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Abstract—Frequent and sizeable voltage fluctuations become
more pronounced with the increasing penetration of distributed
renewable generation, and they considerably challenge distri-
bution grids. Voltage regulation schemes so far have relied on
either utility-owned devices (e.g., voltage transformers, and shunt
capacitors), or more recently, smart power inverters that come
with contemporary distributed generation units (e.g., photovoltaic
systems, and wind turbines). Nonetheless, due to the distinct
response times of those devices, as well as the discrete on-off
commitment of capacitor units, joint control of both types of
assets is challenging. In this context, a novel two-timescale voltage
regulation scheme is developed here by coupling optimization
with reinforcement learning advances. Shunt capacitors are con-
figured on a slow timescale (e.g., daily basis) leveraging a deep
reinforcement learning algorithm, while optimal setpoints of the
power inverters are computed using a linearized distribution flow
model on a fast timescale (e.g., every few seconds or minutes).
Numerical experiments using a real-world 47-bus distribution
feeder showcase the remarkable performance of the novel scheme.

Index Terms—two-timescale, voltage regulation, inverter, capac-
itor, deep reinforcement learning.

I. INTRODUCTION

Contemporary distribution grids are undergoing a rapid evo-
lution due to the growing deployment of electric vehicles and
distributed renewable generators such as photovoltaic (PV)
systems and wind turbines. Electricity utilities in the US are
currently experiencing major challenges related to the un-
parallel levels of load peaks and large voltage fluctuations.
For example, over-voltage happens during mid-day when PV
generation peaks and load demand is relatively low; whereas,
on the other hand, voltage sags considerably overnight due to
low PV generation yet a high load demand [1].

To keep the voltages within an acceptable range, early
approaches have relied on configuring on a daily or even slower
basis the utility-owned devices, namely load-tap-changing
transformers and capacitors [2]. Such configurations have been
effective without (or with low) renewable generation, and with
slowly varying aggregate load. Specifically, auto-transformers
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were controlled to address the over-voltage issues in [3]. To
set up the tap positions, a semidefinite relaxation approach was
proposed in [4].

With the ever growing renewable generation and electric
vehicles, rapid voltage changes occur often.For instance, the
PV generation can fluctuate up to 15% of their nameplate
ratings within one-minute intervals [5], [6]. Voltage regula-
tion in this case would entail more frequent switching ac-
tions as well as further installation of control devices. Smart
power inverters, on the other hand, come with contemporary
distributed generation units and electric vehicles. Equipped
with two-way communication and computing capabilities, they
can be commanded to adjust reactive power output within
milliseconds and in a continuously-valued manner [7], [8].
Indeed, recent proposals have focused on engaging power
inverters in energy management (including voltage regulation)
of distribution networks; see, for example, [1], [6]. A second
order cone program (SOCP) relaxation approach was adopted to
tackle the nonconvex optimization of the inverter VAR control
problem in [9]. A stochastic and online learning approach was
devised to minimize the power loss through reactive power
compensation in [8]. To minimize communications between
power inverters and the controlling center, local or decentralized
voltage regulation schemes were developed in [10]–[14].

Despite considerable success of those approaches, joint con-
trol of both the traditional utility-owned devices and contem-
porary power inverters has not been explored. In this work,
we focus on shunt capacitors and PV inverters, and engage
them in reactive power provision. In this context, a novel
two-timescale voltage regulation scheme is developed. Discrete
actions (corresponding to on-off commitments of capacitors)
are found using a deep reinforcement learning algorithm [15] on
a slow timescale (e.g., hourly basis), while the optimal setpoints
of inverters are obtained based on a linearized distribution
flow model every few seconds. Numerical experiments on
a real-world distribution grid using real solar and load data
corroborate the merits of our novel approach.

Notation. Lower- (upper-) case boldface letters denote col-
umn vectors (matrices), with the exception of power flow vec-
tors (PPP ,QQQ), and normal letters represent scalars. Calligraphic
symbols are reserved for sets, while 1 denotes all-ones vector,
RN

+ denotes the set of all non-negative N -dimensional vectors.
Symbol > stands for transposition, and ‖xxx‖ is the l2-norm of xxx.
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Fig. 1. Bus i is connected to its unique parent πi via line i.

II. PROBLEM FORMULATION

Consider a distribution grid comprising N+1 buses modeled
as a graph G := (N0,L), where N0 := {0, 1, . . . , N} collects
all buses, and L collects all lines. The grid is typically operated
radially as a tree, with its root at the substation bus indexed
by i = 0, and thus |L| = N . The substation is connected to
a transmission grid, at which the squared voltage magnitude is
regulated to a constant. All buses except the substation comprise
the set N := {1, 2, . . . , N}. For ∀i ∈ N , let vi denote the
squared voltage magnitude, and pi + jqi be its complex power
injection into the grid, where pi := pgi − pci and qi := qgi − qci
are found as the surplus between corresponding generation and
consumption. For notational brevity, column vectors vvv, ppp, qqq, pppg ,
qqqg , pppc, and qqqc collect the corresponding quantities of all buses.
In a radial grid, every leaf bus i ∈ N has a unique parent bus
πi, and the two are connected via the i-th transmission line
denoted by (πi, i) ∈ L. Let Pi + jQi represent the complex
power flow from πi to i, and ri + jxi represent the impedance
of line i ∈ L, depicted in Fig. 1. Throughout, ppp and qqqc are
supposed to be given quantities.

In this paper, we consider shunt capacitors and power in-
verters for voltage regulation of a distribution network. Yet,
our novel two-timescale approach based on deep reinforcement
learning can also account for other types of utility-owned
devices that have discrete actions and slow responses. On a
fast timescale, smart inverters are controlled on a minute or
30-second basis, while shunt capacitors are configured on a
slow timescale, say e.g., every hour or day. Suppose there is a
total of Na capacitors in the grid, whose indices are collected
in Na and are in one-to-one correspondence with entries of
K := {1, 2, . . . , Na}. Assume that every bus is installed with
either a capacitor or a PV system (thus, an inverter), but not
both. The remaining buses, after excluding Na from N , which
are collectively denoted by Nr, are equipped with inverters.
This assumption is made without loss of generality as one can
simply set the upper and lower bounds on the inverters’ output
to zero at buses having no PVs installed. In our model, we
divide a day into NT̄ intervals indexed by τ = 1, . . . , NT̄ .
Each of these NT̄ intervals is further partitioned into NT time
slots which are indexed by t = 1, . . . , NT , as depicted in
Fig. 2. To match the slow load variations, the on-off decisions
of capacitors are made (at the end of) every interval τ , which
can be chosen to be e.g., an hour; yet, to accommodate the
rapidly changing renewable generation, the inverter output is
adjusted (at the beginning of) every slot t, taken to be e.g., a
minute. We assume that quantities pppg(τ, t), pppc(τ, t), and qqqc(τ, t)

Capacitor configuration

Inverter optimization

Fig. 2. Two-timescale partitioning of a day for joint capacitor and inverter
control.

remain the same within each t-slot, but may change from slot
t to t+ 1.

Since the shunt capacitor configuration is updated on a slow
timescale (i.e., every τ ), the reactive compensation qgi (τ, t)
provided by capacitor ki ∈ K (or, the capacitor installed at
bus i) is represented by

qgi (τ, t) = ŷki(τ)qga,ki , ∀i ∈ Na, τ, t (1)

where ŷki(τ) ∈ {0, 1} is the on-off commitment of capacitor
ki for the entire interval τ . Clearly, if ŷki(τ) = 1, a constant
amount (nameplate value) of reactive power qga,ki is injected
into the grid during this interval, and 0 otherwise. For con-
venience, the on-off decisions of capacitor units at interval τ
are collected in a column vector ŷyy(τ). On the other hand, the
reactive power qgr,i(τ, t) generated by inverter i is adjusted on
a faster scale (every t), which is constrained as

|qgr,i(τ, t)| ≤ q̄
g
i :=

√
(s̄gi )

2 − (p̄gi )
2, ∀i ∈ Nr, t (2)

where s̄gi and p̄gi are the nameplate values of apparent power
and active power for inverter i, respectively; see e.g., [8].

Given real-time load consumption and generation that are
modeled as Markovian processes [16], the objective of volt-
age regulation is minimizing the long-term average voltage
deviation by finding the optimal reactive power support per
slot through configuring capacitors every interval and adjusting
inverters’ outputs every slot. As voltage magnitudes vvv(τ, t) de-
pend solely on the control variables qqqg(τ, t), they are expressed
as implicit functions of qqqg(τ, t), yielding vvvτ,t(qqqg(τ, t)), whose
actual function forms for postulated grid models are postponed
to Section III. The novel two-timescale voltage regulation
scheme entails solving the following stochastic optimization
problem

minimize
{qqqgr (τ,t)}

{yyy(τ)∈{0,1}Na}

E

[ ∞∑
τ=1

NT∑
t=1

γτ ‖vvvτ,t(qqqg(τ, t))− v0111‖2
]

(3a)

subject to qgi (τ, t) = ŷki(τ)qga,ki , ∀i ∈ Na, τ, t (3b)

qgi (τ, t) = qgr,i(τ, t), ∀i ∈ Nr, τ, t (3c)

|qgr,i(τ, t)| ≤ q̄
g
i , ∀i ∈ Nr, τ, t (3d)

for some discount factor γ ∈ (0, 1], where the expectation is
taken over the joint distribution of (pppc(τ, t), qqqc(τ, t), pppg(τ, t))
across all intervals and slots. Clearly, discrete variables ŷyy(τ) ∈
{0, 1}Na render problem (3) nonconvex and NP-hard in gen-
eral. Moreover, it is a multi-scale optimization, whose decisions



are not all made at the same timescale and must also account
for the power variability during real-time operation. In words,
tackling (3) exactly is challenging.

In this work, a stochastic optimization approach combining
physics principles as well as data-driven advances is pursued.
Specifically, on a slow timescale, say at the end of each
interval τ − 1, the optimal on-off capacitor decisions yyy(τ) are
approached through a deep reinforcement learning algorithm
that can learn from the predictions collected within the current
interval τ − 1; while, on a fast timescale, say at the beginning
of each slot t within interval τ , our two-stage control paradigm
computes the optimal reactive power setpoints for inverters, by
minimizing instantaneous bus voltage deviations while respect-
ing physical constraints, given the current on-off commitment
of capacitor units ŷyy(τ) found at the very end of interval (τ−1).
These two timescales are elaborated in Sections III and IV,
respectively.

III. FAST-TIMESCALE CONTROL OF INVERTERS

As alluded earlier, the actual forms of vvvτ,t(qqqg(τ, t)) will be
specified in this section, relying on a linearized approximation
model. Throughout this section, the interval index τ will be
omitted when clear from context. Leveraging the linearized
distribution flow model in [17], the power flow equations for
all buses i ∈ N , and for all t within every interval τ is dictated
as follows

pi(t) =
∑
j∈χi

Pj(t)− Pi(t) (4a)

qi(t) =
∑
j∈χi

Qj(t)−Qi(t) (4b)

vi(t) = vπi(t)− 2(riPi(t) + xiQi(t)). (4c)

Adopting the approximate grid model in (4), the optimal
setpoints of smart inverters can be found by solving the
following optimization problem at every slot t within interval
τ , given again ŷyy(τ) available from the last interval on the slow
timescale

minimize
vvv(t),qqqgr(t),PPP (t),QQQ(t)

‖vvv(t)− v0111‖2 (5a)

subject to (4a)− (4c)
qgi (t) = ŷki(τ)qga,ki , ∀i ∈ Na (5b)

qgi (t) = qgr,i(t), ∀i ∈ Nr (5c)

|qgr,i(t)| ≤ q̄
g
i , ∀i ∈ Nr. (5d)

Observing that all constraints are linear and the cost function
is quadratic, problem (5) constitutes a standard convex quadratic
program. As such, it can be solved efficiently by e.g., primal-
dual type algorithms, or off-the-shelf convex programming
toolboxes, whose implementation details are skipped due to
space limitations.

IV. SLOW-TIMESCALE RECONFIGURATION OF CAPACITORS

Due to the discrete nature of configuring shunt capacitors
(determining their on-off state), traditional approaches were
mainly based on heuristics or relied on convex relaxation.
They often yield sub-optimal performance while incurring high

computational and storage complexities. To address these chal-
lenges, we draw from recent advances in artificial intelligence,
and advocate a deep reinforcement learning (DRL) approach
for optimally and efficiently configuring shunt capacitors using
minimal information available from the last interval. Toward
this goal, the optimal capacitor configuration is cast as an
MDP, which is solved using the DRL algorithm [15]. An MDP
is defined as a 5-tuple (S,A,P, c, γ), where S is a set of
states; A is a set of actions; P is a set of transition matrices;
c : S × A 7→ R is a cost function such that, for sss ∈ S and
aaa ∈ A, c = (c(sss,aaa))sss∈S,aaa∈A are the real-valued immediate
costs after the system operator takes an action aaa at state sss; and
γ ∈ [0, 1) is the discount factor. These components are defined
next before introducing our voltage regulation scheme.

Action space A. Each action corresponds to one possible
on-off commitment of capacitors 1 to Na. Hence, one action
is described as aaa = yyy. Specially, at interval τ , the action is
aaa(τ) = yyy(τ). Note that the action is discrete in the capacitor
configuration problem. The set of all actions constitute the
action space A, whose cardinality grows exponentially with
the number of capacitors; indeed, we have that |A| = 2Na .

State space S . Define the average active power at all buses
except for the substation over the current interval τ , along
with the current capacitor configuration as the state at the
interval τ ; that is, sss(τ) := [ p̄pp>(τ), ŷyy>(τ)]>, which contains
both continuous and discrete variables. Clearly, it holds for the
state space that S ⊆ RN × 2Na .

The action is determined by the configuration policy π which
is a function of the most recent state sss(τ − 1), given as

aaa(τ) = π(sss(τ − 1)). (6)

Cost function c. The cost on a slow timescale is defined as

c(sss(τ − 1), aaa(τ)) =

NT∑
t=1

‖vvvτ,t(qqqg(τ, t))− v0111‖2 . (7)

Set of transition probability matrices P and discount factor
γ. While being in a state sss ∈ S upon taking an action aaa, the
system moves into a new state sss′ ∈ S probabilistically. Let us
define, the transition probability matrix from any state sss to any
next state sss′ under a given action aaa as Paaassssss′ ; evidently, it holds
that P := {Paaassssss′ |∀aaa ∈ A}. The discount factor γ ∈ [0, 1), trades
off the current versus future costs. The smaller γ is, the more
weight the current cost has in the overall cost.

Given the current state and action, the action-value function
under the control policy π is defined as

Qπ(sss(τ − 1), aaa(τ)) :=

E

[ ∞∑
τ ′=τ

γτ
′−τ c(sss(τ ′ − 1), aaa(τ ′))

∣∣∣π,sss(τ − 1), aaa(τ)

]
(8)

where the expectation E is taken with respect to all sources of
randomness.

To find the optimal capacitor configuration policy π∗, that
minimizes the average voltage deviation in the long run, we
resort to the Bellman optimality equations; see e.g., [18].
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Fig. 3. Deep Q-network

Solving those yields the action-value function under the optimal
policy π∗ on the fly, given by

Qπ∗(sss,aaa) = E[c(sss,aaa)] + γ
∑
sss′∈S

Paaassssss′ min
aaa∈A

Qπ∗(sss
′, aaa′). (9)

With Qπ∗(sss,aaa) obtained, the optimal capacitor configuration
policy can be obtained as

π∗(sss) = arg min
aaa

Qπ∗(sss,aaa). (10)

It is clear from (9) that, if all transition probabilities {Paaassssss′}
were available, we can derive Qπ∗(sss,aaa), and subsequently the
optimal policy π∗ from (10). Unfortunately, it is impossible
to obtain those transition probabilities in a real-world cyber-
physical distribution network. Targeting directly the optimal
policy π∗ without having the knowledge of Paaassssss′ , Q-learning
approaches find π∗ by learning Qπ∗(sss,aaa) ‘on-the-fly’ [18].
However, they are infeasible for the problem at hand, due to
the large-size continuous state space S . This motivates function
approximation based reinforcement learning (RL) schemes that
can reliably work and generalize on continuous state domains
[18]. Using a neural network function approximator to esti-
mate the action-value function, DRL approaches have gained
popularity because they perform remarkably well in dealing
with high-dimensional and/or continuous state spaces [15], [19],
[20].

Specifically, this work considers a feed-forward neural net-
work, shown in Fig. 3. It takes as input the state vector sss(τ−1),
followed by L fully connected hidden layers, and has a separate
output unit for each possible action (clearly, a total of 2Na out-
puts in our context). These outputs correspond to the predicted
Q-values (i.e., estimated costs) of the individual actions (on-off
configurations of all capacitors) for the input state vector. By
stacking all the weight parameters of a deep neural network
into a vector θθθ, we have a function approximation to estimate
the action-value function Qπ(sss,aaa;θθθ) ≈ Qπ∗(sss,aaa). Finally, the
grid operator can take an action according to (10) to configure
the network capacitors.

To enable the DQN to estimate the costs for all possible ca-
pacitor configurations, one needs to train the DQN by iteratively
updating θθθτ (the weights of the Q-network at iteration τ ). To
this end, we draw from recent advances in deep reinforcement
learning [15]. In particular, the new experience is denoted by

e(τ ′) := (sss(τ ′−1), aaa(τ ′)), c(sss(τ ′−1), aaa(τ ′)), sss(τ ′)). Consider
having a replay buffer R(τ), which stores the most recent R
experiences. That is, at a given interval τ , the replay buffer is
R(τ) := {e(τ − R + 1), e(τ − R + 2), . . . , e(τ)}. Moreover,
to stabilize the DQN updates, we create and maintain a second
deep Q-network, commonly referred to as the target network,
with weight parameters denoted by θθθTar. Further, the target
network is not trained, but its parameters θθθTar are reset to
θθθ periodically, say every B training iterations of the DQN.
Consider a least-squares loss for the experience e(τ ′)

LTar(θθθτ ; e(τ ′)) :=
1

2

[
c(sss(τ ′ − 1), aaa(τ ′))

+ γmin
aaa′

QTar(sss(τ), aaa′;θθθTar
τ ′ )−Q(sss(τ ′ − 1), aaa(τ ′);θθθτ )

]2
.

(11)

Upon taking expectation with respect to all sources of random-
ness generating this experience, we have the following expected
loss

LTar(θθθτ ;R(τ))) := Ee(τ ′) LTar(θθθτ ; e(τ ′)). (12)

In practice however, as no distributional knowledge is available,
one has to approximate the expected loss with some empirical
loss. To that end, we draw a mini-batch of size Mτ experiences
uniformly at random from the buffer R(τ), whose indices
are collected in Mτ , i.e., {e(τ ′)}τ ′∈Mτ

∼ U(R(τ)). Upon
computing for each of these sampled experiences an output
using the target network, we define the following empirical loss

LTar(θθθτ ;Mτ ) :=
1

2Mτ

∑
τ ′∈Mτ

[
c(sss(τ ′ − 1), aaa(τ ′))

+ γmin
aaa′

QTar(sss(τ ′), aaa′;θθθTar
τ )−Q(sss(τ ′ − 1), aaa(τ ′);θθθτ )

]2
.

(13)

In words, the weight parameters of the DQN are updated
using stochastic gradient descent (SGD) over the empirical loss
LTar(θθθτ ;Mτ ), as follows

θθθτ+1 = θθθτ − βτ∇LTar(θθθτ ;Mτ ). (14)

where βτ > 0 is a preselected learning rate, and ∇L(θθθ) denotes
the (sub-)gradient. The target network and experience replay
scheme result in stable updates when training a DQN in an
unsupervised fashion. The novel voltage regulation scheme is
summarized in Alg. 1.



Algorithm 1 Two-timescale voltage regulation scheme.
1: Initialize: weight θθθ0 randomly; weight of target network
θθθTar

0 = θθθ0; replay buffer R; and initial state sss(0).
2: for τ = 1, 2, ... do
3: Take action aaa(τ) through exploration-exploitation

aaa(τ) =

{
random aaa ∈ A w.p. ετ
arg minaaa′ Q(sss(τ − 1), aaa′;θθθτ ) w.p. 1− ετ

4: Evaluate ccc(sss(τ − 1), aaa(τ)) using (7).
5: for t = 1, 2, ..., NT do
6: Compute qqqg(τ, t) using (5).
7: end for
8: Update sss(τ).
9: Save (sss(τ −1), aaa(τ), c(sss(τ −1), aaa(τ)), sss(τ)) into R(τ).

10: Randomly sample Mτ experiences from R(τ).
11: Form the mini-batch loss LTar(θθθτ ;Mτ ) using (13).
12: Update θθθτ+1 using (14).
13: if mod(τ,B) = 0 then
14: Update the target network θθθTar

τ = θθθτ .
15: end if
16: end for

Fig. 4. Schematic diagram of the 47-bus industrial distribution feeder.

V. NUMERICAL TESTS

The two-timescale voltage regulation scheme presented in
Alg. 1 is numerically examined using the Southern California
Edison 47-bus distribution feeder [9], depicted in Fig. 4. Real
consumption and solar generation data were obtained from
the Smart∗ project collected on August 24, 2011 [5], and
preprocessed by following the procedure detailed in [8]. This
distribution feeder integrates with four shunt capacitors and
five PVs. As one capacitor is installed at the substation whose
voltage magnitude v0 is regulated to 1 through a voltage reg-
ulation transformer, it is excluded from our control paradigm.
The rest three capacitors are installed on buses 3, 37, and 47,
with capacities 120, 180, and 180 kVar, respectively, while the
five large PV plants are located on buses 2, 16, 18, 21, and 22,
with capacities 300, 80, 300, 400, and 200 kW, respectively.
For our test to match the availability of real data, every slot t
was taken as a minute, while every interval τ was 5 minutes.
A power factor of 0.8 was assumed for all loads. The DQN
used a fully connected feed-forward neural network of 3 layers,
which was found sufficient. The rectified linear unit (ReLU)
activation functions were used in the hidden layers while the
logistic sigmoid functions were at the output layer [21]. The
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Fig. 5. Time-averaged instantaneous costs incurred by the three schemes.

Fig. 6. Voltage magnitude profiles obtained by the three schemes over the
simulation period of 10, 000 slots.

replay buffer size was R = 10, the discount factor γ = 0.99,
and the mini-batch size Mτ = 10. The target network was
updated every B = 5 iterations.

To benchmark the performance of our scheme, we adopted
a fixed and a randomly switching capacitor configuration poli-
cies as baselines. Both schemes compute the optimal inverter
setpoints by solving (5) on a fast timescale, while the former
employs a fixed capacitor configuration, and the latter switches
its capacitor commitment randomly per slow-timescale inter-
val. The time-averaged instantaneous costs (1/τ)

∑τ
i=1 c(sss(i−

1), aaa(i)) incurred by the three schemes over the first 2, 000
intervals are plotted in Fig. 5. Clearly, the novel scheme
achieved a lower cost than the other two after a short period
of learning. Voltage magnitude profiles at all buses regulated
by the three schemes are presented in Fig. 6. Again, after a
short period (∼ 4, 500 slots) of training by interacting with the
environment, our DRL-base voltage regulation scheme quickly
learns a stable and (near-) optimal policy. In addition, voltage
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Fig. 7. Voltage magnitude profiles obtained by the three schemes at buses 10
and 33 from slot 9, 900 to slot 10, 000.

magnitude profiles regulated by three schemes at buses 10 and
33 from slot 9, 900 to 10, 000 are presented in Fig. 7. Curves
showcase the effectiveness of the novel scheme in smoothing
voltage fluctuations due to high solar generation as well as
heavy load demand.

VI. CONCLUSIONS

This paper put forward a two-timescale voltage regulation
scheme for residential distribution networks, by means of joint
control of smart power inverters and shunt capacitors that
are readily available in contemporary distribution grids. In
particular, a linearized distribution flow model was adopted to
determine the optimal setpoints for power inverters on a fast
timescale (say, e.g., on a minute basis), while the optimal con-
figurations of shunt capacitors were obtained on the fly using a
deep reinforcement learning algorithm on a slow timescale (e.g.,
per hour). The proposed scheme was shown to be efficient in
practice and easy to implement, through numerical tests on a
real-world distribution feeder using real solar and consumption
data.
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