Fast LAV Estimation via Composite Optimization

Gang Wang and Gerogios B. Giannakis
Department of ECE and Digital Technology Center
University of Minnesota
Minneapolis, MN 55455, USA
E-mails: {gangwang, georgios} @umn.edu

Abstract—Accurate and robust power system state estimation
(PSSE) is an essential prerequisite for reliable operation of smart
power grids. In contrast to the commonly employed weighted least
squares (WLS) one, the least-absolute-value (LAV) estimator is
well documented for its robustness. Due to the non-convexity
and non-smoothness however, existing LAV implementations are
typically slow, thus inadequate for real-time system monitoring.
In this context, this paper puts forward a novel LAV estimator
leveraging recent algorithmic advances in composite optimization.
Concretely, the estimator is based on a proximal linear procedure
that deals with a sequence of convex quadratic problems, each
efficiently solvable by means of either standard convex optimiza-
tion methods, or the alternating direction method of multipliers.
Simulated tests using two IEEE benchmark networks showcase
its improved robustness and computational efficiency relative to
several competing alternatives.

I. INTRODUCTION

Accurately monitoring the power grid’s operating condition
is central to a number of control and optimization tasks,
including optimal power flow, reliability and contingency
analysis, and network expansion planning [1]. Current power
grids are primarily monitored by supervisory control and data
acquisition (SCADA) systems. Parameter uncertainty, instru-
ment mis-calibration, delays, and unreported topology switches
can yield grossly corrupted SCADA measurements (a.k.a. bad
data) [2]. Designed for functionality and efficiency yet with
little attention paid to security, today’s SCADA systems are
vulnerable to cyberattacks [3]. Bad data can also come in the
form of purposeful manipulation of smart meter readings, as
asserted by the first hacker-caused power outage: the 2015
Ukraine blackout [4]. Any of these events can occur which
will cause a given data collection to be much more inaccurate
than is assumed by our mathematical models. In the smart grid
context, robust PSSE methods against cyber threats are thus
well motivated.

Commonly adopted PSSE criteria consist of the weighted
least-squares (WLS) and the least-absolute value (LAV) [1].
However, WLS estimators are sensitive to bad data [2], which
may yield poor estimates in the presence of outliers. This
issue was to some extent mitigated by incorporating the
largest normalized residual (LNR) test for bad data removal
[2], or, by reformulating WLS into a semidefinite program
via convex relaxation [5], [6]. The least-median-squares and
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the least-trimmed-squares estimators have provably improved
performance under certain conditions [7]. Unfortunately, their
computational and storage requirements scale unfavorably with
the number of buses in the network [8].

On the other hand, LAV estimators simultaneously identify
and reject bad data while acquiring an accurate estimate of
the state [9]. Recent efforts have focused on coping with the
non-convexity and non-smoothness in LAV estimation. Upon
linearizing the nonlinear measurement functions at the current
iterate, a series of linear programs was solved in [9]. Sugges-
tions for improving the linear programming by exploiting the
system’s structure [10], or by iterative reweighting [11] have
also been reported. Despite these efforts, LAV estimators have
not been widely employed yet in today’s power networks due
mostly to their computational inefficiency.

LAV-based PSSE is revisited in this paper from the
viewpoint of composite optimization [12], which considers
minimizing functions f(v) = h(c(v)) that are compositions
of a convex function h, and a smooth vector function c. A
novel LAV estimator is developed based on a proximal linear
(prox-linear) procedure. Concretely, it involves minimizing a
sequence of convex quadratic subproblems, constructed from
a linearized approximation to f and a quadratic regularization.
Each subproblem can be efficiently solved via either off-the-
shelf solvers, or, the alternating direction method of multipliers
(ADMM) as we will elaborate on.

Notation. Matrices (column vectors) are denoted by upper-
(lower-) case boldface letters; e.g., I (1) are identity matrices
(all-one vectors) of suitable dimensions. Symbol (-} ((-})
represents (Hermitian) transpose, while $(-) (3(+)) takes the

real (imaginary) part of a complex number.

II. GRID MODELING AND PROBLEM FORMULATION

An electric grid having N buses and L lines is modeled
as a graph G = (W, &), whose nodes N := {1,2,..., N}
correspond to buses and whose edges £ = {(n,n’)} C
N x N correspond to lines. The complex voltage per bus
n € N is expressed in rectangular coordinates as v, =
R(vn) + jS(vy), with all nodal voltages forming the vector
vi=[v; - on|" eCV.

The voltage magnitude square V,, := |v,]?> = R2(v,) +
32%(v,,) can be written as a quadratic function of v, namely

Vo, =v*H v, with HY :=e,e] €))

n

where e,, denotes the n-th canonical vector in RY. To express
power injections as functions of v, introduce the so-termed



bus admittance matrix Y = G +jB € CN [1]. In rectangular
coordinates, the active and reactive power injections p,, and
gn per bus n can be compactly given by

Y*e,e! +e,el Y

pp = Vv'THPv, with HE = 5 (2a)
YH n T _ - TY
g = vVIHIv, with H? .= — % “Cnn T o)
n n 2]

Recognize that the line current from bus n to n’ at the
sending end obeys I, = eZL—n,if = eZL—",YfV, where iy €
CI€! collects all line currents, and Y, € CIEIXN relates the
bus voltages to all line currents at the sending end. Ohm’s

and Kirchhoff’s laws assert that the sending end power flow
over line (n, n’) can be expressed as §£n, =P/, Q! =

Wiﬁn/ = (vte,)(e] ,is) = vie,e] Y v, yielding

H T T
P/, =v"HP v, with HY, .= Yy ennen el ¥y

n nn’ nn' 5
(3a)

YHe /eT —e eT /Y
Qin’ = VHHSHIV, with Hgn/ = f=nn n2 : nenn f‘
(3b)

The active and reactive power flows measured at the receiving
end P!, and Q' , can be written symmetrically to P , and
Qf;n,; and hence, they are omitted here for brevity.

Given line parameters collected in Y and Y, all SCADA
data including squared voltage magnitudes as well as active
and reactive power injections and flows can be expressed as
quadratic functions of v € CV. This justifies why v is referred
to as the system state. If Sy, S,, S, ST, SCJ;, Sp, and S,
signify the meter locations of the corresponding type, we have
available the following (possibly noisy or even corrupted) mea-

surements: {Vy nesy > {ntnes, {@n}nes,» 1P} nne st
{Qin/}(mn/)egéa {Prtln’}(n,n’)eSjjv and {Q;n’}(n,n’)ES‘Q’

henceforth concatenated in the vector z € RM, where M is
the total number of measurements.

In this paper, the following data corruption model is con-
sidered [13]: If {¢;} € R models an arbitrary attack sequence,
given the measurement matrices {H,,}}_, in (1)-(3a), we
observe for 1 < m < M the samples

o~ viH,,v if m € Zrom @)
m ™~ gm if m c Iout

where additive measurement noise can be included if ~ is
replaced by equality, and sets Z"°™, Z°% C {1,2,..., M}
collect the indices of nominal data and outliers, respectively.
In other words, Z°“ is the set of meter indices that can be
compromised. Indices in Z°%* are assumed chosen randomly
from {1,2,...,M}. Instrument failures occur at random,
although the attack sequence {&,,} may rely on {H,,} (even
adversarially). Specifically, we assume for the attacks that

M1) Matrices {H,,}»_, are independent of {&,,}M_,.

It is worth highlighting that the model M1) requires full
independence between the corruption and measurements. That
is, the attacker may only corrupt &,,, without knowing H,,.

Having outlined the system and corruption models, PSSE
can be stated as follows: Given Y, Yy, and measurements
collected in z € RM, recover v € CV. The first attempt may
be seeking the WLS estimate, or the ML one when assuming
independent additive Gaussian noise [14]. It is known however
that the WLS criterion is sensitive to outliers, and may yield
very poor estimates even if there are very few grossly corrupted
measurements [2]. As is well documented in statistics and op-
timization, the ¢;-based losses yield median-based estimators
[15], and they handle gross errors in the measurements z in
a relatively benign way. Prompted by this, we will consider
here minimizing the ¢; loss of the residuals, which leads to
the so-called LAV estimate [9]

M
. 1 ”
mlvnelén;ze f(v):= i g ’v H,v— zm‘ . 5)

m=1

Because of {v*H,,v}}_, and the absolute-value operation,
the LAV objective is non-smooth, non-convex, and not even
locally convex near the optima +v*. This is clear from the
real-valued scalar case f(v) = |[v*v—1]|, where v € R. A local
analysis based on convexity and smoothness is impossible, and
f(v) is in general difficult to minimize. For this reason, Gauss-
Newton is not applicable to minimize (5). Nevertheless, the
criterion f(v) possesses several unique structural properties,
which we will exploit next to develop efficient algorithms.

Remark 1. For an N-bus power system, most existing PSSE
approaches have relied on optimizing over (2N — 1) real
variables, which consist of either the polar or the rectangular
components of the complex voltage phasors after excluding the
angle or the imaginary part of the reference bus that is often set
to 0. Nevertheless, when iterative algorithms are used, working
directly with the N-dimensional complex voltage vector has in
general lower complexity and computational burden than in the
real case. This is due to the compact quadratic representations
of all SCADA quantities in complex voltage phasors, namely
the natural sparsity of quadratic measurement matrices in the
unknown complex voltage phasor vector.

III. PROX-LINEAR LAV ESTIMATOR

In this section, we will develop an efficient solver for (5).
Toward this objective, we start rewriting the function in (5) as

minimize f(v) := h(c(v)) (6)
veCcnN

the composition of a convex function h : R — R, and
a smooth vector function ¢ : CN — RM, a structure
that is known to be amenable to efficient algorithms [12].
Evidently, this general form subsumes (5) as a special case,
for which we can take h(u) = (1/M)||ully and ¢(v) =
[VHHmV - zm] L<m< - This unique compositional structure
lends itself well to a proximal linear algorithm, which can
be viewed a variant of the Gauss-Newton iterations [12].
Specifically, define close to a given v the local “linearization”
of f as

fv(w) = h(c(v) + %(VHC(V)(W — v))) 7

where Ve(v) € CV*M denotes the Jacobian matrix of ¢ at
v based on Wirtinger derivatives for functions of complex-
valued variables [16, Appendix]. In contrast to the nonconvex



f(v), function f,(w) in (7) becomes convex, which is the key
behind the prox-linear method. Starting with some vy, e.g. the
flat-voltage profile point 1, construct the iteration

. 1
Vit := arg min {fv,, (v) + 50 lv — vt||§} 8)
veCN 1243

where p; > 0 is a stepsize that can be fixed in advance, or be
determined by a line search.

Evidently, the subproblem (8) to be solved at every iteration
of the prox-linear algorithm is convex, and can be handled
by standard convex programming methods. However, these
interior-point based solvers may not scale well when the
matrices {H,,} are large. For this reason, we derive next a
more efficient iterative procedure using ADMM iterations [17].

When specifying f to be the LAV objective of (5), the
minimization in (8) becomes

. 1 2
Vit1=arg Vrg(lcl}v [R(AL(v — Vi) — Ct”ﬁ‘i”" —villy )
with coefficients given by
A= [(2Nt/M)VZAHm]1gm§M
co = [(e/M)(zm = VIHRV)] g -

For brevity, let w := v — vy, and rewrite (9) equivalently as a
constrained optimization problem

(10a)
(10b)

C 1 2
Jinimize - [R(w) —edly + 5 [wlz (11a)
subject to A;w = u. (11b)

To decouple constraints and also facilitate the implementation
of ADMM, introduce an auxiliary copy u and w for u and w
accordingly, and rewrite (11) into

- 1, .
minimize [R(®) el + 5 W] (122)
subject to u=u, w=w, A;w =u. (12b)

Letting A € CV and v € CM be the Lagrange multi-
pliers corresponding to the w- and u-consensus constraints,
respectively, the augmented Lagrangian after leaving out the
last equality in (12b) can be expressed as

. i 1, i
£, 1w, A, v) = [R()— ol + 5 W13+ 2 - wi
+8‘E(AH(€V—w))+§R(VH(ﬁ—u))+g||ﬁ—u||§ (13)

where p > 0 is a predefined step size. With & € N denoting the
iteration index for solving (11), or equivalently (8), ADMM
cycles through the following recursions

1 -
whtl ::arg;nin{2||vv||§ + g % — (wh — Ak)Hj} (14a)

! :=argﬁlin{;|%(ﬁ) — e+ § [l -t =),
(14b)
{whtl uk+) =
argmin ||w — (WFH! + Ak)”; + flu— @+ Vk)”;

subject to Ayw = u (14¢)

ket Uk 4 (@E D — ub ) (14d)

where all the dual variables have been scaled by p > 0 [17].

|:Ak+1:| _ |:)\k + (\Xlk+1 _Wk'+1)

Interestingly enough, the solutions of (14a)-(14c) can be
provided in closed form, as we elaborate in the following two
propositions, whose proofs will be provided in our full paper
due to space limitation.

Proposition 1. The solutions of (14a)-(14b) are respectively
~ k41 P k k
W= —— (W — A
I+p ( )
@ = ot S, (R(WF— %) — ¢) + iS(u” — vF) (15b)

where the shrinkage operator S;(x) : RY x R, — RY
is S;(x) := sign(x) © max(|x| — 71,0), with © and | - |
denoting the entrywise multiplication and absolute operators,
r#

xr =

(15a)

respectively, and sign(z) = {g/m’ 8 provides an

entrywise definition of operator sign(x).
The constrained minimization of (14c) essentially projects
the pair (WF+1 +A* @**+1 +uF) onto the convex set specified

by the linear equality constraint, namely {(w,u) : A;w = u}.
Its solution is derived in a simple closed form next.

Proposition 2. Given b € CY and d € CM, the solution of

1 2 1 2
S =B+ L

minimize
weCN ueCM
subject to Aw =u
is given as
w* = (I+AMA) " (b+ A*4) (16a)
u® = Aw". (16b)

Using Proposition 2, the minimizer of (14c) is found as

Wk+1 — (I _|_AZ-[At)—1 I:‘;Vk-i-l_'_ )\k_|_ AH(ﬁk+1+ I/k)}
(17a)

k1. — AwhtL, (17b)

u

The four updates in (14) are computationally simple except
for the matrix inversion of (17a), which nevertheless can be
cached once computed during the first iteration. In addition,
variables @°, A°, and v° of ADMM can be initialized to zero.
Finally, the solution of (9) can be obtained as

Vit1 = Vi + w* (18)

where w* is the converged w-iterate of the ADMM iterations
in (15), (17), and (14d).

For implementation, our ADMM-based LAV estimator is
summarized in Table I, in which the inner loop (i.e., Steps 3-8)
can be replaced with standard convex programming methods to
solve (9) for v;1. As far as convergence is concerned, if & is
L-Lipschitz and V¢ is S-Lipschitz, taking a constant stepsize
u < 1/(LP) in (8) guarantees that [18, Sec. 5]:

i) the solver in Table I is a descent method for (9), and;

ii) the iterate sequence {v;} converges to a stationary point
of the LAV objective in (5).



TABLE I: Efficient LAV Solver Using ADMM

1: Input data {(2m, Hm)}2_;, stepsizes y, p > 0, and initial-
ization vg = 1.

2:Fort=0,1,..., do

3. Initialize w°, u®, A%, and v° to zero.

4: Evaluate A; and c; as in (10).

5. For k=0,1,..., do

6:  Update (wh*! a**!), (whT! u**h), and (p*+! o5
using (15), (17), and (14d), respectively.

7: End for

8: Update v¢y1 via (18).

9: End for

It is also worth remarking that local quadratic convergence
can be attained when certain error bound conditions are
satisfied [18, Thm. 5.5]. This is indeed observed in our exper-
iments when noise and outliers are absent. The computational
burden of the ADMM based deterministic solver is dominated
by the projection step of (17), which incurs a per-iteration
computational complexity of O(M N?). This complexity can
be afforded in small- or medium-size power networks.

IV. NUMERICAL TESTS

The proposed linear proximal LAV solver was numer-
ically examined on an Intel CPU @ 3.4 GHz (32 GB
RAM) computer using MATLAB R2016a. Two power net-
work benchmarks, namely the IEEE 14-, and 118-bus systems
were simulated, following the MATLAB-based toolbox MAT-
POWER [19].

The linear programming (LP) and the iteratively reweighted
least-squares (IRLS) based LAV estimators [10], [20], along
with the “workhorse” Gauss-Newton iterations for the WLS-
based PSSE [1] were adopted as baselines. It is worth pointing
out that the LP-based implementation can be regarded as a
special case of the prox-linear algorithm with a constant step
size of oo. To see this, per iteration, the LP-based scheme
[10] solves the minimization problem in (8) but without the
regularization term 2}% |lv—w;||3, or equivalently with z; = oc.
Each linear program was formulated over 2N —1 real variables
consisting of the real and imaginary parts of the unknown
voltage phasor vector, after excluding the imaginary part of
the reference bus which was set 0. Per iteration, the resultant
linear program was solved with SeDuMi [21]. Given that there
is no parameter in the LP-based LAV estimator, although the
time performance may vary if different toolboxes are used for
solving the resultant linear programs, its convergence behavior
in terms of the number of iterations is independent of the
toolbox used. Furthermore, the Gauss-Newton iterations were
implemented by calling for the embedded state estimation
function ‘doSE.m’ in MATPOWER.

Regarding the initialization, when all squared voltage mag-
nitudes are measured, the initial point is taken to be the voltage
magnitude vector, unless otherwise specified. Each simulated
scheme stops either when a maximum number 100 of iterations
are reached, or when the normalized distance between two
consecutive estimates becomes smaller than 10~'°, namely
|lvi — viqll2/V'N < 107'°, In order to fix the phase

10°

w 10°

()

=

14

o
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g 1010t
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—<¢— Prox-linear LAV
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Fig. 1: Convergence performance for the IEEE 14-bus system.

ambiguity, the phase generated at the reference bus was set
to 0 in all tests.

A. Noiseless measurements

The first experiment simulates the noiseless data to evaluate
the convergence and runtime of the novel algorithms relative
to the WLS-based Gauss-Newton iterations, as well as the LP-
and RLS-based LAV estimators on the IEEE 14-bus test sys-
tem. The default voltage profile was employed. Measurements
including all active and reactive power flows, as well as all
squared voltage magnitudes were obtained from MATPOWER
[19]. The ADMM-based prox-linear LAV estimator in Table
I was implemented with ¢ = 200, in which each quadratic
subproblem was solved using a maximum of 150 ADMM
iterations with p = 100. Our prox-linear estimator can also be
implemented using standard convex programming methods to
directly solve (8). It typically converges in very few (less than
10) iterations yet at a higher computational complexity. The
normalized root mean-square error (RMSE) ||v¢ — v||2/]|V]|2
was evaluated, where v is the true voltage profile, and v,
denotes the estimate obtained at the ¢-th iteration.

Figure 1 compares the normalized RMSE for the LP-
based, IRLS-based, and prox-linear LAV estimators with that
of Gauss-Newton iterations. Evidently, the novel scheme is
the fastest in terms of the number of iterations, and converges
to a point of machine accuracy (i.e., 107'6) in 8 iterations.
The IRLS is also fast, but it requires inverting a matrix per
iteration. Even though the time of solving an LP may vary
across toolboxes, convergence of the LP-based estimator in
terms of the number of iterations will be the same. Evidently,
solving an LP of 2M constraints and 2N — 1 real variables is
indeed computationally more cumbersome. The Gauss-Newton
method terminated after six iterations, but at a sub-optimal
point of normalized RMSE 10~3 or so. The proposed prox-
linear solver for LAV estimation requires much less iterations
than the LP, and IRLS-based implementations.

B. Presence of outlying data

The second experiment was performed to assess the ro-
bustness of the novel LAV estimator to measurements with
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Fig. 2: Robustness to outliers for the IEEE 118-bus system.

outliers using the IEEE 118-bus benchmark network, while
the IRLS-based LAV implementation and the WLS-based
Gauss-Newton iterations were simulated as baselines. The
actual voltage magnitude (in p.u.) and angle (in radians) of
each bus were uniformly distributed over [0.9, 1.1], and over
[-0.17, 0.17]. To assess the PSSE performance versus the
measurement size, an additional type of measurements was
included in a deterministic manner, as described next. All
seven types of SCADA measurements were first enumerated as
{IVal?, ng, Qik, P, Qn, Py, Q') }. Each z-axis value in
Fig. 2 signifies the number of ordered types of measurements
used in the experiment to yield the corresponding normalized
RMSEs, obtained by averaging over 100 independent runs.
For instance, 5 implies that the first 5 types of data (i.e.,
V|2, Pr‘fk, Qik, P,,Q, over all buses and lines) were used.
Additive noise was independently generated from Gaussian
distributions having zero-mean and standard deviations 0.004,
0.008, and 0.01 p.u. for the voltage magnitude, line flow, and
power injection measurements, respectively [10]. Ten percent
of the measured data were corrupted according to model
M1, chosen randomly from line flows and bus injections.
The outlying data {,,} were drawn independently from a
Laplacian distribution with zero-mean and standard deviation
30. The subproblems (8) with © = 100 were solved using
a maximum of 200 ADMM iterations with p = 100. It is
evident from Fig. 2 that our prox-linear LAV estimator is
resilient to outlying measurements under corruption model M1,
yielding improved performance relative to the IRLS and WLS
estimators. Furthermore, IRLS works well when the number
of measurements grows large.

V. CONCLUSIONS

Robust power system state estimation was pursued using
contemporary tools of composite optimization. Building on
recent algorithmic advances, a novel proximal linear algorithm
was put forward to efficiently deal with the non-convexity
and non-smoothness of LAV-based PSSE. The algorithm re-
lies on solving a sequence of convex quadratic subproblems,
constructed from a linearized approximation to the original
objective and a quadratic regularization. Numerical tests using
two IEEE benchmark networks showcase the robustness and

computational efficiency of the developed approach relative to
competing alternatives for LAV and WLS estimation.
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