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ABSTRACT

The interconnection of social, email, and media platforms en-
ables adversaries to manipulate networked data and promote
their malicious intents. This paper introduces graph neural
network architectures that are robust to perturbed networked
data. The novel network utilizes a randomization layer that
performs link-dithering (LD) by adding or removing links
with probabilities selected to boost robustness. The resultant
link-dithered auxiliary graphs are leveraged by an adaptive
(A)GCN that performs SSL. The proposed robust LD-AGCN
achieves performance gains relative to GCNs under perturbed
network data.

Index Terms— Deep neural networks, graph convolu-
tional networks, graph signals, dithering, robust learning.

1. INTRODUCTION

Deep learning with graph data achieved remarkable results in
a variety of network science tasks. Semi-supervised learning
(SSL) aims at predicting nodal attributes across all nodes
given the values of those attributes at a subset of nodes
and the network connections among nodes. A relevant ex-
ample is protein-to-protein interaction networks, where the
proteins (nodes) are associated with specific biological func-
tions, thereby facilitating the understanding of pathogenic
and physiological mechanisms.

Graph-based SSL methods typically utilize a variety of
assumptions such as ‘smoothness’ that implies that connect-
ing nodes have similar labels. Hence, leveraging the topol-
ogy of the network as a regularizer for learning is highly
motivated and typically increases classification performance.
Graph-induced smoothness may be captured by kernels on
graphs [1, 2]; or via bandlimited models as in graph signal
processing, where the signal of interest lies in a low rank
space of the Laplacian or adjacancy matrix [3, 4].

Recently, a number of deep learning based approaches in-
corporate the graph in the neural network architectures and
achieved state-of-the-art results [5, 6, 7, 8, 9, 10]. These
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contemporary approaches learn features in a data-driven fash-
ion and reveal properties of the graph data. Graph-attention
mechanism further capitalize on the available data and give
attention to ‘important’ edges [11].

Despite the success of these contemporary graph convo-
lutional networks (GCN)s, recent results indicate that pertur-
bations of the graph topology or nodal features may severely
deteriorate their classification performance [12, 13, 14, 15].
The ever-expanding interconnection of social, email, and
media service platforms presents an opportunity for adver-
saries manipulating networked data to launch malicious at-
tacks [16, 17, 12]. Structural attacks target a subset of nodes
and modify their links to promote miss-classification of tar-
geted nodes [12].
Contributions. This paper develops a robust deep learning
framework for SSL. Given the perturbed unweighted graph,
multiple auxiliary graphs are drawn by dithering (adding or
removing) links with probabilities selected to boost robust-
ness. The novel link-dithering (LD) approach reconstructs the
original neighborhood structure with high probability (w.h.p.)
as the number of sampled graphs increases. LD can be ap-
plied even in the absence of nodal features. Towards robust
SSL, an adaptive GCN architecture is designed to process the
multiple graphs and unveil features originating from unper-
turbed neighborhoods. Experiments with real-data show the
gains of the proposed LD-AGCN compared to GCN when the
original graph is perturbed.

2. MODELING AND PROBLEM FORMULATION

A graph is denoted as G := (V,S) of N nodes, with V :=
{v1, . . . , vN} the vertex set, and S the N × N adjacency
matrix capturing edge connectivity. Specifically, if an edge
connects vn and v′n then Snn′ = 1, and 0 otherwise. The
graphs considered here do not have self-loops, which means
that Snn = 1, ∀n. The neighborhood of vn is

Nn := {n′ : Snn′ 6= 0, v′n ∈ V}. (1)

The perturbed graph is G̃ := (V, S̃) with corresponding
adjacency S̃ := S + Š. The entries of the perturbation matrix



Š are defined as follows

Šnn′ =


1, if Snn′ = 0 and S̃nn′ = 1

−1, if Snn′ = 1 and S̃nn′ = 0

0, otherwise
(2)

Evidently, an link insertion corresponds to Šnn′ = 1, an link
deletion to to Šnn′ = −1, and when no perturbation is ob-
served to Šnn′ = 0. These perturbed links have a signifi-
cant impact on the SSL performance, since these modify the
neighborhood of the nodes. The number of perturbed edges
is usually constrained, since either the adversary aims at un-
noticeable changes or the noise during graph construction is
limited. Hence, the number of perturbed edges (nonzero el-
ements in Š) is small relative to the original number of links
(nonzero elements in S).

Associated with the n-th node is an F ×1 vector xn hold-
ing the features of node n. The matrix X := [x>1 , . . . ,x

>
N ]>

holds these feature vectors. A label yn ∈ {0, 1, . . . ,K − 1}
is also considered for node n, which may capture the political
beliefs of a person. The “one-hot” representation of the labels
is the N ×K matrix Y.

Given the perturbed topology S̃, X, and {yn}n∈L with
L ⊂ V , where L is a subset of labeled nodes, the goal of this
work is to design robust GCN architectures.

3. LINK DITHERING

Perturbed links modify the neighborhood structures of nodes,
which leads to significant degradation in the performance
of GCNs [12]. This section develops a link-dithering (LD),
where auxiliary graphs are created with probabilities designed
to enhance robustness. The goal of the LD layer is to restore
a node’s initial graph neighborhood. We permeate ideas from
visual and audio applications, where dithering refers to in-
tentional injection of noise with the goal of converting the
quantization error to random noise. Subsequently, techniques
as whitening are employed to alleviate the effects of random
noise [18].

Permeating the benefits of dithering towards robustifying
GCNs, we generate LD graphs {Gi}Ii=1. Each auxiliary graph
Gi := (V,Si) is a dithered version of the perturbed graph G̃,
where the links in Si are selected in a probabilistic fashion as
follows

Snn′i =

{
1 wp. q

δ(S̃nn′=1)
1 (1− q2)

δ(S̃nn′=0)

0 wp. q
δ(S̃nn′=0)
2 (1− q1)

δ(S̃nn′=1)
(3)

where δ(·) is the indicator function, q1 := Pr(Snn′i =
1|S̃nn′ = 1) and q2 := Pr(Snn′i = 0|S̃nn′ = 0). If n and n′

are connected in the perturbed graph G̃, the link connecting
n with n′ is deleted with probability 1 − q1. Otherwise, if
(S̃nn′ = 0), a link between n and n′ is created with probabil-
ity 1− q2.

Link dithering (q1, q2, I)

Corrupted graph Ḡ

· · ·

· · ·

G1 G2
GI

: True links
: Corrupted links

: Democrat
: Republican

Fig. 1: LD in operation on a perturbed social network among
voters. Black solid links are the true links and dashed red
links represent perturbed links.

The ith LD graph neighborhood of nodes n is as follows

N (i)
n := {n′ : Snn′i 6= 0, v′n ∈ V}. (4)

The LD graphs give raise to different neighborhoods N (i)
n ,

and the role of LD is to ensure that the unperturbed neigh-
borhood of each node will be present with high probability
(w.h.p.) in at least one of the I graphs. For the following
consider that there is the no-self links are created from the
perturbation, i.e. S̃nn = 0, ∀n.

Remark 1 W.h.p., there exists one LD graph where a per-
turbed link will be restored to its initial value. Since, each Gi
is independently drawn, it holds that

Pr

( I⋃
i=1

(Snn′i = 0)
∣∣∣S̃nn′ = 1, Snn′ = 0

)
= 1− qI1

Pr

( I⋃
i=1

(Snn′i = 1)
∣∣∣S̃nn′ = 0, Snn′ = 1

)
= 1− qI2

Further, it can be shown that local neighborhood for each
node will be recovered w.h.p. in at least one LD graph. The
high probability claim holds as I increases. Nevertheless, ex-
periments demonstrate that even with a small I the use of LD
boosts classification performance. The operation of the LD
module is detailed in Fig. 1. Note that the proposed LD does
not require availability of nodal feature vectors. The gener-
ated graphs have to be processed by a dedicated architecture
that promotes the learned features from unperturbed nodal
neighborhoods.

4. LD-AGCN ARCHITECTURE

Aiming at robust SSL, the multiple LD graphs are processed
by an adaptive GCN architecture. The input information is



processed by a succession ofL hidden layers. Each of the lay-
ers is composed by a conveniently parametrized linear trans-
formation, a scalar nonlinear transformation, and, oftentimes,
a dimensionality reduction (pooling) operator. The intuition
is to combine nonlinearly local features to progressively ex-
tract useful information [19]. GCNs tailor these operations to
the graph that supports the data [5], including the linear [20],
nonlinear [20] and pooling [7] operators.

First, the operation of the lth intermediate layer is pre-
sented. The N × I × P (l−1) tensor Ť

(l−1)
represents the

input to the layer, whereas the N × I ×P (l) tensor is the out-
put of the layer Ť

(l)
that holds the P (l) × 1 feature vectors

ť
(l)
ni , ∀n, i, with P (l) being the number of output features at

l. The mapping from Ť
(l−1)

to Ť
(l)

is split into two steps:
(i) A linear transformation that maps the N × I ×P (l) tensor
Ť

(l−1)
into theN×I×P (l) tensor T(l); (ii) and a scalar non-

linear transformation that is applied to each element of T(l) as
Ť

(l)

inp := σ(t
(l)
inp). A common choice for σ(·) is the rectified

linear unit (ReLU), i.e. σ(c) = max(0, c) [19]. Hence, the

main task is to define a linear transformation that maps Ť
(l−1)

to T(l) and is tailored to process the multiple LD graphs.
Convolutional NNs (CNNs) typically employ a small

number of weights and then extract the learnable feature
as a convolution of the input with these weights [19]. The
convolution operation combines values of close-by inputs
(consecutive time instants, or neighboring pixels) and thus
extracts information of local neighborhoods. GCNs have
generalized CNNs to operate on graph data by replacing
the convolution with a graph convolution (or graph filter) [5].
The graph filter is usually a polynomial function of the Lapla-
cian or adjacency matrix and captures certain properties of
the input features. The graph convolution preserves locality,
reduces the degrees of freedom of the transformation, and
leverages the structure of the graph. In this work, the graph
convolution operation has to be adapted to account for the
multiple dithered graphs.

First, a neighborhood aggregation module is considered
that combines linearly the information within a LD graph
neighborhood. Since the neighborhood depends on the par-
ticular LD graph (4), we obtain for the i-th graph

h
(l)
ni :=

∑
n′∈N (i)

n

Snn′iť
(l−1)
n′i . (5)

While the entries of h(l)
ni depend only on the one-hop neigh-

bors of n (one-hop diffusion), the successive application of
this operation across layers will increase the reach of the dif-
fusion, spreading the information across the network. Specif-
ically, consider the r power of the shift matrix Sr. Indeed,
the vector Srx holds the linear combination of the values of
x in the r-hop neighborhood [4]. After defining the matri-
ces Sri := S

(r)
i for r = 1, . . . , R, i = 1, . . . , I , consider the

following parametrized mapping

h
(l)
ni :=

R∑
r=1

∑
n′∈N (i)

n

c
(r)
i S

(r)
nn′iť

(l−1)
n′i , ∀n, i. (6)

where the learnable coefficients {c(r)i }Rr=1 weight the effect
of the correspoding r-th hop neighbors for graph i.

The extracted feature h
(l)
ni captures the diffused input per

edge dithered graph i. The importance of a particular feature
will depend on the inference task at hand. The learning al-
gorithm should adapt to and the prevalent features. Towards
that end, a graph adaptive module is introduced to adapt the
different graphs and combine h

(l)
ni across i as follows

g
(l)
ni :=

I∑
i′=1

R
(l)
ii′nh

(l)
ni′ (7)

where R(l)
ii′n mixes the outputs at different graphs. The com-

bining scalars R(l)
ii′n unveil the features originating from LD-

graphs that best fit the data. Our LD-AGCN design aspires to
give larger weights to features that correspond to minimally
perturbed graphs. Clearly, if prior information on the depen-
dence among relations exists, this can be used to constrain the
structure R (e.g., by imposing to be diagonal or sparse).

Finally, the LD adaptive features are mixed using a feature
aggregation module as follows

t
(l)
inp :=g>niw

(l)
ni′p, (8)

where the P (l−1) × 1 learnable vector w(l)
ni′p mixes the fea-

tures.
Regarding layer l = 1, the input Ť

(0)
is defined using X

as ť(0)ni = xn for all n, i. On the other hand, the output of our
LD-AGCN is obtained as follows

Ŷ := g(Ť
(L)

;θg), (9)

where g(·) is a nonlinear function, Ŷ is anN×K matrix, Ŷn,k
represents the probability that yn = k, and θg are trainable
parameters.

The proposed architecture depends on the aforementioned
learnable weights, which are estimated by minimizing the dis-
crepancy between the estimated labels and the given ones.
The learning algorithm will assign larger combining weights
to the least perturbed topologies. The back-propagation [21]
is employed to minimize the classification error. The compu-
tational complexity of evaluating each back-propagation up-
date scales linearly with the number of nonzero entries in S
(links).

5. NUMERICAL TESTS

We test the proposed AGCN with L = 3, P (1) = 64, P (2) =
8, and P (3) = K. The following experiments test the robust-



Dataset Nodes N Classes K |L|
Cora 2,708 7 140

Citeseer 3,327 6 120
Pubmed 19,717 3 30
Polblogs 1,224 2 24

Table 1: Graph datasets

Dataset Method Number of attacked nodes |T |
20 30 40 50 60

Citeseer GCN 60.49 56.00 61.49 56.39 58.99
AGCN 70.99 56.00 61.49 61.20 58.66

Cora GCN 76.00 74.66 76.00 62.39 73.66
AGCN 78.00 82.00 84.00 73.59 74.99

Pubmed GCN 74.00 71.33 68.99 66.40 69.66
AGCN 72.00 75.36 71.44 68.50 74.43

Polblogs GCN 85.03 86.00 84.99 78.79 86.91
AGCN 84.00 88.00 91.99 78.79 92.00

Table 2: Classification accuracy in percent for nodes in T for
different numbers of attacked nodes.

ness of AGCN to random graph perturbations and adversar-
ial attacks. AGCN utilizes our novel link dithering module
to generate multiple LD graphs and alleviate for the pertur-
bations on the graph links. Four network datasets [22] are
employed; see also Table 1.

5.1. Robustness of AGCN to random graph perturbations

For this experiment, the same split of the data in train, valida-
tion, and test sets as in [8] is employed o facilitate comparison
with GCN. The perturbed graph S̃ is constructed by inserting
new links in the original graphs between a random pair of
nodes nn′ that are not connected in S, i.e. Snn′ = 0. The
added links can be regarded as drawn from Bernoulli distri-
bution. AGCN utilizes the multiple LD graphs generated via
the LD module with I = 10, q1 = 0.9, and q2 = 1 since no
link is deleted in S̃.

Fig. 2 demonstrates the classification accuracy of the
GCN [8] compared to the proposed AGCN as the number
of perturbed links is increasing. Evidently, AGCN utilizes
the novel LD module, and achieves robust SSL compared to
GCN. Surprisingly, even when no links are perturbed, AGCN
outperforms GCN. This observation may be attributed to
noisy links in the original graphs, which hinder classification
perfomance. Furthermore, SSL performance of GCN signif-
icantly degrades as the number of perturbed links increases,
which suggests that GCN is challenged even by “random
attacks”.

5.2. Robustness to adversarial attacks on links

The original graphs in Cora, Citeseer, Pubmed, and Polblogs
were perturbed using the adversarial setup in [12], where
structural attacks are effected on attributed graphs. These
attacks perturb connections adjacent to T a set of targeted
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Fig. 2: Classification accuracy for increasing number of per-
turbed links.

nodes by adding or deleting links [12]. Our LD module uses
I = 10 sampled graphs with q1 = 0.9, and q2 = 0.999. For
this experiment, 30% of the nodes are used for training, 30%
for validation and 40% for testing.1

Table 2 reports the classification accuracy of GCN and
AGCN for different number of attacked nodes (|T |). Differ-
ent from Fig. 2 where the classification accuracy over the test
set is reported, Table 2 reports the classification accuracy over
the set of attacked nodes T . It is observed that the proposed
AGCN is more robust relative to GCN under adversarial at-
tacks [12]. This finding justifies the use of the novel LD in
conjunction with the AGCN that judiciously selects extracted
features originating from non-corrupted neighborhoods.

6. CONCLUSIONS

This paper put forth a robust deep learning framework for
SSL, which utilized a LD module that performs random
dithering to links with probabilities selected to restore a
node’s original neighborhood with high probability. The aux-
iliary link-dithered graphs are combined and jointly exploited
by the novel AGCN. Experiments demonstrate the perfor-
mance gains of AGCN in the presence of random as well as
adversarial link perturbations.

1The nodes in T are in the testing set.
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[11] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Lio, and Y. Bengio, “Graph attention networks,” in
Proc. Int. Conf. on Learn. Represantions, 2018.
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