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ABSTRACT

Recent advances in algorithmic and computational tools have
led to an unprecedented growth in data mining over networks.
However, partial knowledge of node connectivity (due to pri-
vacy concerns or the large number of nodes), as well as in-
complete domain knowledge (as in e.g., biological applica-
tions), challenge learning tasks over real networks. For robust
learning from incomplete data, node embedding over graphs
is thus well motivated, and is pursued here by leveraging ten-
sors as multi-dimensional data structures. To this end, a novel
tensor-based network representation is advocated, over which
node embedding is cast as a structured nonnegative tensor
decomposition. The trilinear factorization involved is per-
formed using an alternating least-squares approach. The ex-
tracted node embeddings are then utilized to predict the miss-
ing links. Performance is assessed via numerical tests on
benchmark networks, corroborating the effectiveness and ro-
bustness of the proposed technique over incomplete graphs.

Index Terms— Node embedding, tensor decomposition,
link prediction.

1. INTRODUCTION

In recent years, complex system analysis has experienced un-
precedented growth, thanks to the emergence of graphs as an
indispensable tool for data mining and pattern recognition in
heterogeneous collections of data. Particularly, in many real-
world networks emerging with social media and biological
applications, a variety of tasks including regression, classifi-
cation, clustering, and link prediction, all face challenges re-
lated to incomplete data as well as limited computational re-
sources that must be accounted for, when designing efficient
and robust learning schemes [1, 2].

Specifically, incomplete knowledge of graph connectivity
may arise due to various reasons such as privacy and the large
scale of social networks [3, 4]. In addition, incomplete do-
main knowledge arises in biomedical applications [5, 6]. To
this end, tensors as multi-dimensional data structures with in-
creased representational capabilities provide a valuable tool-
box that has been investigated for a variety of challenging net-
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work analysis tasks such as anomaly detection and dynamic
community identification, among others [7, 8, 9, 10].

Furthermore, there has been a growing research interest at
the intersection of representation learning and network anal-
ysis, where the objective is to learn informative nodal fea-
tures, or embeddings [11, 12]. Such embeddings are then uti-
lized for a variety of tasks such as node-classification or link
prediction using mature and popular data vector machines
such as logistic regressions, multi-layer perceptrons, or sup-
port vector machines. Embedding techniques using random
walks, neural networks, and nonnegative matrix factorization
are among the recently proposed approaches [13, 14, 15, 16].

The objective of this work is to design an efficient node
embedding technique, whose performance is robust in the
face of partial knowledge on network connectivity. Inspired
by [8], a novel tensor-based node embedding technique is
developed, whose factorization provides robust embeddings
in the presence of missing connections in the graph. Specif-
ically, a fensor of egonets is formed to obtain a reinforced
network representation with inherently structured redun-
dancy. This tensor is then factorized using structured polyadic
canonical decomposition (CPD), while maintaining sparsity
for affordable memory and computational load [17]. One
of the CPD factors subsequently yields the sought node em-
beddings, and is then utilized to predict the missing edges in
the graph. Thanks to the reinforced graph representation as
well as the multi-dimensional nature of tensors, the proposed
method offers considerable improvement, as corroborated
through numerical tests.

The rest of the paper is organized as follows. The pro-
posed tensor representation is the subject of Section 2, while
tensor-based node embedding along with its solver are pre-
sented in Section 3. Section 4 provides numerical tests, and
Section 5 concludes the paper.

2. PRELIMINARIES AND TENSOR OF EGONETS

Given a network of IV vertices (or nodes) n € V with |V| =
N, and their edgeset &, let us denote the observed subset of
the edgeset as £, C &, where the set difference £y := £\ &,
corresponds to the missing network edges due to incomplete
data. Let us also denote the often sparse binary adjacency
matrix W € RV*Y with (i, j)th entry [W]; ; 1= w;; = 1,



if (¢,5) € £, and w;; = 0, otherwise. Correspondingly, the
observed adjacency matrix W, := P (W) sampled through
the operator Pq(.) is defined as

o )1 if (i) €&,

(Wolig := [Pa(W)lis = {O otherwise.

Aiming at a reinforced tensor-based network representation,
we rely on the so-termed egonets of the observed binary
network, where the egonet of node n is defined as the sub-
graph induced by node n and its one-hop observed neighbors
No(n), as well as all their connections in edgeset &, [7].
Specifically, the egonet of node n can be represented by
the induced subgraph G = (V, &™), where &™) is the
edgeset of the links in between nodes {n} U N,(n) in the
observed edgeset £,. Thus, the binary adjacency matrix

W € RV*N corresponding to egonet G(™) has entries

w™ = {1 if (i,7) € Sén)and 1,7 € No(n) U {n}
%" 10 otherwise.

Subsequently, the three-way observed egonet-tensor
W, € RNXNXN_ or EgoTen, is constructed by stack-
ing the observed sparse egonet adjacency matrices é”)
for all nodes n € V in the frontal slabs of W ; that is,

W, = W(()”), where : is a free index that spans its range,

LLn

in tensor parlance.

]

3. NODE EMBEDDING

Inspired by node-embedding techniques based on low-rank
decomposition of the adjacency matrix, here we propose a
joint low-rank decomposition of the observed egonet adjacen-
cies, namely via the well-known canonical polyadic decom-
position (CPD) [18]. This is mainly motivated by the fact that
the ‘structured redundancy’ in the tensor of egonets provides a
reinforced representation of the network, hence yielding pro-
viding with increased robustness, i.e., [8]. We approximate
the observed EgoTen by a nonnegative rank-D decomposition

D

Ao i ol W = ;adobdocdn%

which, for the n-th slab corresponding to the n-th egonet,
yields

D
W(()”) ~ Z cna(aq o bg) €))
d=1

where vectors ag and by correspond to the d-th columns of
factors A and B, and ¢,4 is the (n,d)-th entry of factor C,
while o denotes vector outer product. By interpreting the rank
of the decomposition as the number of “components” in the
network, the joint decomposition yielding (1) can then be in-
terpreted as a weighted sum over the D “components,” where

(aq o bg) captures the d-th “component structure.” This mo-
tivates further regularization of the CPD as
{A,B,C} = argmin

D
{IW, = >~ asobsocl}
A>0,B>0,C>0

d=1
+ (Al + Bl @

in which sparsity of the “components” in terms of constituent
nodes is promoted. Finally, the D-dimensional rows of the
factor C := [c{,cq, -+ ,c,} ] will provide the embedded
nodal features in the graph. Optimization in (2) is a trilin-
ear non-smooth block-convex minimization, that can be ef-
fectively solved by block-doordinate descent. The following
subsection delineates the solver in detail.

3.1. Solver

The proposed minimization in (2) can be effectively handled
by block-coordinate descent, where the blocks of the opti-
mization variables are A, B, and C, yielding the following
subproblems.

Subproblem A. At iteration k -+ 1, by fixing factors B(*) and
C¥) at their current values, factor A is updated by minimiz-
ing the nonnegative regularized least-squares (LS) cost as

Ak+D) — ariminHWA ~HPAT|Z + AL B
>0

where W4 := [vec(W,, . ),...,vec(W )] € RN xN

——91,:,: —— 9N,
is a matricized reshaping of the tensor W, and

HE = [b) 0 ). b & o)

with bl(ik) (c;k)) denoting column d of B (respectively
C(k)), and ® the Kronecker product operator; see also [18].
Subproblem B. Similarly, update (k + 1) of factor B is car-
ried out by minimizing

B+ — arg min [Wg—HYBT|2 + A\|B|; )
>0

where Wp := [vec(W )] € RN*XN

70:,17:), ..., vec(W
and

0. .
Mo, N,

Hgf) = [a(lk+1) ® cgk), e ,agﬂ) ® C([’;)}

yielding a similar optimization problem as in (3).
Subproblem C. Finally, factor C is updated by solving

Cck+1) — arg min |W¢ — H(Ck)CTH% 5)
C>0

where We = [vec(W,, _,),...,vec(W, )] is the ma-

tricized version of W along the 3-rd mode, and

HY = [a+D) g plEtD) 2+ g bg””} .



Algorithm 1 ADMM solver for regularized nonnegative LS

Input HJ;vWaMXinit
X. .|| _
Set P = %7)((0) = XinibX(O) = 0N><D7Y(O) =

Onxp,7 =0
while r» < Imax,ADMM do

X = H%én W, — H,XT[[3

+ Y = X+ XUV + )Xy

X =P, (Xm i Y(H))
Y =YD — pX) — X))
T =r+1

end while

Retrun X (")
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Fig. 1. ROC curve for link prediction with 10% missing links

All the emerging subproblems involve nonnegative (regu-
larized) LS minimization, which can be effectively solved by
the altenating direction method of multipliers (ADMM) [19].
To describe the latter, consider the general problem

X*+D = argmin W, — H,X |2 +7X[:  (6)
X>0

where appropriate selection of matrices X, W, and H,, to-
gether with regularization parameter ~y specializes (6) to the
subproblems in (3), (4), and (5), e.g. setting X = C, H, =
HY W, = W¢, and v = 0 yields (5). The ADMM
steps for solving (6) are described in pseudocode of Alg. 1.
Note that in Alg. 1 updating X(") for v = 0 boils down to
the LS solution that is available in closed form, whereas for
v # 0 the LS cost is augmented with the Lasso regulariza-
tion term, and can be solved iteratively. To handle sparsity,
we have utilized SPLATT to carry out the proposed ADMM-
based solvers [17].
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Fig. 2. ROC curve for link prediction with 30% missing links

4. NUMERICAL TESTS

In order to investigate the performance and resilience of
the proposed EgoTen-based node embedding, synthetic
Lancicchinetti-Fortunatoand-Radicci (LFR) networks [20]
are utilized in this section. LFR graphs serve as benchmark
networks, in which certain real-world properties, namely
power-law distribution for nodal degree and community sizes,
are preserved. Such networks are configured by a total num-
ber of N nodes, d average degree, power-law distribution
exponents for degree and community sizes ; and 72, and
parameter 4 to control the community mixing index.

In order to assess the performance under incomplete
knowledge of the network connectivity, we have generated
networks with N = 1,000, v = 2, v» = 1, p = 0.5, and
sampled m% of the network edges uniformly, while ensur-
ing that all nodes remain connected to the main component.
That is, if a node has become disconnected after edge sam-
pling, we randomly retain one of its edges to preserve graph
connectivity. Also, parameter \ is set to 0.01.

Performance of the resultant embedded nodal vectors is
assessed by utilizing them for link prediction. That is, a pos-
sible link between nodes ¢ and j is scored by the inner prod-
uct of their embedded nodal vectors in the corresponding D
dimensional space, i.e., s;; = c;rcj, and the links with
higher scores s; ; are considered more likely to appear (or
have been missing). By sorting the non-existing edges ac-
cordingly to their link scores s; ; in the observed graph in a
decreasing order, and comparing with the ground truth edge-
set, the receiver operating characteristic curve (ROC) and the
area-under-curve (AUC) figures of merit are obtained.

The tests are carried out over LFR networks with d = 50,
with m = 10%, 30% and 50% missing edges, and the ROC
curves for four random realizations are depicted in Figures 1-
4, and also compared with nonnegative matrix decomposition
using the adjacency matrix as well as Node2Vec embedding
[13] with D = 256. Nonnegative tensor- and matrix-based
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Fig. 4. ROC curve for link prediction with 70% missing links

node embedding methods are denoted as NTM and NMF in
the figures. Furthermore, Tables I and II also report the AUC
for NMF and NTM methods averaged over 20 network re-
alizations with average degree d = 20 and 50, respectively,
corroborating the trend in the curves of Figures 1-4, for vari-
ous values of m and D.

As the results demonstrate, under incomplete network
knowledge, utilizing the reinforced structure of the proposed
Egonet tensor endows the resultant node embeddings with
increased robustness, leading to a resilient performance in
terms of AUC as the missing ratio increases. Furthermore,
the performance of nonnegative matrix factorization deterio-
rates more by increasing the missing ratio m, and Node2Vec
performs poorly in incomplete networks for link prediction.
It is further observed that tensor-based embeddings perform
better as the embedding dimension D grows, while matrix-
based embeddings provide smaller or no improvement.

Table 1. ROC-AUC for link prediction for various ratios of
missing links (m%) as well as embedding dimension D for
LFR networks with d = 50 averaged over 20 realizations.

m% D=64 D=128 D=256
Egonet 10 || 0.76 £0.02 0.76 £0.02 0.76 = 0.03
Adj. 10 || 0.714+£0.01 0.70+£0.02 0.71£0.02
Egonet | 30 || 0.71+£0.01 0.72£0.02 0.72+£0.02
Adj. 30 || 0.67£0.01 0.67+0.01 0.67=+0.02
Egonet | 50 | 0.65£0.01 0.65+0.02 0.66=+0.01
Adj. 50 || 0.63+0.02 0.62+0.01 0.63£0.01

Table 2. ROC-AUC for link prediction for various ratios of
missing links (m%) as well as embedding dimension D for
LFR networks with d = 50 averaged over 20 realizations.

m% D=64 D=128 D=256
Egonet | 10 || 0.73+£0.01 0.75£0.01 0.77£0.02
Adj. 10 || 0.73+£0.01 0.70+£0.01 0.68=£0.02
Egonet | 30 | 0.71£0.01 0.73+0.01 0.74+£0.01
Adj. 30 || 0.70£0.01 0.68+0.02 0.68+£0.01
Egonet | 50 || 0.67+0.01 0.68£0.01 0.69+0.01
Adj. 50 || 0.67+0.02 0.65+0.01 0.63+0.01

5. CONCLUSIONS

In this work, a novel tensor-based node embedding technique
is introduced for network analytics relying on incomplete
data. A tensor of egonets is formed to offer a reinforced net-
work representation, which is subsequently factorized using
a structured canonical polyadic decomposition. The sought
embedding is then obtained from one of the factors, and can
be utilized to predict the missing edges in the graph. Thanks
to the multi-dimensional nature of the tensors, as well as
the reinforced graph representation with carefully induced
structured redundancy, the novel embedding approach offers
considerable improvement in link prediction tasks.

Related tensor-based embedding approaches can be ben-
eficial for other learning tasks, including (semi)-supervised
classification and clustering. Exploring these directions and
carrying out extensive tests over real-world networks are
among the envisioned future directions of this work.
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