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ABSTRACT: We construct 5D, N = 1 supergravity in a 4D, N = 1 superspace with
an extra bosonic coordinate. This represents four of the supersymmetries and the
associated Poincaré symmetries manifestly. The remaining four supersymmetries and
the rest of the Poincaré symmetries are represented linearly but not manifestly. In
the linearized approximation, the action reduces to the known superspace result. As
an application of the formalism, we discuss the construction of the 5D gravitational
Chern-Simons invariant f AN R A R in this superspace.
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1 Introduction

Five-dimensional, N = 1 supergravity is a theory described in components by
a frame e,;,%(x), a gravitino ¥,,(z), and a graviphoton A,,(x) needed to match the
bosonic degrees of freedom to the four fermionic degrees of freedom on-shell [1, 2].
They are permuted by local supersymmetry, but these transformations do not close
onto translations and gauge transformations unless the equations of motion are im-
posed (i.e. they close only on-shell). We can attempt to remedy this by introducing
additional fields (the auxiliary component fields) and modifying the supersymmetry
transformations in such a way that the algebra closes on all these fields off-shell. In
this particular case, this off-shell problem is solved in a finite number of steps [3, 4].!
But this is not so in general and fails even for this case when the theory is coupled to
hypermultiplets.?

When all of the supersymmetry is kept manifest, this state of affairs may be un-
derstood from the existence of off-shell superspaces with eight supercharges, of either
the harmonic [15, 16] or projective type [12, 17]. Both approaches employ an auxiliary
SU(2)/U(1) space. In the harmonic approach, superfields are globally defined on this
space with an infinite expansion in the 2-sphere harmonics with ordinary superfields as
coefficients. In the latter, superfields are instead holomorphic functions with infinite
Laurent expansions in the natural inhomogeneous coordinate ¢ of CP!. In both cases,
all of these fields are necessary to close the supersymmetry off-shell, but only a small
finite number of them survive when the equations of motion are imposed. To reduce
to a more familiar set of variables, one could, in principle, eliminate all but a finite
number of fields (by solving auxiliary field equations and imposing gauge symmetries),
expand the superfields in half the 6 variables, and integrate over the auxiliary manifold.
The result would be an equivalent description in terms of a finite number of superfields
depending only on the four remaining 6’s but on all five bosonic coordinates. These
fields behave as 4D, N = 1 superfields in almost every way.

This procedure is difficult to carry out explicitly in supergravity.® Worse still, in

! The first off-shell construction of 5D supergravity was carried out by Zucker [5, 6]. Tensor
calculus techniques for general 5D supergravity-matter actions were developed in [7-10]. The off-shell
superspace appropriate for 5D was constructed in [11, 12]. A comprehensive discussion can be found
in [13].

2See [14] for the argument that generic hypermultiplets require an infinite number of auxiliary
fields.

3 A sense of what is involved may be gotten from [18]. There 4D, N = 2 supergravity in projective
superspace is linearized around flat space, then partially gauge-fixed, integrated over harmonics, and
put partially on-shell to relate it to the 4D, N = 1 old- and new-minimal supergravity theories. To
incorporate supergravity fully non-linearly, one would actually need to repeat the procedure of [19] in



dimensions higher than six and/or for more than eight Poincaré supercharges, there
are no appropriate off-shell superspaces over which we could even contemplate carrying
out such a procedure [22].* Instead, one could start from a set of superfields and trans-
formation rules that would have resulted from the purported procedure and attempt
to construct an invariant action directly. Specifically, we first embed the component
fields into a suitable 1-parameter family of 4D, N = 1 superfields with the parameter
having the interpretation of a coordinate for the 5 dimension. The embedding will be
suitable if the component spectrum and all gauge transformations are reproduced. One
then attempts to construct an action from the superfield ingredients that is invariant
under the superfield gauge transformations.

Such a “superfield Noether procedure” is guaranteed to be possible when the off-
shell superspace exists and, indeed, it was used to construct five- and six-dimensional
matter-coupled supergravity in various approximations in [23-32]. In the cases in which
an off-shell superspace does not exist, it is not obvious that the procedure will work.
Nevertheless, it was explicitly shown that it does work for 10D super-Yang-Mills in
[33]. More recently, the approach was extended to the far more subtle case of eleven-
dimensional supergravity in [34-39].

In this paper, we revisit the five-dimensional problem with the benefit of eleven-
dimensional hindsight. Our motivations for doing this are both five-dimensional and
eleven-dimensional. On the one hand, the existing five-dimensional results are only
understood in various approximate forms whereas the analytic structure of the eleven-
dimensional action is now known to much higher precision. On the other hand, the
five-dimensional version is far simpler than its eleven-dimensional counterpart while
retaining many of the non-trivial elements of the latter. Specifically, both are odd-
dimensional and have an abelian p-form in their on-shell spectra (p = 1 and 3, respec-
tively) with a Chern-Simons-like self-interaction. (In fact, it was noted already in [23]
that the five-dimensional theory also has a component 3-form hiding in its scale compen-
sator so that, in the end, the two theories employ almost identical 4D, N = 1 superfield
representations.) Finally, both theories get higher-derivative corrections involving the
Chern-Simons form and powers of the curvature 2-form. In 5D, the supersymmetric
completion is known [40, 41], whereas in 11D only parts of it have been constructed.

In the next section, we will give the embedding of the component fields of five-
dimensional supergravity into a l-parameter family of 4D, N = 1 superfields. The
parameter is the 5 bosonic coordinate, so we are describing 5D, N = 1/2 superspace

reducing 5D, N = 1 to 4D, N = 2 (but keeping dependence on the fifth coordinate and in superspace)
and then recast 4D, N = 2 derivatives into 4D, N = 1 language (see e.g. [20, 21]).

4«Appropriate” here means, roughly, that it is possible to separate the constraints defining linear,
off-shell, irreducible representations from the equations of motion that put them on-shell.



as a fibration by 4D, N = 1 superspaces over the fifth dimension. Starting from
the superfields on this space and their gauge transformations, we construct their field
strengths and the Bianchi identities they obey. In section 3, we define a perturbation
theory in the gravitino and give the action to the first non-trivial order in this expansion.
The result to lowest order is the sum of a D-term integral representing the volume of
our superspace and a mixed F- and D-term Chern-Simons action for the graviphoton.
In section 4.2, we explain the structure of our result by deriving it from ordinary
on-shell, five-dimensional superspace. In section 5, we linearize our action to recover
the previously known superspace action for linearized supergravity [23]. In section
6 we apply the formalism to the gravitational Chern-Simons term ~ [AA R A R
where A is the graviphoton and R is the curvature 2-form. In particular, we construct
the minimal N = 1 sector containing the 4D R A R, which is non-trivial due to the
competing requirements of chirality and gauge-invariance. (The construction is in terms
of linearized field strengths but is, at least in part, expected to hold beyond this order.)
We conclude in section 7 with a summary of our findings and a discussion of implications
for extensions and future work. In the main thread of our presentation, we have opted
to suppress distracting calculations for the sake of clarity, relegating them instead to
appendix A.

Note added in this revised version: In this revised version, we have added the
clarifying sections 4.1 and 6.3, expanded the discussion in section 4.2, and added a new
section 5.3. In §4.1 we review the existing formulations of off-shell 5D, N = 1 Weyl
and Poincaré supergravity theories and explain the connection to the 5D, N = 1/2
superspace formulation. This helps to elucidate the structure of the non-manifest and
on-shell part of the supersymmetry. With this understood, we can see that there is
an alternative linearization of our results, which we present in the new section 5.3.
In the new section §6.3, we compare our gravitational Chern-Simons action to results
available in the literature. These and other clarifying remarks were added in response
to thoughtful questions from our JHEP referees.

2 Fields and Symmetries

Component fields In 4D, N = 1 supergravity, the component content is that of

¢ and its superpartner gravitino ,,. This simple matching of bose and

a frame e,
fermi degrees of freedom is not a generic trait; counting the degrees of freedom of a
five-dimensional frame field e,,* and gravitino v,,, we conclude that the 5D, N =1
supergravity multiplet is missing some bosonic fields. On shell, the bose and fermi

degrees of freedom can be matched by a five-dimensional “graviphoton” gauge vector



A The 5D, N = 1 supergravity component multiplet is the set {€m®, ¥m, Am}
transforming into each other under linearized supersymmetry transformations.

2.1 Superfields

To embed these fields into representations of the 4D, N = 1 super-Poincaré algebra,
we split their polarizations along the 4D directions 2™ and the extra dimension y = z°.
Using four-dimensional language, this results in a graviton e,,*, a KK-photon A, ~
en’, a scalar ¢ ~ e,°, a graviphoton A,,, a pseudoscalar A,, two gravitini, and two
gaugini, but with all these fields depending on all five bosonic coordinates ™ and y.
That these can be properly accommodated in 4D, N = 1 superfields was originally
demonstrated in [23, 25] in a linearized approximation. Here, we will use a larger
set of superfields from the outset as this is more geometric and thus convenient when

constructing the non-linear theory:

Conformal supergravity We embed the 4D polarizations of the frame e,,* and one
gravitino into the conformal 4D, N = 1 supergravity prepotential U%(x, 0,0, y)
[42, 43]. This field has a large gauge freedom, the linearized part of which is®

SoU® = DEL* — DL (2.1)

The arbitrary spinor L*(x,6,0,y) allows a Wess-Zumino gauge in which the only
non-zero components are the frame, the gravitino, and a real pseudo-vector aux-
iliary field. The remaining gauge parameters are those of linearized diffeomor-
phisms, local supersymmetry, local Lorentz, local S-supersymmetry, and local
scale. The latter two can be used to remove the spin-1/2 and spin-0 parts of the
supergraviton, so this multiplet describes conformal supergravity instead of ordi-
nary Poincaré supergravity. We will make up for this presently by introducing a
scale compensator superfield.

Conformal gravitino The other gravitino is embedded into the conformal gravitino
superfield ¥*. Again this representation has a large gauge freedom transforming
in the linearized approximation as

SoU® = % + DO (2.2)

5Here and henceforth, we use the convention that a vector index, v® say, that is contracted on a
Pauli matrix is denoted by an underline: v% := v®¢ := (0,)**v®. (This is essentially the Feynman
slash notation but on the index instead of the vector, which proves to be more convenient in superspace
calculations.) An implication of this is that contracted underlined indices give traces of Pauli matrices

so that, for example, v%n, = —2v%,.



for a chiral spinor =Z* and complex scalar superfield € [42]. These can be used to
go to a Wess-Zumino gauge where

U~ ieo_me_wma + 02<O_m§)avm + 9_2(80_mn)atmn + 629_2p04 ) (23)

In addition to linearized supersymmetry, the conformal gravitino ,,* possesses a
shift symmetry in its spin-1/2 part corresponding to local S-supersymmetry. The
additional fields are auxiliary and consist of a complex vector v, a complex self-
dual 2-form t,,,, and a spinor p®*. Note that there is no physical boson remaining
in this set.®

Kaluza-Klein gauge field The mixed component of the metric is described by a
non-abelian connection for diffeomorphisms in the extra y-direction. This is im-
plemented in superspace by covariantizing the flat superspace derivatives D — D.
The non-abelian field strength appears in the derivative algebra in the usual place
[42-44)]

(D, Do] = (00)adLrwe (2.4)

where for any vector field v¥0,, £, denotes the Lie derivative along v. (The
Lie derivative appears here because this field gauges the diffeomorphisms in the
5" dimension.) As usual, the derivative constraints can be solved in term of a
non-abelian prepotential VY.”

Graviphoton hierarchy The graviphoton has a part embedded into an abelian vector
prepotential V' with the usual gauge transformation 0V = %(A — A) allowing the
standard Wess-Zumino gauge. The other part A, is carried by a chiral pseudo-
scalar ®, transforming into the same chiral gauge parameter 6@, = J,A. This
is a short abelian tensor hierarchy in which only a vector multiplet and a scalar
multiplet are linked. Below, we will “gauge it” by defining ® (and, therefore, A)
to be covariantly chiral under the nonabelian connection D.

Gauge 3-form compensator At this point it appears we have embedded all of the
component fields of 5D, N = 1 supergravity. We must recall, however, that the
gauge transformation (2.1) of the graviton superfield removes the spin-1/2 and
spin-0 component fields. To compensate for this gauging of (super)scale transfor-
mations, one introduces a superfield representation that contains a scalar. The

6This is not in direct conflict with supersymmetry, because there is no single-derivative Lagrangian
for this representation unless it is coupled to other fields. (There is a higher-derivative Lagrangian,
but then an otherwise-auxiliary vector becomes dynamical.)

"The sign convention for V¥ and W, differs from our recent papers in 11D.



standard choice is to introduce a chiral scalar superfield [45]. More appropriate to
our case, however, is a constrained chiral scalar G = —}11_)2X with X = X a real
scalar prepotential transforming under linearized superconformal transformations
as 0e X = DL, + DgL® [23, 36]. This rule is needed so that G transforms as
the conformal compensator §,.G = —}LD2D°‘LQ under linearized transformations.
Note, however, that the chiral part of L* leaves GG invariant, so there is a gauge-
for-gauge symmetry under which L* — L% + Q%.TO‘, where T is a chiral spinor
parameter. Because of this symmetry, the complex F-term auxiliary field survives
in Wess-Zumino gauge and furthermore, since X is real, the imaginary part of
G’s auxiliary field is the dual of a 4-form field strength [42, 46, 47]. Equivalently,
the 0™0 component of the X prepotential is the Hodge dual of a gauge 3-form
Crnnp- (That this is a gauge 3-form can be derived from the gauge transformation
0X = %(DO‘TQ — DgY%).)

In the eleven-dimensional theory, this 3-form is the M-theory 3-form with all legs
in the four-dimensional directions [36]. In the five-dimensional case, the geomet-
rical origin of this form is less apparent, but we will see that there is a complete
super-3-form of compensating fields needed for consistency. In anticipation of
this, we introduce the gauge chiral spinor superfield %7 transforming under the
abelian 1-form symmetry as 033 = —iDQDauy + 0,7 Together, X and %
form a second short tensor hierarchy describing a five-dimensional gauge 3-form
Crmnp In a 4+ 1 split Cpppy and Cppyy [34].

2.2 Non-abelian tensor hierarchy

Previously, we gauged the 1-form hierarchy by replacing D — D. In fact, this
couples the KK vector field correctly to all fields, since it builds the non-abelian correc-
tion directly into the superspace geometry (2.4). This gives rise to corrections to the
Bianchi identities for closed p-forms, and, therefore, to the field strengths and gauge
transformations. Explicitly, the Bianchi identities for a closed 2-form are

1=
_11)2@1@ +9,W =0 (2.5a)
DW, — DgW = —2iw(WY, F,) (2.5b)

with w(WY, F,)) := WD, F, + 1D*WYF, + h.c., and

DWY — DgW = . (2.5¢)



The 4-form satisfies
1._
—D*H, +0,G =0 (2.5d)
DG =0 (2.5€)

with the proviso that G has a real prepotential (i.e. one of its auxiliary fields is the dual
of a 4-form field strength). This non-abelian tensor hierarchy of constraints is solved
by the field strengths

1

Fy = (@ = &) =0,V (2.6a)
We = —%@%av — W, (2.6b)
H, = 2% (DS, — DsZS) — 9,X (2.6¢)
G = —EDZX — W¥%,, (2.6d)

in terms of unconstrained prepotentials. These expressions are the standard ones of
the abelian hierarchy with the minimal coupling prescription D — D and corrections
by the non-abelian field strength.

The prepotentials, in turn, suffer pre-gauge transformations

So®y = Lx®y + A (2.7a)
1 _
0V = L2V + (A= A) (2.7b)
1-
0%y = L2355 — 1D* Dy + 9,1 (2.7¢)
1 _ .
00X = Ly X + o [D™Mo = DaT?] = w(W, uy) - (2.7d)

The first term is the non-abelian part of the gauge transformation (corresponding to
diffeomorphisms of the circle) which acts on matter fields by the Lie derivative. The
remaining terms are minimal covariantizations D — D of the abelian p-form transfor-
mations and, in the case of X, a correction term needed to counter the appearance of
a non-abelian field strength in the commutator of four D’s. The field strengths (2.6)
are invariant under the abelian part of the transformations and are covariant under the
non-abelian part [35].

In addition, all of the prepotentials transform under L, transformations (see e.g.

section 5 of [39]). The relevant ones for our discussion will be the L, transformations
of ¥ and X, which take the form

?

ANy = SDXLH,) and AX =D(LoG) —il*W."H, + h.c. (2.8)



for covariantized transformations A defined in [39]. In the linearized background where
(G) =1, the L transformation of X does not vanish, which identifies it as the prepo-
tential for the conformal compensator.

2.3 Gravitational couplings

In order to include the full non-linear couplings to gravity, one should introduce a
gravitational covariant D — &, whose connections include the supervielbein, Lorentz
connection, etc. in addition to the non-abelian gauge field. As discussed in [39], for
this to be consistent with y-dependence of the 4D supergraviton, we will be required to
incorporate also the gravitino superfield corrections to the supergeometry: The graviton
transformation (2.1) must be allowed to depend on y, so we expect terms ~ d,L% to
appear that we need to be able to cancel. This can be done provided we modify the
gravitino superfield transformation (2.2) by a term ~ 9,L* [23, 38].® This gravitino
superfield, in turn, contributes its torsions and curvatures to the covariant derivative
algebra [42, 48], which would first need to be constructed. This approach has been
carried out for general superspaces arising in Kaluza-Klein splittings of the type we are
considering and will be reported separately.

Instead, we here take the far simpler approach of defining a gravitino expansion and
working order-by-order in W®. In this approach, we can still work in a non-linear 4D,
N =1 conformal supergravity background provided that background is y-independent.
Even in this setting the dependence on the remaining fields is non-linear. Explicitly,
we treat only U and Wy perturbatively in their y-dependence. This can be done
around any y-independent 4D, N = 1 conformal supergravity background, such as
warped compactifications over 4D solutions. (For example, we can describe AdS5 in the
Poincaré patch as a warped Minkowski compactification.) For this reason, we will write
the 4D, N = 1 conformal supergravity measures explicitly in the rest of this section
and in the next. Covariant derivatives are understood to be background-covariant
derivatives. Formally this amounts to replacing D? — D? —8R wherever they appeared
previously. (No other torsions can appear at this dimension.) We emphasize that this
restriction applies only to the invariants of 4D, N = 1 conformal supergravity part
and that this restriction can be removed by using the more complicated supergeometry
alluded to above.

Local superconformal symmetry Separating the components of 5D, N = 1 gravity
in a 4 + 1 split and embedding the 4D polarizations of the frame in a 4D, N =1 con-
formal supergraviton (2.1) has resulted in a description with a local 4D superconformal

8 A more covariant version of this statement can be made by studying the consistency of the Bianchi
identities of the commutator [Z,, Z,].



Do U U G(X) HZ) Wo(V) F(®) WYV)| Ly ¢ QYo u A9,
Al T-1-2 312 22) 20 o0) 20-3-3 0 ¢ 0 00
wl—1 0-1 2(0) 0o(1) 1(0) 00) 1(0)-1—-1 0 1 0 00
d| L -1-Lo(-1)0(-%) L~1) 00) i(-1)|-2 -1 -1-2-2-11
gl 0 0 1 0 1 o 1 -1/ 0 1-1 O 1 01

Table 1. The various Z-gradings of the fields and gauge parameters: scaling dimension
A, U(1)r weight w, mass dimension d, and 5-charge ¢ (with ¢ = p for p-forms, ¢ = —1 for
vectors, etc.)

symmetry. This symmetry is broken spontaneously to Poincaré by the compensators
just as 4D, N = 1 Poincaré supergravity is usually described by conformal superframes
coupled to scale compensators [42, 45]. Similarly to that case, the matter fields can
be assigned scaling weights A and U(1) charges w in addition to their engineering
dimension d and degree q as differential forms on Y. These are collected in table 1.

2.4 Gravitino perturbation theory

Finally, we complete the description of the symmetries by formulating a perturba-
tion theory in the gravitino. To do this, we introduce a gravitino grading under which
U carries charge 4+1 and the remaining prepotentials have charge 0. Then the super-
conformal parameters under which the gravitino transforms (2.2) must carry charge 1
as well. We split up the gauge transformations § = d_1 + 6y + 91 + ..., and assign
gravitino charges to all the fields and gauge parameters. The §y transformations are
taken to be those defined on all the fields above. The §_; transformation acts only on
the gravitino as

-1 0% = 2i9, L° (2.9)

This is needed to covariantize the y-dependence of the superconformal graviton trans-
formations under L%, as described in the previous paragraph. The §; transformations
can act on the all the non-gravitino fields only by = and €. The precise form of this
action is not easy to derive from first principles but can be guessed and checked. In
the process of bootstrapping, we are aided immensely by the huge amount of local
symmetry represented in table 1. We find for ¢; that it acts on the tensor hierarchy
fields as

0P, =W, , 6V =WF,, 63X =G0

y

X =QH,, &V =0V (2.10)

— 10 —



and by zero on all other fields. Here Qv and Q¥ correspond to the real and imaginary
parts of the () parameter.

Note that these transformations are rather large, implying that many component
fields can be removed by a choice of superscale gauge. Most apparently, the linearized
non-abelian gauge field suffers a Stiickelberg shift by an unconstrained real superfield,
indicating that it can be gauged away entirely! Similarly, since G is the scale compen-
sator superfield, the lowest bosonic component must be non-zero (i.e. we can gauge
G| — 1). It follows that the 2-form superfield X can also be gauged away completely.
Finally, we will see in the next section that the lowest component of F), is the volume
density on Y, so it must be non-vanishing and therefore invertible. Thus, V is also a
Stiickelberg superfield shifting under the imaginary part of 2. Where are all these fields
going? On its face, it strains credulity that we are able to remove them all, but this is,
in fact, consistent with the description of linearized 5D, N = 1 supergravity given in
[23]: As we will see in detail in section 5, the Stiickelberg components are being eaten
by the gravitino superfield in a supergravity Higgs-like mechanism. Fully “massing up”
the gravitino superfield results in the superfield spectrum used in the aforementioned
reference.

3 Action

Having defined the fields and symmetries in low orders of the gravitino expansion,
we are finally in a position to construct the action. To this end, we expand the action
S =58+ 851+ S5+ ... so that 65 = 0 splits up into a set of conditions with definite
gravitino grading;:

5050 + (5_151 - 0 y (5150 + 5051 + 6_152 - 0 y e (31)

Note that, while this is an expansion in the gravitino superfield ¥, each term is non-
linear in all the remaining fields. In the next two subsections, we will give the explicit
exact results for Sy and S that satisfy these relations.

3.1 Chern-Simons Action

The lowest-order action
SO - Svol + SCS (32)

is a sum of terms separately invariant under ¢y. The simplest of these is the Chern-
Simons action Scs = [ d*z [ dyLcs,. We write the Lagrangian in the slightly clumsy

- 11 -



K2 [dy [d'z [d*OF [d26€ 8, 0, W K
A0 0 —4 2 110 32
w0 0 0 0 —200 20
d|-3 -1 —4 2 11110
gl 0 -1 0 0 001 11

Table 2. Weyl (A) and U(1)r (w) weights of various measures and actions. W and K
stand for the integrands of F- and D-term superspace integrals.

way (because this will be the form that we can generalize appropriately below):
2k Legy = i / d*0& ©,G + / d*9EVH, + h.c. (3.3)
with
G= %W“Wa and H, = w(W, F,) — iD*F,WYF, +iDsF,WYE, (3.4)

where, as before, w(W, F) := WDF + %F@W + h.c. is the Chern-Simons superfield.
This Lagrangian is a 1-form on Y that can be understood as a superfield [4, 1]-form on
X x Y [37]. It is constructed in terms of a composite 4-form with [4,0] part G and
3,1] part H = H, dy. As the notation is intended to suggest, they satisfy the same
Bianchi identities (2.5d, 2.5¢) as G and H,,. Specifically, the action is invariant under
the A transformation (2.7a ,2.7b) because D*H = 49,G.

3.2 Volume Term and Chern-Simons Action

The second invariant is the superspace volume

Syot 1= —% / dix / dy / d'0F (GG)'3F, F (3.5)

determined up to some completely weightless function F of the field strengths (2.6). The
integrand of (3.5) is again a 1-form on Y that can be understood as the superspace
volume density dressed up for conformal invariance: The explicit factor of F, may
be interpreted as an ein-bein superfield on Y so that the integrand is of the form
(Ed*z)(F,dy) ~ E\/gyd*zdy, and the (4,0)-form field strength G enters in just such a
way that we may interpret it as the conformal compensator for (modified) old-minimal
supergravity [36].

- 12 —



This interpretation is correct only in the H, = 0 gauge. In general, there is a
modification by an a priori unknown function J reducing to 1 when H, — 0 [39].
This function must be completely weightless, gauge-invariant, and Lorentz invariant
and must therefore be a function of scalar combinations of the field strengths with
(A,w,d,q) =(0,0,0,0). From table 1 and some experimentation, we conclude that the
only such invariant is

Hy

hi=————.
(GG)IF,

(3.6)
Requiring the Chern-Simons term to be even under parity fixes F, to be even and H,,
to be odd. Therefore, F(h) = F(z) is actually a function of the square

h2
r:=— with a=12. (3.7)
a
(The normalization will prove convenient later.) This function is fixed by invariance
under extended supersymmetry. The variation of the volume action (3.5) depends on
J and its derivative in the combination

F.=F—hgF . (3.8)
In particular, component results will depend on this combination rather than F itself.

3.3 Gravitino Supercurrent

At the next order, we have the gravitino current coupling

1
S =— d4x/dy/d49E o Jo +he. (3.9)

P

where the (A, w,d,q) = (%, 1, %, 0) current J is constructed from all the fields except
the gravitino. The fields in Sy transform under §;, and this needs to be canceled by
the gravitino transformation. The linearized version of this transformation was given
as (2.2), but we can give the complete non-linear version of it as follows: The =, parts
of the transformation already have the correct charges as we can see in table 1, but
the €Y part does not. Firstly, 2V is a vector instead of a 1-form, so we will introduce
a dimension-0 complex bilinear form §,, to lower the index. Secondly, we match the
conformal and U (1) weights using G to find

5oWe = EY + (GG) 3G, D, QY. (3.10)
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In appendix A.1, we use the = part of this invariance to fix the gravitino current to the
form

- naysa 3 3i F, .
Jo = —(GG)'PF | ZW, + WUF, — 2G-2D, log F| | (3.11)
2 2 H,

We then impose invariance under €2 in appendix A.2 which results in two conditions:
Firstly, it fixes the bilinear form to

Syy = —— - (3.12)

In particular, it is both real and symmetric.” Secondly, we obtain a differential equation
for F which can be put in the form

F(F—22F)=5F . (3.13)

We show that this, together with the boundary condition F(0) = 1, is equivalent to the
cubic equation

F—3:F-1=0. (3.14)

This equation can be solved in terms of radicals and integrated, although we will not
need a closed-form expression. At large values of T we find that T ~ V3z. The
discriminant A = —16(4a® + 27b?) = (4 - 3)3(2® — 1), so for large =, this has three real
roots, two of which merge at = 272/3 ~ 0.63 and go off into the complex plane as z
decreases. We plot F as a function of z in figure 1. Expanding around the remaining

solution, we find (for x < 272/3)

~ ng a’;4 3 1.4

_ T 6 _ _ r T 6
F=1+=z 3+3—|—O(x) = F=1l+cVr T+ T 21+O(w). (3.15)

The integration constant c¢; corresponds to a symmetry of the superspace action, as
shifting ¢; changes the action by a total derivative. We will return to this expansion
when we discuss the quadratic gravitino terms in section 5.1. For reference, we also
give the subleading large x behavior (for z > 272/3):

. 11 L
F= V(4 g am 0 ) =

TF = @( —log V& + ¢y + - O(x_3)> : (3.16)

1
18v/3 23/2

in terms of a second integration constant cs. Numerically matching the two solutions
at & = 27%/% can determine ¢, in terms of ¢; but we won’t need the explicit relation.

9Compare with 11D in which it has an imaginary anti-symmetric part.
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Figure 1. The function F (x) has two branches interpolating between the zero function and
a parabola. On the left we plot F and y> = 3z. On the right we give a detail of F and the
vanishing locus z = 272/3 ~ 0.63 of the discriminant.

3.4 Summary

Supersymmetry has fixed that exact analytic form of the action in the first two
orders of the gravitino expansion S = Sy + S + ... . First, manifest supersymme-
try, superscale symmetry, and abelian gauge invariance were used to construct three
invariants: the volume term S,y (3.5), the Chern-Simons term Sgg from §3.1, and the
coupling to the gravitino current S; (3.9). Of these, only the Chern-Simons action
is polynomial in the fields of the non-abelian tensor hierarchy. The volume term is
a generalization of what is usually called the Kahler term, and it depends on a func-
tion K, = \/9,,F(z) = F,F(x) we can loosely refer to as the Kéhler function.'” The
second, non-manifest supersymmetry (2.10, 3.10) was then used to fix the dependence
(3.11) of the supercurrent on this function and to simultaneously determine J to be a
non-polynomial function (3.15) of = (3.7).

This is familiar from extended supersymmetric theories written in N = 1 super-
space.'! We note, though, that the non-polynomial nature of F(x) does not imply that
the component action is non-polynomial in the tensor multiplets: The variable x is not
a tensor under the transformations (2.10); therefore, there is a Wess-Zumino gauge in
which it is nilpotent, and, in such a gauge, only the first few terms of the expansion
(3.15) survive. On the other hand, the non-polynomial nature of S,, can have im-

10Gtrictly, a Kéhler function depends only on chiral scalar fields and is defined only up to Kihler
transformations. In our case, it depends also on 2-form superfields through the function F(x). (See
e.g. [49] for background on such modifications in 4D, N = 1 supergravity models.)

HFor example, in [50] Lindstrém and Roéek construct (among other things) 4D, N = 2 tensor
multiplet models by coupling N = 1 tensor multiplets and chiral multiplets and imposing the second
supersymmetry by hand as we are doing here.
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portant implications for higher-derivative corrections in effective actions, and we will
comment on this in section 6. First however, we take an illuminating detour into the
five-dimensional superspace origins of the N = 1/2 formulation to both explain the
field content we have uncovered and to identify the origin of the function F(z).

4 Connecting with 5D supergravity and 5D, N = 1 superspace

In this section, we will identify the off-shell 5D supergravity that is most closely
related to the N = 1/2 formulation and describe two complementary perspectives on
the origin of the scalar fields lying at the bottom components of G and H,. Such
a comparison is somewhat at odds with the general philosophy of the paper, as the
point of our approach is to not assume that the (partially) off-shell tensor calculus is
known a priori or is even possible. Nevertheless, understanding the connection is rather
illuminating in explaining the presence of the various N = 1 superfields, the roles that
they are playing, and the structure of their extended supersymmetry transformations.
The presentation of this section will be schematic since the details of the reduction
of the component calculus is quite subtle [19] and would be even more involved in
superspace.

4.1 5D, N =1 supergravity and its 5D, N = 1/2 decomposition

All formulations of 5D, N = 1 Poincaré supergravity may be formulated as the
standard Weyl multiplet of 5D conformal supergravity coupled to compensating mul-
tiplets. The standard Weyl multiplet is an off-shell multiplet with 32 + 32 components

SW5 = {emaa ¢mai7 le]’ Tab» Xaia D} . (4].)

Its gauge sector {€,%, Vm™, Vi } consists of a graviton, gravitino, and an (auxiliary)
SU(2)r gauge field. In addition, it contains auxiliary covariant fields {Tp, ¥*%, D}
consisting of a real anti-symmetric tensor, a spinor, and a real scalar. The gravitino
and the auxiliary spinor are symplectic-Majorana, with spinor index ¢ = 1,--- ,8 and
SU(2)g index i =1, 2.

As in 4D, N = 2 [51], the standard Weyl multiplet must be coupled to two dif-
ferent types of compensators to generate a physically sensible on-shell two-derivative
Poincaré supergravity, which in 5D will possess 48448 degrees of freedom. One of
these compensators is always a vector multiplet, while the other may be a hypermul-
tiplet, a non-linear multiplet, or a linear multiplet (also known as a 3-form multiplet).
The hypermultiplet requires a central charge in order to be off-shell.'? The non-linear

120ne may use an off-shell hypermultiplet without a central charge in harmonic [52] or projective
superspace [12]. This requires an infinite number of auxiliary fields.
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multiplet leads to the off-shell formulation of Zucker [5]. The third option, a linear
multiplet, turns out to be almost precisely the field content of our 5D, N = 1/2 super-
space. In particular, the 5D linear multiplet contains a 3-form Cy,pp, which explains
the component fields C,,,,,, and C,py present in G and H,, respectively.

Other possible off-shell Poincaré supergravities may be found using the dilaton-
Weyl multiplet [53] as a starting point, but let us postpone discussion of for now.

The vector and linear multiplets have the respective field content

VMS = {0'7 Am; ¢ai7 Y”} ) LM5 - {Eij’ Cm"P’ Aai’ N} : (42)

Ay and Chpyp are abelian gauge fields and Y% and N are (pseudo-)real auxiliaries. o
is a real scalar and (¥ is a pseudoreal scalar triplet.

Since we're just interested in understanding our superfield content, let us sketch
the reduction of the 5D multiplets to 4D, N = 2 and then to 4D, N = 1, discarding
dependence on the fifth coordinate. The reduction of these multiplets to 4D, N = 2
(except for the linear multiplet) was worked out explicitly in [19]. Schematically, the
5D Weyl multiplet decomposes into the 4D, N = 2 Weyl multiplet (24+24) plus a
Kaluza-Klein vector multiplet (848). These involve the fields

sWy = {emaawmaiavmij>vm7Tzz_baXaiaD} ) VMg = {X07A0m’w3i7ygj} (43)

where V,,, and V}, are the (auxiliary) gauge fields of the SU(2) x U(1) R-symmetry
group in 4D. The U(1) R-symmetry is a Stiickelberg symmetry from the point of view
of 5D, as it can be eliminated using the newly-introduced phase of Xy ~ es?e®. The
decomposition of the vector and linear multiplets is straightforward:!?

VM, ={X, A, v Y} LMy = {7, By, Cronpy N>, N} . (4.4)

The complex scalar X arises from o and A,. Note the linear multiplet LM, is a variant
of the conventional 4D linear multiplet, in which one of the two real scalar auxiliaries
has been replaced with the dual of a 4-form field strength £™"?49;,,,C,,p,q. For further
details of the dictionary, we refer to [19].

These multiplets must now be decomposed to N = 1. For simplicity, we will denote
N = 1 multiplets by their corresponding superfields. Both vector multiplets reduce to
a vector multiplet plus a chiral multiplet, while the linear multiplet decomposes into a
linear multiplet plus a constrained chiral multiplet; so we write

VMKK - {¢07 (507\7} ) VM4 — {(by?&ya V} 3 LM4 — {Zyaa iyo'uX} . (45)

13There are subtleties in this decomposition that we are glossing over. For example, the ¢ in LM,
should have Weyl weight two, but in 5D ¢ has Weyl weight three, so the two are actually related
by a factor of |Xo|. As we are only interested in organizing the component fields into superfield
representations, these details can be ignored.
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The 4D, N = 2 Weyl multiplet is subtler. As shown e.g. in [18], it decomposes into the
N =1 Weyl multiplet U,g, a conformal gravitino multiplet ¥, and a vector multiplet
superfield U:

Wy — {Usg, Ve, g, U} . (4.6)

The superfield U is purely auxiliary because it contains only auxiliary fields of the
N = 2 Weyl multiplet.

In comparing the above field content to 5D, N = 1/2 superspace, we immediately
identify the difference: the additional auxiliary superfield U and the chiral multiplet
¢o. Schematically, what occurs is that U eats the chiral multiplet to become an un-
constrained (non-gauge) real superfield, which can be integrated out algebraically.'*
This was exhibited explicitly at the linearized level in the simpler model of pure 4D,
N = 2 supergravity in [18]. The full non-linear description of this mechanism would
presumably be quite complicated, but the underlying degrees of freedom cannot change.
Therefore, we can conclude that the 5D, N = 1/2 superspace corresponds to a partially
on-shell conventional 5D supergravity with a vector and linear multiplet compensator.

We emphasize that because we have collectively integrated out U and ¢,, we have
explicitly broken two of the N = 2 multiplets, so the algebra of the second supersym-
metry will not close off-shell.

4.2 Spinor geometry and embedding of 5D, N = 1/2 superspace

An alternative approach to understanding the spectrum of superfields we have is to
consider the embedding of 5D, N = 1/2 superspace into 5D, N = 1 superspace. This
will give us some insight into some of the structure of the 2 transformations of the
extended supersymmetry. We will only be concerned with the lowest component fields
in these frames and the lowest component fields in the compensators, so all expressions
should be understood to hold only on these components. Throughout this section (and
only here), we will suppress the |-notation indicating projection to 6,8 — 0.

We work in the 5D superspace conventions of [16], except we use a to denote an
8-component spinor index. In particular, we take €% and g;; to obey e'? = g5; = 1. Our
presentation will be brief, as the analysis follows step-by-step that of reference [39], to
which we refer for a more leisurely exposition.

Consider reducing the 5D, N = 1 superspace frames to those of 4D, N = 1 super-
space. First breaking the Lorentz group to SO(3,1), with E%; = (E%;, —¢;;E4’) and

“More precisely, U eats a linear combination of ¢g and ¢y, leaving behind another linear combina-
tion, which becomes the ¢, of 5D, N = 1/2 superspace. This is how ey5 ends up paired with A, in a
complex scalar when, from an N = 2 perspective, these lie in different multiplets.
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E®* = (E*, E°), we then exhibit the leading parts of the embedding:

EY = o™ B+, EY o o e ™ E 4 L,
E* = ¢E" + -+ | B> = dyF,+-- . (4.7)

The spinor 7; and its complex conjugate 7° are valued in SU(2), and they parametrize
the embedding of the half of supersymmetry being kept manifest. The phase factors
e*m/* are for convenience later on. We have factored out a field /@ so that 7; can be
normalized to 7;7" = 1. To preserve the canonical dimension-zero torsion tensor, ¢ must
appear in the leading term of E* as well. We have denoted the leading term of E,* by
F, for later convenience; we must still establish that this is the correct identification.

In the 11D setting, we identified ¢ as the conformal compensator, which was sen-
sible because 11D superspace has no Weyl symmetry of its own, so we had to insert
that symmetry a la Stiickelberg. But as we have just reviewed, 5D supergravity can
be formulated already with a Weyl symmetry when coupled to vector multiplet and
a linear multiplet compensator. To avoid overcounting symmetries and to keep the
situation as close to 11D as possible, let us suppose that we have put 5D supergravity
on-shell and gauge-fixed as much as possible. We fix its SU(2)g symmetry to some
SO(2) subgroup by choosing a background value for the isotriplet in the linear mul-
tiplet, e.g. (¥ = ¢, and fix the Weyl symmetry by normalizing (¢, = &% where
Eij = (6”)* = 6ik€jl€kl.

How should we then understand our 4D, N = 1 superconformal symmetry? The
U(1) R-symmetry group is just the residual SO(2) R-symmetry of 5D. The Weyl sym-
metry corresponds to the Stiickelberg symmetry of ¢, which we now identify as the
conformal compensator. The fields 7;, which contain three degrees of freedom, are
describing a hidden Stiickelberg SU(2) symmetry.

Let us now identify G and H,. Remember that a linear multiplet is encoded in a
4-form field strength with leading term

Gy =iE*E} E°E®(Sap)ap (7 + - (4.8)
Upon decomposing this to 4D using the conventions of [16], we recover

Gy = ¢° nmjgij EaEﬁE“Eb(Jab)aﬁ +ec 4,
H3 = G3y — —2¢2 Fy Th,ﬁj ejk;ékl EOé Eﬂ. EC (O-C>O¢B _|_ .. (49)

which implies that

G=¢* 'ty , H, = 2i ¢*niif e lF' F, . (4.10)
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The components G, G, and H, can be interpreted as dressed versions of the three
components of the underlying linear multiplet ¥/, This is transparent if we had embed-
ded 4D superspace trivially by taking ¢ = 1 and n; = (1,0). Then we would instead
have left the underlying 5D Weyl and SU(2)r symmetries unfixed, so ¢ would have
been a dynamical field, and G' and H, would have been its components.

One now easily checks that G and H,, satisty

_ 1 (¢H,\" a ) g _
GG+1(Fy> =¢" = =)= ) =t (411

Y

We think of the conformal compensator ¢ now as being defined by this equation.
Note that the first equation can be interpreted as a dressed version of the gauge-fixing
condition %K"jﬁij =1.

Remember that the spinor 7; describes three independent degrees of freedom. Its
normalization condition is invariant under

oni = —iwn; —iwF, e, and 07 =iw ' —iw F,e7n; . (4.12)

where w is real and w is complex. We are separating out a factor of F}, for convenience.
Focusing on the complex w parameter, we find induced transformations on G' and Hy:

0G = ¢wH, and O0H,=—2¢ 'F (wG +wG) . (4.13)

These transformations can be identified, as in eleven dimensions [39], with a piece of
the Q transformations. Letting z := £(GG)3G~1D?*QY|, we find that

6G = G(GG)"Y3*H,z and ¢6H, = —2(GG)"*3,,z + h.c. (4.14)

Matching the 6G' transformations suggests the identification w = ¢~'G(GG)~/3z, and
matching 0 H, requires (using (3.12))

~

5= (i) (4.15)

Substituting this into (4.11), we find the cubic equation (3.14) in the form 3z = F2 —
F1 provided o = 12 in (4.11).

One important feature that we glossed over was why we should identify F), as E,°.
The key point is that the €2 transformation of F}, has no z piece at lowest component,
and so [, cannot be associated with the embedding. Since in this subsection, we stated
our starting point was on-shell gauge-fixed 5D supergravity, there is no dynamical scalar
field to identify with F,. The only possibility is that it should be identified with the
radion E,S.
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Now we have provided two complementary interpretations of the compensating
multiplets. From the component perspective, they may be identified as descending
from a partly on-shell conventional 5D supergravity. From a superspace perspective,
they correspond to Stiickelberg fields associated with the precise embedding of 5D,
N = 1/2 superspace into 5D, N = 1 superspace.

5 Linearized Action

At this point we have constructed Sy and S in the gravitino expansion (3.1) to all
orders in the remaining fields. Although it is essentially guaranteed by the component
spectrum and symmetries, we would like to verify that our procedure has given the
correct action by checking it explicitly. We could, for example, project the result to
components and compare to the known component action (e.g. [19]). Alternatively, we
could compare the linearization of our action to a linearized superspace action known
to produce the correct component result [23]. Since it is separately of interest to work
out the linearized superspace action (e.g. for quantization) and to understand how
the Higgsed superfield spectrum is reproduced correctly, we will make this comparison
presently (cf. §5.2). But to do so, we first need the quadratic-in-gravitini action S.
For the comparison we will be making, and to show the consistency of the extended su-
perconformal symmetries, a linearized approximation of this part of the action suffices,
and we will construct it next.

We emphasize that up until now, we have kept the superspace measures for the y-
independent 4D, N = 1 conformal supergravity background geometry. In the remaining
sections, we will work to first order in fluctuations around this background. To reduce
cumbersome notation, we henceforth simply take the background to be five-dimensional
Minkowski space, but one could in principle consider any background satisfying the
equations of motion.

5.1 Gravitino Kinetic Terms

As the volume action is a function of x ~ H} (3.7), the “mass” term (9,X)* appear-
ing throughout transforms under superconformal transformations L* (2.7d). The form
of this transformation is such that it can be canceled only by the §_; transformation
(2.9) of the combination 2iB, := D*(GV,,) — Ds(GTS) of the gravitino superfield. As
such, we define the combination

T, := H, + 212 [D*(GTya) — Da(GTS)] (5.1)
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and replace H, — T, in all actions constructed heretofore. To get the quadratic term
of the gravitino, we make this replacement in the volume term and expand in B:

(GG)'PF,F(h) — (GG)'*F,5(h) + BT (h) + 2?”(@3;

The first term gives back S, the second reproduces the GDJF’ contribution of (3.11)
to S1 (3.9), and the third term gives our gravitino kinetic terms.

Similarly, expanding explicitly in the y-dependence of the conformal graviton, we
encounter the “mass” term (9,U)?, which, again, can only be covariantized, provided
it appears everywhere exclusively in the (A, w,d,q) = (—1,0,0,1) combination

2iXg = DY + Dy —9,U* . (5.3)

(Note that argument can be reversed to imply that the action can only depend on
this particular combination of D¥ and its conjugate.) As with H,, this term can only
enter the action as a square, which, by the charges of table 1, must be the charge-less
combination

a b
Xy nabe

y = (GG)'/3
FyFy

(5.4)
where 7),, is the 4D Minkowski metric. We can fix the coefficient of this term from 5D
Lorentz invariance [36]. In the superspace Lorentz gauge D,U% = 0, the old-minimal
supergravity Lagrangian reduces to —U,0U* — %G’G , and we simply pick the coefficient
of X? to match this [24, 36]. (The GG term is irrelevant to this argument.) In the
next section, we will linearize and combine the results to obtain a new formulation of
the quadratic superspace action for 5D, N = 1 supergravity.

5.2 Higgsed Gravitino Action

We will now linearize this formulation of 5D, N = 1 supergravity around a Minkowski
background. Specifically, we take X x Y and replace X — R** with flat 4D, N =1
superspace and Y — R."°

Dy — e¥(Da)e™V with U =iU%,
X = (X)+X with (X) =06 (5.5)
o, - (P)+P  with (P) =1

15We choose this for clarity of exposition but more generally we could replace X with any y-
independent background that solves the curved 4D, N = 1 torsion constraints.
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(We use the same symbols to avoid further complicating the notation.) The remaining
fields are taken to have vanishing background values. Note that this background breaks
g-charge (form degree on Y) corresponding to fixing the internal frame (e,”) = 1.

In the quadratic approximation, the action S® = [d®zL® is given in terms of
the Lagrangian that is the sum of the terms

K21 = K2 Lomsy |G, U] — 2 / d*0 [SF, + % P]
1
R2LEL = - / 4?0 [3BW°W, — W*W,] + h.c.

KLY = _% / d*0 U [3W, — iW,] + h.c.

2 a 1
KAL), = /d49 {Xany +7 20 (5.6)
The ingredients in the first line are as follows: Lgy,s,[G, U?] is the linearized action of
old-minimal supergravity. It can be written in various forms, one of which is [38]

1 1 _
Lomsg = /d40{ - U,0U% + gDQUaDQU“ + @([Da, Dg]U%)? — (0,U%)?

2i R
+5 (G- G —gGG}. (5.7)

(Note that it reduces as claimed in superspace Lorentz gauge D,U% = 0 = D?U® = (.)
The remaining couplings are of the radion and KK field to scalar and pseudo-scalar
combinations

S:=YG+G) - 1D, Dg]JH: = 4S=2(D*D?L, + D3D*L?)

Pi= L(G—G) - lo,H ~  sP—1(D°DL, - D;p?I) P

respectively. These are the real and imaginary parts of the linearized superframe de-
terminant G + %DO;D&Hg — iDDQL + %DDQEM

To understand the physics contained in the action S, we could project to com-
ponents, at least for the quadratic action. For the eleven-dimensional action, this was
done for the linearized action in [38] and for the complete bosonic scalar potential in
[36]. Instead, we will relate S to the known linearized supergravity action that was
formulated and projected to components in reference [23]. In that formulation, the
extended superconformal symmetries = and 2 are absent. The associated vectors (V
and V') and 2-form (X) have Higgsed the gravitino to

o= PO L X DY (VA iV) (5.9)

16 These combinations of the compensator of old-minimal supergravity (n = —1/3) transform as the
compensators of new-minimal supergravity (n = 0) and virial supergravity [54-56], respectively.
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This Higgsed gravitino is invariant under = and €2 but transforms under the (linearized)
non-abelian hierarchy symmetries (2.7) as

SO = 2i9,L* + D*Q + {D*Du (5.10)

with L* = L* — £Y* and Q = —%A. This is the transformation rule of [23, 25]; in
particular, the new €2 is chiral and = has been replaced by D?>Du. Indeed, rewriting S
in terms of the Higgsed gravitino, we find after many cancellations that the Lagrangian
collapses to

1 1 _

KLY = KLY, — 3 / d*o {Xf — §T2 —2iS(d — d)| , (5.11)
where now X and T are defined in terms of the Higgsed gravitino (5.9). This is the form
of the Lagrangian density found in [23]. Although the cancellations needed to recover
this form are non-trivial, the result was guaranteed since the gauge transformation
(5.10) of that reference was reproduced by the combination (5.9).

5.3 An alternative linearization

While we have successfully recovered the Lagrangian of [23], there is a curious
point. The construction of [23] was built around 4D old minimal supergravity as
a starting point. It is well-known that there is an alternative — 4D new minimal
supergravity — and one might have expected to be able to find a linearization of 5D,
N = 1 supergravity built upon that. This is all the more pressing, because linearized
4D, N = 2 supergravity (to which 5D, N = 1 supergravity can be dimensionally
reduced and then truncated) leads to a continuum of actions when rewritten in N = 1
language [18]. This continuum is related to the vacuum expectation value for the linear
multiplet ¢“ with one particular limit corresponding to old minimal supergravity and
the other to new minimal. Equivalently, the two versions are related to different ways
of embedding 4D, N =1 into 4D, N = 2. Based on the discussion in section 4.1, the
same should hold here.

Implicit in the analysis in sections 5.1 and 5.2 was the idea that G takes a VEV,
but H, does not. This corresponds exactly to the choice for ¥ that led to old minimal
supergravity in [18]. Instead, we shall now require the reverse: We let H, take a VEV
and G not. For the original superspace action involving F(x), this corresponds to
expanding around x = co. From the series expansion (3.16), one can show that

K2 Loy = —3 / 440 (GG)'PF,F ()

3 _F?
- /d46’<§Hy log(H,/F,) — 2 GGH—% 4 ) (5.12)
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where the infinite series of suppressed terms are higher order in G. The leading term
resembles the Lagrangian for new minimal supergravity where H, is the tensor multiplet
compensator. This is apparent from the L, transformation (2.8), which identifies ¥
as the tensor multiplet compensator in this case.

Let us now linearize. In section 5.2, we assumed (X) = 6% and (®) = i, so it
followed that (G) = 1 and (F,) = 1. From (4.11), the equivalent choice here, related
to the prior one by an SU(2)g rotation, should be (H,) = 2 and (F}) = 1. Linearizing
about this background, we find

3 2 1
2o 3 (p_1g) L
K2 Lu = 5 (F = §H) = 5GG . (5.13)

The linearized curvatures ' and H are given simply by (2.6a) and (2.6¢), but the
linearized chiral curvature G is slightly more complicated:

G = —}lDQ(X +2iV) =G — %DQV : (5.14)

The Chern-Simons term is unchanged, but the gravitino supercurrent is a bit more
involved, as one must consistently work in the z — oo limit.

Including also the gravitational prepotential U®, one finds the quadratic action
S® = [ @xL® has a Lagrangian given as the sum of terms

1 1 _
k2L = /d40 [ = Ua0U* + 2 DU, DU + 2= ([Day Da]U)* = (9uU°)?

1 N a a 3 1 2 e
+ 1 Hy[Da, Da)U* 42V 9,0,U" + 5(Fy - EHy) - §GG] ,

1
WL == / 0 (3WW, = WW, ) +he.
2LP = —f/d‘*aw(:aw LW, + LD G) +h
vJ 2 « [e}% 2 o Loy
RALS) = / 40 X,)o X, . (5.15)

The first term Lq(fo)l includes the Lagrangian for new minimal supergravity involving
the supergravity prepotential U, and tensor multiplet H,, albeit with a slightly unusual
normalization of the tensor multiplet due to the non-standard background value (H,) =
2. The additional pieces, including V and the cross-terms between Fj, and H, are
required for gauge-invariance.

As before, we Higgs the gravitino, but this time only to remove the €2 transforma-
tion

WO = PO — D (V4 iV) (5.16)
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We cannot remove the =7 transformation as before, because 2 no longer transforms
under this symmetry (since (G) = 0). We similarly eliminate the 2 transformation of
X by defining

L A sd 1~
X =X-2V, H, = 2_Z(D Yya — Dg2y) — 0, X, G .= —ZDQX . (5.17)
In terms of these quantities, the action reduces to

1 1 - _ : _
KL = 2L+ / a0 [— §Xg - ;GG + Zcbycpy + %Xay(cpy ~d,)

1
— Z—L(i\IlaDaG + h.c.) (5.18)
where Lq(@%q)@sg is the new minimal supergravity action built from U, and H,,. This action
is invariant under the gauge transformations

1
0Wo = Zy0 — 5 Dol +2i0, La

1 _ . _
OX = - (D"To — DY) +i(A = A)
]
6@, = O,A ,
1 _
6y = —ZDQDau + 0, o +iD?L, ,
0Uys = DgL, — Do Ly . (5.19)

6 Application: Gravitational Chern-Simons Term

At this point we have recast 5D, N = 1 supergravity in terms of superfields on
what could be described as 5D, N = 1/2 superspace. We then verified that it reduces
correctly in the linearized limit. This essentially un-gauge-fixes the formalism of [23]
and non-linearizes it. In this section, we will demonstrate how it can be used to study
higher-derivative corrections to the supergravity action by deriving the major part of
the superspace expression for the gravitational Chern-Simons term ~ [ A Atr(R A R).
Here A stands for the graviphoton and R for the curvature 2-form, so this is a purely
gravitational version of the mixed gauge/gravitational Chern-Simons term. We will be
working with linearized invariants, but the output of the procedure is in terms of field
strengths, curvatures, and torsions. As such, we expect the formal result to be valid
beyond this order. (The understanding of such terms—should they be present—will
have to await the completion of the Kaluza-Klein super-geometry alluded to in §2.3.)

The supersymmetric completion of [ A Atr(R A R) was worked out in components
in [40], and embedded into conformal superspace in [13]. (Strictly speaking, what was
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constructed there is the mixed gauge/gravitational Chern-Simons Lagrangian in which
the field A is part of a generic matter vector multiplet. In §6.3, we will comment more
extensively on this point.) In principle, it should be possible to reduce the latter to
N = 1/2 superspace by gauge fixing to a finite number of non-auxiliary superfields
and performing the harmonic integrals. In practice, however, it seems much easier to
construct the required composite field strengths directly, as even at the component
level, the reduction from 5D to 4D is non-trivial [19].

To demonstrate this approach, we will construct a specific class of terms that con-
tribute to the Chern-Simons term. Under the decomposition of SO(4,1) — SO(3,1),

ANtr(RAR) = ANR™A Ry, +2ANRS A Rys . (6.1)

From the 4D point of view, these correspond to two different classes of terms, as each is
separately invariant under SO(3, 1) and the gauge transformation of A. In this section,
we consider the N = 1 supersymmetrization of the first term, since this is the most
non-trivial part to covariantize. (The second term can be integrated by parts (in the
linearized approximation) to F' A w® A R,5 and there seems to be no obstruction to
realizing this as a full superspace integral involving covariant 4D quantities.)

To this end, we start with the superspace form of the gravitational Chern-Simons
action Sycs = [d'z [, Lycs. By gauge invariance, supersymmetry, and so forth, this
action must be identical in structure to that of the 2-derivative Chern-Simons La-
grangian (3.3), but now with the composite 4-form {G,H,} constructed in terms of
the 4D, N = 1 curvature tensor superfields and their analogs with one leg along Y.
The reduced field strength of the 4D, N = 1 Weyl tensor is the chiral field W,z3,, so
we expect G = W W45, + ---. To be gauge invariant, the five-dimensional 4-form
represented by {G, H, } must be gauge invariant and closed. That is, we seek a reduced
3-form field strength H, quadratic in 5D supergravity invariants that satisfies (2.5d).

6.1 Linearized Field Strengths

The linearized invariants of 5D supergravity in N = 1/2 superspace were studied

in [25]. A generating set is given as follows:!'"

1"The normalizations of the first three superfields differ from [44], with G, and R here equal to
twice the same quantities in [44], whereas W, differs by a factor of —2.
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Wapy = éDQD(aaﬂiUv)v' (6.2a)
Gy = tD°D?*DyU, — 4 [D, D]o[D, DI*Uy — 20,00, — £0.(G — G) (6.2b)
R=-LD*(G+i0,U%) (6.2¢)
Fly, = 2D° D X3, (6.2d)
AY = 2Dz X% — DT, . (6.2¢)

The first three invariants are the irreducible parts of the linearized super-Riemann
tensor [42-44]: W,p, contains the Weyl tensor, G, contains the traceless part of the
Ricci tensor, and R contains the curvature scalar. In this linearized form, it is easy to
check that they satisfy the Bianchi identities

D'Wag, = —4D° DGy (6.3a)
DG, =D,R = D*G,=—4id,R . (6.3b)

In four dimensions, the equation of motion of the prepotential U® is G, = 0 and that
of the scale compensator is (R + R) = 0, so on shell the only surviving components
are the § — 0 projections of Wz, and DW,s,) corresponding to the field strengths
of the helicity—% gravitino and the helicity-2 graviton, respectively. When lifted to five
dimensions, both equations of motion receive corrections so this conclusion is modified.

The remaining invariants are the gravitino multiplet’s field strength F7; and its
equation of motion Aj. Other forms for the gravitino field strength are related to linear
combinations of this one and D(a/\g). The advantage of this combination is that it is

complex-linear D?F’ , = 0. It is not difficult to verify that these satisfy'®

afy
D*Fl,, =0 ' (6.4a)
})ﬁpdpgﬁy = —80,Gy + & (DaDg 4 2DgDs) [2D%Aay — Dgy] (6.4b)
D?D o Fj, = 320,Wasy (6.4¢)
D?*D\,, = 480, R . (6.4d)

We note for use below that the complicated identity (6.4b) can also be written as

D°DiFop, + 1DaD* Ay = —89,Go + 5DaDg [D g, — 2D5N;]
1n BERY
— 1DDqo [DsXN) — 2D g, ] (6.5)
In this form, the right-hand side is manifestly real. Explicitly,
D’DgFlg, 4+ D°DoFl, = —1DoD* Ay + 1DsD* Aoy - (6.6)
18This corrects some unfortunate typographical errors in [25]. (We also use weighted index sym-
metrizations T((ap...)) = T(as...) instead of the unweighted ones of that reference.)
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6.2 Curvature 4-form

Returning to the Chern-Simons form, we seek H,, such that D*H, = 49,G where
G contains the term W2, . Then, taking H, = —iDVF;a/BWam + -+ would give the
relation we want by (6.4c), were it not for the fact that H, is required to be real. Since
this term is not, we get additional terms from its conjugate that cannot be written as
9,G for any chiral G. To cancel these terms, we need to add a bilinear, specifically
—%F@’,‘;"B D°D3G,. But again this is not real so we must add more terms to cancel those
coming from the conjugate. The process terminates because of the structure of the
invariant: H, is of the form O ® O where O, is one of F, éﬁy or A,y or derivatives
thereof and O is one of W,3,, G, or R and derivatives thereof. The terms can be
organized in order of non-increasing helicity of the reduced field strengths. At each
step of the process of the computation of DQHy, the helicity decreases. The process
terminates at the term %Dz)\;DaR, because the complex conjugate of this is linear
(i.e. annihilated by D?). To carry this out, we repeatedly use the Bianchi identities
(6.3) and (6.4). In doing so, we find

G = W Wag, — 1D*(G*G.) (6.72)
H, = —{DVF " Wag, + {2 D DsGy + §DUF, " DG,y
+ % (DaDg + 2D Do) DX, G+ £D?X2 Do R + hec. (6.7)

We have presented the result in the form in which we originally found it, but there
are alternatives. For example, using (6.5), we can put H in the form

H, = —}IDVF’QBWQB,Y + LD DGy + LDYF*P DG, + 5 D*X2D, R + h.c.
— 0y(G2) + L (DPDsF g, + Do D*Nsy) G- (6.8)

aBy
The coefficient of the 9,(G2) term is just so that it forms a cocycle with the D*(G2)

term in (6.7a). This implies that if we subtract the former from H,, the latter will be
removed from G. Recalling (6.6), the remaining term is real, so we may redefine our

form to
G = W W, (6.9a)
H;/ - _lDVF/aﬁWOéBV + %Fy/aﬁPQDﬁGQ + %DanjaﬁDﬁGg
+ 15 (D°DsF s, + $DaD*Agy) G* + 5 D* Ny Do R + hoc. (6.9b)

In this form, H is manifestly real again. Another form in which it manifestly satisfies
the descent relation (2.5d) is

H, = 11mf’aﬂwoéﬁ7 +D Z¢  with (6.10)
78 = —LFL, W — aﬁyDﬁGu LDAFI8G, — LD, G+ SD°XR .
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The appearance of a trivial cocycle in (6.7) is characteristic of dimensional re-
duction in superspace [16]. This suggests that the term we moved is necessary for
five-dimensional Lorentz invariance. (A perhaps related observation is that moving
this term violates the ©1 ® O rule as it requires Oy ~ J,G, which is not one of F
or \,.) Reintroducing the Ricci-squared and scalar curvature-squared terms, there is a
priori a 2-parameter family of invariants (G(® H(@Y) with

G =G — 1D*(aG"G, + 2bRR)
HY = H — 8,(aG°G, + 2bRR) . (6.11)

Y Y

The difference between an action constructed from the primed invariants and the (a, b)
invariants can be rewritten as a covariant term (7.e. not Chern-Simons), as a superspace
integral of F,(aG*G, + 2bRR).

One cannot fix a and b by a purely N = 1 argument. One choice, involving
a = b = 1 reproduces the 4D Gauss-Bonnet invariant (cf. e.g. §5.6.5 of [43]) multiplying
F,, but this is not the right answer in our case. Instead one can fix a and b by matching
to 4D truncation of [40], which suggests that the combination above must be chosen
to reproduce R¥ R pcq — %RabR“b + %R2 . This corresponds to setting a = —1/3 and
b=—1/12.

We emphasize that this is only that part of the full gravitational Chern-Simons
invariant that is the most non-trivial to construct in this partially on-shell superspace.
Additional covariant D-terms including, for example, F}F, (;ByF "By should be included
to recover the complete 5D, N = 1 invariant. Finding this would require either match-
ing the most general superspace expression to components or analyzing 5D Lorentz
invariance at the 4D superfield level.

6.3 Elaboration on the Relation to Previous Work

We now pause to discuss the relation of our gravitational Chern-Simons invariant to
known invariants. To do so, we recall from section 4.1, that there are two formulations
of conformal supergravity in five dimensions referred to as “standard Weyl” (4.1) and
“dilaton-Weyl” (6.12). What they have in common is the graviton, gravitino, and
SU(2) gauge field {em®, ¥m®, Vin}. The standard Weyl multiplet further includes a
real 2-form, a spin-1/2 field, and a real scalar field {T,p, x¥**, D} which are all auxiliary.
By contrast, the dilaton-Weyl multiplet [8, 53] (see also [57]) further includes a scalar, a
gauge 1-form, a gauge 2-form, and a spin-1/2 field {©, Ay, Bmn, A*'}. In other words,
for the standard Weyl multiplet (4.1), one may substitute the dilaton-Weyl multiplet

dW5 - {ema7 ¢mai» mij7 907 Am; anu )\CYZ} . (612)
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It can be obtained from the standard Weyl multiplet by coupling conformally to a
vector multiplet, computing the equations of motion of the latter, and defining the
auxiliary fields {T,p, ¥*, D} in terms of the physical fields of the vector multiplet. (In
the process, we solve a Maxwell equation of the form 0™ (T}, — 8[mAn]) 4+---~0,s0
that a 2-form By, appears as Tpmpn ~ OpmAn] +€mnP9"0p Bgr.) While this adds the 84-8
components of a vector multiplet, the equations of motion remove the same number
of degrees of freedom, returning us to a (32 + 32)-component formulation. Any action
involving the standard Weyl multiplet can be replaced with the dilaton-Weyl multiplet
by substituting the auxiliary fields {Typ, ¥*?, D} with appropriate combinations of field
strengths of {p, Am, Bmn, A*'} [53]. The converse is not true.

The invariant constructed in [40] is the mixed gauge/gravitational Chern-Simons
action ~ [ AAtr(RA R) in which the field A is part of a generic matter vector multi-
plet. It was constructed in the Poincaré supergravity in the standard Weyl formulation
analogous to ours. On the other hand, a purely gravitational Chern-Simons action in
which A is the graviphoton was constructed in the dilaton-Weyl formulation in [41].
(Details on the difference and further developments can be found in [58, 59]). What
we are sketching in superspace in this paper is the purely gravitational invariant of the
latter [41] in the supergravity formulation of the former [40].

Two natural questions arise. The first is whether we can construct the mixed
gauge/gravitational invariant of [40]. We expect this to be trivial, provided we introduce
additional matter vector multiplets as in [26]. A more interesting question is whether
there is an analog of the purely gravitational Chern-Simons invariant of [53]. This
would appear to require the construction of a second 5D, N = 1/2 superspace that
would be the analog of the dilaton-Weyl formulation of Poincaré supergravity.

One might expect that the two different formulations could lead to different 5D,
N = 1/2 formulations based upon either old minimal or new minimal supergravity.
However, this is not actually correct. As we have showed, the non-linear 5D, N = 1/2
formulation we have introduced could be interpreted as either old minimal or new
minimal, depending on whether we choose G or H, to possess non-vanishing vacuum
values. This is because the underlying full supergravity involves an isotriplet /%, whose
vacuum value is unfixed by equations of motion. This suggests a more complicated
mechanism is needed to describe the dilaton-Weyl formulation, which in the linearized
limit resembles neither old minimal nor new minimal supergravity.

7 Conclusions and Prospects

We have given a description of pure five-dimensional, N = 1 supergravity in terms
of four-dimensional, N = 1 superfields. More precisely, we are describing a 5D, N = 1/2
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superspace in which half of the supersymmetry is manifest and, in particular, off-shell.
The remaining half of the five-dimensional supersymmetry is realized linearly but not
manifestly. The gravitino associated to this second half sits in its own unconstrained
superfield U transforming as (3.10). To lowest order in this gravitino superfield (and
for y-independent conformal supergravity backgrounds—cf. §2.3), the complete, non-
linear action is the sum of Chern-Simons term (3.3) and manifestly gauge-invariant
superspace volume term (3.5). Besides the expected 4D, N = 1 superspace volume
density, the latter has contributions from a Kéhler function /¢(F) with F, the field
strength (2.6a), and a non-linear function F of the tensor multiplets. This tensor
potential function was fixed exactly by the extended, non-manifest supersymmetries.
We checked this action by linearizing around flat space and recovering the known
result [23]. Finally, we used the linearized supergeometry [25] to construct part of the
gravitational Chern-Simons action ~ [ A A R A R in section 6 to cubic order in the
fields of minimal 5D supergravity.
Let us highlight some noteworthy features of this construction:

1. There is a local conformal symmetry because of the splitting of the superspace
into X and Y parts. In particular, the physical superfields are superconformal
primary fields of the 4D, N = 1 conformal algebra.

2. The 4D, N = 1 supergravity theory our construction extends can be viewed
alternatively as old minimal or new minimal supergravity depending on which of
two compensator fields takes a vacuum value. Viewed as old minimal supergravity,
it is actually a modified variant (a.k.a. 3-form supergravity) where the 3-form
multiplet plays the role of the conformal compensator [23, 25].1

3. It requires the full tensor hierarchy of differential p-forms with p =0,...,3 even
though only p = 0,1 are physical.

4. In the linearized old minimal form, the gravitino superfield can eat all its com-
pensators in a Higgs-like mechanism collapsing the non-OMSG part to a sum of
two squares and a radion coupling [23].

There are many directions in which this work can be extended. Of course we could
now couple to matter multiplets in this superspace to study phenomena in which the
gravitational effects of such couplings are important (e.g. M-theory on Calabi-Yau 3-
folds and F-theory on elliptically-fibered G5 manifolds [61]). These matter fields could

9The linearization of this action has a hidden Sp(4;R) U-duality symmetry [60]. It would be
interesting to know whether this can be extended to the five-dimensional theory.
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be either 5D or localized on lower-dimensional defects, as in [24] (or the 5D lift of the
membrane [62]). In the former case, one would like to understand the structure of the
hyper-Kahler potential and the gauge kinetic function in this superspace.

The discussion of the gravitational Chern-Simons form in section 6 can be extended
to D > 5 dimensions. (In fact, much of the analysis of this paper was motivated by
the desire to construct the supersymmetrization of the R* terms in eleven-dimensional
supergravity.) This amounts to extending the derivative and all Y tensors 9, — 0,
H, — H;, etc. for ¢ = 1,---,D — 4 and continuing the construction of the closed
4-form (G,H,) — (G,H;, Wy,;,Fijk,---). This requires a higher-dimensional analog
of reference [25]. (The requisite analysis has been carried out and will be reported
elsewhere.)

The second gravitino could be incorporated into the supergeometry. In such a de-
scription, it cannot appear explicitly so neither can the gravitino current (3.9). The
only additional explicit terms in the action would then be those involving the X invari-
ant that linearizes to (5.3). Such a construction can be carried out for any supergravity
theory with a 4D, N = 1 graviton and gravitino superfield, so we have chosen to present
that formalism in a separate publication.

A related line of inquiry concerns a better understanding of the tensor function
F.2Y Tt is the integral of a function that is the single-valued branch of a cubic equa-
tion (3.14). The origin of this cubic equation was elucidated by considering how 5D,
N = 1 superframe reduces to N = 1/2 (4.7), but the analysis is also reminiscent of
a non-linear supersymmetry realization along the lines of [63]. Perhaps the equation
(4.11) can be interpreted as the lowest component of a non-linear constraint on a com-
pensator superfield. Such an interpretation may have far-reaching consequences for
the construction of effective actions similarly to those leading to Born-Infeld theory in
superspace [63-66].

These last three points are related by the observation that the gravitational Chern-
Simons action is not invariant under the extended linearized supergravity transforma-
tions because the graviphoton field shifts under (2.10). This is expected since higher-
derivative corrections to the supersymmetry transformations are known to be required,
even in completely off-shell formulations (see [67] for an example already in higher-
derivative Yang-Mills theory). In the aforementioned covariant supergeometrical for-
mulation, the 2-derivative action must transform under the corrections so as to cancel
the shift of the gravitational Chern-Simons term. Assuming this can be done, the
Chern-Simons term is still not expected to be invariant under the higher-derivative

20Tt is somewhat remarkable that the “only” difference between this and eleven dimensions is that
there we find the reciprocal relation Fsp <> 1/F11p. Explicitly, the eleven-dimensional version of
(4.15) is F11p = (7*n?)Y/3.
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correction to the supersymmetry transformations. This line of reasoning leads to ever-
higher corrections to the supersymmetry transformations and the action, just as it
does in the familiar component analysis. However as mentioned above, the form of
the action is fixed by the off-shell part of the supersymmetry to be an Xy-corrected
version of that found in §3. We do not currently have an adequate understanding of
how this tension is resolved, but (by analogy to the Witten anomaly in 11D [68]) we
expect that part of the solution involves a shift of the tensor hierarchy field strengths
by terms quadratic in the curvature tensor. A primary motivation for constructing this
5D, N = 1/2 formalism is to use it to study this question in a simplified (relative to
11D) framework.

Acknowledgements

It is a pleasure to thank our referees for an exceptionally thorough report that
inspired us to extend the results and improve the presentation in version 2 of this
paper. This work is partially supported by National Science Foundation grants PHY-
1820921 and PHY-1820912 and the Mitchell Institute for Fundamental Physics and
Astronomy at Texas A&M University.

A Derivations

In this appendix, we provide some details of the derivation of the results in section 3.
These derivations follow those of reference [39] rather closely, so we will be schematic in
places where more rigor obscures the presentation. Specifically, we specialize to trivial
4D, N =1 conformal supergravity backgrounds, and, throughout this calculation, we
suppress the y indices as well as spinor indices. Juxtaposed spinors are contracted with
the suppressed chiral indices up-to-down (DV¥ = D*V¥,,) and down-to-up for antichiral
(D = Dy04).

The non-linear gravitino transformation (3.10) can be rewritten as?!
60V, = Z 4 (GG)V3GD,(Q 4 i) . (A1)
There is a gauge-for-gauge symmetry

6=¢ with Dgp=0 (A.2)

2IThe eleven-dimensional theory had a quadratic term W, but that is ruled out here by 5-charge.
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which played an important role in the eleven-dimensional theory. In this case it is less
powerful but it suffices to rule out a transformation of the form §® ~ D?(QU) for some
U [39]. The transformation of the gravitino-current coupling that we will cancel is

5oS) = % / &z / d'0 [EJ +iDQ(GG)*GJ] + h.c. (A.3)

(In particular, we will ignore the Q) part; we can imagine that we are gauging away the
KK field (cf. §5.2).)

To compute the transformations of the volume functional (3.5), it is convenient to
first rewrite it as

Svol = —% / d’x / d*0 HH(h) with H(h) := h~'F(h)
K
= 08w = —% / d’x / d*0 [SHH + HhH'dlog h] . (A4)

For the Chern-Simons action, the variation is

K*6Log = % d*0 6dWW, +h.c. +3 / d*0oVw(W, F) . (A.5)

(That the “abelian” part just gives a factor of 3 follows from the fact that this action
is the superspace analog of [ AdAdA; we ignore the non-abelian correction.)

Next we compute the actual transformations of these terms. The field strengths
(2.6) satisfy dp(anything) = 0 by definition, and transform under the extended super-
symmetry parameters

5 F — %(EW _EW) - 0,(QF) (A.6a)
W = —i@QD(QF) — (EW)W (A.6b)
61 H = —% [D(GZE) — D(GE)] — 9,(2H) (A.6c)
6G = —i@Q(QH) — GEW (A.6d)
HW = &@%Q : (A.6e)

In the following two subsections, we will split up the calculation into the = part and
the € part.
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A.1 Invariance under =: Supercurrent

We compute for =

. 1 .
5=logh = %F‘lEW - EW+ %H‘ID(GE) (A7)

so that under = the volume functional changes by
0=Sy01 = —% / d°x / d*0 [6=HH + HhH'6=1og h) (A.8)

/d5 /d4 = [——WF "HhH' + WHhH' + D(J{Jrhﬂf’)}

_ /d5 /d4 {GG”?’?( W — FW)+§G®?’],

where we used that h2H' = —F. The Chern-Simons action is S-invariant since it is
independent of ¥ and the ®W? term transforms into W? = 0 (cf. A.5). Therefore,
the variation above must be canceled by the variation (A.3) of the gravitino-current
coupling. This fixes the current to

J = ﬁWF YHhH' — WHAIH' — ﬁ@(ﬂ{ + h3H')

— (GG)\/3 [3ZW WF] T —GD&”

i . 0 0 i 0 -
=W W + -GD——| (-3(GG)'*FTF A9
[ 9F ~ " dlog(GC) | 2 6H}( (GG)TFT) (A4.9)
up to terms that are D of some 4-vector with (A, w, d, q) = (3,0,0,0), as these are in the
kernel of the Z transformation. Studying currents made only from the tensor hierarchy
field strengths (for gauge invariance) and their covariant derivatives, one concludes that
there are no such correction terms.

A.2 Invariance under 2

Now that we have the gravitino current, we can determine the unknown function
G in the Q part of the gravitino transformation (3.10). We use the observation that
under (A.6)

Soh = —Q0,h + | ——D*QH +

1 . _
e + o5 DODH +hee.| (A.10)
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where we have used (2.5d). From this, we obtain

5QSU01 = —%/d5l‘/d49 [(SQH}C—I—HJ‘C/(SQh]

354
_I#d/d

S HH — QHO,hH

+ HH' ( DIOH +

1 - - =

5 4 2 /
Pz /d 9—12GD QH?)RH' + h.c.
1

= d°x /d‘*GG YH2DOD(hH') + h.c. (A.11)

T 4R2?

In particular, the € part (i.e. without derivatives) cancels, consistent with the obser-
vation that such a term would not be invariant under the gauge-for-gauge symmetry
(A.2). The Chern-Simons term contributes

K*6qLcs =3 / d'0QF [WDF + LFDW + h.c]
— g / d*0QD(F?W) + h.c. (A.12)
for a total of
55 S0 = % /d5x/d49 DO [-%sz + i@‘1H2®(h5{’) + O(W)} +he  (A13)

Comparing to the gravitino transformation (A.3) with the current given by (A.9), we

find
3

1 _
—§F2W + ZG‘lHQD(hiH’) +O(W) = —i(GG) 3G (A.14)

_ [_gw _ Z-WF] 55— 20(Ga)PgDg

whence we read off G = FLF2 and h2D(hH') = —6F 1DF’.22 The coefficient of Dh of
this equation implies h3(hH') = 6log’ F. Note that the left-hand side scales like h while

22This agrees with the result from 11D in which § is a Hermitian bi-linear form. Here the imaginary
anti-symmetric part is absent since there cannot be such a form in co-dimension 1. This also has the
correct limit (§) = 1.
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Figure 2. The single-valued branch of the function F(z) = F — 229 and F (choosing the
integration constant ¢; = 0). The former is the positive definite one. The latter vanishes at
x &~ 1.06 before running off to —oco as —v/3zlog\/z (cf. 3.16).

the right-hand side scales like h=1. Using F = hJH, F' = H+hIH’, F=F-hF = —h2H,
and 7 = —h '3, we find that

hF(F — hT') = %f}” with a=12. (A.15)

Since ¥ is really a function of h?, this is equivalent to (3.13) considered as a function
of z. The latter can be integrated to the form??

(1 + 3xéf) FP_1=0, (A.16)

as is easily checked by differentiating and clearing negative powers. Thus, we obtain
(3.14). The principal branch is given by

2230 + (1+ 1= 429)"°
21/3 (1 + 1= 42°) """

3 2t 425 5xT  TTx® 104210
-1 o4z oy O(z'? A17
trogtg gty T e T (A-17)

ﬁ’:

To find F from this, we must solve the defining equation (3.8). Had F been convex,
this would just be the Legendre transform. Instead, we find the complicated solution
plotted in figure 2.

We emphasize that the function F and its integrated form & must be real for z > 0,
as all non-negative values of x are physically permissible. The form given above is only
manifestly real for 423 < 1. F may equivalently be written

F = L((1 —iVdxd — )V 4 (1 +ivdad — 1)1/3> (A.18)

21/3

which is manifestly real for 423 > 1.

23In eleven dimensions, the analogous equation is (1 + 31;@) F3_1=0. (Our z differs from that
of [39] by a factor of 12.)
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