Lp

l=1 can be defined as the nodes that complete a p-clique when

the ith node is added. This subset assignment can be done for any

other graph motif (cf. [5]) that appears adequate for the data under

analysis. In the following, we introduce a principled way to define

the functional f in (4).

3.1. Self-Driven Graph Volterra Models

A way to instantiate the abstract model (4) is through a nonlinear

discrete-time relationship

xi(t) = fi(x(t)) + ǫi(t) (5)

where the set dependency has been absorbed by the subscript of the

function in (5), and ǫi(t) captures modeling errors as well as obser-

vation noise. Consider next that this relation is given by the series

expansion

fi(x(t)) = h
(i)
o +

P
∑

p=1

H
(i)
p [x(t)] (6)

where h
(i)
o is a constant term, and H

(i)
p [x(t)] denotes the pth expan-

sion module expressed as

H
(i)
p [x(t)] :=

Lp
∑

l=1

h
(i)
l,pg({xq(t) : q ∈ S

(i)
l,p}) (7)

where h
(i)
l,p is the lth expansion coefficient of order p for the ith vari-

able, and g is a permutation-invariant nonlinear function describing

the type of interactions among the variables. As the set S
(i)
P is gen-

erally unknown, meaning the interactions at all orders are unknown,

the module (7) can be equivalently rewritten using the set of all index

combinations of size p, that is

H
(i)
p [x(t)] =

N
∑

k1=1

· · ·
N
∑

kp=kp−1

h
(i)
p (k1, . . . , kp)g({xkq

(t)}pq=1)

(8)

where h
(i)
p (k1, . . . , kp) is the expansion coefficient for index combi-

nation {k1, . . . , kp} representing a (p+ 1)-clique and the non-zero

coefficients of (8) can be uniquely mapped to the coefficients of (7).

Therefore, estimation of the non-zero coefficients in (8) provides un-

derstanding of the interactions (active sets) in the network. Since

we have assumed g to be a permutation-invariant function, we only

consider index combinations rather than permutations, therefore the

upper triangular form of the module description in (8).

In the absence of exogenous variables and modeling errors, the

expansion (6) for the ith signal can be directly related to the linear

SEM in (2) by setting h
(i)
o = 0, h1(j) = aij , hp(k1, . . . , kp) =

0 ∀ p > 1, and g as the identity map. Thus, a linear SEM can

be seen as a special case of the proposed expansion. Further, upon

defining g({xkq
}pq=1) := Πp

q=1xkq
, the module (8) reduces to the

pth symmetric Volterra kernel of fi that is uniquely identifiable [30].

The proposed expansion (7) captures both the self-driven charac-

ter of SEMs as well as the identifiability and expressibility properties

since any continuous, nonlinear function can be uniformly approx-

imated to arbitrary accuracy by a Volterra series under mild condi-

tions on the VSMs [31]. These characteristics distinguish our novel



model from existing nonlinear SEMs that only consider nonlinear

functions of pairwise interactions. Therefore, higher-order struc-

tures in the graph are not seen as fundamental atoms governing the

core behavior of nodal features. On the other hand, the expansion (7)

allows identifying the existence of high-order interactions such as

triads or p-cliques by observing its nonzero coefficients. Due to the

close relation of (7) with VSMs, models based on (7) will be referred

to as self-defining graph Volterra models (SD-GVMs), and their co-

efficients as graph Volterra kernels.

3.2. Constrained Graph Volterra Kernels

Although (6) can capture the instantaneous dynamics produced by

higher-order interactions, it is prudent to introduce relational con-

straints derived from the interpretation of graph Volterra kernels.

We postulate that an interaction between nodes i and j occurs if

h
(i)
1 (j) 6= 0, meaning nodal features at i and j are dependent. Along

these lines, it is meaningful to consider that higher-order interactions

between a triplet {i, j, k} only occurs if there is interaction between

the pairs {i, j}, {j, k}, and {i, k}. This in turn leads to the condition

h
(i)
2 (j, k) 6= 0 =⇒ h

(l)
1 (m) 6= 0 ∀ (l,m) ∈ C2({i, j, k}) (9)

where Cr(·) denotes the subsets of size r of its argument set. Finally,

h
(i)
1 (i) = 0∀i, j ∈ V as in the case of linear SEMs.

In the following, we will first introduce formally the problem of

higher-order link prediction from network activation data, and then

argue that an SD-GVM can be devised to tackle this task.

4. HIGHER-ORDER LINK PREDICTION

Informally, higher-order link prediction amounts to finding the most

likely subsets of nodes to interact in the near future [26]. Given a

set of binary observations S ∈ {0, 1}N×T capturing the activation

of different nodes, e.g., publication of a paper, release of a song, or,

sending an email at times {t1, . . . , tT }, we want to predict what are

the most likely sets of nodes to be activated jointly at any t′ > tT .

Formally, with st ∈ {0, 1}N denoting the tth column of S,

let st be the N -dimensional representation of a set St ⊆ V whose

entries are the indexes of the nonzero entries of st, e.g., st′ =
[1, 0, 1]T ≡ St′ = {1, 3}. Here, we refer to such measurements

as simplex. Higher-order link prediction for a single higher-order

link can be stated as follows

(P1) Given simplices {St}
T
t=1 and a set A ⊂ V : A 6⊆ St,

1 ≤ t ≤ T , predict if ∃ τ , with T < τ ≤ Tmax : A ⊆ Sτ .

Given historical data, the goal of (P1) is to predict whether an un-

seen simplex will appear within a meaningful time interval. Despite

its appeal in several applications, pursuing such a general problem

might be unrealistic due to computational limitations or due to the

intrinsic problem complexity. For these reasons, the higher-order

link prediction task is often simplified to the closure prediction prob-

lem [25]. In a nutshell, closure prediction aims at finding the most

likely sets of nodes, which form an open structure that will become

close. Here, an open structure refers to a set of nodes, A, that have

interacted with each other, but which have not appeared simultane-

ously on a single simplex. Formally, a set A is considered open if

∀ i, j ∈ A, ∃ t′ ≤ T : {i, j} ⊂ S ′
t. Similarly, a set A is considered

closed ,if ∃ t′ ≤ T : A ⊆ S ′
t.

Using these conventions, the higher-order closure prediction

problem can be formulated as

(P2) Given simplices {St}
T
t=1 and a set of candidate open sets

{Ac}
C
c=1, predict the K most likely open sets to become closed.

Although (P2) is a simplification of the general higher-order predic-

tion in (P1), it retains part of its appeal, while allowing for a more

tractable formulation. In addition, by replacing the considered data,

meaning simplices, by nodal features, (P2) generalizes the classical

top-K link prediction [1]. Similar to [25, 26], the present work will

focus on predicting the formation of triangles, i.e., triplets of nodes

that activate at the same time, as they are the building the block for

higher-order interactions in social and other biological networks [5].

To solve (P2), we will show next how an instance of SD-GVMs

can be employed to unveil the underlying higher-order interactions

in the data. Using the nonzero expansion coefficients, we can then

predict which nodes are more likely to be jointly activated in the

future, as in e.g., authors publishing a paper together.

5. SD-GVM FOR TRIANGLE CLOSURE

When the goal is to predict closure of triangles, we can restrict our-

selves to SD-GVMs of order P = 2 as we are mainly interested on

interactions among 3-cliques. Also, as the input data is binary, in-

teraction between variables can be viewed as joint activation, which

implies that we can consider g as the product of its arguments.

Under these considerations, direct instantiation of an SD-GVM

leads to a model that produces real-valued signals. Hence, inspired

by binary regression methods, we make use of a latent variable

zi(t), to model the probability P ([st]i = 1|zi(t)) instead of di-

rectly modeling [st]i. In this work, we model this probability as

P ([st]i = 1|zi(t)) = σ(zi(t)), where σ(·) is the sigmoid func-

tion – a choice corresponding to logistic regression. Upon defining

a ⊠ a := [a2
1, a1a2, . . . , aN−1aN , a2

N ]T , a latent variable model

for this setup can be written as

zi(t) = ho,i + h
T
i,1st + h

T
i,2(st ⊠ st) (10)

where ho,i := h
(i)
o , while hi,1 and hi,2 are the graph Volterra ker-

nels for the first and second module, respectively, with both vec-

tors collecting the coefficients in lexicographic order. By collecting

the latent variables for the different nodes through time in matrix

[Z]i,t := zi(t), we can express the model (10) in matrix form as

Z = H
(0)

1
T +H

(1)
S +H

(2)
S

(2) = H̄S̄ (11)

where H(i) is the ith-order graph Volterra kernel matrix; with

H(0) = ho ∈ R
N a column vector having all constant terms

stacked; S(2) := [s1⊠s1, . . . , sT ⊠sT ]; H̄ := [H(0) H(1) H(2)];

and S̄ := [1ST (S(2))T ]T . Although (11) does not directly exhibit

the self-driving nature of SD-GVMs, observe that this setting is dif-

ferent from traditional logistic regression (LR) because the binary

labels here are the node variables [S]i,t. As a result, this can be seen

as a self-driven version of logistic regression where the data are the

labels themselves.

As we are considering the triangle closure problem, we start

with knowledge of the connectivity in the training set. Based on

S, this means we can obtain an initial network connectivity by ob-

serving the support of off-diagonal entries of W = STS. From

this connectivity, and upon enforcing h
(i)
2 (i, i) = 0 ∀ i ∈ V (due

to its binary nature [st]i = [st]
2
i ) we can recover (cf. Sec. 3.2)

(i) the set of open triangles TO; (ii) the set of closed triangles TC ;

and thus, (iii) the candidates for the nonzero graph Volterra ker-

nels, S2 := {S
(i)
2 }Ni=1. Using S2, we can build a binary matrix
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Fig. 1: Prediction performance in terms of AUC in the (a) “Enron email” and (b) “primary school contact” datasets.

Algorithm 1: Sparse SD-GVM Logistic Regression

Input: binary data: S̄; parameter: λ; stepsize: η;

tolerance: ǫ, initial connectivity: W

δθ ← ∞; k ← 0; θk ← 0;

M ← build M mtx(W );

Ψ ← (S̄T ⊗ I)M ;

while (δθ > ǫ) and (k < kmax) do

∆θ ← 0;

for i = 1 : N ; t = 1 : T do

ψ ←get mtx row(Ψ, i, t);

∆θ = ∆θ +ψ

(

[X(1)]i,t − σ(θT
k ψ)

)

end

θk+1 = soft thr(θk + η∆θ, ηλ);

δθ = ‖θk+1 − θk‖2; k = k + 1;

end

Output: Graph Volterra kernels: θk

M such that vec(H̄) = Mθ, where θ collects the graph Volterra

kernels. Considering such a parametrization, a proximal gradient as-

cend (PGA) algorithm with sparsity regularization can be derived to

fit θ to the data. This procedure is summarized in Alg. 1. In this

algorithm, get mtx row picks the row of its input related to the

zi(t) latent variable; and soft thr(·, ηλ) applies soft thresholding

with parameter ηλ.

Once θ has been estimated, the entries related to TO are sorted

by their absolute value, and the K-top ones are declared as the most

likely open triangles to become closed. Our working hypothesis is

that open triangles with large coefficients, capturing high level of

interaction, are the most likely triangles to become closed.

6. NUMERICAL TESTS

The proposed SD-GVM approach was compared with a number

of alternatives in terms of open triangle closure prediction per-

formance, as measured by the area under the curve (AUC) in the

receiver operating characteristic metric on the first 100 nodes of the

“Enron email” [32], and the “primary school contact” [33]

datasets. In short, the former dataset consists of emails between

Enron employees, with nodes representing email addresses, whereas

the latter consists of proximity-based contacts as recorded by wear-

able sensors in a primary school. Due to space limitations we refer

the interested reader to [26] (and references therein) for a compre-

hensive treatment of the competing alternatives. Where applicable,

the subscripts w, u, and 3w, stand for weighted, unweighted and

3-way, respectively. Finally, PPR stands for personalized PageRank

similarity.

In particular, for our tests, the first 10% and 1% of timestamped

events comprised the training sets in the “Enron email” and “pri-

mary school contact” datasets, respectively, with the rest of the data

being used for testing. For both experiments, λ = 10−3, η = 10−4

and kmax = 500 were used for SD-GVM. The merits of our ap-

proach become evident in Figs. 1a and 1b, as the proposed SD-GVM

consistently outperforms all competing alternatives higher-order link

prediction performance. The proposed approach is a step forward to-

wards a model-based understanding of higher-order prediction over

networks.

7. CONCLUSIONS

The present contribution put forth a novel model to capture higher-

order interactions in networked data. Drawing upon linear structural

equation models and Volterra series models, nodal features were ex-

pressed as combinations of features from neighboring nodes, along

with nonlinear combination of nodal features belonging to groups of

nodes capturing higher-order dependencies. The novel self-driven

graph Volterra model was then specialized to handle binary measure-

ments, and was applied to the higher-order link prediction problem.

Through numerical tests involving real social interaction data, the

proposed model along with logistic regression, was demonstrated

to outperform recently proposed methods based on generalizing the

link prediction scores for the task of triangle closure prediction.

Acknowledgements. M. Coutino and G. Leus were supported in

part by the ASPIRE project 14926 (within the STWOTP program)

financed by the Netherlands Organization for Scientific Research

(NWO); and M. Coutino in part by CONACYT. G. V. Karanikolas

and G. B. Giannakis were supported in part by NSF grants 1711471

and 1901134. Emails: {m.a.coutinominguez, g.j.t.leus}@tudelft.nl;

{karan029,georgios}@umn.edu



8. REFERENCES

[1] E. D. Kolaczyk and G. Csárdi, Statistical Analysis of Network Data with R.
Springer, 2014, vol. 65.

[2] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social net-
works,” J. Am. Soc. Inf. Sci. Tec., vol. 58, no. 7, pp. 1019–1031, 2007.

[3] P. Resnick and H. R. Varian, “Recommender systems,” Commun. ACM, vol. 40,
no. 3, pp. 56–59, 1997.

[4] S. Sulaimany, M. Khansari, and A. Masoudi-Nejad, “Link prediction potentials
for biological networks,” Int. J. Data Min. Bioin., vol. 20, no. 2, pp. 161–184,
2018.

[5] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Net-
work motifs: Simple building blocks of complex networks,” Science, vol. 298, no.
5594, pp. 824–827, 2002.
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