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Abstract: We construct 5D, N = 1 supergravity in a 4D, N = 1 superspace with

an extra bosonic coordinate. This represents four of the supersymmetries and the

associated Poincaré symmetries manifestly. The remaining four supersymmetries and

the rest of the Poincaré symmetries are represented linearly but not manifestly. In

the linearized approximation, the action reduces to the known superspace result. As

an application of the formalism, we discuss the construction of the 5D gravitational

Chern-Simons invariant
∫
A ∧R ∧R in this superspace.ar
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1 Introduction

Five-dimensional, N = 1 supergravity is a theory described in components by

a frame em
a(x), a gravitino ψm(x), and a graviphoton Am(x) needed to match the

bosonic degrees of freedom to the four fermionic degrees of freedom on-shell [1, 2].

They are permuted by local supersymmetry, but these transformations do not close

onto translations and gauge transformations unless the equations of motion are im-

posed (i.e. they close only on-shell). We can attempt to remedy this by introducing

additional fields (the auxiliary component fields) and modifying the supersymmetry

transformations in such a way that the algebra closes on all these fields off-shell. In

this particular case, this off-shell problem is solved in a finite number of steps [3, 4].1

But this is not so in general and fails even for this case when the theory is coupled to

hypermultiplets.2

When all of the supersymmetry is kept manifest, this state of affairs may be un-

derstood from the existence of off-shell superspaces with eight supercharges, of either

the harmonic [15, 16] or projective type [12, 17]. Both approaches employ an auxiliary

SU(2)/U(1) space. In the harmonic approach, superfields are globally defined on this

space with an infinite expansion in the 2-sphere harmonics with ordinary superfields as

coefficients. In the latter, superfields are instead holomorphic functions with infinite

Laurent expansions in the natural inhomogeneous coordinate ζ of CP 1. In both cases,

all of these fields are necessary to close the supersymmetry off-shell, but only a small

finite number of them survive when the equations of motion are imposed. To reduce

to a more familiar set of variables, one could, in principle, eliminate all but a finite

number of fields (by solving auxiliary field equations and imposing gauge symmetries),

expand the superfields in half the θ variables, and integrate over the auxiliary manifold.

The result would be an equivalent description in terms of a finite number of superfields

depending only on the four remaining θ’s but on all five bosonic coordinates. These

fields behave as 4D, N = 1 superfields in almost every way.

This procedure is difficult to carry out explicitly in supergravity.3 Worse still, in

1 The first off-shell construction of 5D supergravity was carried out by Zucker [5, 6]. Tensor

calculus techniques for general 5D supergravity-matter actions were developed in [7–10]. The off-shell

superspace appropriate for 5D was constructed in [11, 12]. A comprehensive discussion can be found

in [13].
2See [14] for the argument that generic hypermultiplets require an infinite number of auxiliary

fields.
3 A sense of what is involved may be gotten from [18]. There 4D, N = 2 supergravity in projective

superspace is linearized around flat space, then partially gauge-fixed, integrated over harmonics, and

put partially on-shell to relate it to the 4D, N = 1 old- and new-minimal supergravity theories. To

incorporate supergravity fully non-linearly, one would actually need to repeat the procedure of [19] in
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dimensions higher than six and/or for more than eight Poincaré supercharges, there

are no appropriate off-shell superspaces over which we could even contemplate carrying

out such a procedure [22].4 Instead, one could start from a set of superfields and trans-

formation rules that would have resulted from the purported procedure and attempt

to construct an invariant action directly. Specifically, we first embed the component

fields into a suitable 1-parameter family of 4D, N = 1 superfields with the parameter

having the interpretation of a coordinate for the 5th dimension. The embedding will be

suitable if the component spectrum and all gauge transformations are reproduced. One

then attempts to construct an action from the superfield ingredients that is invariant

under the superfield gauge transformations.

Such a “superfield Noether procedure” is guaranteed to be possible when the off-

shell superspace exists and, indeed, it was used to construct five- and six-dimensional

matter-coupled supergravity in various approximations in [23–32]. In the cases in which

an off-shell superspace does not exist, it is not obvious that the procedure will work.

Nevertheless, it was explicitly shown that it does work for 10D super-Yang-Mills in

[33]. More recently, the approach was extended to the far more subtle case of eleven-

dimensional supergravity in [34–39].

In this paper, we revisit the five-dimensional problem with the benefit of eleven-

dimensional hindsight. Our motivations for doing this are both five-dimensional and

eleven-dimensional. On the one hand, the existing five-dimensional results are only

understood in various approximate forms whereas the analytic structure of the eleven-

dimensional action is now known to much higher precision. On the other hand, the

five-dimensional version is far simpler than its eleven-dimensional counterpart while

retaining many of the non-trivial elements of the latter. Specifically, both are odd-

dimensional and have an abelian p-form in their on-shell spectra (p = 1 and 3, respec-

tively) with a Chern-Simons-like self-interaction. (In fact, it was noted already in [23]

that the five-dimensional theory also has a component 3-form hiding in its scale compen-

sator so that, in the end, the two theories employ almost identical 4D, N = 1 superfield

representations.) Finally, both theories get higher-derivative corrections involving the

Chern-Simons form and powers of the curvature 2-form. In 5D, the supersymmetric

completion is known [40, 41], whereas in 11D only parts of it have been constructed.

In the next section, we will give the embedding of the component fields of five-

dimensional supergravity into a 1-parameter family of 4D, N = 1 superfields. The

parameter is the 5th bosonic coordinate, so we are describing 5D, N = 1/2 superspace

reducing 5D, N = 1 to 4D, N = 2 (but keeping dependence on the fifth coordinate and in superspace)

and then recast 4D, N = 2 derivatives into 4D, N = 1 language (see e.g. [20, 21]).
4“Appropriate” here means, roughly, that it is possible to separate the constraints defining linear,

off-shell, irreducible representations from the equations of motion that put them on-shell.
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as a fibration by 4D, N = 1 superspaces over the fifth dimension. Starting from

the superfields on this space and their gauge transformations, we construct their field

strengths and the Bianchi identities they obey. In section 3, we define a perturbation

theory in the gravitino and give the action to the first non-trivial order in this expansion.

The result to lowest order is the sum of a D-term integral representing the volume of

our superspace and a mixed F- and D-term Chern-Simons action for the graviphoton.

In section 4.2, we explain the structure of our result by deriving it from ordinary

on-shell, five-dimensional superspace. In section 5, we linearize our action to recover

the previously known superspace action for linearized supergravity [23]. In section

6 we apply the formalism to the gravitational Chern-Simons term ∼
∫
A ∧ R ∧ R

where A is the graviphoton and R is the curvature 2-form. In particular, we construct

the minimal N = 1 sector containing the 4D R ∧ R, which is non-trivial due to the

competing requirements of chirality and gauge-invariance. (The construction is in terms

of linearized field strengths but is, at least in part, expected to hold beyond this order.)

We conclude in section 7 with a summary of our findings and a discussion of implications

for extensions and future work. In the main thread of our presentation, we have opted

to suppress distracting calculations for the sake of clarity, relegating them instead to

appendix A.

Note added in this revised version: In this revised version, we have added the

clarifying sections 4.1 and 6.3, expanded the discussion in section 4.2, and added a new

section 5.3. In §4.1 we review the existing formulations of off-shell 5D, N = 1 Weyl

and Poincaré supergravity theories and explain the connection to the 5D, N = 1/2

superspace formulation. This helps to elucidate the structure of the non-manifest and

on-shell part of the supersymmetry. With this understood, we can see that there is

an alternative linearization of our results, which we present in the new section 5.3.

In the new section §6.3, we compare our gravitational Chern-Simons action to results

available in the literature. These and other clarifying remarks were added in response

to thoughtful questions from our JHEP referees.

2 Fields and Symmetries

Component fields In 4D, N = 1 supergravity, the component content is that of

a frame em
a and its superpartner gravitino ψm. This simple matching of bose and

fermi degrees of freedom is not a generic trait; counting the degrees of freedom of a

five-dimensional frame field em
a and gravitino ψm, we conclude that the 5D, N = 1

supergravity multiplet is missing some bosonic fields. On shell, the bose and fermi

degrees of freedom can be matched by a five-dimensional “graviphoton” gauge vector
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Am: The 5D, N = 1 supergravity component multiplet is the set {ema, ψm, Am}
transforming into each other under linearized supersymmetry transformations.

2.1 Superfields

To embed these fields into representations of the 4D, N = 1 super-Poincaré algebra,

we split their polarizations along the 4D directions xm and the extra dimension y = x5.

Using four-dimensional language, this results in a graviton em
a, a KK-photon Am ∼

em
5, a scalar ϕ ∼ ey

5, a graviphoton Am, a pseudoscalar Ay, two gravitini, and two

gaugini, but with all these fields depending on all five bosonic coordinates xm and y.

That these can be properly accommodated in 4D, N = 1 superfields was originally

demonstrated in [23, 25] in a linearized approximation. Here, we will use a larger

set of superfields from the outset as this is more geometric and thus convenient when

constructing the non-linear theory:

Conformal supergravity We embed the 4D polarizations of the frame em
a and one

gravitino into the conformal 4D, N = 1 supergravity prepotential Ua(x, θ, θ̄, y)

[42, 43]. This field has a large gauge freedom, the linearized part of which is5

δ0U
a = D̄

.
αLα −DαL̄

.
α . (2.1)

The arbitrary spinor Lα(x, θ, θ̄, y) allows a Wess-Zumino gauge in which the only

non-zero components are the frame, the gravitino, and a real pseudo-vector aux-

iliary field. The remaining gauge parameters are those of linearized diffeomor-

phisms, local supersymmetry, local Lorentz, local S-supersymmetry, and local

scale. The latter two can be used to remove the spin-1/2 and spin-0 parts of the

supergraviton, so this multiplet describes conformal supergravity instead of ordi-

nary Poincaré supergravity. We will make up for this presently by introducing a

scale compensator superfield.

Conformal gravitino The other gravitino is embedded into the conformal gravitino

superfield Ψα. Again this representation has a large gauge freedom transforming

in the linearized approximation as

δ0Ψ
α = Ξα +DαΩ (2.2)

5Here and henceforth, we use the convention that a vector index, va say, that is contracted on a

Pauli matrix is denoted by an underline: va := vα
.
α := (σa)

α
.
αva. (This is essentially the Feynman

slash notation but on the index instead of the vector, which proves to be more convenient in superspace

calculations.) An implication of this is that contracted underlined indices give traces of Pauli matrices

so that, for example, vaηa = −2vaηa.
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for a chiral spinor Ξα and complex scalar superfield Ω [42]. These can be used to

go to a Wess-Zumino gauge where

Ψα ∼ · · ·+ iθσmθ̄ψm
α + θ2(σmθ̄)

αvm + θ̄2(θσmn)αtmn + θ2θ̄2ρα . (2.3)

In addition to linearized supersymmetry, the conformal gravitino ψm
α possesses a

shift symmetry in its spin-1/2 part corresponding to local S-supersymmetry. The

additional fields are auxiliary and consist of a complex vector vm, a complex self-

dual 2-form tmn, and a spinor ρα. Note that there is no physical boson remaining

in this set.6

Kaluza-Klein gauge field The mixed component of the metric is described by a

non-abelian connection for diffeomorphisms in the extra y-direction. This is im-

plemented in superspace by covariantizing the flat superspace derivatives D → D.

The non-abelian field strength appears in the derivative algebra in the usual place

[42–44]

[D̄ .
α,Db] = (σb)α .αLWα (2.4)

where for any vector field vy∂y, Lv denotes the Lie derivative along v. (The

Lie derivative appears here because this field gauges the diffeomorphisms in the

5th dimension.) As usual, the derivative constraints can be solved in term of a

non-abelian prepotential Vy.7

Graviphoton hierarchy The graviphoton has a part embedded into an abelian vector

prepotential V with the usual gauge transformation δV = 1
2i
(Λ− Λ̄) allowing the

standard Wess-Zumino gauge. The other part Ay is carried by a chiral pseudo-

scalar Φy transforming into the same chiral gauge parameter δΦy = ∂yΛ. This

is a short abelian tensor hierarchy in which only a vector multiplet and a scalar

multiplet are linked. Below, we will “gauge it” by defining Φ (and, therefore, Λ)

to be covariantly chiral under the nonabelian connection D.

Gauge 3-form compensator At this point it appears we have embedded all of the

component fields of 5D, N = 1 supergravity. We must recall, however, that the

gauge transformation (2.1) of the graviton superfield removes the spin-1/2 and

spin-0 component fields. To compensate for this gauging of (super)scale transfor-

mations, one introduces a superfield representation that contains a scalar. The

6This is not in direct conflict with supersymmetry, because there is no single-derivative Lagrangian

for this representation unless it is coupled to other fields. (There is a higher-derivative Lagrangian,

but then an otherwise-auxiliary vector becomes dynamical.)
7The sign convention for Vy and Wα

y differs from our recent papers in 11D.
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standard choice is to introduce a chiral scalar superfield [45]. More appropriate to

our case, however, is a constrained chiral scalar G = −1
4
D̄2X with X̄ = X a real

scalar prepotential transforming under linearized superconformal transformations

as δscX = DαLα + D̄ .
αL̄

.
α [23, 36]. This rule is needed so that G transforms as

the conformal compensator δscG = −1
4
D̄2DαLα under linearized transformations.

Note, however, that the chiral part of Lα leaves G invariant, so there is a gauge-

for-gauge symmetry under which Lα → Lα + 1
2i
Υα, where Υα is a chiral spinor

parameter. Because of this symmetry, the complex F-term auxiliary field survives

in Wess-Zumino gauge and furthermore, since X is real, the imaginary part of

G’s auxiliary field is the dual of a 4-form field strength [42, 46, 47]. Equivalently,

the θσmθ̄ component of the X prepotential is the Hodge dual of a gauge 3-form

Cmnp. (That this is a gauge 3-form can be derived from the gauge transformation

δX = 1
2i
(DαΥα − D̄ .

αῩ
.
α).)

In the eleven-dimensional theory, this 3-form is the M-theory 3-form with all legs

in the four-dimensional directions [36]. In the five-dimensional case, the geomet-

rical origin of this form is less apparent, but we will see that there is a complete

super-3-form of compensating fields needed for consistency. In anticipation of

this, we introduce the gauge chiral spinor superfield Σα
y transforming under the

abelian 1-form symmetry as δΣα
y = −1

4
D̄2Dαuy + ∂yΥ

α. Together, X and Σα
y

form a second short tensor hierarchy describing a five-dimensional gauge 3-form

Cmnp in a 4 + 1 split Cmnp and Cmny [34].

2.2 Non-abelian tensor hierarchy

Previously, we gauged the 1-form hierarchy by replacing D → D. In fact, this

couples the KK vector field correctly to all fields, since it builds the non-abelian correc-

tion directly into the superspace geometry (2.4). This gives rise to corrections to the

Bianchi identities for closed p-forms, and, therefore, to the field strengths and gauge

transformations. Explicitly, the Bianchi identities for a closed 2-form are

−1

4
D̄2DFy + ∂yW = 0 (2.5a)

DαWα − D̄ .
αW̄

.
α = −2iω(Wy, Fy) (2.5b)

with ω(Wy, Fy) := WαyDαFy +
1
2
DαWy

αFy + h.c., and

DαWy
α − D̄ .

αW̄
.
αy = 0 . (2.5c)
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The 4-form satisfies

−1

4
D̄2Hy + ∂yG = 0 (2.5d)

D̄ .
αG = 0 (2.5e)

with the proviso that G has a real prepotential (i.e. one of its auxiliary fields is the dual

of a 4-form field strength). This non-abelian tensor hierarchy of constraints is solved

by the field strengths

Fy :=
1

2i
(Φy − Φ̄y)− ∂yV (2.6a)

W α := −1

4
D̄2DαV −WαyΦy (2.6b)

Hy :=
1

2i

(
DαΣαy − D̄ .

αΣ̄
.
α
y

)
− ∂yX (2.6c)

G := −1

4
D̄2X −WαyΣαy (2.6d)

in terms of unconstrained prepotentials. These expressions are the standard ones of

the abelian hierarchy with the minimal coupling prescription D → D and corrections

by the non-abelian field strength.

The prepotentials, in turn, suffer pre-gauge transformations

δ0Φy = LλΦy + ∂yΛ (2.7a)

δ0V = LλV +
1

2i
(Λ− Λ̄) (2.7b)

δ0Σ
α
y = LλΣ

α
y − 1

4
D̄2Dαuy + ∂yΥ

α (2.7c)

δ0X = LλX +
1

2i

[
DαΥα − D̄ .

αῩ
.
α
]
− ω(Wy, uy) . (2.7d)

The first term is the non-abelian part of the gauge transformation (corresponding to

diffeomorphisms of the circle) which acts on matter fields by the Lie derivative. The

remaining terms are minimal covariantizations D → D of the abelian p-form transfor-

mations and, in the case of X, a correction term needed to counter the appearance of

a non-abelian field strength in the commutator of four D’s. The field strengths (2.6)

are invariant under the abelian part of the transformations and are covariant under the

non-abelian part [35].

In addition, all of the prepotentials transform under Lα transformations (see e.g.

section 5 of [39]). The relevant ones for our discussion will be the Lα transformations

of Σα
y and X, which take the form

∆Σα
y =

i

2
D̄2(LαHy) and ∆X = Dα(LαG)− iLαWα

yHy + h.c. (2.8)
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for covariantized transformations ∆ defined in [39]. In the linearized background where

〈G〉 = 1, the Lα transformation of X does not vanish, which identifies it as the prepo-

tential for the conformal compensator.

2.3 Gravitational couplings

In order to include the full non-linear couplings to gravity, one should introduce a

gravitational covariant D → D , whose connections include the supervielbein, Lorentz

connection, etc. in addition to the non-abelian gauge field. As discussed in [39], for

this to be consistent with y-dependence of the 4D supergraviton, we will be required to

incorporate also the gravitino superfield corrections to the supergeometry: The graviton

transformation (2.1) must be allowed to depend on y, so we expect terms ∼ ∂yL
α to

appear that we need to be able to cancel. This can be done provided we modify the

gravitino superfield transformation (2.2) by a term ∼ ∂yL
α [23, 38].8 This gravitino

superfield, in turn, contributes its torsions and curvatures to the covariant derivative

algebra [42, 48], which would first need to be constructed. This approach has been

carried out for general superspaces arising in Kaluza-Klein splittings of the type we are

considering and will be reported separately.

Instead, we here take the far simpler approach of defining a gravitino expansion and

working order-by-order in Ψα. In this approach, we can still work in a non-linear 4D,

N = 1 conformal supergravity background provided that background is y-independent.

Even in this setting the dependence on the remaining fields is non-linear. Explicitly,

we treat only Ua and Ψα
y perturbatively in their y-dependence. This can be done

around any y-independent 4D, N = 1 conformal supergravity background, such as

warped compactifications over 4D solutions. (For example, we can describe AdS5 in the

Poincaré patch as a warped Minkowski compactification.) For this reason, we will write

the 4D, N = 1 conformal supergravity measures explicitly in the rest of this section

and in the next. Covariant derivatives are understood to be background-covariant

derivatives. Formally this amounts to replacing D̄2 → D̄2−8R wherever they appeared

previously. (No other torsions can appear at this dimension.) We emphasize that this

restriction applies only to the invariants of 4D, N = 1 conformal supergravity part

and that this restriction can be removed by using the more complicated supergeometry

alluded to above.

Local superconformal symmetry Separating the components of 5D,N = 1 gravity

in a 4 + 1 split and embedding the 4D polarizations of the frame in a 4D, N = 1 con-

formal supergraviton (2.1) has resulted in a description with a local 4D superconformal

8A more covariant version of this statement can be made by studying the consistency of the Bianchi

identities of the commutator [Dα,Dy].
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Dα Ua Ψα G(X) H(Σ) Wα(V ) F (Φ) W(V) Lα Ξα Ω Υα u Λ ∂y

∆ 1
2
−1 −3

2
3(2) 2(3

2
) 3

2
(0) 0(0) 3

2
(0) −3

2
−3

2
0 3

2
0 0 0

w −1 0 −1 2(0) 0(1) 1(0) 0(0) 1(0) −1 −1 0 1 0 0 0

d 1
2
−1 −1

2
0(−1) 0(−1

2
) 1

2
(−1) 0(0) 1

2
(−1) −3

2
−1

2
−1 −3

2
−2 −1 1

q 0 0 1 0 1 0 1 −1 0 1 −1 0 1 0 1

Table 1. The various Z-gradings of the fields and gauge parameters: scaling dimension

∆, U(1)R weight w, mass dimension d, and 5-charge q (with q = p for p-forms, q = −1 for

vectors, etc.)

symmetry. This symmetry is broken spontaneously to Poincaré by the compensators

just as 4D, N = 1 Poincaré supergravity is usually described by conformal superframes

coupled to scale compensators [42, 45]. Similarly to that case, the matter fields can

be assigned scaling weights ∆ and U(1) charges w in addition to their engineering

dimension d and degree q as differential forms on Y . These are collected in table 1.

2.4 Gravitino perturbation theory

Finally, we complete the description of the symmetries by formulating a perturba-

tion theory in the gravitino. To do this, we introduce a gravitino grading under which

Ψ carries charge +1 and the remaining prepotentials have charge 0. Then the super-

conformal parameters under which the gravitino transforms (2.2) must carry charge 1

as well. We split up the gauge transformations δ = δ−1 + δ0 + δ1 + . . . , and assign

gravitino charges to all the fields and gauge parameters. The δ0 transformations are

taken to be those defined on all the fields above. The δ−1 transformation acts only on

the gravitino as

δ−1Ψ
α
y := 2i∂yL

α (2.9)

This is needed to covariantize the y-dependence of the superconformal graviton trans-

formations under Lα, as described in the previous paragraph. The δ1 transformations

can act on the all the non-gravitino fields only by Ξ and Ω. The precise form of this

action is not easy to derive from first principles but can be guessed and checked. In

the process of bootstrapping, we are aided immensely by the huge amount of local

symmetry represented in table 1. We find for δ1 that it acts on the tensor hierarchy

fields as

δ1Φy = Ξα
yWα , δ1V = Ω̌yFy , δ1Σ

α
y = −GΞα

y , δ1X = Ω̌yHy , δ1V
y = Ω̂y (2.10)
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and by zero on all other fields. Here Ω̂y and Ω̌y correspond to the real and imaginary

parts of the Ω parameter.

Note that these transformations are rather large, implying that many component

fields can be removed by a choice of superscale gauge. Most apparently, the linearized

non-abelian gauge field suffers a Stückelberg shift by an unconstrained real superfield,

indicating that it can be gauged away entirely! Similarly, since G is the scale compen-

sator superfield, the lowest bosonic component must be non-zero (i.e. we can gauge

G| → 1). It follows that the 2-form superfield Σα
y can also be gauged away completely.

Finally, we will see in the next section that the lowest component of Fy is the volume

density on Y , so it must be non-vanishing and therefore invertible. Thus, V is also a

Stückelberg superfield shifting under the imaginary part of Ω. Where are all these fields

going? On its face, it strains credulity that we are able to remove them all, but this is,

in fact, consistent with the description of linearized 5D, N = 1 supergravity given in

[23]: As we will see in detail in section 5, the Stückelberg components are being eaten

by the gravitino superfield in a supergravity Higgs-like mechanism. Fully “massing up”

the gravitino superfield results in the superfield spectrum used in the aforementioned

reference.

3 Action

Having defined the fields and symmetries in low orders of the gravitino expansion,

we are finally in a position to construct the action. To this end, we expand the action

S = S0 + S1 + S2 + . . . so that δS = 0 splits up into a set of conditions with definite

gravitino grading:

δ0S0 + δ−1S1 = 0 , δ1S0 + δ0S1 + δ−1S2 = 0 , . . . (3.1)

Note that, while this is an expansion in the gravitino superfield Ψ, each term is non-

linear in all the remaining fields. In the next two subsections, we will give the explicit

exact results for S0 and S1 that satisfy these relations.

3.1 Chern-Simons Action

The lowest-order action

S0 = Svol + SCS (3.2)

is a sum of terms separately invariant under δ0. The simplest of these is the Chern-

Simons action SCS =
∫
d4x

∫
dyLCS y. We write the Lagrangian in the slightly clumsy
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κ2
∫
dy

∫
d4x

∫
d4θE

∫
d2θE ∂a ∂y W K

∆ 0 0 −4 2 1 1 0 3 2

w 0 0 0 0 −2 0 0 2 0

d −3 −1 −4 2 1 1 1 1 0

q 0 −1 0 0 0 0 1 1 1

Table 2. Weyl (∆) and U(1)R (w) weights of various measures and actions. W and K

stand for the integrands of F- and D-term superspace integrals.

way (because this will be the form that we can generalize appropriately below):

2κ2LCS y = i

∫
d2θEΦyG+

∫
d4θE VHy + h.c. (3.3)

with

G =
1

2
WαWα and Hy = ω(W,Fy)− iDαFyW

y
αFy + iD̄ .

αFyW̄
.
αyFy (3.4)

where, as before, ω(W,F ) := WDF + 1
2
FDW + h.c. is the Chern-Simons superfield.

This Lagrangian is a 1-form on Y that can be understood as a superfield [4, 1]-form on

X × Y [37]. It is constructed in terms of a composite 4-form with [4, 0] part G and

[3, 1] part H = Hy dy. As the notation is intended to suggest, they satisfy the same

Bianchi identities (2.5d, 2.5e) as G and Hy. Specifically, the action is invariant under

the Λ transformation (2.7a ,2.7b) because D̄2
H = 4∂yG.

3.2 Volume Term and Chern-Simons Action

The second invariant is the superspace volume

Svol := − 3

κ2

∫
d4x

∫
dy

∫
d4θE (ḠG)1/3Fy F (3.5)

determined up to some completely weightless function F of the field strengths (2.6). The

integrand of (3.5) is again a 1-form on Y that can be understood as the superspace

volume density dressed up for conformal invariance: The explicit factor of Fy may

be interpreted as an ein-bein superfield on Y so that the integrand is of the form

(Ed4x)(Fydy) ∼ E
√
gyyd

4xdy, and the (4, 0)-form field strength G enters in just such a

way that we may interpret it as the conformal compensator for (modified) old-minimal

supergravity [36].
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This interpretation is correct only in the Hy = 0 gauge. In general, there is a

modification by an a priori unknown function F reducing to 1 when Hy → 0 [39].

This function must be completely weightless, gauge-invariant, and Lorentz invariant

and must therefore be a function of scalar combinations of the field strengths with

(∆, w, d, q) = (0, 0, 0, 0). From table 1 and some experimentation, we conclude that the

only such invariant is

h :=
Hy

(ḠG)1/3Fy

. (3.6)

Requiring the Chern-Simons term to be even under parity fixes Fy to be even and Hy

to be odd. Therefore, F(h) = F(x) is actually a function of the square

x :=
h2

α
with α = 12 . (3.7)

(The normalization will prove convenient later.) This function is fixed by invariance

under extended supersymmetry. The variation of the volume action (3.5) depends on

F and its derivative in the combination

F̂ := F − hF′ . (3.8)

In particular, component results will depend on this combination rather than F itself.

3.3 Gravitino Supercurrent

At the next order, we have the gravitino current coupling

S1 =
1

κ2

∫
d4x

∫
dy

∫
d4θEΨα

yJα + h.c. (3.9)

where the (∆, w, d, q) = (7
2
, 1, 1

2
, 0) current J is constructed from all the fields except

the gravitino. The fields in S0 transform under δ1, and this needs to be canceled by

the gravitino transformation. The linearized version of this transformation was given

as (2.2), but we can give the complete non-linear version of it as follows: The Ξα
y parts

of the transformation already have the correct charges as we can see in table 1, but

the Ωy part does not. Firstly, Ωy is a vector instead of a 1-form, so we will introduce

a dimension-0 complex bilinear form Gyy to lower the index. Secondly, we match the

conformal and U(1) weights using G to find

δ0Ψ
α
y = Ξα

y + (ḠG)−1/3GyyDαΩ
y. (3.10)
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In appendix A.1, we use the Ξ part of this invariance to fix the gravitino current to the

form

Jα = −(ḠG)1/3F̂

[
3i

2
Wα +Wy

αFy −
3i

2
G
Fy

Hy

Dα log F̂

]
. (3.11)

We then impose invariance under Ω in appendix A.2 which results in two conditions:

Firstly, it fixes the bilinear form to

Gyy =
FyFy

F̂
. (3.12)

In particular, it is both real and symmetric.9 Secondly, we obtain a differential equation

for F which can be put in the form

F̂(F̂ − 2xF̂′) = F̂′ . (3.13)

We show that this, together with the boundary condition F(0) = 1, is equivalent to the

cubic equation

F̂3 − 3xF̂ − 1 = 0 . (3.14)

This equation can be solved in terms of radicals and integrated, although we will not

need a closed-form expression. At large values of F̂ we find that F̂ ≈
√
3x. The

discriminant ∆ = −16(4a3 + 27b2) = (4 · 3)3(x3 − 1
4
), so for large x, this has three real

roots, two of which merge at x = 2−2/3 ≈ 0.63 and go off into the complex plane as x

decreases. We plot F̂ as a function of x in figure 1. Expanding around the remaining

solution, we find (for x < 2−2/3)

F̂ = 1 + x− x3

3
+
x4

3
+O(x6) ⇒ F = 1 + c1

√
x− x+

x3

15
− x4

21
+O(x6) . (3.15)

The integration constant c1 corresponds to a symmetry of the superspace action, as

shifting c1 changes the action by a total derivative. We will return to this expansion

when we discuss the quadratic gravitino terms in section 5.1. For reference, we also

give the subleading large x behavior (for x > 2−2/3):

F̂ =
√
3x

(
1 +

1

6
√
3

1

x3/2
+O(x−3) + · · ·

)
⇒

F =
√
3x

(
− log

√
x+ c2 +

1

18
√
3 x3/2

+O(x−3)
)
, (3.16)

in terms of a second integration constant c2. Numerically matching the two solutions

at x = 2−2/3 can determine c2 in terms of c1 but we won’t need the explicit relation.

9Compare with 11D in which it has an imaginary anti-symmetric part.
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Figure 1. The function F̂(x) has two branches interpolating between the zero function and

a parabola. On the left we plot F̂ and y2 = 3x. On the right we give a detail of F̂ and the

vanishing locus x = 2−2/3 ≈ 0.63 of the discriminant.

3.4 Summary

Supersymmetry has fixed that exact analytic form of the action in the first two

orders of the gravitino expansion S = S0 + S1 + . . . . First, manifest supersymme-

try, superscale symmetry, and abelian gauge invariance were used to construct three

invariants: the volume term Svol (3.5), the Chern-Simons term SCS from §3.1, and the

coupling to the gravitino current S1 (3.9). Of these, only the Chern-Simons action

is polynomial in the fields of the non-abelian tensor hierarchy. The volume term is

a generalization of what is usually called the Kähler term, and it depends on a func-

tion Ky =
√
gyyF(x) = FyF(x) we can loosely refer to as the Kähler function.10 The

second, non-manifest supersymmetry (2.10, 3.10) was then used to fix the dependence

(3.11) of the supercurrent on this function and to simultaneously determine F to be a

non-polynomial function (3.15) of x (3.7).

This is familiar from extended supersymmetric theories written in N = 1 super-

space.11 We note, though, that the non-polynomial nature of F(x) does not imply that

the component action is non-polynomial in the tensor multiplets: The variable x is not

a tensor under the transformations (2.10); therefore, there is a Wess-Zumino gauge in

which it is nilpotent, and, in such a gauge, only the first few terms of the expansion

(3.15) survive. On the other hand, the non-polynomial nature of Svol can have im-

10Strictly, a Kähler function depends only on chiral scalar fields and is defined only up to Kähler

transformations. In our case, it depends also on 2-form superfields through the function F(x). (See

e.g. [49] for background on such modifications in 4D, N = 1 supergravity models.)
11For example, in [50] Lindström and Roček construct (among other things) 4D, N = 2 tensor

multiplet models by coupling N = 1 tensor multiplets and chiral multiplets and imposing the second

supersymmetry by hand as we are doing here.
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portant implications for higher-derivative corrections in effective actions, and we will

comment on this in section 6. First however, we take an illuminating detour into the

five-dimensional superspace origins of the N = 1/2 formulation to both explain the

field content we have uncovered and to identify the origin of the function F(x).

4 Connecting with 5D supergravity and 5D, N = 1 superspace

In this section, we will identify the off-shell 5D supergravity that is most closely

related to the N = 1/2 formulation and describe two complementary perspectives on

the origin of the scalar fields lying at the bottom components of G and Hy. Such

a comparison is somewhat at odds with the general philosophy of the paper, as the

point of our approach is to not assume that the (partially) off-shell tensor calculus is

known a priori or is even possible. Nevertheless, understanding the connection is rather

illuminating in explaining the presence of the various N = 1 superfields, the roles that

they are playing, and the structure of their extended supersymmetry transformations.

The presentation of this section will be schematic since the details of the reduction

of the component calculus is quite subtle [19] and would be even more involved in

superspace.

4.1 5D, N = 1 supergravity and its 5D, N = 1/2 decomposition

All formulations of 5D, N = 1 Poincaré supergravity may be formulated as the

standard Weyl multiplet of 5D conformal supergravity coupled to compensating mul-

tiplets. The standard Weyl multiplet is an off-shell multiplet with 32+ 32 components

sW5 = {ema, ψm
αi, Vm

ij, Tab, χ
αi, D} . (4.1)

Its gauge sector {ema, ψm
αi, Vm

ij} consists of a graviton, gravitino, and an (auxiliary)

SU(2)R gauge field. In addition, it contains auxiliary covariant fields {Tab, χαi, D}
consisting of a real anti-symmetric tensor, a spinor, and a real scalar. The gravitino

and the auxiliary spinor are symplectic-Majorana, with spinor index α = 1, · · · , 8 and

SU(2)R index i = 1, 2.

As in 4D, N = 2 [51], the standard Weyl multiplet must be coupled to two dif-

ferent types of compensators to generate a physically sensible on-shell two-derivative

Poincaré supergravity, which in 5D will possess 48+48 degrees of freedom. One of

these compensators is always a vector multiplet, while the other may be a hypermul-

tiplet, a non-linear multiplet, or a linear multiplet (also known as a 3-form multiplet).

The hypermultiplet requires a central charge in order to be off-shell.12 The non-linear

12One may use an off-shell hypermultiplet without a central charge in harmonic [52] or projective

superspace [12]. This requires an infinite number of auxiliary fields.
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multiplet leads to the off-shell formulation of Zucker [5]. The third option, a linear

multiplet, turns out to be almost precisely the field content of our 5D, N = 1/2 super-

space. In particular, the 5D linear multiplet contains a 3-form Cmnp, which explains

the component fields Cmnp and Cmny present in G and Hy respectively.

Other possible off-shell Poincaré supergravities may be found using the dilaton-

Weyl multiplet [53] as a starting point, but let us postpone discussion of for now.

The vector and linear multiplets have the respective field content

VM5 = {σ,Am, ψ
αi, Y ij} , LM5 = {ℓij, Cmnp, λ

αi, N} . (4.2)

Am and Cmnp are abelian gauge fields and Y ij and N are (pseudo-)real auxiliaries. σ

is a real scalar and ℓij is a pseudoreal scalar triplet.

Since we’re just interested in understanding our superfield content, let us sketch

the reduction of the 5D multiplets to 4D, N = 2 and then to 4D, N = 1, discarding

dependence on the fifth coordinate. The reduction of these multiplets to 4D, N = 2

(except for the linear multiplet) was worked out explicitly in [19]. Schematically, the

5D Weyl multiplet decomposes into the 4D, N = 2 Weyl multiplet (24+24) plus a

Kaluza-Klein vector multiplet (8+8). These involve the fields

sW4 = {ema, ψm
αi, Vm

ij, Vm, T
−
ab, χ

αi, D} , V MKK = {X0, A0m, ψ
αi
0 , Y

ij
0 } (4.3)

where Vm
ij and Vm are the (auxiliary) gauge fields of the SU(2) × U(1) R-symmetry

group in 4D. The U(1) R-symmetry is a Stückelberg symmetry from the point of view

of 5D, as it can be eliminated using the newly-introduced phase of X0 ∼ e5
yeiϕ. The

decomposition of the vector and linear multiplets is straightforward:13

VM4 = {X,Am, ψ
αi, Y ij} , LM4 = {ℓij, Bmn, Cmnp, λ

αi, N} . (4.4)

The complex scalar X arises from σ and Ay. Note the linear multiplet LM4 is a variant

of the conventional 4D linear multiplet, in which one of the two real scalar auxiliaries

has been replaced with the dual of a 4-form field strength εmnpq∂[mCnpq]. For further

details of the dictionary, we refer to [19].

These multiplets must now be decomposed to N = 1. For simplicity, we will denote

N = 1 multiplets by their corresponding superfields. Both vector multiplets reduce to

a vector multiplet plus a chiral multiplet, while the linear multiplet decomposes into a

linear multiplet plus a constrained chiral multiplet; so we write

VMKK → {φ0, φ̄0,V} , V M4 → {φy, φ̄y, V } , LM4 → {Σyα, Σ̄y
.
α, X} . (4.5)

13There are subtleties in this decomposition that we are glossing over. For example, the ℓij in LM4

should have Weyl weight two, but in 5D ℓij has Weyl weight three, so the two are actually related

by a factor of |X0|. As we are only interested in organizing the component fields into superfield

representations, these details can be ignored.
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The 4D, N = 2 Weyl multiplet is subtler. As shown e.g. in [18], it decomposes into the

N = 1 Weyl multiplet Uα
.
α, a conformal gravitino multiplet Ψα, and a vector multiplet

superfield U :

sW4 → {Uα
.
α,Ψα, Ψ̄ .

α, U} . (4.6)

The superfield U is purely auxiliary because it contains only auxiliary fields of the

N = 2 Weyl multiplet.

In comparing the above field content to 5D, N = 1/2 superspace, we immediately

identify the difference: the additional auxiliary superfield U and the chiral multiplet

φ0. Schematically, what occurs is that U eats the chiral multiplet to become an un-

constrained (non-gauge) real superfield, which can be integrated out algebraically.14

This was exhibited explicitly at the linearized level in the simpler model of pure 4D,

N = 2 supergravity in [18]. The full non-linear description of this mechanism would

presumably be quite complicated, but the underlying degrees of freedom cannot change.

Therefore, we can conclude that the 5D, N = 1/2 superspace corresponds to a partially

on-shell conventional 5D supergravity with a vector and linear multiplet compensator.

We emphasize that because we have collectively integrated out U and φ0, we have

explicitly broken two of the N = 2 multiplets, so the algebra of the second supersym-

metry will not close off-shell.

4.2 Spinor geometry and embedding of 5D, N = 1/2 superspace

An alternative approach to understanding the spectrum of superfields we have is to

consider the embedding of 5D, N = 1/2 superspace into 5D, N = 1 superspace. This

will give us some insight into some of the structure of the Ω transformations of the

extended supersymmetry. We will only be concerned with the lowest component fields

in these frames and the lowest component fields in the compensators, so all expressions

should be understood to hold only on these components. Throughout this section (and

only here), we will suppress the |-notation indicating projection to θ, θ̄ → 0.

We work in the 5D superspace conventions of [16], except we use α to denote an

8-component spinor index. In particular, we take εij and εij to obey ε12 = ε21 = 1. Our

presentation will be brief, as the analysis follows step-by-step that of reference [39], to

which we refer for a more leisurely exposition.

Consider reducing the 5D, N = 1 superspace frames to those of 4D, N = 1 super-

space. First breaking the Lorentz group to SO(3, 1), with Eα
i = (Eα

i,−εijE .
α
j) and

14More precisely, U eats a linear combination of φ0 and φy, leaving behind another linear combina-

tion, which becomes the φy of 5D, N = 1/2 superspace. This is how ey
5 ends up paired with Ay in a

complex scalar when, from an N = 2 perspective, these lie in different multiplets.
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Ea = (Ea, E5), we then exhibit the leading parts of the embedding:

Eα
i →

√
φ ηi e

iπ/4Eα + . . . , E
.
αi →

√
φ η̄i e−iπ/4E

.
α + . . . ,

Ea → φEa + · · · , E5 → dy Fy + · · · . (4.7)

The spinor ηi and its complex conjugate η̄i are valued in SU(2), and they parametrize

the embedding of the half of supersymmetry being kept manifest. The phase factors

e±iπ/4 are for convenience later on. We have factored out a field
√
φ so that ηi can be

normalized to ηiη̄
i = 1. To preserve the canonical dimension-zero torsion tensor, φmust

appear in the leading term of Ea as well. We have denoted the leading term of Ey
5 by

Fy for later convenience; we must still establish that this is the correct identification.

In the 11D setting, we identified φ as the conformal compensator, which was sen-

sible because 11D superspace has no Weyl symmetry of its own, so we had to insert

that symmetry à la Stückelberg. But as we have just reviewed, 5D supergravity can

be formulated already with a Weyl symmetry when coupled to vector multiplet and

a linear multiplet compensator. To avoid overcounting symmetries and to keep the

situation as close to 11D as possible, let us suppose that we have put 5D supergravity

on-shell and gauge-fixed as much as possible. We fix its SU(2)R symmetry to some

SO(2)R subgroup by choosing a background value for the isotriplet in the linear mul-

tiplet, e.g. ℓij = δij, and fix the Weyl symmetry by normalizing ℓijℓjk = δik where

ℓij = (ℓij)* = εikεjlℓ
kl.

How should we then understand our 4D, N = 1 superconformal symmetry? The

U(1) R-symmetry group is just the residual SO(2) R-symmetry of 5D. The Weyl sym-

metry corresponds to the Stückelberg symmetry of φ, which we now identify as the

conformal compensator. The fields ηi, which contain three degrees of freedom, are

describing a hidden Stückelberg SU(2) symmetry.

Let us now identify G and Hy. Remember that a linear multiplet is encoded in a

4-form field strength with leading term

G4 = i Eα
i E

β
j E

aEb(Σab)αβ ℓ
ij + · · · (4.8)

Upon decomposing this to 4D using the conventions of [16], we recover

G4 = φ3 ηiηjℓ
ij EαEβEaEb(σab)αβ + c.c. + · · · ,

H3 = G3y = −2φ2 Fy ηiη̄
j εjkℓ

kiEαE .
β E

c (σc)α
.
β + · · · (4.9)

which implies that

G = φ3 η̄iη̄jℓij , Hy = 2i φ2ηiη̄
jεjkℓ

ki Fy . (4.10)
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The components G, Ḡ, and Hy can be interpreted as dressed versions of the three

components of the underlying linear multiplet ℓij. This is transparent if we had embed-

ded 4D superspace trivially by taking φ = 1 and ηi = (1, 0). Then we would instead

have left the underlying 5D Weyl and SU(2)R symmetries unfixed, so ℓij would have

been a dynamical field, and G and Hy would have been its components.

One now easily checks that G and Hy satisfy

ḠG+
1

4

(
φHy

Fy

)2

= φ6 ⇒ α

4
x = (η̄2η2)−2/3 − (η̄2η2)1/3 , η2 ≡ ηiηjℓ

ij . (4.11)

We think of the conformal compensator φ now as being defined by this equation.

Note that the first equation can be interpreted as a dressed version of the gauge-fixing

condition 1
2
ℓijℓij = 1.

Remember that the spinor ηi describes three independent degrees of freedom. Its

normalization condition is invariant under

δηi = −iω ηi − iwFy εij η̄
j and δη̄i = iω η̄i − iw̄ Fy ε

ij ηj . (4.12)

where ω is real and w is complex. We are separating out a factor of Fy for convenience.

Focusing on the complex w parameter, we find induced transformations on G and Hy:

δG = φw̄Hy and δHy = −2φ−1F 2
y (wG+ w̄Ḡ) . (4.13)

These transformations can be identified, as in eleven dimensions [39], with a piece of

the Ω transformations. Letting z := i
4
(ḠG)1/3Ḡ−1D2Ωy|, we find that

δG = G(ḠG)−1/3Hyz̄ and δHy = −2(ḠG)1/3Gyyz + h.c. (4.14)

Matching the δG transformations suggests the identification w = φ−1Ḡ(ḠG)−1/3z, and

matching δHy requires (using (3.12))

F̂ = (η̄2η2)−1/3 . (4.15)

Substituting this into (4.11), we find the cubic equation (3.14) in the form 3x = F̂2 −
F̂−1, provided α = 12 in (4.11).

One important feature that we glossed over was why we should identify Fy as Ey
5.

The key point is that the Ω transformation of Fy has no z piece at lowest component,

and so Fy cannot be associated with the embedding. Since in this subsection, we stated

our starting point was on-shell gauge-fixed 5D supergravity, there is no dynamical scalar

field to identify with Fy. The only possibility is that it should be identified with the

radion Ey
5.
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Now we have provided two complementary interpretations of the compensating

multiplets. From the component perspective, they may be identified as descending

from a partly on-shell conventional 5D supergravity. From a superspace perspective,

they correspond to Stückelberg fields associated with the precise embedding of 5D,

N = 1/2 superspace into 5D, N = 1 superspace.

5 Linearized Action

At this point we have constructed S0 and S1 in the gravitino expansion (3.1) to all

orders in the remaining fields. Although it is essentially guaranteed by the component

spectrum and symmetries, we would like to verify that our procedure has given the

correct action by checking it explicitly. We could, for example, project the result to

components and compare to the known component action (e.g. [19]). Alternatively, we

could compare the linearization of our action to a linearized superspace action known

to produce the correct component result [23]. Since it is separately of interest to work

out the linearized superspace action (e.g. for quantization) and to understand how

the Higgsed superfield spectrum is reproduced correctly, we will make this comparison

presently (cf. §5.2). But to do so, we first need the quadratic-in-gravitini action S2.

For the comparison we will be making, and to show the consistency of the extended su-

perconformal symmetries, a linearized approximation of this part of the action suffices,

and we will construct it next.

We emphasize that up until now, we have kept the superspace measures for the y-

independent 4D, N = 1 conformal supergravity background geometry. In the remaining

sections, we will work to first order in fluctuations around this background. To reduce

cumbersome notation, we henceforth simply take the background to be five-dimensional

Minkowski space, but one could in principle consider any background satisfying the

equations of motion.

5.1 Gravitino Kinetic Terms

As the volume action is a function of x ∼ H2
y (3.7), the “mass” term (∂yX)2 appear-

ing throughout transforms under superconformal transformations Lα (2.7d). The form

of this transformation is such that it can be canceled only by the δ−1 transformation

(2.9) of the combination 2iBy := Dα(GΨyα)− D̄ .
α(ḠΨ̄

.
α
y ) of the gravitino superfield. As

such, we define the combination

Ty := Hy +
1

2i

[
Dα(GΨyα)− D̄ .

α(ḠΨ̄
.
α
y )
]

(5.1)
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and replace Hy → Ty in all actions constructed heretofore. To get the quadratic term

of the gravitino, we make this replacement in the volume term and expand in B:

(ḠG)1/3FyF(h) → (ḠG)1/3FyF(h) + ByF
′(h) +

F′′(h)B2
y

2(ḠG)1/3Fy

+ . . . , (5.2)

The first term gives back Svol, the second reproduces the GDF′ contribution of (3.11)

to S1 (3.9), and the third term gives our gravitino kinetic terms.

Similarly, expanding explicitly in the y-dependence of the conformal graviton, we

encounter the “mass” term (∂yU
a)2, which, again, can only be covariantized, provided

it appears everywhere exclusively in the (∆, w, d, q) = (−1, 0, 0, 1) combination

2iXa
y := D̄

.
αΨα

y +DαΨ̄
.
α
y − ∂yU

a . (5.3)

(Note that argument can be reversed to imply that the action can only depend on

this particular combination of D̄Ψ and its conjugate.) As with Hy, this term can only

enter the action as a square, which, by the charges of table 1, must be the charge-less

combination

y := (ḠG)1/3
Xa

y ηabX
b
y

FyFy

(5.4)

where ηab is the 4D Minkowski metric. We can fix the coefficient of this term from 5D

Lorentz invariance [36]. In the superspace Lorentz gauge DαU
a = 0, the old-minimal

supergravity Lagrangian reduces to −Ua✷U
a− 1

3
ḠG, and we simply pick the coefficient

of X2 to match this [24, 36]. (The ḠG term is irrelevant to this argument.) In the

next section, we will linearize and combine the results to obtain a new formulation of

the quadratic superspace action for 5D, N = 1 supergravity.

5.2 Higgsed Gravitino Action

We will now linearize this formulation of 5D,N = 1 supergravity around a Minkowski

background. Specifically, we take X × Y and replace X → R4|4 with flat 4D, N = 1

superspace and Y → R.15

DA → eU〈DA〉e−U with U = iUa∂a
X → 〈X〉+X with 〈X〉 = θ2

Φy → 〈Φ〉+ Φ with 〈Φ〉 = i

(5.5)

15We choose this for clarity of exposition but more generally we could replace X with any y-

independent background that solves the curved 4D, N = 1 torsion constraints.
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(We use the same symbols to avoid further complicating the notation.) The remaining

fields are taken to have vanishing background values. Note that this background breaks

q-charge (form degree on Y ) corresponding to fixing the internal frame 〈ey5〉 = 1.

In the quadratic approximation, the action S(2) =
∫
d5xL(2) is given in terms of

the Lagrangian that is the sum of the terms

κ2L
(2)
vol = κ2Lomsg[G,U

a]− 2

∫
d4θ [SFy + LVP ]

κ2L
(2)
CS = −1

4

∫
d2θ [3WαWα −WαWα] + h.c.

κ2L
(2)
ΨJ = − i

2

∫
d4θΨα [3Wα − iWα] + h.c.

κ2L
(2)
ΨΨ =

∫
d4θ

[
XyaX

a
y +

1

4
T 2
y

]
. (5.6)

The ingredients in the first line are as follows: Lomsg[G,U
a] is the linearized action of

old-minimal supergravity. It can be written in various forms, one of which is [38]

Lomsg =

∫
d4θ

{
− Ua✷U

a +
1

8
D̄2UaD

2Ua +
1

48
([Dα, D̄ .

α]U
a)2 − (∂aU

a)2

+
2i

3
(G− Ḡ)∂aU

a − 1

3
ḠG

}
. (5.7)

(Note that it reduces as claimed in superspace Lorentz gauge DαU
a = 0 ⇒ D2Ua = 0.)

The remaining couplings are of the radion and KK field to scalar and pseudo-scalar

combinations

S := 1
2
(G+ Ḡ)− 1

4
[Dα, D̄ .

α]H
a ⇒ δS = 3

8

(
DαD̄2Lα + D̄ .

αD
2L̄

.
α
)

P := 1
2i
(G− Ḡ)− 1

2
∂aH

a ⇒ δP = i
8

(
DαD̄2Lα − D̄ .

αD
2L̄

.
α
) (5.8)

respectively. These are the real and imaginary parts of the linearized superframe de-

terminant G+ 1
2
D̄ .

αDαH
a → 1

4
DD̄2L+ 1

2
D̄D2L̄.16

To understand the physics contained in the action S(2), we could project to com-

ponents, at least for the quadratic action. For the eleven-dimensional action, this was

done for the linearized action in [38] and for the complete bosonic scalar potential in

[36]. Instead, we will relate S(2) to the known linearized supergravity action that was

formulated and projected to components in reference [23]. In that formulation, the

extended superconformal symmetries Ξ and Ω are absent. The associated vectors (V

and V ) and 2-form (Σ) have Higgsed the gravitino to

Ψα := Ψα
y + Σα

y −Dα (Vy + iV ) . (5.9)

16 These combinations of the compensator of old-minimal supergravity (n = −1/3) transform as the

compensators of new-minimal supergravity (n = 0) and virial supergravity [54–56], respectively.
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This Higgsed gravitino is invariant under Ξ and Ω but transforms under the (linearized)

non-abelian hierarchy symmetries (2.7) as

δΨα = 2i∂yL
α +DαΩ+ i

8
D̄2Dαu (5.10)

with L
α = Lα − i

2
Υα and Ω = −1

2
Λ. This is the transformation rule of [23, 25]; in

particular, the newΩ is chiral and Ξ has been replaced by D̄2Du. Indeed, rewriting S(2)

in terms of the Higgsed gravitino, we find after many cancellations that the Lagrangian

collapses to

κ2L(2) = κ2L(2)
omsg −

1

2

∫
d4θ

[
X

2
a −

1

2
T

2 − 2iS(Φ− Φ̄)

]
, (5.11)

where nowX and T are defined in terms of the Higgsed gravitino (5.9). This is the form

of the Lagrangian density found in [23]. Although the cancellations needed to recover

this form are non-trivial, the result was guaranteed since the gauge transformation

(5.10) of that reference was reproduced by the combination (5.9).

5.3 An alternative linearization

While we have successfully recovered the Lagrangian of [23], there is a curious

point. The construction of [23] was built around 4D old minimal supergravity as

a starting point. It is well-known that there is an alternative – 4D new minimal

supergravity – and one might have expected to be able to find a linearization of 5D,

N = 1 supergravity built upon that. This is all the more pressing, because linearized

4D, N = 2 supergravity (to which 5D, N = 1 supergravity can be dimensionally

reduced and then truncated) leads to a continuum of actions when rewritten in N = 1

language [18]. This continuum is related to the vacuum expectation value for the linear

multiplet ℓij with one particular limit corresponding to old minimal supergravity and

the other to new minimal. Equivalently, the two versions are related to different ways

of embedding 4D, N = 1 into 4D, N = 2. Based on the discussion in section 4.1, the

same should hold here.

Implicit in the analysis in sections 5.1 and 5.2 was the idea that G takes a VEV,

but Hy does not. This corresponds exactly to the choice for ℓij that led to old minimal

supergravity in [18]. Instead, we shall now require the reverse: We let Hy take a VEV

and G not. For the original superspace action involving F(x), this corresponds to

expanding around x = ∞. From the series expansion (3.16), one can show that

κ2Lvol = −3

∫
d4θ (GḠ)1/3FyF(x)

=

∫
d4θ

(3
2
Hy log(Hy/Fy)− 2GḠ

F 3
y

H2
y

+ · · ·
)

(5.12)
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where the infinite series of suppressed terms are higher order in G. The leading term

resembles the Lagrangian for new minimal supergravity whereHy is the tensor multiplet

compensator. This is apparent from the Lα transformation (2.8), which identifies Σα
y

as the tensor multiplet compensator in this case.

Let us now linearize. In section 5.2, we assumed 〈X〉 = θ2 and 〈Φ〉 = i, so it

followed that 〈G〉 = 1 and 〈Fy〉 = 1. From (4.11), the equivalent choice here, related

to the prior one by an SU(2)R rotation, should be 〈Hy〉 = 2 and 〈Fy〉 = 1. Linearizing

about this background, we find

κ2Lvol =
3

2

(
F − 1

2
H
)2

− 1

2
Ĝ ̂̄G . (5.13)

The linearized curvatures F and H are given simply by (2.6a) and (2.6c), but the

linearized chiral curvature Ĝ is slightly more complicated:

Ĝ := −1

4
D̄2(X + 2iV) = G− i

2
D̄2V . (5.14)

The Chern-Simons term is unchanged, but the gravitino supercurrent is a bit more

involved, as one must consistently work in the x→ ∞ limit.

Including also the gravitational prepotential Ua, one finds the quadratic action

S(2) =
∫
d5xL(2) has a Lagrangian given as the sum of terms

κ2L
(2)
vol =

∫
d4θ

[
− Ua✷U

a +
1

8
D̄2UaD

2Ua +
1

16
([Dα, D̄ .

α]U
a)2 − (∂aU

a)2

+
1

4
Hy[Dα, D̄α̇]U

a + 2V ∂y∂aU
a +

3

2

(
Fy − 1

2
Hy

)2

− 1

2
Ĝ ̂̄G

]
,

κ2L
(2)
CS = −1

4

∫
d2θ

(
3WαWα −WαWα

)
+ h.c. ,

κ2L
(2)
ΨJ = − i

2

∫
d4θΨα

(
3Wα + iWα +

1

2
DαĜ

)
+ h.c. ,

κ2L
(2)

Ψ2 =

∫
d4θ XyaXy

a . (5.15)

The first term L
(2)
vol includes the Lagrangian for new minimal supergravity involving

the supergravity prepotential Ua and tensor multiplet Hy, albeit with a slightly unusual

normalization of the tensor multiplet due to the non-standard background value 〈Hy〉 =
2. The additional pieces, including V and the cross-terms between Fy and Hy are

required for gauge-invariance.

As before, we Higgs the gravitino, but this time only to remove the Ω transforma-

tion

Ψα := Ψα
y −Dα (Vy + iV ) . (5.16)
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We cannot remove the Ξα
y transformation as before, because Σα

y no longer transforms

under this symmetry (since 〈G〉 = 0). We similarly eliminate the Ω transformation of

X by defining

X := X − 2V , Hy :=
1

2i
(DαΣyα − D̄ .

αΣ̄
.
α
y )− ∂yX , G := −1

4
D̄2

X . (5.17)

In terms of these quantities, the action reduces to

κ2L(2) = κ2L(2)
nmsg +

∫
d4θ

[
− 1

2
X

2
a −

1

2
GḠ+

3

4
ΦyΦ̄y +

3i

4
X∂y(Φy − Φ̄y)

− 1

4
(iΨαDαG+ h.c.)

]
(5.18)

where L
(2)
nmsg is the new minimal supergravity action built from Ua and Hy. This action

is invariant under the gauge transformations

δΨα = Ξyα − 1

2
DαΛ + 2i∂yLα ,

δX =
1

2i
(DαΥα − D̄ .

αῩ
.
α) + i(Λ− Λ̄) ,

δΦy = ∂yΛ ,

δΣyα = −1

4
D̄2Dαu+ ∂yΥα + iD̄2Lα ,

δUα
.
α = D̄ .

αLα −DαL̄ .
α . (5.19)

6 Application: Gravitational Chern-Simons Term

At this point we have recast 5D, N = 1 supergravity in terms of superfields on

what could be described as 5D, N = 1/2 superspace. We then verified that it reduces

correctly in the linearized limit. This essentially un-gauge-fixes the formalism of [23]

and non-linearizes it. In this section, we will demonstrate how it can be used to study

higher-derivative corrections to the supergravity action by deriving the major part of

the superspace expression for the gravitational Chern-Simons term ∼
∫
A∧ tr(R ∧R).

Here A stands for the graviphoton and R for the curvature 2-form, so this is a purely

gravitational version of the mixed gauge/gravitational Chern-Simons term. We will be

working with linearized invariants, but the output of the procedure is in terms of field

strengths, curvatures, and torsions. As such, we expect the formal result to be valid

beyond this order. (The understanding of such terms—should they be present—will

have to await the completion of the Kaluza-Klein super-geometry alluded to in §2.3.)

The supersymmetric completion of
∫
A∧ tr(R∧R) was worked out in components

in [40], and embedded into conformal superspace in [13]. (Strictly speaking, what was
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constructed there is the mixed gauge/gravitational Chern-Simons Lagrangian in which

the field A is part of a generic matter vector multiplet. In §6.3, we will comment more

extensively on this point.) In principle, it should be possible to reduce the latter to

N = 1/2 superspace by gauge fixing to a finite number of non-auxiliary superfields

and performing the harmonic integrals. In practice, however, it seems much easier to

construct the required composite field strengths directly, as even at the component

level, the reduction from 5D to 4D is non-trivial [19].

To demonstrate this approach, we will construct a specific class of terms that con-

tribute to the Chern-Simons term. Under the decomposition of SO(4, 1) → SO(3, 1),

A ∧ tr(R ∧R) → A ∧Rab ∧Rab + 2A ∧Ra 5 ∧Ra 5 . (6.1)

From the 4D point of view, these correspond to two different classes of terms, as each is

separately invariant under SO(3, 1) and the gauge transformation of A. In this section,

we consider the N = 1 supersymmetrization of the first term, since this is the most

non-trivial part to covariantize. (The second term can be integrated by parts (in the

linearized approximation) to F ∧ ωa 5 ∧ Ra 5 and there seems to be no obstruction to

realizing this as a full superspace integral involving covariant 4D quantities.)

To this end, we start with the superspace form of the gravitational Chern-Simons

action SgCS =
∫
d4x

∫
Y
LgCS. By gauge invariance, supersymmetry, and so forth, this

action must be identical in structure to that of the 2-derivative Chern-Simons La-

grangian (3.3), but now with the composite 4-form {G,Hy} constructed in terms of

the 4D, N = 1 curvature tensor superfields and their analogs with one leg along Y .

The reduced field strength of the 4D, N = 1 Weyl tensor is the chiral field Wαβγ , so

we expect G = WαβγWαβγ + · · · . To be gauge invariant, the five-dimensional 4-form

represented by {G,Hy} must be gauge invariant and closed. That is, we seek a reduced

3-form field strength Hy quadratic in 5D supergravity invariants that satisfies (2.5d).

6.1 Linearized Field Strengths

The linearized invariants of 5D supergravity in N = 1/2 superspace were studied

in [25]. A generating set is given as follows:17

17The normalizations of the first three superfields differ from [44], with Ga and R here equal to

twice the same quantities in [44], whereas Wαβγ differs by a factor of −2.
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Wαβγ = i
8
D̄2D(α∂β

.
γUγ)

.
γ (6.2a)

Ga =
1
8
DβD̄2DβUa − 1

24
[D, D̄]a[D, D̄]bUb − 1

2
∂a∂

bUb − i
3
∂a(G− Ḡ) (6.2b)

R = − 1
12
D̄2

(
Ḡ+ i∂aU

a
)

(6.2c)

F ′
αβ y = 2D̄

.
βD(αXβ)

.
β y (6.2d)

λαy = 2D̄ .
αX

a
y −DαTy . (6.2e)

The first three invariants are the irreducible parts of the linearized super-Riemann

tensor [42–44]: Wαβγ contains the Weyl tensor, Ga contains the traceless part of the

Ricci tensor, and R contains the curvature scalar. In this linearized form, it is easy to

check that they satisfy the Bianchi identities

DγWαβγ = −1
2
D̄
.
βD(αGβ)

.
β (6.3a)

D̄
.
αGa = DαR ⇒ D̄2Ga = −4i∂aR . (6.3b)

In four dimensions, the equation of motion of the prepotential Ua is Ga = 0 and that

of the scale compensator is (R + R̄) = 0, so on shell the only surviving components

are the θ → 0 projections of Wαβγ and D(δWαβγ) corresponding to the field strengths

of the helicity-3
2
gravitino and the helicity-2 graviton, respectively. When lifted to five

dimensions, both equations of motion receive corrections so this conclusion is modified.

The remaining invariants are the gravitino multiplet’s field strength F ′
αβ y and its

equation of motion λαy . Other forms for the gravitino field strength are related to linear

combinations of this one and D(αλ
β)
y . The advantage of this combination is that it is

complex-linear D̄2F ′
αβ y = 0. It is not difficult to verify that these satisfy18

D̄2F ′
αβ y = 0 (6.4a)

DβD̄ .
αF

′
αβy = −8∂yGa +

1
6

(
DαD̄ .

α + 2D̄ .
αDα

) [
2Dαλαy − D̄ .

αλ̄
.
α
y

]
(6.4b)

D̄2D(αF
′
βγ)y = 32∂yWαβγ (6.4c)

D̄2Dαλαy = 48∂yR . (6.4d)

We note for use below that the complicated identity (6.4b) can also be written as

DβD̄ .
αF

′
αβy +

1
4
DαD̄

2λ̄ .αy = −8∂yGa +
1
3
DαD̄ .

α

[
Dβλβy − 2D̄ .

βλ̄
.
β
y

]

− 1
3
D̄ .

αDα

[
D̄ .

βλ̄
.
β
y − 2Dβλβy

]
. (6.5)

In this form, the right-hand side is manifestly real. Explicitly,

DβD̄ .
αF

′
αβy + D̄

.
βDαF̄

′.
α
.
βy = −1

4
DαD̄

2λ̄ .αy +
1
4
D̄ .

αD
2λαy . (6.6)

18This corrects some unfortunate typographical errors in [25]. (We also use weighted index sym-

metrizations T((αβ··· )) = T(αβ··· ) instead of the unweighted ones of that reference.)
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6.2 Curvature 4-form

Returning to the Chern-Simons form, we seek Hy such that D̄2
Hy = 4∂yG where

G contains the term W 2
αβγ . Then, taking Hy = −1

4
DγF ′αβ

y Wαβγ + · · · would give the

relation we want by (6.4c), were it not for the fact that Hy is required to be real. Since

this term is not, we get additional terms from its conjugate that cannot be written as

∂yG for any chiral G. To cancel these terms, we need to add a bilinear, specifically

−1
8
F̄ ′

.
α
.
β

y DαD̄ .
βGa. But again this is not real so we must add more terms to cancel those

coming from the conjugate. The process terminates because of the structure of the

invariant: Hy is of the form ΘL ⊗ ΘR where ΘL is one of F ′
αβy or λαy or derivatives

thereof and ΘR is one of Wαβγ , Ga, or R and derivatives thereof. The terms can be

organized in order of non-increasing helicity of the reduced field strengths. At each

step of the process of the computation of D̄2
Hy, the helicity decreases. The process

terminates at the term 1
32
D2λαyDαR, because the complex conjugate of this is linear

(i.e. annihilated by D̄2). To carry this out, we repeatedly use the Bianchi identities

(6.3) and (6.4). In doing so, we find

G = WαβγWαβγ − 1
4
D̄2(GaGa) (6.7a)

Hy = −1
4
DγF ′αβ

y Wαβγ +
1
8
F ′αβ
y D̄

.
αDβGa +

1
8
D̄

.
αF ′αβ

y DβGa

+ 1
24

(
DαD̄ .

α + 2D̄ .
αDα

)
Dβλβy G

a + 1
32
D2λαyDαR + h.c. (6.7b)

We have presented the result in the form in which we originally found it, but there

are alternatives. For example, using (6.5), we can put H in the form

Hy = −1
4
DγF ′αβ

y Wαβγ +
1
8
F ′αβ
y D̄

.
αDβGa +

1
8
D̄

.
αF ′αβ

y DβGa +
1
32
D2λαyDαR + h.c.

− ∂y(G
2
a) +

1
8

(
DβD̄ .

αF
′
αβy +

1
4
DαD̄

2λ̄ .αy
)
Ga . (6.8)

The coefficient of the ∂y(G
2
a) term is just so that it forms a cocycle with the D̄2(G2

a)

term in (6.7a). This implies that if we subtract the former from Hy, the latter will be

removed from G. Recalling (6.6), the remaining term is real, so we may redefine our

form to

G
′ = W αβγWαβγ (6.9a)

H
′
y = −1

4
DγF ′αβ

y Wαβγ +
1
8
F ′αβ
y D̄

.
αDβGa +

1
8
D̄

.
αF ′αβ

y DβGa

+ 1
16

(
DβD̄ .

αF
′
αβy +

1
4
DαD̄

2λ̄ .αy
)
Ga + 1

32
D2λαyDαR + h.c. (6.9b)

In this form, H′
y is manifestly real again. Another form in which it manifestly satisfies

the descent relation (2.5d) is

H
′
y = −1

4
DγF ′αβ

y Wαβγ + D̄ .
αZ̄

.
α
y with (6.10)

Z̄
.
α
y = −1

4
F̄ ′.
β
.
γyW̄

.
α
.
β
.
γ − 1

8
F ′
αβyD

βGa + 1
8
DβF̄ ′

.
α
.
β

y Gb − 1
32
D2λαyG

a + 1
32
D̄2λ̄

.
α
y R̄ .
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The appearance of a trivial cocycle in (6.7) is characteristic of dimensional re-

duction in superspace [16]. This suggests that the term we moved is necessary for

five-dimensional Lorentz invariance. (A perhaps related observation is that moving

this term violates the ΘL ⊗ ΘR rule as it requires ΘL ∼ ∂yG, which is not one of F ′
y

or λy.) Reintroducing the Ricci-squared and scalar curvature-squared terms, there is a

priori a 2-parameter family of invariants (G(a,b),H(a,b)) with

G
(a,b) = G

′ − 1
4
D̄2(aGaGa + 2bR̄R)

H
(a,b)
y = H

′
y − ∂y(aG

aGa + 2bR̄R) . (6.11)

The difference between an action constructed from the primed invariants and the (a, b)

invariants can be rewritten as a covariant term (i.e. not Chern-Simons), as a superspace

integral of Fy(aG
aGa + 2bR̄R).

One cannot fix a and b by a purely N = 1 argument. One choice, involving

a = b = 1 reproduces the 4D Gauss-Bonnet invariant (cf. e.g. §5.6.5 of [43]) multiplying

Fy, but this is not the right answer in our case. Instead one can fix a and b by matching

to 4D truncation of [40], which suggests that the combination above must be chosen

to reproduce RabcdRabcd − 4
3
RabR

ab + 1
6
R2. This corresponds to setting a = −1/3 and

b = −1/12.

We emphasize that this is only that part of the full gravitational Chern-Simons

invariant that is the most non-trivial to construct in this partially on-shell superspace.

Additional covariant D-terms including, for example, FyF
′
αβyF

′αβy should be included

to recover the complete 5D, N = 1 invariant. Finding this would require either match-

ing the most general superspace expression to components or analyzing 5D Lorentz

invariance at the 4D superfield level.

6.3 Elaboration on the Relation to Previous Work

We now pause to discuss the relation of our gravitational Chern-Simons invariant to

known invariants. To do so, we recall from section 4.1, that there are two formulations

of conformal supergravity in five dimensions referred to as “standard Weyl” (4.1) and

“dilaton-Weyl” (6.12). What they have in common is the graviton, gravitino, and

SU(2) gauge field {ema, ψm
αi, Vm

ij}. The standard Weyl multiplet further includes a

real 2-form, a spin-1/2 field, and a real scalar field {Tab, χαi, D} which are all auxiliary.

By contrast, the dilaton-Weyl multiplet [8, 53] (see also [57]) further includes a scalar, a

gauge 1-form, a gauge 2-form, and a spin-1/2 field {ϕ,Am, Bmn, λ
αi}. In other words,

for the standard Weyl multiplet (4.1), one may substitute the dilaton-Weyl multiplet

dW5 = {ema, ψm
αi, Vm

ij, ϕ, Am, Bmn, λ
αi} . (6.12)
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It can be obtained from the standard Weyl multiplet by coupling conformally to a

vector multiplet, computing the equations of motion of the latter, and defining the

auxiliary fields {Tab, χαi, D} in terms of the physical fields of the vector multiplet. (In

the process, we solve a Maxwell equation of the form ∂m(Tmn − ∂[mAn]) + · · · ∼ 0, so

that a 2-form Bmn appears as Tmn ∼ ∂[mAn]+ǫmn
pqr∂pBqr.) While this adds the 8+8

components of a vector multiplet, the equations of motion remove the same number

of degrees of freedom, returning us to a (32 + 32)-component formulation. Any action

involving the standard Weyl multiplet can be replaced with the dilaton-Weyl multiplet

by substituting the auxiliary fields {Tab, χαi, D} with appropriate combinations of field

strengths of {ϕ,Am, Bmn, λ
αi} [53]. The converse is not true.

The invariant constructed in [40] is the mixed gauge/gravitational Chern-Simons

action ∼
∫
A ∧ tr(R ∧R) in which the field A is part of a generic matter vector multi-

plet. It was constructed in the Poincaré supergravity in the standard Weyl formulation

analogous to ours. On the other hand, a purely gravitational Chern-Simons action in

which A is the graviphoton was constructed in the dilaton-Weyl formulation in [41].

(Details on the difference and further developments can be found in [58, 59]). What

we are sketching in superspace in this paper is the purely gravitational invariant of the

latter [41] in the supergravity formulation of the former [40].

Two natural questions arise. The first is whether we can construct the mixed

gauge/gravitational invariant of [40]. We expect this to be trivial, provided we introduce

additional matter vector multiplets as in [26]. A more interesting question is whether

there is an analog of the purely gravitational Chern-Simons invariant of [53]. This

would appear to require the construction of a second 5D, N = 1/2 superspace that

would be the analog of the dilaton-Weyl formulation of Poincaré supergravity.

One might expect that the two different formulations could lead to different 5D,

N = 1/2 formulations based upon either old minimal or new minimal supergravity.

However, this is not actually correct. As we have showed, the non-linear 5D, N = 1/2

formulation we have introduced could be interpreted as either old minimal or new

minimal, depending on whether we choose G or Hy to possess non-vanishing vacuum

values. This is because the underlying full supergravity involves an isotriplet ℓij, whose

vacuum value is unfixed by equations of motion. This suggests a more complicated

mechanism is needed to describe the dilaton-Weyl formulation, which in the linearized

limit resembles neither old minimal nor new minimal supergravity.

7 Conclusions and Prospects

We have given a description of pure five-dimensional, N = 1 supergravity in terms

of four-dimensional, N = 1 superfields. More precisely, we are describing a 5D,N = 1/2
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superspace in which half of the supersymmetry is manifest and, in particular, off-shell.

The remaining half of the five-dimensional supersymmetry is realized linearly but not

manifestly. The gravitino associated to this second half sits in its own unconstrained

superfield Ψα
i transforming as (3.10). To lowest order in this gravitino superfield (and

for y-independent conformal supergravity backgrounds—cf. §2.3), the complete, non-

linear action is the sum of Chern-Simons term (3.3) and manifestly gauge-invariant

superspace volume term (3.5). Besides the expected 4D, N = 1 superspace volume

density, the latter has contributions from a Kähler function
√
g(F ) with Fy the field

strength (2.6a), and a non-linear function F of the tensor multiplets. This tensor

potential function was fixed exactly by the extended, non-manifest supersymmetries.

We checked this action by linearizing around flat space and recovering the known

result [23]. Finally, we used the linearized supergeometry [25] to construct part of the

gravitational Chern-Simons action ∼
∫
A ∧ R ∧ R in section 6 to cubic order in the

fields of minimal 5D supergravity.

Let us highlight some noteworthy features of this construction:

1. There is a local conformal symmetry because of the splitting of the superspace

into X and Y parts. In particular, the physical superfields are superconformal

primary fields of the 4D, N = 1 conformal algebra.

2. The 4D, N = 1 supergravity theory our construction extends can be viewed

alternatively as old minimal or new minimal supergravity depending on which of

two compensator fields takes a vacuum value. Viewed as old minimal supergravity,

it is actually a modified variant (a.k.a. 3-form supergravity) where the 3-form

multiplet plays the role of the conformal compensator [23, 25].19

3. It requires the full tensor hierarchy of differential p-forms with p = 0, . . . , 3 even

though only p = 0, 1 are physical.

4. In the linearized old minimal form, the gravitino superfield can eat all its com-

pensators in a Higgs-like mechanism collapsing the non-OMSG part to a sum of

two squares and a radion coupling [23].

There are many directions in which this work can be extended. Of course we could

now couple to matter multiplets in this superspace to study phenomena in which the

gravitational effects of such couplings are important (e.g. M-theory on Calabi-Yau 3-

folds and F-theory on elliptically-fibered G2 manifolds [61]). These matter fields could

19The linearization of this action has a hidden Sp(4;R) U-duality symmetry [60]. It would be

interesting to know whether this can be extended to the five-dimensional theory.
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be either 5D or localized on lower-dimensional defects, as in [24] (or the 5D lift of the

membrane [62]). In the former case, one would like to understand the structure of the

hyper-Kähler potential and the gauge kinetic function in this superspace.

The discussion of the gravitational Chern-Simons form in section 6 can be extended

to D > 5 dimensions. (In fact, much of the analysis of this paper was motivated by

the desire to construct the supersymmetrization of the R4 terms in eleven-dimensional

supergravity.) This amounts to extending the derivative and all Y tensors ∂y → ∂i,

Hy → Hi, etc. for i = 1, · · · , D − 4 and continuing the construction of the closed

4-form (G,Hy) → (G,Hi,Wαij,Fijk, · · · ). This requires a higher-dimensional analog

of reference [25]. (The requisite analysis has been carried out and will be reported

elsewhere.)

The second gravitino could be incorporated into the supergeometry. In such a de-

scription, it cannot appear explicitly so neither can the gravitino current (3.9). The

only additional explicit terms in the action would then be those involving the Xa
y invari-

ant that linearizes to (5.3). Such a construction can be carried out for any supergravity

theory with a 4D, N = 1 graviton and gravitino superfield, so we have chosen to present

that formalism in a separate publication.

A related line of inquiry concerns a better understanding of the tensor function

F.20 It is the integral of a function that is the single-valued branch of a cubic equa-

tion (3.14). The origin of this cubic equation was elucidated by considering how 5D,

N = 1 superframe reduces to N = 1/2 (4.7), but the analysis is also reminiscent of

a non-linear supersymmetry realization along the lines of [63]. Perhaps the equation

(4.11) can be interpreted as the lowest component of a non-linear constraint on a com-

pensator superfield. Such an interpretation may have far-reaching consequences for

the construction of effective actions similarly to those leading to Born-Infeld theory in

superspace [63–66].

These last three points are related by the observation that the gravitational Chern-

Simons action is not invariant under the extended linearized supergravity transforma-

tions because the graviphoton field shifts under (2.10). This is expected since higher-

derivative corrections to the supersymmetry transformations are known to be required,

even in completely off-shell formulations (see [67] for an example already in higher-

derivative Yang-Mills theory). In the aforementioned covariant supergeometrical for-

mulation, the 2-derivative action must transform under the corrections so as to cancel

the shift of the gravitational Chern-Simons term. Assuming this can be done, the

Chern-Simons term is still not expected to be invariant under the higher-derivative

20It is somewhat remarkable that the “only” difference between this and eleven dimensions is that

there we find the reciprocal relation F̂5D ↔ 1/F̂11D. Explicitly, the eleven-dimensional version of

(4.15) is F̂11D = (η̄2η2)1/3.
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correction to the supersymmetry transformations. This line of reasoning leads to ever-

higher corrections to the supersymmetry transformations and the action, just as it

does in the familiar component analysis. However as mentioned above, the form of

the action is fixed by the off-shell part of the supersymmetry to be an Xa
y -corrected

version of that found in §3. We do not currently have an adequate understanding of

how this tension is resolved, but (by analogy to the Witten anomaly in 11D [68]) we

expect that part of the solution involves a shift of the tensor hierarchy field strengths

by terms quadratic in the curvature tensor. A primary motivation for constructing this

5D, N = 1/2 formalism is to use it to study this question in a simplified (relative to

11D) framework.
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A Derivations

In this appendix, we provide some details of the derivation of the results in section 3.

These derivations follow those of reference [39] rather closely, so we will be schematic in

places where more rigor obscures the presentation. Specifically, we specialize to trivial

4D, N = 1 conformal supergravity backgrounds, and, throughout this calculation, we

suppress the y indices as well as spinor indices. Juxtaposed spinors are contracted with

the suppressed chiral indices up-to-down (DΨ = DαΨα) and down-to-up for antichiral

(D̄Ψ̄ = D̄ .
αΨ̄

.
α).

The non-linear gravitino transformation (3.10) can be rewritten as21

δ0Ψα = Ξα + (ḠG)−1/3GDα(Ω̂ + iΩ̌) . (A.1)

There is a gauge-for-gauge symmetry

δΩ = φ̄ with D̄ .
αφ = 0 (A.2)

21The eleven-dimensional theory had a quadratic term WαΩ̄ but that is ruled out here by 5-charge.
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which played an important role in the eleven-dimensional theory. In this case it is less

powerful but it suffices to rule out a transformation of the form δΦ ∼ D̄2(Ω̄U) for some

U [39]. The transformation of the gravitino-current coupling that we will cancel is

δ0S1 =
1

κ2

∫
d5x

∫
d4θ

[
ΞJ + iDΩ̌(ḠG)−1/3GJ

]
+ h.c. (A.3)

(In particular, we will ignore the Ω̂ part; we can imagine that we are gauging away the

KK field (cf. §5.2).)

To compute the transformations of the volume functional (3.5), it is convenient to

first rewrite it as

Svol = − 3

κ2

∫
d5x

∫
d4θ HH(h) with H(h) := h−1F(h)

⇒ δSvol = − 3

κ2

∫
d5x

∫
d4θ [δHH +HhH′δ log h] . (A.4)

For the Chern-Simons action, the variation is

κ2δLCS =
3i

4

∫
d2θ δΦWαWα + h.c. + 3

∫
d4θ δV ω(W,F ) . (A.5)

(That the “abelian” part just gives a factor of 3 follows from the fact that this action

is the superspace analog of
∫
AdAdA; we ignore the non-abelian correction.)

Next we compute the actual transformations of these terms. The field strengths

(2.6) satisfy δ0(anything) = 0 by definition, and transform under the extended super-

symmetry parameters

δ1F =
1

2i
(ΞW − Ξ̄W̄ )− ∂y(Ω̌F ) (A.6a)

δ1W = −1

4
D̄2D(Ω̌F )− (ΞW)W (A.6b)

δ1H = − 1

2i

[
D(GΞ)− D̄(ḠΞ̄)

]
− ∂y(Ω̌H) (A.6c)

δ1G = −1

4
D̄2(Ω̌H)−GΞW (A.6d)

δ1W = −1

4
D̄2DΩ̂ . (A.6e)

In the following two subsections, we will split up the calculation into the Ξ part and

the Ω part.
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A.1 Invariance under Ξ: Supercurrent

We compute for Ξ

δΞ log h =
i

2
F−1ΞW − 1

3
ΞW+

i

2
H−1D(GΞ) (A.7)

so that under Ξ the volume functional changes by

δΞSvol = − 3

κ2

∫
d5x

∫
d4θ [δΞHH +HhH′δΞ log h] (A.8)

= κ2
∫
d5x

∫
d4θΞ

[
−3i

2
WF−1HhH′ +WHhH′ +

3i

2
D(H + hH′)

]

= κ2
∫
d5x

∫
d4θΞ

[
(ḠG)1/3F̂

(
3i

2
W − FW

)
+

3i

2
GDF′

]
,

where we used that h2H′ = −F̂. The Chern-Simons action is Ξ-invariant since it is

independent of Σ and the ΦW 2 term transforms into W 3 ≡ 0 (cf. A.5). Therefore,

the variation above must be canceled by the variation (A.3) of the gravitino-current

coupling. This fixes the current to

J =
3i

2
WF−1HhH′ −WHhH′ − 3i

2
D(H + hH′)

= −(ḠG)1/3
[
3i

2
W −WF

]
F̂ − 3i

2
GDF′

=

[
i

2
W

∂

∂F
−W

∂

∂ log(ḠG)
+
i

2
GD

∂

∂H

] (
−3(ḠG)1/3FF

)
(A.9)

up to terms that are D̄ of some 4-vector with (∆, w, d, q) = (3, 0, 0, 0), as these are in the

kernel of the Ξ transformation. Studying currents made only from the tensor hierarchy

field strengths (for gauge invariance) and their covariant derivatives, one concludes that

there are no such correction terms.

A.2 Invariance under Ω

Now that we have the gravitino current, we can determine the unknown function

G in the Ω part of the gravitino transformation (3.10). We use the observation that

under (A.6)

δΩ̌h = −Ω̌∂yh+

[
1

12G
D̄2Ω̌H +

1

6G
D̄Ω̌D̄H + h.c.

]
, (A.10)
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where we have used (2.5d). From this, we obtain

δΩ̌Svol = − 3

κ2

∫
d5x

∫
d4θ [δΩ̌HH +HH′δΩ̌h]

= − 3

κ2

∫
d5x

∫
d4θ

[
δΩ̌HH − Ω̌H∂yhH

′

+HH′

(
1

12G
D̄2Ω̌H +

1

6G
D̄Ω̌D̄H + h.c.

)]

= − 3

κ2

∫
d5x

∫
d4θ

1

12G
D̄(D̄Ω̌H2)hH′ + h.c.

=
1

4κ2

∫
d5x

∫
d4θ Ḡ−1H2DΩ̌D(hH′) + h.c. (A.11)

In particular, the Ω̌ part (i.e. without derivatives) cancels, consistent with the obser-

vation that such a term would not be invariant under the gauge-for-gauge symmetry

(A.2). The Chern-Simons term contributes

κ2δΩLCS = 3

∫
d4θ Ω̌F

[
WDF + 1

2
FDW + h.c.

]

=
3

2

∫
d4θ Ω̌D(F 2W ) + h.c. (A.12)

for a total of

δΩ̌S0 =
1

κ2

∫
d5x

∫
d4θDΩ̌

[
−3

2
F 2W +

1

4
Ḡ−1H2D(hH′) +O(W)

]
+ h.c. (A.13)

Comparing to the gravitino transformation (A.3) with the current given by (A.9), we

find

−3

2
F 2W +

1

4
Ḡ−1H2D(hH′) +O(W) = −i(ḠG)−1/3GJ (A.14)

=

[
−3

2
W − iWF

]
GF̂ − 3

2
G(ḠG)−1/3GDF′ ,

whence we read off G = F̂−1F 2 and h2D(hH′) = −6F̂−1DF′.22 The coefficient of Dh of

this equation implies h3(hH′)′ = 6 log′ F̂. Note that the left-hand side scales like h while

22This agrees with the result from 11D in which G is a Hermitian bi-linear form. Here the imaginary

anti-symmetric part is absent since there cannot be such a form in co-dimension 1. This also has the

correct limit 〈G〉 = 1.

– 37 –



-10 -5 5 10

-6

-4

-2

2

4

6

Figure 2. The single-valued branch of the function F̂(x) = F − 2xF′ and F (choosing the

integration constant c1 = 0). The former is the positive definite one. The latter vanishes at

x ≈ 1.06 before running off to −∞ as −
√
3x log

√
x (cf. 3.16).

the right-hand side scales like h−1. Using F = hH, F′ = H+hH′, F̂ = F−hF′ = −h2H′,

and F′′ = −h−1F̂′, we find that

hF̂(F̂ − hF̂′) =
α

2
F̂′ with α = 12 . (A.15)

Since F is really a function of h2, this is equivalent to (3.13) considered as a function

of x. The latter can be integrated to the form23

(
1 + 3xF̂

)
F̂−3 − 1 = 0 , (A.16)

as is easily checked by differentiating and clearing negative powers. Thus, we obtain

(3.14). The principal branch is given by

F̂ =
22/3x+

(
1 +

√
1− 4x3

)2/3

21/3
(
1 +

√
1− 4x3

)1/3

= 1 + x− x3

3
+
x4

3
− 4x6

9
+

5x7

9
− 77x9

81
+

104x10

81
+O(x12) (A.17)

To find F from this, we must solve the defining equation (3.8). Had F̂ been convex,

this would just be the Legendre transform. Instead, we find the complicated solution

plotted in figure 2.

We emphasize that the function F̂ and its integrated form F must be real for x ≥ 0,

as all non-negative values of x are physically permissible. The form given above is only

manifestly real for 4x3 ≤ 1. F̂ may equivalently be written

F̂ =
1

21/3

(
(1− i

√
4x3 − 1)1/3 + (1 + i

√
4x3 − 1)1/3

)
(A.18)

which is manifestly real for 4x3 ≥ 1.

23In eleven dimensions, the analogous equation is
(
1 + 3xF̂

)
F̂3 − 1 = 0. (Our x differs from that

of [39] by a factor of 12.)
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