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Abstract

This paper reports on quasi-elliptic dual-band bandpass filters (BPFs) that were designed for
the Filter Student Design Competition of the 2019 European Microwave Week. The proposed
lumped-element (LE) BPF concept is based on two dual-band transversal cells and one
multi-resonant cell that allow the realization of symmetric and asymmetric dual-band transfer
functions shaped by six poles and five transmission zeros. A compact implementation scheme
based on LE series resonators is proposed for size compactness and wide spurious free out-of-
band response. For proof-of-concept demonstration purposes, a dual-band LE prototype with
two passbands centered 1 and 1.5 GHz was designed, manufactured, and measured. It exhib-
ited the following radio frequency measured performance characteristics. Passbands centered
at 1.02 and 1.45 GHz, minimum insertion loss levels of 2.0 and 2.7 dB, and bandwidth of 146
and 105 MHz, respectively, for the first and the second passband, and out-of-band rejection
>30 dB between 0 and 894 MHz, 1.17-1.34 GHz, and 1.72-6.9 GHz.

Introduction

Recent advances in wireless communication systems have created the need for radio frequency
(RF) transceivers with multi-standard and multi-functional capabilities able to support a large
number of bands with diverse requirements in terms of power, bandwidth and frequency of
operation. In order to facilitate their deployment, multi-band bandpass filters (BPFs) with a
highly selective response, low insertion loss (IL) and small physical size need to be incorpo-
rated in the RF front-ends of these systems in order to be able to acquire the bands of interest
while suppressing the unwanted interfering signals. Therefore, the realization of filters with
multi-band transfer functions has been an important topic of research [1-6, 9-17].

Alternative design and integration schemes have been presented in the open technical lit-
erature ranging from planar configurations (e.g., microstrip-based, lumped-elements (LEs)) to
three-dimensional architectures using cavity resonators (e.g., coaxial resonators, dielectric
resonators, rectangular-resonator-based). While cavity resonator-based filters are typically pre-
ferred for RF applications with stringent requirements in high-quality factor (Q) and RF power
handling [1, 2], they exhibit large physical size. An example of a dual-band BPF exploiting
dual-mode cavity resonators was reported in [1] with the purpose of achieving wide band sep-
aration and out-of-band rejection >20 dB in between the two passbands. Similarly, dual-mode
dielectric resonators were used in [2]. However, both of these concepts result in large physical
size.

Microstrip-based designs have been investigated in [3-15] as reduced-size alternatives.
While they exhibit moderate IL levels (<2.5 dB in [3-5]), they suffer from closely spaced spuri-
ous responses. Planar BPFs using Cul-de-Sac transversal resonator topologies have also been
reported [6], however, they often exhibit moderate rejection between their passbands (e.g., <20
dB in [6]). Furthermore, they are sensitive to manufacturing and assembly tolerances.
Extracted pole filters have also been explored in [7, 8] for transmission zero (TZ) generation,
however, they exhibit high IL levels (>3 dB). In order to further decrease the physical size of
dual-band BPFs, hybrid microstrip and LE architectures have been presented in [9-15].
However, they exhibited moderate out-of-band rejection of about 20-30 dB [9-12] and spuri-
ous resonances appeared at a distance of 1.5 f;, [13]. BPFs using discrete LEs have also been
presented [16-18], however, most of the integration schemes using discrete commercially
available surface mount devices (SMDs) are limited to frequencies lower than L-band.

Taking into account the particular requirements of the 2019 European Microwave Week
(EuMW) Student Design Competition, we developed a new class of LE BPFs with quasi-elliptic
dual-band transfer functions and wide spurious-free out-of-band response. The proposed con-
cept is based on cascaded dual-band transversal and multi-resonant cells that allow the real-
ization of symmetric and asymmetric quasi-elliptic type transfer functions. A compact
implementation scheme using series LE resonators eliminates the need for impedance/admit-
tance inverters — i.e,, inverter-less approach — and results in a wide spurious-free out-of-band
response. The 2019 EuMW Filter Design competition [19] requirements are summarized as
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Fig. 1. Dual-band BPF concept. (a) CRD. White circles - source (S) and load (L); black cir-

cles - resonating nodes; gray circle - non-resonating node (NRN); black lines — couplings.
(b) Conceptual transfer function shaped by five TZs and six poles (three per band).
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follows: (i) Passband 1: 900-1000 MHz, (ii) Passband 2: 1427
1518 MHz and (iii) minimum figure-of-merit (FOM). The FOM
is defined in (1), where |S;; (XXX MHz)| is the absolute value
of the measured S,; l:zaarameter in dB at XXX MHz and A is the
surface area in mm". Rejection was based on the maximum
value in the rejection band.

Ax|Sy; (900 MHz)|x|S,; (1000 MHz)|%
S (1427 MHz)|#|Sy; (1518 MHz))|
1S,1(500 — 850 MHz) [%|S; (1050 — 1350 MHz)|*
1S21 (1600 — 2000 MHz)|

FOM =

ey

The content of this paper is organized as follows. The section
“Theoretical foundations” presents the theoretical foundations
and operational principles of the proposed dual-band BPF concept
through various synthesized examples and practical implementa-
tion aspects using series and parallel LC resonators. The RF design
of a dual-band BPF prototype with passbands centered at 1.0
and 1.5GHz and its experimental validation are reported in the
section “Experimental results”. Lastly, the section “Conclusion”
summarizes the major contributions of this work.

Theoretical foundations

The details of the dual-band BPF concept are illustrated in the
coupling routing diagram (CRD) and its conceptual power trans-
mission and reflection response in Fig. 1. The filter consists of two
first-order dual-band transversal cells (resonating nodes 2 & 3
and 8 & 9) and one multi-resonant cell (resonating nodes 5-7).
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Fig. 2. Theoretically synthesized power transmission (|Szi) and reflection (|S14])
responses of the CRD in Fig. 1 using the coupling coefficients in Table 1. (a)
Asymmetric transfer functions by reallocating TZs. (b) Equal and unequal passband
bandwidths. (c) Different types of transfer functions (flat versus equi-ripple
passband).

Each transversal dual-band cell is made of two resonators — one
resonating at f; and the other at f> — and four coupling elements
that contribute to the overall transfer function two poles (e.g., Py,
P, for the transversal cell attached to source) and one TZ (e.g., Tza
for the transversal cell attached to source). The multi-resonant cell
comprises one non-resonating node (NRN, node 4) and three res-
onating nodes (5-7) and contributes to two poles (Ps, P,) — one in
each passband — and three TZs (T;_5). Thus, the overall transfer
function of the dual-band BPF is shaped by six poles and five TZs
as shown in Fig. 1.

To demonstrate the theoretical and operating principles of the
proposed dual-band BPF concept, various synthesized transfer
functions are illustrated in Fig. 2. In particular, Fig. 2(a) shows
how symmetric and asymmetric transfer functions can be realized
by readily allocating the TZs around the passbands. In Fig. 2(b),
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Table 1. Coupling coefficients used in the examples in Fig. 2

Example 1 2 3 4
M 0.8 0.8 0.9 1.2
Mo 0.8 0.8 1.2 1.2
Mg, 0.9 0.9 0.9 1.2
Mga 0.8 0.8 1.2 1.2
Mcy 14 14 1.4 1.4
Mca 1.2 1.2 1.2 1.2
Mc3 14 14 1.4 1.4
Mgy =Mgg 15 16 1.5 1.54
Ms3=Mgg =15 =0.75 =1.5 -1.54
Mss 3 3 3 3
Mgg 0 0 0 0
My -3 -15 -3 =

transfer function reconfigurability in terms passbands with equal
and unequal passbands is demonstrated. Lastly, the ability to real-
ize flat amplitude and equi-ripple type passbands is shown in
Fig. 2(c). The coupling coefficients for all the aforementioned
examples are listed in Table 1.

While alternative practical realization schemes may be used for
translating a CRD to an actual physical filter structure, this paper
explores the use of LEs for both its resonators and coupling ele-
ments in an effort to minimize FOM by reducing size (i.e., A in
(1)). Fig. 3 shows the power transmission and reflection response
of a dual-band BPF design with passbands centered at 1 (BW:
150 MHz) and 1.5 GHz (BW: 350 MHz) for alternative types of
resonators and inverters (e.g., first-order low-pass or high-pass
pi-type equivalent) using synthesized and linear-circuit simula-
tions. In particular, the following cases are considered: (i)
CRD-based synthesis (black trace), (ii) parallel LC resonators
and first-order high-pass pi-type inverters (red trace), (iii) parallel
LC resonators and first-order low-pass pi-type inverters (blue
trace), and (iv) series LC resonators (green trace). Whereas con-
ventional BPFs are typically implemented with parallel LC reso-
nators (e.g., in the BPFs in [18, 20]), this approach results in
closely spaced spurious bands (as shown in the red and blue traces
of Fig. 3) and BW squinting (e.g., as shown in the blue trace of
Fig. 3). To reduce the out-of-band spurious resonances and
increase the out-of-band spurious-free BW, integration schemes
using a minimum number of inverters may be considered. This
is achieved by combining the parallel-type resonators with their
preceding/proceeding impedance inverters to create inverter-less
series-type resonators as shown in Fig. 4. For example, each of
the parallel-type resonators (e.g., resonator 5 in the CRD in
Fig. 1) and its preceding inverter (e.g., M, in the CRD in
Fig. 1) is transformed to a series type resonator (e.g., Lz;, Cz;
in Fig. 4). Similarly, the resonators that introduce poles (e.g., res-
onator 2 in the CRD in Fig. 1) and the inverters next to them (e.g.,
M, and Mpg;) are replaced with a series type resonator (e.g., Ly,
Cl).

The inverter-less circuit-schematic implementation of the
CRD in Fig. 1 is shown in Fig. 4. Its component values are
obtained using equations (2)-(4) when assuming M is equivalent
to Mg Z, is the system reference impedance, w; and w,;

orefterms. https://doi.org/10.1017/51759078720000756
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Fig. 3. Simulated power transmission (|S,,]) and reflection (|S,,|) responses of the
dual-band BPF for alternative types of resonators and inverters for two passbands
centered at 1 and 1.5 GHz and nominal passband bandwidths of 150 and 350 MHz.
Black trace: synthesized response using the CRD in Fig. 1, red trace: linear simulated
response using parallel LC resonators and LE inverters represented by their first-order
pi-type high-pass circuit-eguivalent, blue trace: linear simulated response using par-
allel LC resonators and inverters represented by their first-order low-pass pi-type cir-
cuit equivalent, and green trace: linear simulated response using series LC
resonators.
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Fig. 4. LE circuit-schematic of the dual-band BPF using series LC resonators.

respectively denote center frequency of each passband and of
each TZ. Furthermore, A is the bandwidth scaling factor of the
low-pass to bandpass frequency transformation. Since the pass-
bands exhibit different fractional bandwidths (FBWs), the cou-
plings for each passband are different (e.g., M,, does not equal
to M ,; this is shown in example 3 in Fig. 2). The power transmis-
sion and reflection response of the proposed inverter-less
series-resonator-based circuit schematic is shown in Fig. 3
(green trace). As shown, its out-of-band response is superior to
the rest of the parallel LC resonator implementations. In addition,
this integration scheme uses a significantly smaller number of
components (14 as opposed to 47 used in the rest of the LE imple-
mentations using parallel LC resonators) which results in smaller
physical size.
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Fig. 5. Manufactured prototype (dimensions: 20.8
mm x 15.4 mm) of the dual-band BPF. (a) Layout.
(b) Photograph. The components used are as fol-
lows: C,=0.2 pF (ATC 6005 OR4 and ATC 6005 OR4),
C>=0.033 pF (ATC 600S0R1 and AVX 04021JR05),
€,,=0.9 pF (ATC 600S OR9), C,,=0.1pF (ATC 600S
0R1), C,;=045pF (ATC 6005 OR9 and ATC 6005
0R9), L,=0402DC-56N (56 nH), L;=0402DC-43N
(43 nH), L;1 = 09085Q-25N (25 nH), L»=0805HT-10N
(10 nH), and L = 09085Q-19N (19 nH).

Z (1)
= M 2;[, = — ., 3
G Zo*wz( )5 Ly Aros (Msz) (3
Zy (1Y
zi — M'z;-[‘zl': — H ‘:1,2,3. 4
C Z(}*{!JZ,' ( Cl) A* Wz (Mc,') ! ( )

Experimental results

In order to experimentally validate the operational principles of
the proposed dual-band series LE-resonator based BPF, a
prototype was designed, manufactured, and measured at
L-band. In particular, the prototype was designed for passbands
centered at 1.0 and 1.5 GHz with bandwidths of 146 and 105
MHz. The prototype was built on a Rogers RO4003C substrate
with the following characteristics: relative permittivity €, = 3.38,
thickness H=152mm and a dielectric loss tangent tandp=
0.0021. The design was carried out using the design principles
in the section “Theoretical foundations” and the software package
Advanced Design System (ADS) from Keysight Technologies. The
RF performance was experimentally validated with a Keysight
N5224A PNA in terms of S-parameters.

The layout and a photograph of the manufactured dual-band
BPF are shown in Fig. 5(a) and Fig. 5(b), respectively. The values
of the LE components are first determined using (2)—(4).
Afterwards, their values are optimized through full-wave simula-
tions in ADS in order to account for the parasitics of the mount-
ing pads of the SMD components. Due to the desired transfer
function resulting in small capacitance values (e.g., 0.035pF),
the capacitors C;, C,, and C,; were implemented with two series
cascaded SMD components. A comparison of the RF-measured
and EM-simulated power transmission and reflection response
is shown in Fig. 6(a). Furthermore, Fig. 6(b), illustrates the RF
measured filter response in a wider frequency range between 0
and 10 GHz in order to demonstrate the wide out-of-band
isolation characteristics of the proposed dual-band BPF concept.
As shown, the obtained agreement between measured and simu-
lated responses successfully validates the series-resonator-based
dual-band BPF concept using cascaded transversal and multi-
resonant cells. The measured RF performance can be summarized

Andrea Ashley et al.
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Fig. 6. EM-simulated and RF-measured power transmission (|S;]) and reflection (|
S11|) responses of the dual-band filter prototype in Fig. 5. (a) Freguency range: 0-3
GHz. (b) Freguency range: 0-10 GHz.

as follows: lower passband - center frequency of 1.02 GHz,
3-dB-referred BW of 146 MHz (i.e., of 14.3% in relative terms),
and minimum in-band IL of 2.0 dB, upper passband - center
frequency of 1.45GHz, 3-dB-referred BW of 105 MHz (ie., of
7.3%), and minimum in-band IL of 2.7 dB, stopband rejection
>30dB from 0-894 MHz, 1.17-1.34 GHz, and 1.72-6.9 GHz.
The prototype resulted in physical size of 15.4 x20.6 mm, or
0.0631 % 0.0854. Table 2 shows a comparison with current
state-of-art designs. As shown, the proposed dual-band BPF exhi-
bits smaller physical size and wider out-of-band rejection than the
rest of the dual-band BPF topologies. Furthermore, it exhibits
among the largest number of poles and TZs.
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Table 2. Comparison with SOA dual-band filters.

Size Freq. IL; and Rej. Range Widest Rej. Number of
Ref. Approach (Ao % Ao) (GHz) IL,(dB) FBW (%) (GHz) BW (GHz) Poles/TZs
[6] Microstrip 0.15 " 0.14 1.93, 2.03 <1.8 and <1.8 3.4 and 3.5 N/A N/A 4/1
[9] Microstrip 0.135x0.11 12,154 2.6 and 2.4 5and 5 0-0.5 0.5 4/3
[10] Microstrip, LE 0.046 x 0.113 0.9, 1.57 0.76 and 1.25 22.2 and 11.8 1.25-1.5, 2.25-2.4 0.25 4/4
[12] Microstrip, LE ~ 0.25x0.55 24,52 3.4 and 6.9 1.25 and 2 1.5-2.3, 2.6-4.8, 5.25-6 22 4/4
[13] Microstrip, LE 0.49 x0.37 0.96, 1.84 0.96 and 2.64 NA 0-0.7, 1.3-1.6, >1.9 0.7 4/3
[15] Microstrip, LE 0.72x0.27 1.29, 1.69 1.32 and 1.57 11.6 and 7.7 1.45-1.6 0.15 6/5
[16] AWLR NA 0.418, 0.434 0.53 and 0.48 0.012 and 0.019 NA NA 4/3
This work  LE 0.063x0.085 1.0, 15 2.0 and 2.7 14.3 and 7.3 0-0.89, 1.17-1.34, 1.7-6.9 5.2 6/5

AWLR - Acoustic Wave LE Resonator, Rej. Range - Out-of-band Rejection >30 dB.

Conclusion

A new class of dual-band BPFs has been presented. The proposed
dual-band BPF concept has been developed for the 2019 Student
Design Competition of EuMW and exhibits highly selective
quasi-elliptic transfer functions that are shaped by six poles and
five TZs. It is based on cascaded transversal and multi-resonant
cells that are materialized with series resonators for size compact-
ness and wide spurious-free out-of-band response. The proposed
inverter-less dual-band BPF design approach was experimentally
validated at L-band through a LE BPF prototype with two
bands centered at 1.02 and 1.45 GHz.
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would like to thank Keysight for providing access to the software package
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