
LEARNING GRAPH PROCESSES WITH MULTIPLE DYNAMICAL MODELS

Qin Lu†, Vassilis N. Ioannidis†, Georgios B. Giannakis† and Mario Coutino‡

†Dept. of ECE and Digital Technology Center, University of Minnesota, USA
‡Dept. of EE, Mathematics and CS, Delft University of Technology, The Netherlands

ABSTRACT
Network-science related applications frequently deal with
inference of spatio-temporal processes. Such inference tasks
can be aided by a graph whose topology contributes to the
underlying spatio-temporal dependencies. Contemporary ap-
proaches extrapolate dynamic processes relying on a fixed
dynamical model, that is not adaptive to changes in the dy-
namics. Alleviating this limitation, the present work adopts
a candidate set of graph-adaptive dynamical models with
one active at any given time. Given partially observed nodal
samples, a scalable Bayesian tracker is leveraged to infer the
graph processes and learn the active dynamical model simul-
taneously in a data-driven fashion. The resulting algorithm is
termed graph-adaptive interacting multiple dynamical mod-
els (Grad-IMDM). Numerical tests with synthetic and real
data corroborate that the proposed Grad-IMDM is capable of
tracking the graph processes and adapting to the dynamical
model that best fits the data.

Index Terms— Spatiotemporal process, multiple dynam-
ical models, Bayesian tracker

1. INTRODUCTION

Given limited data at a subset of nodes, various applications
deal with inference of processes across all network nodes,
which can be tackled thanks to the underlying graph topology
that captures nodal inter-dependencies [6, 8]. While attempts
have been made towards this semi-supervised learning (SSL)
task, existing works either assume no dynamics or fixed dy-
namic pattern in the nodal process, rendering them incapable
of handling scenarios when dynamics change over time; see,
e.g., [4, 7, 14]. For example, stock prices, related via correla-
tion graphs, undergo different evolution patterns in periods of
economic depression and prosperity, and thus a universal dy-
namical model is not appropriate for tracking financial data.
Past works. Existing approaches to reconstructing time-
invariant graph processes often rely on the smoothness [9,16],
‘graph bandlimitedness’ [15], sparsity and overcomplete dic-
tionaries [5], most of which can be unified under the frame-
work of learning using graph kernels; see e.g., [14]. Towards
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SSL of time-varying processes over graphs, the property of
graph bandlimitness allows for extrapolation of nodal pro-
cesses in a dynamical model-free fashion; see, [4, 17]. Graph
kernel-based methods that leverage a single structured dy-
namical model have also been developed in [7,11]. In spite of
the aforementioned works, inference of nodal processes that
undergo changes in the dynamics has not been addressed so
far. Outside graph-based applications, changing dynamical
patterns also exist in the motions of maneuvering objects,
such as aircrafts and drones. Tracking these objects has been
well pursued relying on multiple dynamical models in the
field of target tracking; see, e.g., [2, 3].
Contributions. This paper considers a candidate set of
dynamical models to accommodate the changing dynam-
ics of graph processes, when the active one per slot is un-
known. Each dynamical model is characterized by a first-
order Markovian process that encodes in the graph topology
both temporal variations across slots as well as spatial corre-
lations per slot. Leveraging partially observed nodal samples,
this paper aims at jointly tracking the graph processes and
selecting the active model via the so-termed graph-adaptive
interacting multiple dynamical models (Grad-IMDM). Nu-
merical tests on synthetic and real data show the capability of
our Grad-IMDM in reconstructing the graph processes while
adapting to the best model on-the-fly.

2. PROBLEM FORMULATION

Consider a graph with N nodes collected in the vertex set
V := {1, . . . , N}. The connectivity pattern between nodes at
slot t is captured by the N ×N adjacency matrix At, whose
(n, n′)th entry is the nonnegative weight of the edge con-
necting node n with n′. The graph is considered undirected
with no self-loops, that is, A>t = At and At(n, n) = 0,
where > stands for transposition. The Laplacian matrix is
then Lt := diag(At1N ) − At, in which 1N is the N × 1
all-one vector. With T := {1, 2, ...} denoting the set of slot
indices, a dynamic graph process, which represents the time-
varying nodal feature, is the mapping x : V×T 7→ R. Specif-
ically, xt(n) may represent the price of stock n at day t in the
aforementioned stock network. The values over all nodes at
time t are collected in xt := [xt(1) . . . xt(N)]

>.
In several privacy-concerned or sampling-cost-limited ap-



plications, only a subset of the nodal samples is observed,
yielding the following observation model

zt = Hxt + et (1)

where H ∈ {0, 1}M×N is the M × N (M < N ) sampling
matrix, whose rows sum to 1, and et is zero-mean, temporally
independent, Gaussian noise with covariance matrix R.

Given the graph topologies {At}Tt=1 and the observations
ZT := [z1, . . . , zT ] over T slots, our objective is to extrapo-
late all the nodal features contained in XT := [x1, . . . ,xT ]. It
may be impossible to handle this SSL task when xt is nonsta-
tionary without building structured dynamical models that ac-
count for the spatiotemporal nature of the process. Attempts
that rely on a single dynamical model per graph have been
made towards this end; see, e.g., [7, 11]. However, these con-
temporary approaches fall short when the dynamics change
over time, such as the evolution patterns of stock prices in
periods of economic depression and prosperity.

To address this limitation, we account for possible spa-
tiotemporal dynamics by constructing multiple topology-
dependent dynamical models. Specifically, the evolution
from xt−1 to xt is modeled as the first-order vector process

xt = f lt(At)xt−1 + ηktt (2)

where the transition function f lt , taking as input the graph
topology At, is chosen from a given set {f1, . . . , fL} that
captures candidate temporal dynamics; and the spatial corre-
lation is accounted for through the zero-mean Gaussian noise
ηktt via its covariance (rkt(Lt))

† († for pseudo-inverse),
which is a Laplacian kernel [9]. Here the so-termed energy
mapping rkt is also selected from a known set {r1, . . . , rK},
which can promote desirable properties, such as diffusion,
smoothness, or bandlimitedness.

Considering all possible combinations for f lt and rkt

yields S = LK dynamical models per slot, with the unknown
active one indicated by (lt, kt), which can be mapped into
σt ∈ {1, . . . , S}. Hence, the active dynamical model at slot
t is given by the pair (Fσt

t ,K
σt
t ), where Fσt

t = f lt(At) and
Kσt
t = (rkt(Lt))

†. Given ZT and candidate dynamical mod-
els {{Fst ,Hs

t}Ss=1}Tt=1, our goal is adapted to estimate XT

and the active model indices (or modes) {σt}Tt=1 jointly. Cast
in the Bayesian framework, the objective function is chosen
to be the batch posterior probability density function (pdf)
p(XT |ZT ) ∝ p(ZT |XT )p(XT ). Temporal independence in
(1) and (2) allows for the factorizations of the batch likelihood
and prior as

p(Zt|XT ) =
T∏
t=1

p(zt|xt) =
T∏
t=1

N (zt;Hxt,R)

p(XT ) =

T∏
t=1

p(xt|xt−1) =
T∏
t=1

(
S∑
s=1

wstN (xt;F
s
txt−1,K

s
t )

)

where wst ∈ {0, 1}, wst = 1 if σt = s and
∑S
s=1 w

s
t = 1.

Thus, taking the logarithm of p(XT |ZT ) yields the fol-
lowing optimization problem

arg min
{xt}Tt=1

{{ws
t}

S
s=1}

T
t=1

1

2

T∑
t=1

[‖zt −Hxt‖2R+
S∑
s=1

wst ‖xt − Fstxt−1‖2Ks
t
]

s.to wst ∈ {0, 1},
S∑
s=1

wst = 1 (4)

which is identified as a mixed-integer program with pro-
hibitive computational complexity. Next, we will develop a
scalable solver that is also able to handle streaming observa-
tions.

3. GRAPH-ADAPTIVE BAYESIAN TRACKER

Aiming at a computationally efficient online solver of (4), we
will adapt the interacting multi-model algorithm [3], which is
a Bayesian tracker for maneuvering targets with applications
in target tracking [12] and air traffic control [10], but without
graph-related information. Relying on topology-dependent
dynamical models (2), our resultant approach is naturally
termed graph-adaptive interacting multiple dynamical model
(Grad-IMDM). Grad-IMDM starts by replacing the hard con-
straint wst ∈ {0, 1} with the soft one wst ∈ [0, 1], which
allows one to interpret it as the posterior probability mass
function (pmf) of mode s being active at slot t given Zt,
namely wst = Pr(σt = s|Zt). Furthermore, the evolving
mode σt is modeled with a first-order Markov chain parame-
terized by the S×S mode transition matrix Π, whose (s, s′)th
entry πss′ = Pr(σt = s|σt−1 = s′) denotes the transition
probability from mode s′ at slot t− 1 to mode s at slot t.

Grad-IMDM then leverages the current observation zt to
propagate the posterior marginal state pdf p(xt−1|Zt−1) to
p(xt|Zt), which, by invoking Bayes’ rule and the total prob-
ability theorem (TPT), is given by

p(xt|Zt) =
S∑
s=1

wst p(xt|σt=s,Zt) . (5)

To effect tractability, Grad-IMDM makes the Gaussian ap-
proximation p(xt|σt = s,Zt) ≈ N (xt; x̂

s
t|t,Σ

s
t|t), where x̂st|t

and Σs
t|t are the mode-conditioned posterior mean and co-

variance. Hence, p(xt|Zt) in (5) is approximated by a Gaus-
sian mixture (GM), that is characterized by the parameter set
Pt := {wst , x̂st|t,Σ

s
t|t, s = 1, . . . , S}. Consequently, the

propagation of posterior pdf (5) from slot t − 1 to t amounts
to the update of Pt−1 to Pt, which are implemented via the
prediction and correction steps described next.

Prediction. Given Pt−1, Grad-IMDM leverages the mode
and state evolution models to make predictions about the



mode-conditioned state pdf and the mode pmf, respectively.
1) Predictive mode-conditioned state pdf. Grad-IMDM pre-
dicts the state pdf conditioning on σt as

p(xt|σt = s′,Zt−1) = (6)
S∑
s=1

Pr(σt−1=s|σt = s′,Zt−1)p(xt|σt = s′, σt−1 = s,Zt−1)

where the first factor Pr(σt−1 = s|σt = s′,Zt−1) := w
s|s′
t−1|t

can be viewed as a backward mode transition probability,
while the second factor is the predicted state pdf conditioned
on mode s′ at slot t and mode s at slot t− 1. Upon appealing
to Bayes’ rule and the TPT, the first factor boils down to

w
s|s′
t−1|t =

Pr(σt−1 = s|Zt−1) Pr(σt = s′|σt−1 = s,Zt−1)
S∑
s=1

Pr(σt−1 = s|Zt−1) Pr(σt = s′|σt−1 = s,Zt−1)

=
wst−1πs′s
S∑
s=1

wst−1πs′s

. (7)

As for the second factor in (6), state equation (2) implies that

p(xt|σt = s′, σt−1 = s,Zt−1) = N (xt; x̂
s′,s
t|t−1,Σ

s′,s
t|t−1)

where the predictive mean and the covariance are respectively

x̂s
′,s
t|t−1 = Fs

′

t x̂st−1|t−1 (8a)

Σs′,s
t|t−1 = Fs

′

t Σs
t−1|t−1

(
Fs
′

t

)>
+ Ks′

t . (8b)

Although (7) and (8) yield the predicted GM pdf p(xt|σt =
s′,Zt−1), evolving it to its posterior in (6) is challenging, sim-
ply because a GM pdf is a non-Gaussian pdf. Towards obtain-
ing a tractable mode-conditioned Gaussian posterior, we will
approximate (6) by the following Gaussian pdf

p(xt|σt = s′,Zt−1) ≈ N (xt; x̂
s′

t|t−1,Σ
s′

t|t−1) (9)

where x̂s
′

t|t−1 and Σs′

t|t−1 are chosen to match the first two
moments of (6) as

x̂s
′

t|t−1 =
S∑
s=1

w
s|s′
t−1|tx̂

s′,s
t|t−1 (10a)

Σs′

t|t−1 =
S∑
s=1

w
s|s′
t−1|t

(
Σs′,s
t|t−1

+ (x̂s
′,s
t|t−1 − x̂s

′

t|t−1)(x̂
s′,s
t|t−1 − x̂s

′

t|t−1)
>
)
. (10b)

2) Predictive mode pmf. Given the Markov transition model,
Bayes’ rule and the TPT yield the predictive mode pmf

ws
′

t|t−1 :=Pr(σt = s′|Zt−1)=
S∑
s=1

Pr(σt = s′,σt−1 = s|Zt−1)

=
S∑
s=1

Pr(σt = s′|σt−1 = s,Zt−1)Pr(σt−1 = s|Zt−1)

=
S∑
s=1

πs′sw
s
t−1 . (11)

Correction. Grad-IMDM propagates the predictive pdf (9)
and pmf (11) to their posterior counterparts upon receiving
zt.
1) Posterior mode-conditioned state pdf. First, Bayes’ rule
updates the predictive state pdf (10) as

p(xt|σt = s′,Zt) = p(xt|σt = s′, zt,Zt−1)

=
p(xt|σt = s′,Zt−1)p(zt|xt, σt = s′,Zt−1)

p(zt|σt = s′,Zt−1)
(12)

where p(zt|xt, σt = s′,Zt−1) = p(zt|xt) by indepen-
dence. Since p(xt|σt = s′,Zt−1) and p(zt|xt) are Gaussian,
p(xt|σt = s′,Zt) will also be Gaussian with the first two
moments in (13d) and (13e) given by Kalman updates [2]

ẑs
′

t|t−1 = Hx̂s
′

t|t−1 (13a)

Φs′

t = HΣs′

t|t−1H
> + R (13b)

Gs′

t = Σs′

t|t−1H
>(Φs′

t )
−1 (13c)

x̂s
′

t|t = x̂s
′

t|t−1 + Gs′

t (zt − ẑs
′

t|t−1) (13d)

Σs′

t|t = Σs′

t|t−1 −Gs′

t Φs′

t

(
Gs′

t

)>
. (13e)

2) Posterior mode pmf. Then, the mode probabilities are up-
dated as

ws
′

t = Pr(σt = s′|zt,Zt−1)

=
p(zt|σt = s′,Zt−1)w

s′

t|t−1
S∑
s=1

p(zt|σt = s,Zt−1)wst|t−1

(14)

where ws
′

t|t−1 is given by (11) and p(zt|σt = s′,Zt−1) =

N (zt; ẑ
s′

t|t−1,Φ
s′

t ) from (13a) and (13b), thus rendering (14)
computable.

Finally, the marginal posterior state pdf is

p(xt|Zt) =
S∑

s′=1

ws
′

t N (xt; x̂
s′

t|t,Σ
s′

t|t) ≈ N (xt; x̂t|t,Σt|t)

where the single Gaussian approximant of GM has moments

x̂t|t =
S∑

s′=1

ws
′

t x̂s
′

t|t (15a)

Σt|t =

S∑
s′=1

ws
′

t

(
Σs′

t|t + (x̂s
′

t|t − x̂t|t)(x̂
s′

t|t − x̂t|t)
>
)
.

(15b)
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Fig. 1: Posterior model pmfs of Grad-IMDM for synthetic
data.

The desired nodal feature estimate is given by (15a), whose
covariance matrix (15b) provides additional uncertainty quan-
tification.

4. EXPERIMENTAL RESULTS

The performance of the proposed Grad-IMDM approach is
assessed on synthetic and real data. The performance met-
ric is the normalized mean-square error (NMSE) over unob-
served nodes as NMSE(t) := ‖Hc

(
x̂t|t − xt

)
‖22/‖Hcxt‖22,

where Hc is the sampling matrix for the unobserved nodes.
1) Synthetic Data. A dynamic process is generated over a
graph havingN = 60 nodes and adjacency matrix A given by
an undirected Erdös-Rényi random graph with edge existence
probability 0.2. Process xt is generated according to (2) with
f lt(A) = clt(A+ IN ), where clt = 1 for t ∈ [1, 5]∪ [11, 15]
and clt = 1.5 for t ∈ [6, 10]. Process noise covariance
(rkt(Lt))

† is a diffusion kernel (see in [7, Table I]) with pa-
rameter 2. The observations adhere to (1) with M = 30,
H = [IM ,0M,N−M ] and R = 4IM . To evaluate the average
performance, 100 Monte-Carlo runs are conducted with in-
dependent realizations of the process and observation noises.
As shown in Fig. 1 which reports the posterior model pmfs,
the proposed Grad-IMDM selects the right dynamical model
adaptively on-the-fly. This observation is further validated by
Fig. 2, where Grad-IMDM demonstrates comparable tracking
performance to the model-clairvoyant oracle approach — the
kernel Kalman filter (KKF) [13].
2) Real Data. This dataset records measurements of delays in
N = 70 paths, each of which connects two of 9 end-nodes
via a subset of 26 directed links on the Internet2backbone
[1]. A symmetric graph adjacency matrix is constructed as
in [7] with the weight reflecting the similarity of links be-
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Fig. 2: NMSE for synthetic data.
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Fig. 3: NMSE for network delay data.

tween two paths. The state transition matrix is selected to be
Fltt = clt(Aσt + IN ), where the unknown scalar clt takes
value from 0.15 to 0.2 uniformly spaced by 0.01. Process
noise covariance Kkt

t is chosen from a set of diffusion ker-
nels with parameter σkt taking value from 1 to 2 with uniform
spacing equal to 0.2. The observation matrix is constant per
t with M = 20 sampled nodes. The tracking performance
is averaged over 100 realizations of the sampling schemes.
The competing approaches include the single -model KKF
with clt = 0.2 and σkt = 1.8, and the adaptive least mean-
square (LMS) algorithm [4], which tracks slow-varying B-
bandlimited graph signals. Figs. 3 and 4 showcase the su-
perior tracking performance of our novel Grad-IMDM com-
pared with the rest two competing alternatives.
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5. CONCLUSIONS

This contribution dealt with SSL of dynamic graph processes
using multiple topology-dependent dynamical models, each
of which accounts for a certain spatiotemporal property. With
sequential arrival of observations over a subset of nodes, a
graph-adaptive Bayesian tracker, termed Grad-IMDM, was
developed to reconstruct the unobserved nodal features and
select the fitted dynamical model jointly. Numerical tests on
synthetic and real data corroborated the outstanding perfor-
mance of the novel Grad-IMDM approach..
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