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Abstract. Recent developments in quan-
tum embedding have offered an attractive ap-
proach to describing electron correlation in
molecules. However, previous methods such
as Density Matrix Embedding Theory (DMET)
require rigid partitioning of the system into
fragments, which creates significant ambigu-
ity for molecules. Bootstrap Embedding (BE)
is more flexible because it allows overlapping
fragments, but when done on an orbital-by-
orbital basis BE introduces ambiguity in defin-
ing the connectivity of the orbitals. In this Let-
ter, we present an atom-based fragment def-
inition that significantly augments BE’s per-
formance in molecules. The resulting method,
which we term atom-based BE, is very ef-
fective at recovering valence electron correla-
tion in moderate-sized bases and delivers near-
chemical-accuracy results using extrapolation.
We anticipate atom-based BE may lead to a
low-scaling and highly accurate approach to
electron correlation in large molecules.
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In quantum chemistry, an accurate descrip-
tion of electron correlation is crucial to achieve

chemical accuracy (< 1 kcal/mol). From
first principles, achieving this level of accuracy
requires correlated wave function1–4 (CWF)
calculations whose computational cost grows
supralinearly with system size [O(Np) with p ≥
5 typically]. Kohn-Sham density functional the-
ory5,6 (KS-DFT) provides a relatively modest-
cost [O(N3)] solution to the problem and has
achieved success in weakly correlated systems.
However, the lack of systematic improvability
in the approximate exchange-correlation func-
tionals has limited its usage in more challenging
scenarios.7–9
Recent developments in quantum embedding

have offered an attractive solution to this prob-
lem.10–19 These methods bypass the scaling
curse of the CWF methods by applying them
only to smaller and hence manageable frag-
ments of a large system, while leaving the in-
teraction between the fragments and the rest
of the system described in a lower level of the-
ory (i.e., bath). In this work, we focus on a
specific class of quantum embedding methods
based on the Schmidt decomposition20,21 (SD),
which preserves the entanglement between frag-
ments and baths and hence is especially suit-
able for embedding chemical systems. For in-
stance, Density Matrix Embedding Theory13,14

(DMET) has demonstrated success in treating
electron correlation in lattice models13,22,23 and
simple chemical systems.14,24–27
Similar to other embedding methods,28,29 SD-

based embedding with non-overlapping frag-
ments tends to converge slowly towards the
exact solution with increasing fragment size.
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This is due to the persistent surface error in
the description of the interactions between the
fragment edges and their respective baths. To
tackle this problem, we developed Bootstrap
Embedding15 (BE) that uses overlapping frag-
ments to directly improve the description of
fragment edges. BE shows an exponential rate
of convergence with fragment size in lattice
models, which is much faster than the decay
of surface error in DMET.15 However, recent
attempts of generalizing BE to molecules have
proved challenging, primarily due to the lack of
a good partition scheme for molecules.16,30,31
In this Letter, we present a better fragment

definition that enables black-box partition of
molecules into overlapping fragments based on
atoms and chemical bonds. This atom-based
partition scheme significantly augments BE’s
performance, leading to a fast convergent em-
bedding method for the valence correlation (i.e.,
the correlation energy one would obtain by
performing a full-valence complete active-space
calculation) of molecules.
We start by briefly summarizing the funda-

mental aspects of SD-based embedding meth-
ods (see Ref. 25 for a detailed review). Suppose
the molecule is described by a Hamiltonian ofN
atom-centered orbitals. In second quantization:

Ĥ =
N∑
µν

hµνc
†
µcν +

1

2

N∑
µνλσ

Vµνλσc
†
µc
†
λcσcν . (1)

Given any choice of Nf orbitals that compose
our fragment (which we assume to be a minor-
ity), the exact eigenstate of Ĥ can be written
in a tensor-product form via the Schmidt De-
composition (SD)

|Ψ〉 =

Nf∑
i

λi|f̃i〉|b̃i〉, (2)

where {|f̃i〉} and {|b̃i〉} are the many-body frag-
ment and bath states, and λi ∈ [0, 1] charac-
terizes the entanglement between |f̃i〉 and |b̃i〉.
Eqn (2) leads to an exact embedding since |Ψ〉
is also an eigenstate of the projected Hamilto-

nian, Ĥemb = P̂fbĤP̂fb, where

P̂fb =

Nf∑
i,j

|f̃i〉|b̃j〉〈f̃i|〈b̃j|. (3)

However, this procedure has little practical use
because it requires the exact wave function to
begin with.
SD-based embedding methods adopt an ap-

proximate bath wave function - typically a
mean-field wave function, with only few ex-
ceptions.32,33 In a mean-field SD, the compli-
cated many-body bath states {|b̃i〉} become two
sets of orbitals - the entangled bath {|bi〉} and
the pure environment {|ei〉} - depending on
whether they are entangled with the particular
set of fragment orbitals {|fi〉}. Assuming no
linear dependence issues, for a fragment of size
Nf , there are Nb = Nf entangled bath orbitals.
These 2Nf orbitals form an active space with
the remaining environment orbitals being spec-
tators, giving rise to the following embedding
Hamiltonian,

Ĥemb =

Nf+Nb∑
ij

h̄ija
†
iaj +

1

2

Nf+Nb∑
ijkl

V̄ijkla
†
ia
†
kalaj,

(4)
where

h̄ij =
N∑
µν

T fbµi F
e
µνT

fb
νj ,

V̄ijkl =
N∑

µνλσ

T fbµi T
fb
νj VµνλσT

fb
λkT

fb
σl ,

(5)

where Tfb is the coefficient matrix of {|fi〉} and
{|bi〉}, and Fe is the environment Fock matrix.
Note that Ĥemb is exactly a two particle opera-
tor. This feature is unique to mean-field baths
and motivates the choice of these wave func-
tions for practical embedding.
For reasonably sized fragments, Ĥemb can be

solved using accurate CWF methods to re-
cover the electron correlation missing in the
approximate bath. The main difference be-
tween DMET (and its variants) and BE lies
in the matching conditions employed to opti-
mize the embedding. DMET, often used with
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Figure1:(a)Schematicillustrationoftheatom-basedpartitionschemeforgeneratingoverlapping
fragments.(b)Twodifferenttypesofmatchingconditionsarisingfromusingoverlappingfragments.
(c)SchematicillustrationoftwodistinctregimesofSchmidtdecomposingamean-fieldwavefunc-
tion,ΦMF.ForNf≤Nocc,addinganewfragmentorbitaladdstwoorbitals(oneoccupiedandone
virtual)totheactivespace(regime1).OnceNf>Nocc,however,addinganewfragmentorbital
onlyaddsonevirtualorbitaltotheactivespace(regime2).

non-overlappingfragments, matchestheden-
sity matrixofthe meanfieldtothatofthe
CWFcalculationforeachfragment.13,14,27,34,35

BE,ontheotherhand,usesoverlappingfrag-
mentsandmatchesthedensitymatrixofone
fragmentwithanotherintheiroverlappingre-
gion.15,30,31

The mostnaturalwaytotranslateBEto
moleculesistouseatoms,ratherthanindivid-
ualorbitalsorlatticesites(asdoneinprevi-
ouswork31),asthefundamentalbuildingblock.
Thatis,inanatom-centeredbasisitismost
naturalthatweviewallthebasisfunctionson
anatomasagroupwhenconstructingfrag-
ments.ThisideaisillustratedinFigure1a. We
firstmapamoleculeontoagraphwhosenodes
andedgescorrespondtoatoms(hydrogensare
groupedwiththeheavyatomstheyarebonded
to)andchemicalbondsofthatmolecule.Then,
weformfragmentsbyfindingallconnectedsub-

graphsofagivensize(saynatoms).Aspecific
exampleisprovidedinFigureS10.Fragments
generatedinthiswayoverlapinmanydifferent
topologies,givingrisetotwotypesofmatching
conditionsasshowninFigure1b.
Inautocraticmatching,theoverlappingre-
gion(e.g.,atom2)ismoreaccuratelydescribed
infragmentAthaninfragmentB. Wethuscan
improvetheembeddingoffragmentBbycon-
strainingitsdensitymatrixelementsonatom
2tomatchthosecalculatedfromusingfrag-
mentA(orangearrowinFigure1b). Asimi-
larconstraintcanbeplacedonatom3withan
oppositedirection(bluearrowinFigure1b).
Indemocraticmatching,theoverlappingre-
gionisdescribedequally(wellorpoorly)in
bothfragments.Inthiscase,wemakeademo-
craticchoiceandrequirethedensitymatrixel-
ementscomputedusingbothfragmentsmatch
theirarithmeticmeanintheoverlappingregion.
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These prototypes of matching conditions can be
extended to more general cases as detailed in
Sec. S3. As a result, this atom-based fragment
definition offers a black-box approach to apply-
ing BE to molecules whenever a clear defini-
tion of interatomic connectivity (i.e., chemical
bonds) exists.
We note that the idea of using overlapping

fragments to accelerate the convergence of em-
bedding has also been explored in different con-
texts.18,36,37 However, to the best of our knowl-
edge, none of these methods exploit the match-
ing conditions described above to further im-
prove the embedding. As we will see in nu-
merical examples, the effect of density match-
ing can be significant for SD-based embedding
for molecules.
Before presenting results, we briefly discuss

the convergence of BE with fragment size. Ide-
ally, an embedding method should converge fast
and monotonically to the full-system result by
enlarging the fragments. Furthermore, if the
error decays by a known functional form, ex-
trapolation based on small-fragment calcula-
tions would serve the purpose efficiently. Due
to the nature of SD, BE is exact when the frag-
ment and entangled bath together span the full
Hilbert space. However, the loss of entangle-
ment in the low-level, mean-field wave function
can hinder extrapolation.
Typically, in mean-field SD, each fragment or-

bital |fi〉 produces exactly one entangled bath
orbital |bi〉.14,22 This pair of orbitals spans ex-
actly one occupied and one virtual orbital.
However, the behavior changes abruptly as
the number of fragment orbitals (Nf ) increases
(Figure 1c). When Nf is less than the num-
ber of occupied orbitals (Nocc), every new frag-
ment orbital contributes two orbitals to the ac-
tive space. Once Nf ≥ Nocc, however, all of
the occupied orbitals will already be present in
the active space. Thus, adding a new fragment
orbital only adds a single virtual orbital to the
active space. We note that this problem is not
very serious in lattice models, where the num-
ber of virtual orbitals (Nvirt) is typically the
same as or similar to the number of occupieds,
making the embedding stay in regime 1 for all
reasonable fragment sizes. But for molecular

calculations - where Nvirt typically greatly ex-
ceeds Nocc - this discontinuous behavior is ex-
pected to be more problematic, as we shall see
below.
In order to demonstrate the utility of this

atom-based embedding strategy, we imple-
mented it for the simple case of MP2 (Møller-
Plesset second-order perturbation theory1)-in-
RHF (spin-restricted Hartree-Fock) embedding
and tested it for some prototypical molecular
systems. This choice of an inexpensive local
solver allows us to treat very large fragments,
and helps characterize the convergence behav-
ior of atom-based BE with fragment size. We
note that MP2 is known to be insufficient for
strong electron correlation,38,39 and so our re-
sults are not expected to be chemically accu-
rate. Instead, we will benchmark the fragment
calculations against the full-system MP2 results
and focus on precision.
Atom-centered Gaussian orbitals localized

using the Foster-Boys scheme40 are used as
the computational basis (generated in Q-
Chem 5.041). All embedding calculations
are performed in frankenstein,42 which uses
Libint243 for atomic integrals evaluation and
PySCF44 for the MP2 solver. Comparison be-
tween BE and DMET is made whenever pos-
sible. The RHF orbitals are not optimized
in either method (we hence use the acronym
DMET0 below), but in BE, the correlated cal-
culations are made self-consistent by imposing
the aforementioned matching conditions on the
one-electron density matrices using the algo-
rithm described in Sec. S4 – S6. Expectation
values such as total energy are computed as
a sum of local contributions (see Sec. S7). A
global chemical potential is determined in both
methods to fix the total number of electrons.
In all cases tested, the convergence of BE cor-

relation energy with fragment size (n atoms)
can be fitted to an exponential form,

Ecorr
BE = ab−n + E0

BE, (6)

for some constants a, b, and E0
BE, while the

DMET0 results (if available) can be fitted to
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a surface-error decay,

Ecorr
DMET0 = cn−d + E0

DMET0, (7)

for some other constants c, d, and E0
DMET0. We

will perform extrapolation using these formulae
to estimate the full-system embedding results.
To begin with, we study some simple 1D mod-

els where comparison to DMET is feasible. We
first consider the hydrogen chain model, (H2)m,
where m H2 molecules form a chain with equal
spacing between molecules (dH−H = 0.75 Å and
dH···H = 1.05 dH−H). This system is ideal for
demonstrating the convergence behaviors of BE
as discussed above. In a minimal basis of one
orbital per hydrogen, the system is half-filled
(i.e., Nocc/N = 1/2) and hence the embedding
stays in regime 1. As we increase the basis size
- which decreases the electron filling - the em-
bedding will begin in regime 1 for small frag-
ments, but transition into regime 2 for larger
fragments.
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Figure 2: Variation of absolute error of BE en-
ergy (per H2) with fragment size for (H2)15 in
STO-3G (red) and 6-31G (blue) bases. Dashed
curves are exponential fit.

The results for (H2)15 using a minimal (STO-
3G45) and a double-zeta (6-31G46) bases are
presented in Figure 2. The decay of BE energy
error in STO-3G is well-fitted to a single ex-
ponential function, confirming the embedding
staying in regime 1. For 6-31G, however, two
distinct regimes of exponential convergence are
observed, with the error decaying much faster in
regime 1. The transition occurs between n = 7
and 8, which is exactly when Nf starts exceed-

ing Nocc. In both cases, the extrapolated to-
tal energy using the data in regime 1 achieves
chemical accuracy (Table 1), highlighting the
efficacy of recovering valence electron correla-
tion. By contrast, the convergence of DMET0
energy is much noisier (Figure S1) and cannot
be effectively extrapolated.
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Figure 3: Variation of absolute error of BE en-
ergy (per H2) with fragment size for (H2)15 (red)
and (H2)30 (blue) in cc-pVDZ basis. Dashed
curves are exponential fit.

To further illustrate the convergence behav-
ior, we perform calculations for (H2)15 and
(H2)30 using a larger basis, cc-pVDZ,47 where
each hydrogen is described by five orbitals (two
1s’s and three 2p’s). The results are shown in
Figure 3. As in the 6-31G basis, a fast expo-
nential decay followed by a slower one is ob-
served here, but the transition between the two
regimes occurs much earlier due to the further
reduced electron filling (Nocc/N = 1/10). Un-
like in small bases, however, the early arrival
of regime 2 results in a relatively large error
even using fragments of 15 atoms. Further-
more, comparison of (H2)15 and (H2)30 demon-
strates that when SD-based embedding is ap-
plied to larger and larger systems, the tran-
sition from regime 1 to regime 2 comes later
and later. Thus, in a large molecule with a
large basis set, only the regime 1 behavior is
likely to be accessed. Unfortunately, as detailed
in the Supporting Information, extrapolation
based on the data in regime 1 is not accurate
for (H2)30, leading to errors on the order of tens
of kcal/mol both for BE and DMET0 (See Fig-
ure S7 and Table S1). We thus conclude that,
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as presently constructed, SD-based embedding
methods with mean field baths are only well-
suited to recovering the valence correlation in
molecular systems.
We should note that, in addition to the in-

trinsic inaccuracies addressed above, which are
quite general, there are some additional limi-
tations imposed by the artificial (H2)m chain
examples. First, in addition to the intrinsic dis-
entanglement in regime 2, the 2p orbitals per-
pendicular to the molecular chain also lead to
accidental disentanglement even in regime 1.16
Second, we find that the AOs on a given atom
are not very effective at capturing entanglement
with distant atoms (e.g. those separated by
several chemical bonds) leading to additional
linear dependence issues that get worse as m
increases. The result is that the error per H2 in
(H2)30 is significantly larger than in (H2)15 for
a given fragment size. For well-behaved cases
without linear dependence, we do not generally
observe this behavior. In the polyacetylene and
polyacene cases discussed below, for example,
for a given fragment size the error per atom is
essentially independent of molecular size (Fig-
ure S3 and Table 1).

Table 1: Error of extrapolated to-
tal correlation energy (units: kcal/mol)
of BE and DMET0 based on a series
of small-fragment calculations for sev-
eral molecules. MP2 correlation energy
(units: Ha) of the full-system is included
for reference. The extrapolation proce-
dure is described in Supporting Informa-
tion. A full list of fitted parameters can
be found in Table S1.

Molecule MP2 BE DMET0

Ha kcal/mol kcal/mol

(H2)15, SZ −0.28684 0.35 N/A
(H2)15, DZ −0.38172 0.41 N/A
C16H18 −1.43273 −1.33 −11.05
C20H22 −1.79128 −1.65 −17.70

Anthracene −1.23285 0.33 N/A
Tetracene −1.58976 −0.90 N/A
Pentacene −1.94788 −2.61 N/A

As a slightly more realistic example that can
still be treated with DMET we study poly-
acetylenes, in 6-31G basis.48 The results are
displayed in Figure S3. Overall, the conver-
gence patterns observed above hold here, too.
BE energy converges exponentially with frag-
ment size, leading to chemical-accuracy extrap-
olation (Table 1). By contrast, DMET0 energy
converges much more slowly and the extrapo-
lated errors are an order of magnitude higher
than BE. We emphasize that the BE matching
conditions play a crucial role here, as is evi-
dent from the slow convergence of the one-shot
BE energy (Figure S4). We also note that the
aforementioned linear dependence issues are not
significant in the small basis used here: calcu-
lations on 8-mer and 10-mer show similar accu-
racy.

1 2 3 4 5 6 7 8 9 10 11
Natom per fragment

-2.5
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-1.5
E c

or
r [

H
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Antracene
Tetracene
Pentacene
Ecorr

exact

Figure 4: BE correlation energy (dots) and the
exponential fit (dashed curves) according to eqn
(6) for three polyacene molecules in 6-31G ba-
sis. Fragments of 2 ∼ 5 atoms are used in the
fitting. The fitted parameters are listed in Ta-
ble S1, and the extrapolated results in Talbe 1.
Ecorr

exact denotes the full-system MP2 results.

The quasi-1D geometries used above
are not a requirement by our atom-based
fragment definition – they are chosen only
to facilitate the comparison with DMET. For
more complicated geometries, partitioning into
non-overlapping fragments becomes ambiguous,
and DMET (and other embedding methods) are
often used in a regional manner,19,25,49 which
works only if the chemistry of interest happens
in a confined region. As a proof of concept,
we study polyacenes in 6-31G basis, a system
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where all atomic groups are strongly coupled
through π-conjugation. Figure 4 shows the cor-
relation energy of BE using fragments contain-
ing up to five atoms. As in the quasi-1D sys-
tems, the exponential convergence of BE also
holds here, leading to accurate extrapolation
(Table 1).
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Figure 5: BE energy curves of the homolytic
cleavage of diphenylethane computed using 6-
31G basis and enlarging fragments up to five
atoms. The fragments determined at equilib-
rium geometry is used for all bond lengths to
avoid discontinuous change of energy. RHF (vi-
olet) and full-system MP2 (black) results are
also included for comparison. The y-axis is
shifted by the lowest point of the full-system
MP2 curve.

In addition to molecules at equilibrium geom-
etry, atom-based BE can handle bond dissoci-
ation as well. This is demonstrated in Figure
5 for the homolytic cleavage of diphenylethane,
(PhCH2)2 −−→ 2PhCH2 · , using a 6-31G ba-
sis. A frequent problem of applying embedding
methods to systems with varying geometries is
that the energy curves may be discontinuous
due to abrupt changes in fragment definition
as the structure changes. To address this, we
use the fragments determined at the equilib-
rium geometry for all calculations. As can be
seen, smooth energy curves are obtained for all
fragment sizes. Moreover, these curves converge
quickly and monotonically to the full-system re-
sults at an exponential rate (Figure S5), even
in the dissociated regime.
To summarize, we have presented Bootstrap

Embedding with an atom-based fragment defi-

nition that enables robust and black-box treat-
ment of arbitrary molecular geometries. Nu-
merical tests on various molecules suggest that
with a mean-field bath, atom-based BE shows
an exponential rate of convergence with frag-
ment size, and is efficient at recovering valance
electron correlation using extrapolation.
In the future, atom-based BE can be extended

in several directions. First, the slow conver-
gence of dynamic correlation energy in large
bases (due to intrinsic and/or accidental disen-
tanglement) could potentially be accelerated by
either augmenting the entangled bath with vir-
tual orbitals or adopting a better bath.22,23,32,33
Second, we can explore different local solvers
including configuration interaction,2 coupled-
cluster,3 and multi-reference50–52 methods that
might fit better to specific problems, as well
as mean-field baths for excited states.53–56 Last
but not least, it will be interesting to develop
efficient implementation for handling systems
of large size. With these potential future de-
velopments, we anticipate that atom-based BE
may become a low-scaling and highly accu-
rate approach to electron correlation in large
molecules.
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Supporting Information (i) Supplemen-

tary figures (Sec. S1); (ii) details of extrapo-
lation based on calculations using small frag-
ments (Sec. S2); (iii) more formal and detailed
discussion on BE (Secs. S3 – S8); (iv) geome-
tries of all molecules investigated in this work
(Sec. S9).
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