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Abstract
Fragment embedding is one way to circum-
vent the high computational scaling of accu-
rate electron correlation methods. The chal-
lenge of applying fragment embedding to molec-
ular systems primarily lies in the strong entan-
glement and correlation that prevent accurate
fragmentation across chemical bonds. Recently,
Schmidt decomposition has been shown effec-
tive for embedding fragments that are strongly
coupled to a bath in several model systems.
In this work, we extend a recently developed
quantum embedding scheme, bootstrap embed-
ding (BE), to molecular systems. The resulting
method utilizes the matching conditions natu-
rally arising from using overlapping fragments
to optimize the embedding. Numerical simu-
lation suggests that the accuracy of the em-
bedding improves rapidly with fragment size for
small molecules, whereas larger fragments that
include orbitals from different atoms may be
needed for larger molecules. BE scales linearly
with system size (apart from an integral trans-
form) and hence can potentially be useful for
large-scale calculations.

1 Introduction
When applying standard electronic structure
methods to study realistic systems, one usually
needs to compromise between cost and accu-
racy. On the one hand, lower-level, mean-field
approximations such as Hartree-Fock1,2 (HF)
have modest computational scaling but are in-
sufficiently accurate due to lack of electron cor-
relation. On the other hand, higher-level, cor-

related wave function methods such as coupled
cluster3,4 (CC), density matrix renormalization
group5–8 (DMRG), and full configuration inter-
action2 (FCI) are capable of making reasonable
predictions related to experiments9–16 but are
limited to small systems owing to their high
computational cost.
One way to circumvent the steep computa-

tional scaling of accurate electron correlation
methods is fragment embedding. The main mo-
tivation of fragment embedding is that elec-
tron correlation is local ; hence, it is possi-
ble to treat the full system in a divide-and-
conquer approach. Specifically, the full sys-
tem is partitioned into smaller fragments, each
made to interact with an effective bath con-
structed to approximate the rest of the system
(i.e., the environment). The computationally
involved, high-level theories are required only
for each individual fragment but never for the
full system, which leads to reduced computa-
tional scaling. Different research groups have
successfully developed and applied fragmenta-
tion methods in various contexts, each focusing
on a different embedding variable, including lo-
calized orbitals,17–20 electron density,21–26 den-
sity matrix,27–29 and Green’s function,30–35 to
name a few.
Applying fragment embedding to a general

molecular system is not a trivial problem. The
main difficulty lies in the proper description
of the strong entanglement and correlation be-
tween fragments and baths arising from cutting
chemical bonds. Schmidt decomposition36–39

has recently been used for embedding fragments
that are strongly coupled to a bath. The central
idea of Schmidt decomposition is to project the
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environment associated with a fragment to a
small set of local states that have non-vanishing
entanglement with that fragment. This projec-
tion naturally preserves the entanglement be-
tween fragments and baths and reduces the di-
mension of the problem simultaneously.
Although the general formulation has been

known for a long time (especially in the quan-
tum information community40–42), it was not
until recently that Knizia and Chan have rec-
ognized Schmidt decomposition as a key ingre-
dient in fragment embedding in their method
called density matrix embedding theory43,44

(DMET). In DMET, the fragment is embedded
in a mean-field bath constructed by Schmidt de-
composing the HF wave function of the full sys-
tem. The embedded fragment and bath, which
are a small subspace of the full system, is then
solved using the aforementioned high-level the-
ories. In order to optimize the mean-field bath,
the fragment-fragment block of the one-particle
density matrix (1PDM) of the mean-field bath
is made to match that of the high-level cal-
culation by a self-consistently determined one-
electron effective potential. Good perfor-
mance has been reported for model Hamilto-
nians43,45,46 and atomic rings/chains.44 DMET
was originally proposed as a simplification to
the more complicated dynamical mean-field
theory30–32 (DMFT) but was soon recognized
by the community as a new wave function-
in-wave function embedding theory. Exten-
sions of the original DMET include modified
matching conditions,47–51 use of more accurate
baths45,52,53 and other impurity solvers,54 time-
dependent formulation55,56 and low-lying ex-
cited states,57 as well as application to simple
solids.48
One of the main problems with DMET – as

with many other fragment embedding methods
– is the need to divide the system into fixed
non-overlapping fragments.58 This prescription
leads to the inaccurate description of the edges
(surface) of the fragment and their interaction
with the bath. To that end, Welborn et al. pro-
pose an alternative to DMET called bootstrap
embedding59 (BE) that explores the matching
conditions arising from using overlapping frag-
ments to reduce the surface error. When frag-

ments overlap, the overlapping region will be
more accurately described in some fragment
than in others if it is the center (i.e., most em-
bedded region) as opposed to the edge (i.e.,
least embedded region) of that fragment. BE
improves the description of the edge sites of
a fragment by requiring their density matrix
elements to match the fragments where those
sites are center. These matching conditions
provide an internally consistent formulation of
fragment embedding, and hence lead to faster
convergence compared to DMET on Hubbard
model.59
The application of BE to molecules is still

challenging. In simple model systems such as
the 1D Hubbard model,60 the inter-site connec-
tivity is clear, along with the distinction be-
tween edge and center sites for a given frag-
ment. This is not the case, however, for the ab
initio Hamiltonian of a general chemical sys-
tem. As demonstrated by Ricke and co-workers
in the context of 2D Hubbard model with long-
range interaction, the optimal choice of the cen-
ter and edge sites is not always intuitive.61
Other attempts have also been made recently
by Ye et al. in incremental embedding (IE),
where the calculations of all fragments of cer-
tain size are combined carefully through an in-
cremental scheme;62 fast convergence with frag-
ment size is observed for small molecules, but
at the price of a higher computational scaling.62
In this paper, we present an extension of BE

to arbitrary molecular systems. Here, the key
idea is to properly define the connectivity be-
tween orbitals and generalize the BE match-
ing conditions to arbitrary connectivity. We
present proof-of-concept calculations for sev-
eral molecules using atom-centered Gaussian
orbitals. Numerical results suggest that BE
shows good convergence with fragment size for
the correlation energy of small molecules at
equilibrium geometry, and also delivers smooth
energy curves for dissociating single and dou-
ble covalent bonds. For large molecules, we ob-
serve that BE converges slowly with fragment
size and over-estimates the all-electron corre-
lation energy for the largest fragment size we
are able to test. This is attributed to the lack
of inter-atomic fragment overlapping based on
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an active-space calculation on the same set of
molecules. Nevertheless, the computation time
of BE scales linearly with system size (apart
from an integral transform) and hence is a
promising method for large systems.
This paper is organized as follows. In Sec. 2,

we briefly review the theory of BE, and then
present how it can be generalized to treat arbi-
trary Hamiltonians. In Sec. 3, we present the
computational details. In Sec. 4, we present
numerical results and discussion on several
molecules as a proof of concept. In Sec. 5, we
conclude this work by pointing out several fu-
ture directions.

2 Theory
In this section, we first give a brief review of
Schmidt decomposition as well as BE in the
context of lattice models, with an emphasis on
the matching conditions that naturally arise
from using overlapping fragments. Then, we
present how BE can be generalized to an arbi-
trary Hamiltonian assuming we know the con-
nectivity between sites. Finally, we end this sec-
tion by introducing a heuristic scheme of deter-
mining the inter-site connectivity for molecules.
Through out this work, we assume our system

is described by the following second-quantized
Hamiltonian,

Ĥ =

Nbasis∑
µν

hµνc
†
µcν +

Nbasis∑
µνλσ

Vµνλσc
†
µc
†
λcσcν , (1)

in some discrete basis of size Nbasis.

2.1 Schmidt decomposition

The general theory of Schmidt decomposition
can be found in literature.38,39 Here, we review
its application in DMET-related fragment em-
bedding methods.
Suppose we partition our system into two

parts, the fragment (which we assume to be of
smaller size) and the environment, such that
the Hilbert space observes the same decompo-
sition, H = Hf ⊗He. Then any state |Ψ〉 ∈ H

has the following tensor factorization,

|Ψ〉 =

Nf∑
p

λp|fp〉 ⊗ |bp〉, (2)

where |f〉p ∈ Hf are the fragment states and
|bp〉 ∈ Hb are the entangled bath states. Note
that there are only Nf 6 dimHf states in the
environment that have non-zero entanglement
with the fragments. If we further restrict |Ψ〉
to be the ground state of the full-system Hamil-
tonian Ĥ, then the embedding Hamiltonian ob-
tained by projecting Ĥ onto the Schmidt space,

Ĥemb = P̂ ĤP̂ , P̂ =

Nf∑
pq

|fp〉〈fq| ⊗ |bp〉〈bq|,

(3)
shares the same ground state as Ĥ.
For a general state |Ψ〉, the computational

cost of performing the tensor factorization in
eqn (2) grows exponentially with system size.
In addition, Ĥemb contains many-body interac-
tions that are not suitable for standard quan-
tum chemistry methods even if Ĥ has only
one- and two-body terms. The key approxi-
mation made by Knizia and Chan in DMET is
to replace |Ψ〉 with a single-determinant (i.e.,
HF) state |Φ〉, which allows the otherwise com-
plicated many-body decomposition to be per-
formed at mean-field cost.43,44 The resulting
fragment and bath states are single-particle
states (i.e., sites), rendering Ĥemb a simple two-
body Hamiltonian,

Ĥemb =

2Nf∑
pq

h̃pqa
†
paq +

2Nf∑
pqrs

Ṽpqrsa
†
pa
†
rasaq, (4)

where h̃ and Ṽ are obtained by projecting h
and V in eqn (1) using the 2Nf fragment and
entangled bath sites (h̃ also includes the contri-
bution from partially tracing V with the unen-
tangled bath). Due to this simplicity, almost all
Schmidt decomposition-based fragment embed-
ding methods use a HF bath, with only a few
exceptions.52,53 The differences among DMET,
its different variants, and BE lie in the use of
(1) different high-level theories to solve the em-
bedding Hamiltonian and (2) different match-
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ing conditions to optimize the embedding. BE,
among others, provides an internally consistent
approach to optimizing the embedding.

2.2 Bootstrap Embedding

Figure 1: Schematic illustration of the BE
matching conditions on 1D lattice model. Site 3
is the center of fragment B and the edge of frag-
ments A and C, which gives rise to the match-
ing conditions in eqn (5) (blue arrows). Similar
matching conditions exist for sites 2 (red arrow)
and 4 (green arrow).

In this section, we use 1D lattice chain to il-
lustrate the idea of BE. As shown in Figure 1,
there are three different ways to partition the
system into fragments of three adjacent sites.
The key assumption of BE is that the wave
function on the central sites is more accurate
than the wave function on the edge sites; hence,
one can improve the description of the edge sites
by constraining the edge site wave function on
one fragment to match the central site wave
function on another fragment.59 For example,
in Figure 1, site 3 is the central site in B but
the edge site in A and C. Hence, we require the
following two constraints,

〈ΨA|a†3a3|ΨA〉 = PB
33,

〈ΨC |a†3a3|ΨC〉 = PB
33,

(5)

to be satisfied when solving ĤA
emb and ĤC

emb
(blue arrows in Figure 1). Similar constraints
can be imposed for sites 2 and 4, respectively.
The specific example shown above can be

made general as follows. Let fragments A and
B be two overlapping fragments, and assume
the set of the central sites of B (which we la-
bel CB) has non-zero intersection with the set

of the edge sites of A (which we label EA), i.e.,
CB ∩ EA 6= ∅. Then according to our assump-
tion, we require the 1PDM of fragment A to
match that of fragment B in the overlapping re-
gion, CB∩EA. Mathematically, this can be for-
mulated as a constrained optimization for frag-
ment A,

ΨA = arg min
ΨA

〈ĤA
emb〉A,

s.t. 〈ΨA|ΨA〉 = 1,

〈a†paq〉A = PB
pq, ∀p, q ∈ CB ∩ EA,

(6)

where 〈 · · · 〉A is short for 〈ΨA| · · · |ΨA〉, and we
include the normalization condition of ΨA for
completeness. Eqn (6) can be turned into an
unconstrained optimization by introducing the
following Lagrangian,

LA(ΨA; EA,λA) = 〈ĤA
emb〉A − EA(〈ΨA|ΨA〉 − 1)+∑

p,q∈CB∩EA

λApq(〈a†paq〉A − PB
pq),

(7)

whose stationary points are given by an eigen-
value equation,

(ĤA
emb + λ̂A)|ΨA〉 = EA|ΨA〉, (8)

where the Lagrange multipliers for the match-
ing conditions appear as an effective potential,

λ̂A =
∑

p,q∈CB∩EA

λApqa
†
paq. (9)

Given {PB
pq} for all p, q ∈ CB ∩EA, the effective

potential λ̂A is determined by repeatedly solv-
ing eqn (8) until the matching conditions in eqn
(6) are satisfied. As shown by Ricke et al.,61 the
BE optimization problem is numerically stable
since the Hessian of L is negative semi-definite,
similar to the direct optimization method used
in density functional theory.63–65 This feature
makes BE’s matching conditions different from
those in DMET, since the exact satisfiability of
the latter is not guaranteed: there are known
cases where DMET’s matching conditions can-
not be satisfied exactly.52
The equation presented above for matching

the edges of fragment A to the centers of frag-
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ment B can be generalized to an arbitrary num-
ber of overlapping fragments – as long as a
clear definition of edges and centers exists for
all fragments (which is the case for simple lat-
tice models). If the centers of all fragments are
further constructed to be non-overlapping but
fully partition the system, i.e.,

CA ∩ CB = ∅, ∀A,B, (10)

and ⋃
A

CA = U, (11)

where U is the set of all sites, any physical quan-
tity of the full system can be computed unam-
biguously as a sum of local contributions from
the center of each fragment. Specifically, we re-
quire the number of electrons on each fragment
center sums up to the correct total number of
electrons, N . This can be done by introducing
a global chemical potential, µ, and optimize the
full-system Lagrangian,

L({ΨA, EA,λA}, µ) =
∑
A

LA(ΨA; EA,λA)+

µ

[∑
A

∑
p∈CA

〈a†pap〉A −N
]
.

(12)

As a result, the effective potential for each frag-
ment A defined in eqn (9) needs to be modified
to include (i) the matching between A and all
other fragments and (ii) the global chemical po-
tential,

λ̂A =
∑
B 6=A

[ ∑
p,q∈CB∩EA

λBpqa
†
paq

]
+ µ

∑
p∈CA

a†pap,

(13)
Note that now all fragment calculations are cou-
pled through both the matching conditions and
µ.
In practice, we turn the problem of simulta-

neously determining {λA} and µ into two un-
coupled problems that are solved alternatively

until the BE matching error

εBE =

[
1

Ncons

∑
A

∑
B 6=A

∑
p,q∈CA∩EB

(PA
pq − PB

pq)
2

]1/2

(14)
is below some pre-set threshold value, τ , where
Ncons is the total number of constraints. An
algorithm is outlined in Algorithm 1.

Algorithm 1 BE iteration

0. Input: {ĤA
emb}, τ

1. Initialization:
µ← 0, λA ← 0, PA ← ĤA

emb, ∀A
2. Determining {λA}:

λA ← eqns (8) and (13), ∀A
3. Determining µ:

µ← N(µ) = N
4. Updating 1PDMs:

PA ← ĤA
emb + λ̂A, ∀A

5. Checking convergence:
If εBE > τ then

Go back to step 2
else

Return {λA}, µ, {PA}

We note that while the convergence of den-
sity matching in each BE iteration is guaran-
teed as mentioned above, the convergence of
Algorithm 1 (which uses a simple fixed-point
method) is not. In principle, the BE iterations
could oscillate or even diverge – just like the
self-consistent field (SCF) algorithm of HF.66
In practice, however, we have never encoun-
tered such situations. An example demonstrat-
ing the convergence of the BE iteration algo-
rithm is displayed in Figure S1 in Supporting
Information.
In the subsequent sections, we will see that

the general framework of BE described above
remains unchanged when applied to molecular
systems. The major task is to generalize the al-
gorithmic choice of fragments, central, and edge
sites.

2.3 BE for molecules

For molecules, localized atomic orbitals (LAOs)
such as those obtained by the Forster-Boys
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Figure 2: Schematic illustration of distance-
based fragmentation for arbitrary orbital con-
nectivity. Each fragment has one unique cen-
ter (red) and Nf− 1 edge (green) orbitals (here
Nf = 4). The total number of fragments is equal
to the total number of orbitals.

scheme67 are usually used as the site ba-
sis.53,54,58,62 Hence, the formalism presented
above in the context of lattice models is in prin-
ciple applicable to molecules, too. The chal-
lenge here is two-fold: (i) how to measure the
inter-orbital connectivity and (ii) how to par-
tition the molecules into overlapping fragments
that have well-defined centers and edges based
on a well-defined connectivity. In the subse-
quent section, we will present an interaction-
based metric for determining inter-orbital con-
nectivity. Here, we tackle the second problem,
assuming we have such a metric.
Suppose we have a measure for the strength of

connectivity (referred hereafter as “distance")
between any pair of orbitals. Then for each or-
bital p, we can construct an Nf-orbital fragment
by including p and the Nf − 1 orbitals that are
closest to p (see Figure 2 for a schematic illus-
tration). By construction, p can be deemed the
unique center of that fragment, while all other
Nf − 1 orbitals are edges. Thus, for a molecule
described by Nbasis LAOs [eqn (1)], we can con-
struct Nbasis overlapping fragments, each of size
Nf and centering on one LAO. Since the Nf− 1
edge orbitals of each fragment are centers in
other fragments, we require the population of
each edge orbital to match that of the corre-
sponding center orbital, giving rise to Nf − 1
matching conditions for each fragment. More-
over, the Nbasis fragment centers satisfy eqns

(10) and (11), and hence we can compute full-
system observables by summing all orbital con-
tributions.
Formally, this one-center-per-fragment parti-

tion scheme is similar to orbital-specific-virtual
local correlation methods.68,69 In OSVMP2, for
example, each (localized) occupied orbital is
correlated to only a small set of (localized) vir-
tual orbitals that are selected by either direct
optimization or tensor factorization.68 In BE,
each LAO is also correlated to only a small
set of orbitals consisting of two parts: (i) the
edge orbitals, which are selected by the distance
measure, and (ii) the entangled bath orbitals,
which are generated by Schmidt decomposition.
However, we note that the difference in the or-
bital bases used by the two methods is in fact
a significant one. For instance, concepts like
frontier orbitals are less obvious in LAOs than
in (localized) molecular orbitals (MOs). We will
see the effect of this difference in Sec. 4.2.
Despite the simplicity of the above partition

scheme, we note here two potential problems.
First, ties may arise when selecting edge or-
bitals from groups of nearly degenerate orbitals.
In this work, we use fragments of fixed size
and hence break the ties arbitrarily, which may
break the molecule’s point-group symmetry and
lead to unphysical behaviors in some cases. Al-
ternatively, one can include all degenerate or-
bitals at a time whenever one of them is se-
lected as edge orbital by a fragment. We will
not, however, explore this scheme here since
it usually leads to fragments whose size is be-
yond the ability of our high-level solver (i.e.,
FCI). Second, the one-center-per-fragment fea-
ture only allows one to match on-site properties
(e.g., population) for overlapping fragments,
even if the overlapping region may consist of
more than one orbital. Multi-center fragments
are needed for matching inter-orbital properties
(e.g., coherences), which we will explore in fu-
ture works.

2.4 Normalized Coulomb metric

The most straightforward candidate for mea-
suring the distance between orbitals is a real-
space metric, e.g., the Euclidean distance be-
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tween the average positions of two orbitals,

dpq = ‖〈φp|r̂|φp〉 − 〈φq|r̂|φq〉‖2. (15)

Though simple, this metric is not ideal. First,
it does not reflect the symmetry and spatial ex-
tension of orbitals, especially those with high
angular momentum and/or long diffuse tail.
Second, it correlates to the interaction between
orbitals only indirectly, which is not aligned
with our purpose of recovering electron corre-
lation.
To that end, we propose an interaction-based

metric, the normalized Coulomb metric,

dpq =

[
Jpq

(JppJqq)1/2

]−1

− 1, (16)

where Jpq = 〈pq|pq〉 is the bare Coulomb inter-
action between orbitals p and q. We choose the
Coulomb interaction for several reasons. First,
it is non-negative for all orbital pairs and decays
as r−1 for remotely separated orbitals. Second,
it does not vanish even for two orbitals of dif-
ferent symmetries (which could have vanishing
one-electron interactions). The normalization
in eqn (16) is important because it not only ren-
ders dpq non-negative but also removes the bias
arising from the orbital shape (e.g., Jpq tends to
have a higher value for orbitals that are more
s-like).

2.5 Computational scaling

We end this section by briefly discussing the
computational scaling of BE. Three of the algo-
rithmic steps are most time-consuming. First,
electron repulsion integrals (ERIs) generated
in the AO basis (of size Nbasis) need to be
transformed into the Schmidt basis (of size
2Nf) for each of the Nbasis fragments. The
transformation for each fragment formally takes
O(N4

basisNf) time, hence scaling as O(N5
basis) in

total. Second, according to Algorithm 1, each
BE iteration requires determining both the ef-
fective potentials, {λA}, and the global chemi-
cal potential, µ. Both steps scale linearly with
the number of fragments and hence the sys-
tem size, while determining {λA} also scales

linearly with Nf due to the O(Nf) matching
conditions per fragment (Sec. 2.3). The pre-
factor of these linear-scaling steps comes pri-
marily from solving Ĥemb using the high-level
method and hence also has some polynomial or
even exponential dependence on Nf depending
on the method. Overall, for a fixed fragment
size, ERI transform is currently the computa-
tional bottleneck for large systems. The fifth-
power formal scaling could potentially be re-
duced in the future by various techniques es-
tablished for electron correlation methods.70–75
We also note that the ERI transform needs to
be performed only once and the transformed in-
tegrals can then be stored on disk for later use.
We will present timing data from numerical cal-
culations in Sec. 4.3.

3 Computational Details
In the following computational works, we ex-
amine the performance of BE using several
molecular systems with atom-centered Gaus-
sian bases. The structures of all molecules as
optimized at B3LYP76/cc-pVDZ77 level (avail-
able in Supporting Information) as well as the
needed atomic integrals are obtained in Q-
Chem.78 Forster-Boys67 LAOs generated by Q-
Chem are used for all molecules except for the
active-space calculations on polyacene chains,
in which case we adopt the symmetrically or-
thogonalized orbitals. The BE calculations
are performed in frankenstein79 using spin-
restricted Hartree-Fock (RHF) as bath and FCI
as high-level solver. The mean-field bath is
kept fixed in this work. The entangled bath
orbitals for a given fragment are obtained by
following the prescription described in Ref. 47.
The interacting bath formulation58 is adopted
for constructing the embedding Hamiltonian in
eqn (4). We note that currently the code is
not integral-direct, which limits the size of the
molecules to ∼ 200 basis functions.
BE calculations using fragments composed of

Nf orbitals are denoted by BE(Nf). We restrict
Nf 6 5 in this work due to the use of FCI as
high-level solver. In the BE iteration algorithm
(Algorithm 1), the density matching (step 2)
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and the determination of µ (step 3) are per-
formed using Newton-Raphson and secant algo-
rithms,80 respectively, which typically converge
in several iterations. As discussed in Sec. 2.2,
the convergence of Algorithm 1 (which uses a
simple fixed-point method) is not guaranteed
in principle. But for all molecules studied in
this work, it often requires less than ten itera-
tions to convergence (τ = 10−6 is used in this
work). As an illustration, we show the con-
vergence for hexacene in Supporting Informa-
tion (Figure S1). Unless otherwise specified, we
match the population (i.e., diagonal elements of
1PDM) for overlapping fragments.
For all molecules tested below except poly-

acenes, exact numerical solutions via DMRG
(as obtained in Block7,8,81–83) are available
and will be used as benchmark; for poly-
acenes, we benchmark our results against the
CCSD(T) solution from Q-Chem. For the study
of covalent bonds dissociation, we also com-
pare BE with complete active space configu-
ration interaction84 (CASCI) performed using
frankenstein. Results for DMET are only
presented with one orbital per fragment and
zero correlation potential [which is equivalent
to BE(1) and will be denoted by BE(1) below],
due to the difficulty in both obtaining unam-
biguous fragments and optimizing the correla-
tion potential47,50,51,54 for molecules.

4 Results and Discussion

4.1 Correlation energy at equilib-
rium geometry

We first examine the performance of BE in
terms of the correlation energy recovered for a
set of small molecules at their equilibrium ge-
ometries. The results with the STO-3G basis85
are shown in Figure 3, both with and without
the matching conditions.
Overall, BE converges relatively fast and re-

covers most of the correlation energy with frag-
ments of four or five orbitals. The rate of con-
vergence is fastest for C2H6 and becomes slower
when introducing either unsaturated bonds or
heteroatoms. This pattern is similar to what

has been reported in previous works,62 and can
be attributed to the half-filling nature of the
embedding space generated from Schmidt de-
composition (i.e., 2Nf electrons in 2Nf orbitals).
Due to the RHF density being very good for
these small molecules in the minimal basis, not
much is improved by imposing the BE matching
conditions.

4.2 Homolytic cleavage of cova-
lent bonds

The second example we study is covalent bonds
dissociation. Since our metric for determining
orbital connectivity is structure-dependent, the
partitioning of the molecules determined at dif-
ferent geometries may differ. Due to its discrete
nature, the change in fragmentation is abrupt
when geometry changes, which usually leads to
discontinuous potential energy curves even the
molecular structure itself varies smoothly. To
that end, we use the fragments determined at
equilibrium geometries for all subsequent calcu-
lations. The results of dissociating the carbon-
carbon bonds of C2H6 and C2H4 in the STO-
3G basis are shown in Figure 4. CASCI with a
minimum active space is also included for com-
parison.
With fixed fragments, BE delivers smooth en-

ergy curves for both molecules and different
size of fragments. Overall, the accuracy of em-
bedding increases for larger fragments. Near
equilibrium geometries, BE recovers most of
the correlation energy even at BE(2) level and
improves drastically over CASCI. However, as
both molecules dissociate, a gap emerges be-
tween BE(3) and BE(4), and the energy of
BE(3) is even higher than CASCI at large
bond lengths. The poor performance of BE(3)
in these regimes suggests that the frontier or-
bitals (i.e., HOMO and LUMO for C2H6 and
HOMO−1 ∼ LUMO+1 for C2H4), which are
crucial to the description of bonds dissociation,
are not accurately spanned by the fragment and
entangled bath orbitals. As mentioned in Sec.
2.3, this is not surprising since the embedding
calculation is performed in a localized orbital
basis instead of the canonical MO basis. Nev-
ertheless, the problem is mitigated by adopting

8



CH3BH2 C2H6 C2H4 C2H2 CH3NH2 N2H4
0

20

40

60

80

100

120

EBE co
rr

/E
Ex

ac
t

co
rr

[%
]

BE(1)
BE(2)

BE(3)
BE(4)

BE(5)

(a)

CH3BH2 C2H6 C2H4 C2H2 CH3NH2 N2H4
0

20

40

60

80

100

120

EBE co
rr

/E
Ex

ac
t

co
rr

[%
]

BE(1)
BE(2)

BE(3)
BE(4)

BE(5)

(b)

Figure 3: Correlation energies of several small molecules at equilibrium geometry computed by BE
with increasing fragment size, (a) with or (b) without matching conditions. All calculations are
performed using the STO-3G basis.
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Figure 4: Energy curves of homolytic cleavage of (a) the C−C single bond in C2H6 and (b) the
C−−C double bond in C2H4 computed by BE. For both molecules, fragments determined at their
respective equilibrium geometries are used for all bond lengths. CASCI results obtained using a
minimum active space are also included for comparison (small kinks arise from frontier orbitals
changing order when varying geometry). All calculations are performed using the STO-3G basis.
Note that BE(3) does not improve over BE(2) for both molecules and most geometries (see main
text for discussion).

a larger fragment size, as can be seen from the
curves of BE(4) and BE(5).
To examine the effect of density matching,

we repeat the calculations in Figure 4 with-
out the matching conditions. The results are
displayed in Figure S2. As in previous exam-
ples, the effect of density matching is not signif-

icant for both equilibrium geometry and inter-
mediate bond length. However, at large separa-
tion, imposing the matching conditions consis-
tently worsens the results for small fragments,
while bringing only little improvement to the
largest fragment size. These results might be
attributed to the small size of the fragments,
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an effect we will discuss in details in the next
example.

4.3 Polyacene chains
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Figure 5: Fraction of CCSD(T) correlation en-
ergy recovered by BE with increasing fragment
size for polyacene chains (from benzene to hex-
acene) at equilibrium geometry. All calcula-
tions are performed using the STO-3G basis.

The last example we study is polyacene
chains. This example represents an important
application of fragment embedding methods
since the full-system calculations are beyond
the capability of FCI/DMRG. The large con-
jugate π-systems in polyacenes lead to strong
electron correlation86–88 and hence can be chal-
lenging for fragment embedding methods. The
performance of BE for the first six polyacene
chains in the STO-3G basis is shown in Figure
5.
For all six molecules, ∼ 95% of correlation

energy is recovered by using three-orbital frag-
ments. Unlike previous examples, however, the
convergence with fragment size is not mono-
tonic: BE(4) and BE(5) seriously overestimate
the correlation energy by ∼ 20%. An inspec-
tion of the calculations suggests that even for
fragments of five orbitals, most of the frag-
ments generated by our metric are localized on
one carbon atom. This is because the inter-
action of orbitals on the same atom is usually
greater than the interaction of those on differ-
ent atoms. As a consequence, fragments over-

lapping and matching conditions are only ex-
plored at intra-atomic level, and the pertinent
inter-atomic information (e.g., coherences be-
tween adjacent atoms) is thus missing in these
calculations.
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8

6

4

2

0

2

4

EBE co
rr

ECC
SD

(T
)

co
rr

 [k
ca

l/m
ol

 p
er

 C
6]

BE(1)
BE(2)

BE(3)
BE(4)

BE(5)

Figure 6: Error of active-space correlation en-
ergy (normalized to six carbons) computed by
BE with increasing fragment size compared to
CCSD(T) for polyacene chains (from naphtha-
lene to hexacene) at equilibrium geometry. The
active space consists of symmetrically orthogo-
nalized pz orbitals from all carbon atoms. All
calculations are performed using the STO-3G
basis. Note that benzene (C6H6) is not included
as it has only six orbitals and BE becomes exact
for three-atom fragments.

To illustrate this point, we repeat the calcu-
lations in Figure 5 using an active space con-
sisting of the π orbitals from each molecule. By
doing so, each carbon atom is described by only
one pz orbital and we are able to perform em-
bedding calculations using up to five atoms per
fragment. The results are displayed in Figure
6. As one can see, using one atom per frag-
ment [i.e., BE(1)] overestimates the correlation
energy in a way that is similar to what BE(4)
and BE(5) do in Figure 5. Including the near-
est neighbors of each atom [i.e., BE(4)], how-
ever, drastically reduces the error. Despite a
slow growth of the error with molecular size
for small fragments, the largest fragment size
tested here [i.e., BE(5)] consistently delivers
accurate correlation energy (normalized error
< 1 kcal/mol) for all molecules. In addition,

10



some improvements are observed by imposing
the density matching (see Figure S3 in Support-
ing Information for the results without match-
ing conditions), although the effect is still very
small since even BE(1) is very accurate for these
molecules. These observations emphasize the
importance of using fragments composed of or-
bitals from neighboring atoms, which we will
explore in a more systematic manner in future
works.
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Figure 7: CPU time as a function of basis size
for three primary steps in BE(5) calculations of
the six polyacene chains in Figure 5. Times for
the determination of both {λA} and µ are re-
ported per BE iteration (ERI transform needs
to be performed only once). Dashed lines are
exponential fit, with the scalings indicated be-
sides.

Despite the potential problem of over-
correlation, BE shows a favorable computa-
tional scaling and hence is promising for large-
scale calculations. In Figure 7, the CPU time
as a function of basis size for the three primary
steps in a BE(5) calculation is plotted for the
six polyacene molecules studied above (Figure
5). Exponential fit suggests that the determi-
nation of both {λA} and µ scales linearly with
system size (the pre-factor is large owing to our
pilot implementation), while the ERI trans-
form scales slightly less than the fifth power of
Nbasis. These observations are consistent with
our analyses in Sec. 2.5.

5 Conclusion
To summarize, we extended bootstrap embed-
ding to molecular systems by generalizing the
definition of overlapping fragments from lat-
tice models to generic ab initio Hamiltonians.
A heuristic interaction-based metric for deter-
mining inter-orbial connectivity is proposed and
tested in several molecules. Numerical results
suggest that BE converges fast with fragment
size for small molecules at both equilibrium
geometry and bond dissociation. For large
molecules, the lack of inter-atomic fragment
overlapping plagues the convergence with frag-
ment size and results in over-correlation for
fragments of four and five orbitals. Calculations
on polyacene chains using an active space com-
posed of only π orbitals, however, show fast con-
vergence with fragment size, highlighting the
important role of inter-atomic fragment over-
lapping. Nevertheless, BE exhibits linear com-
putational scaling (apart from an integral trans-
form) and hence is promising for large-scale cal-
culations.
In the future, BE could be improved in several

directions. First, in this work, the use of FCI as
high-level solver restricts us to small fragments.
Larger fragments that include orbitals from dif-
ferent atoms will be available if we adopt a less
expensive high-level solver. In addition, the
use of large fragments also enables alternative
approaches to generating fragments such as in-
cluding edge orbitals by their symmetry group
and atom-based fragmentation.48,53,54,58,89 Last
but not least, currently we only explore the
matching of on-site population (i.e., diagonal
elements of 1PDM). Future works will also in-
clude the matching of inter-orbital coherences
(i.e., off-diagonal of 1PDM), which have been
reported to be important for correlation en-
ergy.59
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