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ABSTRACT

A task of paramount importance in several applications deals with
minimizing a convex cost function f(x) with Lipschitz continuous
gradient via accelerated gradient methods (AGMs). The focus of
the present contribution is on the so-termed estimate sequence (ES)
analysis tool for establishing convergence of AGM iterates. A gen-
eralized ES is introduced to support Lipschitz continuous gradient
on any norm, a valuable advancement in practical settings involving
optimization of non-Euclidean norms. Traditionally, ES consists of
a sequence of quadratic functions that serve as surrogate functions of
f(x). However, such quadratic functions preclude the possibility of
supporting Lipschitz continuous gradient defined for non-Euclidean
norms. This much needed generalization to non-Euclidean norms is
accomplished here through a simple yet nontrivial modification of
the standard ES. The novel analysis provides useful insights on how
acceleration is achieved along with interpretability of the involved
parameters in ES. Finally, numerical tests demonstrate the conver-
gence benefits of taking non-Euclidean norms into account.

Index Terms— Nesterov’s accelerated gradient method, esti-
mate sequences, gradient descent, optimization

1. INTRODUCTION

In this work, we focus on solving the following problem

min
x∈Rd

f(x) (1)

where f is a convex function with Lipschitz continuous gradient; d
is the dimension of the decision vector x. Throughout, x∗ denotes
the optimal solution of (1), and it is assumed that f(x∗) > −∞.

One of the standard solvers of (1) is through gradient descent
(GD), which iteratively updates the decion vector as

xk+1 = xk − ηk∇f(xk)

where k is the iteration index, and ηk is the step size. It is well
known that GD converges with rate f(xk) − f(x∗) = O(1/k).
As the lower bound of first-order methods for convex problems is
f(xk) − f(x∗) = O(1/k2), clearly GD is not optimal in terms of
convergence rate [1].
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To accelerate GD, Nesterov proposed an accelerated gradient
method (AGM), which entails the following iterative updates

xk+1 = yk − αk∇f(yk) (2a)
yk+1 = (1− ηk)xk+1 + ηkxk (2b)

where αk and ηk are carefully designed step sizes [1, 2]. It has been
established that AGM convergence matches the lower bound of first-
order methods; that is, f(xk) − f(x∗) = O(1/k2). Thanks to its
fast convergence, AGM and its variants, including FISTA [3] and
variance-reduced AGM for finite-sum costs [4, 5, 6], are useful for
several statistical signal processing applications; see e.g., [7, 8, 9].

Even though the fastest convergence rate is guaranteed, under-
standing the machinery behind AGM turns out to be challenging
because most existing analyses do not provide intuition as clear as
those for analyzing GD. In this work, the estimate sequence (ES)
analysis tool that was first proposed in [1], with the goal of unveiling
the mysteries behind it.

As formalized next, ES “estimates” f using a sequence of sur-
rogate functions.

Definition 1. (Estimate sequence) A tuple
(
{Φk(x)}∞k=0, {λk}∞k=0

)
is an ES of f(x), if limk→∞ λk = 0, and for any x ∈ Rd we have

Φk(x) ≤ (1− λk)f(x) + λkΦ0(x).

As the choice of {Φk(x)} and {λk} will become clear later,
AGM iterations (2) can be derived from ES [1]. Though the intuition
behind ES is still unclear, ES is a powerful tool that has been adopted
for analyzing different algorithms [4, 5, 6, 10]. In this work, we will
argue that ES “estimates” f in a two-way manner: i) through the
progress made per iteration using (2); and ii) through the distance
of f(xk+1) is from f(x∗). In addition, although the importance
of smoothness defined on non-Euclidean norm is widely recognized
[1, 2, 11, 12], existing analyses with ES only deal with Lipschitz
continuous gradient defined on `2-norm. This prompted us to gener-
alize ES to support smoothness on any norm.

Our detailed contributions are summarized below.

c1) ES is generalized to support a Lipschitz continuous gradient
defined on any norm.

c2) In-depth explanation of acceleration is provided, along with
its reflection on ES.

c3) It is shown empirically that considering ‖ · ‖Q with a simple
but carefully designed Q can significantly improve conver-
gence over that of standard AGM.



2. PRELIMINARIES

Assumptions and definitions are introduced in this section.The im-
portance of non-Euclidean norms in optimization is also mentioned.
Throughout, the dual norm of a given norm ‖ · ‖ is given by ‖ · ‖∗.

Assumption 1. (Convexity.) Function f : Rd → R is convex; that
is, f(y)− f(x) ≥ 〈∇f(x),y − x〉, ∀x,y ∈ Rd.

Assumption 2. (Gradient Lipschitz.) Function f : Rd → R has
L-Lipchitz gradient with respect to (wrt) some norm ‖ · ‖; that is,
‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, ∀x,y ∈ Rd.

Assumptions 1 and 2 hold throughout. For convenience, the no-
tion of Lipschitz-continuous gradient and smoothness will be used
interchangeably despite their slight difference. When considering
the `2-norm, Assumption 2 reduces to the standard one ‖∇f(x)−
∇f(y)‖2 ≤ L‖x − y‖2. The consequence of Assumption 2 is the
so-termed descent lemma that demands [11, Appendix B.1]

f(y)− f(x) ≤ 〈∇f(x),y − x〉+
L

2
‖x− y‖2. (3)

As a simple example that relies on (3) to illustrate the importance
of non-Euclidean norms, consider an f having L1 and L2 Lipchitz
continuous gradient wrt the `1- and `2-norm, respectively. Plugging
L1 and L2 in (3), and using that ‖x‖1 ≤

√
d‖x‖2, we deduce that

L2 ≈ dL1. Since L1 and L2 influence the convergence rate of first-
order methods, this suggests supporting smoothness wrt `1-norm is
helpful to speedup converge.

To handle non-Euclidean norms, one would rely on the Bregman
divergence [2, 11, 12].

Definition 2. (Bregman divergence). If R(·) is 1-strongly convex
wrt some norm ‖ · ‖, that is R(y) ≥ R(x) + 〈∇R(x),y − x〉 +
1
2
‖x− y‖2, ∀x,y ∈ Rd, the Bregman divergence wrt R is

DR(y,x) = R(y)−R(x)− 〈∇R(x),y − x〉.

FunctionR(·) is sometimes termed distance generating function
(DGF). To illustrate the Bregman divergence, consider R(x) =
1
2
‖x‖22 that is 1-strongly convex wrt the `2-norm, and has Breg-

man divergence given by DR(x,y) = 1
2
‖x − y‖22. Another ex-

ample involves the negative entropy as DGF, for which R(x) =∑d
i=1 xi lnxi is known to be 1-strongly convex wrt the `1-norm,

and the Bregman divergence is DR(x,y) =
∑d
i=1 xi ln xi

yi
−∑d

i=1(xi − yi), and it is also known as generalized KL divergence.

3. GENERALIZED ESTIMATE SEQUENCE

In this section, we broaden the scope of ES and lay out the generic
framework of AGM with support of non-Euclidean norms. To this
end, we construct a sequence of surrogate functions of f using µ0 >
0, {yk}, {δk ∈ (0, 1)} (that will be specified later), as

Φ0(x) = Φ∗0 + µ0DR(x,x0) (4a)
Φk+1(x) = (1− δk)Φk(x) (4b)

+ δk
[
f(yk) +

〈
∇f(yk),x− yk

〉]
, ∀ k ≥ 0.

Our first result asserts that (4) with proper {λk} is an ES for f .

Lemma 1. If λ0 = 1 and λk = λk−1(1 − δk−1), then the tuple(
{Φk(x)}∞k=0, {λk}∞k=0

)
is an estimate sequence of f(x).

Proof. We show this by induction. For λ0 = 1, it holds that
Φ0(x) = (1 − λ0)f(x) + λ0Φ0(x). Suppose that Φk(x) ≤
(1− λk)f(xk) + λkΦ0(x) is true for some k. We then have

Φk+1(x) = (1− δk)Φk(x) + δk
[
f(yk) +

〈
∇f(yk),x−yk

〉]
(a)

≤ (1− δk)Φk(x) + δkf(x)

≤ (1− δk)
[
(1− λk)f(x) + λkΦ0(x)

]
+ δkf(x)

= (1− λk+1)f(x) + λk+1Φ0(x)

where (a) is due to the convexity of f ; and the last equation fol-
lows from the definition of λk+1. Since limk→∞ λk = 0, the tuple(
{Φk(x)}∞k=0, {λk}∞k=0

)
satisfies the definition of an ES.

We term {Φk(x)} in (4) and the corresponding {λk} as gen-
eralized ES. If R(x) = 1

2
‖x‖22, the surrogate functions in (4) boil

down to the standard ones in [1]. The key difference of (4) will be
discussed later, but for now the ensuing result will demonstrate why
ES is useful for analyzing AGM.

Proposition 1. If for a sequence {xk} it holds that f(xk) ≤
minx Φk(x), we have

f(xk) ≤ λk
(
Φ0(x∗)− f(x∗)

)
, ∀ k.

Proof. If f(xk) ≤ minx Φk(x) holds, then we have

f(xk) ≤ min
x

Φk(x) ≤ Φk(x∗) ≤ (1− λk)f(x∗) + λkΦ0(x∗)

where in the last inequality we used Definition 1. Subtracting f(x∗)
from both sides, we arrive at

f(xk)− f(x∗) ≤ λk
(
Φ0(x∗)− f(x∗)

)
which completes the proof.

Proposition 1 illustrates that the generalized ES is helpful to
find a sequence {xk} that is converging to x∗. One can see that
λk =

∏k−1
τ=0(1 − δτ ) in Proposition 1 characterizes the conver-

gence rate of {xk}. On the other hand, although the surrogate func-
tions {Φk(x)} do not appear in Proposition 1 directly, they pose
requirements on {xk}; that is, {xk} should be chosen to satisfy
f(xk) ≤ minx Φk(x).

The rest of this section will deal with the construction of se-
quences {xk} and {yk}, so that f(xk) ≤ minx Φk(x) is guaran-
teed for all k. To this end, we need to take a closer look at the
surrogate functions {Φk(x)} in (4).

Lemma 2. The functions Φk(x) in (4) can be rewritten as Φk(x) =
Φ∗k + µkDR(x,vk), where Φ∗k = minx Φk(x), and Φk(vk) = Φ∗k.
Furthermore, we have

µk+1 = (1− δk)µk (5a)

vk+1 = arg min
v

〈 δk
µk+1

∇f(yk),v − vk
〉

+DR(v,vk) (5b)

Φ∗k+1 = (1− δk)Φ∗k + δkf(yk) + µk+1DR(vk+1,vk)

− δk
〈
∇f(yk),yk − vk+1

〉
. (5c)

Proof. See supplemental material online at [13].



Algorithm 1 AGM
1: Initialize: x0, {δk}, and {µk}
2: v0 = x0

3: for k = 0, 1, . . . ,K − 1 do
4: yk = δkvk + (1− δk)xk
5: xk+1 = arg minx

〈
∇f(yk),x− yk

〉
+ L

2
‖x− yk‖2

6: vk+1 = arg minv

〈
δk
µk+1
∇f(yk),v−vk

〉
+DR(v,vk)

7: end for
8: Return: xK

With the alternative expressions of Φk(x), Lemma 2 relates
vk+1 with vk (Φ∗k+1 and Φ∗k). In addition, Lemma 2 shows the
key difference of our generalized ES with the standard one in [1].
As R(x) = 1

2
‖x‖22 in standard ES, simple calculation shows that

Φk(x) is exactly µk-strongly convex wrt `2-norm (in fact Φk is a
quadratic function). However, when considering a generalR(x), we
have DR(x,y) ≥ 1

2
‖x − y‖2. This means that though Φk(x) is

strongly convex wrt ‖ · ‖, the parameter µk is always an underesti-
mate of its strongly convexity parameter.

Based on Lemma 2, the following lemma guides the choice of
yk and xk to ensure f(xk) ≤ Φ∗k, which is the requirement in
Proposition 1 for establishing the convergence of xk.

Lemma 3. Choose Φ∗0 = f(x0), yk = δkvk + (1 − δk)xk, and
xk+1 = arg minx

〈
∇f(yk),x−yk

〉
+L

2
‖x−yk‖2. IfLδ2k ≤ µk+1

is satisfied, it holds that f(xk) ≤ Φ∗k, ∀ k ≥ 0.

Proof. See supplemental material online at [13].

With the choices of {xk}, {yk}, and {vk} in Lemmas 2 and
3, we summarize the AGM with support to non-Euclidean norms
in Alg. 1. For non-Euclidean norms induced by a positive definite
matrix, the closed-form updates for xk+1 and vk+1 will be discussed
in Section 4.2.

Next, we establish the convergence rate of Alg. 1.

Theorem 1. Choosing µ0 = 2L, δk = 2
k+3

, Alg.1 guarantees that

f(xk)− f(x∗) = O
(f(x0)− f(x∗) + LDR(x∗,x0)

k2

)
, ∀ k.

Proof. By the choice of parameters, one can verify thatLδ2k ≤ µk+1

holds. And the choices of {xk}, {yk}, and {vk} guarantee f(xk) ≤
Φ∗k as shown in Lemma 3. Therefore, we can directly apply Propo-
sition 1 to obtain

f(xk)− f(x∗) ≤ λk
(
Φ0(x∗)− f(x∗)

)
=

2
[
f(x0)− f(x∗) + 2LDR(x∗,x0)

]
(k + 1)(k + 2)

which completes the proof.

Theorem 1 suggests that AGM has a lower bound matching con-
vergence rateO(1/k2). Note also that Alg. 1 recovers the so-termed
“linear coupling” [11], which is believed to be very different from
AGM. However, our generalized ES suggests that linear coupling
is a natural consequence of Nesterov’s acceleration technique. The
only minor difference is that the analysis in [11] supports the choice
δk = 2

k+2
, while ours selects1 δk = 2

k+3
. Although different, both

choices exhibit an O(1/k) behavior.

1Theoretically, δk = 2
k+3

also works for linear coupling.
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Fig. 1. Validation of the intuitive explanation of acceleration.

4. INTUITION AND NON-EUCLIDEAN NORMS

In this section, we examine Alg. 1 from a “linear coupling” [11]
point of view to better understand the generalized ES. Subsequently,
we present a case study to illustrate the merits of considering non-
Euclidean norms together with numerical tests.

4.1. Redux of ES through the “linear coupling” lens

In “linear coupling” [11], the gradient descent and mirror descent
are coupled to effect acceleration. We first rewrite the updates of
AGM using the notation in [11]. The variable xk+1 is obtained via
a generalized GD, that is

xk+1 = Grad(yk)

:= arg min
x

〈
∇f(yk),x− yk

〉
+
L

2
‖x− yk‖2 (6)

while vk+1 is obtained by mirror descent (MD)

vk+1 = Mirr
(
vk,

δk
µk+1

∇f(yk)
)

(7)

:= arg min
v

〈 δk
µk+1

∇f(yk),v − vk
〉

+DR(v,vk)

= arg min
v

〈
∇f(yk),v − vk

〉
+
µk+1

δk
DR(v,vk).

The consequence of finding xk+1 using (6) is f(xk+1) −
f(yk) ≤ − 1

2L
‖∇f(yk)‖2∗ as shown in the proof of Lemma 3. This

inequality reveals how much progress is made per iteration when
moving from yk to xk+1.

On the other hand, the MD step is used to estimate the optimal-
ity gap of current iterates. To see this, recall that for any u ∈ Rd
convexity implies that the following inequality holds

f(u) ≥ f(yk) + 〈∇f(yk),u− yk〉 (8)
= f(yk) + 〈∇f(yk),u− vk〉+ 〈∇f(yk),vk − yk〉.

Since f(u) ≥ f(x∗), ∀u, it is natural to use (8) to obtain an esti-
mate of f(x∗). Since the RHS of (8) is linear in u, one would instead
minimize the regularized version of the RHS of (8) as in (7) to obtain
a worst-case estimate of f(x∗). Hence, obtaining vk+1 amounts to
finding an approximation of the optimality gap via (8). The role of
{vk} in the generalized ES is thus unveiled: it helps to construct the
optimality gap. This intuition is validated by the numerical tests in
Fig. 1, where the RHS of (8) is always less than f(xk) as an estimate
of f(x∗).

In a nutshell, both GD and MD effect acceleration: using GD
for descent; while consulting MD for estimating the optimality gap.
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Fig. 2. Tests AGM with ‖ · ‖Q on different datasets.

4.2. Case study: quadratic norm

In this subsection, we consider smoothness w.r.t. the quadratic norm,
‖ · ‖Q, where Q ∈ Sd++ is a positive definite matrix. In this case, it
is natural to chooseR(x) = 1

2
‖x‖2Q withDR(x,y) = 1

2
‖x−y‖2Q.

The updates on xk+1 and vk+1 (Lines 5 and 6 in Alg. 1) can thus
be rewritten in closed form as

xk+1 = yk −
1

L
Q−1∇f(yk) (9a)

vk+1 = vk −
δk
µk+1

Q−1∇f(yk). (9b)

Despite the closed-form update, the main massage here is that a
properly designed Q can be helpful to speedup convergence. Intu-
itively, choosing Q as an approximation of the Hessian can be help-
ful. However, since AGM is a first-order method, one wants to find
Q using first-order information only.

Inspired by the well known AdaGrad [14, 15], which has sim-
ilar updates as (9a), we propose to obtain Q using a few gradients
as AdaGrad does. Specifically, setting z0 = x0, and performing t
steps of GD on zk, i.e., zk+1 = zk − 1

L2
∇f(zk), where L2 is the

smoothness parameter w.r.t. `2-norm, we can then choose Q as

Q = c · diag
(√√√√1

t

t−1∑
k=0

(
∇f(zk)

)2
+ ε1

)
(10)

where (·)2 and
√
· denote element-wise square and square-root op-

erations, respectively; diag(θ) denotes a diagonal matrix whose
diagonal entries are given by the vector θ; ε > 0 is a small offset
to guarantee the positive definiteness of Q; and c > 0 is a tunable
scaler. One can view Q as an estimated Hessian using first-order
information. As for the choice of t, in practice we have found in
our experiments that a small number (t ≈ 3) performs well. Hence,
using (10) to find Q does not incur a major computational overhead.

5. NUMERICAL TESTS

In this section, we illustrate our theoretical findings in the classical
binary classification task using logistic regression, and the proposed
construction for the matrix Q [cf. (10)]. The loss function is

f(x) =
1

n

n∑
i=1

ln
(

1 + exp
(
− bi〈ai,x〉

))
where ai and bi are the feature and label of datum i, respectively; and
n is the total number of data. We choose standard GD and Nesterov’s

Table 1. Parameters of datasets used, where d is the dimensionality
of feature vectors, n the number of data, and “density” refers to the
percentage of non-zero entries among all feature vectors.

dataset d n density
w1a 300 2477 3.82%
w7a 300 24, 692 3.89%
a9a 122 32, 561 11.37%

standard acceleration approach (AGM with l2-norm) as benchmarks.
For the implementation of AGM with ‖·‖Q, we consider Q specified
by (10) with ε = 10−4 and c = 10.

We run tests on datasets w1a, w7a, and a9a2, whose detailed
descriptions are listed in Tab. 1. Performance of the considered
algorithms is depicted in Fig. 2. The proposed AGM with ‖ · ‖Q
significantly outperforms the original AGM with ‖·‖2. For example,
on dataset w1a, the proposed method uses around 10 iterations to
achieve f(xk) = 0.2, while standard AGM requires 30 iterations.

Notice that the convergence improvement achieved by using
quadratic norm in AGM over the standard AGM is more pronounced
when sparsity is present (see Fig. 2 (b) and (c)). As Q is obtained
in the spirit of AdaGrad, such “sparsity preference” behavior is
consistent with the observation made in [15], where AdaGrad also
performs better on sparse data.

6. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, the estimate sequence (ES) analysis tool was extended
to support smoothness defined on any norm. In-depth explanation of
how acceleration is achieved, and the meaning of {vk} in ES were
provided. Our theoretical findings led to an efficient method, where
‖ · ‖Q is taken advantage of to improve the performance of the stan-
dard AGM. Numerical tests corroborated that the novel algorithm
markedly outperforms standard AGM.

Investigating generalized ES on strongly convex problems is a
challenging future research topic because µk is an underestimate of
the strongly convex surrogate Φk(x).

2Online available at https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/binary.html
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