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Abstract

A physical blocks world, despite its relative

simplicity, requires (in fully interactive form)

a rich set of functional capabilities, ranging

from vision to natural language understand-

ing. In this work we tackle spatial question

answering in a holistic way, using a vision

system, speech input and output mediated by

an animated avatar, a dialogue system that ro-

bustly interprets spatial queries, and a con-

straint solver that derives answers based on

3-D spatial modeling. The contributions of

this work include a semantic parser that maps

spatial questions into logical forms consistent

with a general approach to meaning represen-

tation, a dialogue manager based on a schema

representation, and a constraint solver for spa-

tial questions that provides answers in agree-

ment with human perception. These and other

components are integrated into a multi-modal

human-computer interaction pipeline.

1 Introduction

Despite impressive recent advances of AI in spe-

cific, narrow tasks, such as object recognition, natu-

ral language parsing and machine translation, game

playing, etc., there is still a shortage of multimodal

interactive systems capable of performing high-

level tasks requiring understanding and reasoning.

The blocks world domain, despite its relative sim-

plicity, motivates implementation of a diverse range

of capabilities in a virtual interactive agent aware of

physical blocks on a table, including visual scene

analysis, spatial reasoning, planning, learning of

new concepts, dialogue management and voice in-

teraction, and more. In this work, we describe

an end-to-end system that integrates several such

components in order to perform a simple task of

spatial question answering about block configura-

tions. Our goal is dialogue-based question answer-

ing about spatial configurations of blocks on a table,

in a way that reflects people’s intuitive understand-

ing of prepositional spatial relations. The system

is able to answer questions such as “Which blocks

are touching some red block?”, “Is the X block

clear?”, “Where is the Y block?”, etc. (where X

and Y are unique block labels). Distinctive fea-

tures of our work: (1) it is an end-to-end system

using computer vision and spoken dialogue with

an on-screen virtual human; (2) it did not require a

large training corpus, only a modest development

corpus using naturally posed spatial questions by

a few participants; (3) it derives and relies on a

3D representation of the scene; (4) it models spa-

tial relations realistically in terms of meaningful

geometric and contextual constraints.

2 Related Work

Early studies featuring the blocks world include

(Winograd, 1972) and (Fahlman, 1974), both of

which maintained symbolic memory of blocks-

world states. They demonstrated impressive plan-

ning capabilities, but their worlds were simulated,

interaction was text-based, and they lacked a re-

alistic understanding of spatial relations. Modern

efforts in blocks worlds include work by Perera

et al. (Perera et al., 2018), which is focused on

learning spatial concepts (such as staircases, tow-

ers, etc.) based on verbally-conveyed structural

constraints, e.g., “The height is at most 3”, as well

as explicit examples and counterexamples, given

by the user. Bisk et al. (Bisk et al., 2018) use

deep learning to transduce verbal instructions into

block displacements in a simulated environment.

Some deep learning based studies achieve near-

perfect scores on the CLEVR question answering

dataset (Kottur et al., 2019; Mao et al., 2019). Com-

mon limitation of these approaches is reliance on

unrealistically simple spatial models and domain-

specific language formalisms, and in relation to our



work, there is no question answering functional-

ity or episodic memory. Our work is inspired by

the psychologically and linguistically oriented stud-

ies (Garrod et al., 1999; Herskovits, 1985; Tyler

and Evans, 2003). Studies of human judgements

of spatial relations show that no crisp, qualitative

models can do justice to those judgments. The

study (Platonov and Schubert, 2018) explored com-

putational models for prepositions using imagistic

modeling, akin to the current work. Another study

(Bigelow et al., 2015) applied imagistic approach to

a story understanding task and employed Blender

to create 3D scenes and reason about the relative

configuration and visibility of objects in the scene.

3 Blocks World System Overview

Fig. 1, 2 depict our physical blocks world (consist-

ing of a square table with several cubical blocks,

two Kinect sensors and a display) and the system’s

software architecture1. The blocks are color-coded

as green, red, or blue, and marked with corporate

logos, serving as unique identifiers. The system

uses audio-visual I/O: the block tracking module

periodically updates the block positioning infor-

mation by reading from the Kinect cameras and

an interactive avatar, David, is used for human-

machine communication. The block arrangement

is modeled as a 3D scene in Blender, which acts as

system’s “mental image” of the state of the world.

Google’s Cloud Speech-To-Text API is used for

the automatic speech recognition. Its output is

processed to fix some common mistakes in the tran-

scripts. The avatar is capable of vocalizing the text

and displaying facial expressions, making the flow

of conversation more natural than with textual I/O.

The spatial component module together with the

constraint solver is responsible for analyzing the

block configuration with respect to the conditions

implicit in the user’s utterance. The Eta dialogue

manager is responsible for unscoped logical form

(ULF) generation (see subsection below) and con-

trolling the dialogue flow and transition between

phases, such as greeting, ending the session, etc.

3.1 Eta Dialogue Manager and Semantic

Parser

Eta is a dialogue manager (DM) designed to fol-

low a modifiable dialogue schema, specified using

1The code for Eta and the rest of the system
can be found at https://github.com/bkane2/eta and
https://github.com/gplatono/BlocksWorld

Figure 1: The blocks world apparatus setup.

Figure 2: The blocks world dialogue pipeline. The ar-

rows indicate the direction of interaction between the

modules.

a flexible and expressive schema language. The

main contents of a dialogue schema are logical for-

mulas with open variables describing successive

steps (events) expected in the course of the interac-

tion, typically speech acts by the system or the user.

These are either realized directly as actions (with

variables instantiated to particular entities), or, in

the case of abstract actions, expanded into sub-

schemas for further processing as the interaction

proceeds.2 A key mechanism used in the course of

instantiating schema steps, including interpretation

of user inputs, is hierarchical pattern transduc-

tion. Transduction hierarchies specify patterns at

their nodes, with branches from a node providing

alternative continuations as a hierarchical match

proceeds. Terminal nodes provide result templates,

or specify a subschema, a subordinate transduction

tree, or some other result. The patterns are simple

template-like ones that look for particular words

or word features, and allow for “match-anything”,

length-bounded word spans.

Eta extends the approach implemented in the

2Intended actions obviated by earlier events may be
deleted.



LISSA system (Razavi et al., 2016, 2017). Like the

latter, Eta derives English gist clauses by prepro-

cessing the input. However, it is only used for han-

dling casual aspects of dialogue such as greetings,

and for “tidying up” some inputs in preparation

for further processing. Additional regularization is

done with a limited coreference module, which can

resolve anaphora and referring expressions such as

“it”, “that block”, etc., by detecting and storing dis-

course entities in context and employing recency

and syntactic salience heuristics. This allows Eta

to answer some simple follow-up questions like

“Where is it now?” From the tidied-up inputs, Eta

derives an unscoped logical form (ULF) (Kim and

Schubert, 2019). ULF is closely related to the log-

ical syntax used in schemas – it is a preliminary

form of that syntax, when mapping English to logic.

ULF differs from analogs, e.g., AMR, in that it is

close to the surface form of English, covers a richer

set of semantic phenomena, and does so in a type-

consistent way. For example, ULF for the sentence

“Which blocks are on two other blocks?” will be

(((Which.d (plur block.n)) ((pres be.v) (on.p (two.d

(other.a (plur block.n)))))) ?). Resulting ULF re-

tains much of the surface structure, but uses seman-

tic typing and adds operators to indicate plurality,

tense, aspect, and other linguistic phenomena. We

introduced recursion into hierarchical transduction

trees to enable ULF derivation.

3.2 Spatial Relations

We model spatial relations as probabilistic predi-

cates, using 3-D imagistic scene representations.

Each predicate is composed of several factors,

which represent basic relations that correlate with

higher level spatial relation, e.g., if A is on top

of B, then (usually) A is above B, and A is in

contact with B. Thus, “above-ness” and contact

serve as (some of the) factors used in determin-

ing “on-ness”. After all the contributing factors

are computed, their values are combined, e.g., by

taking a linear combination, maximal value, etc.,

depending on the relation. Examples of factors are

the scaled distance between centroids, frame size

(size of the scene in context, important for judging

relative distances), contact, support, certain shapes

or types, proportion of the overlap of objects’ pro-

jections onto the visual plane (for deictic sense of

certain relations), etc. Not all factors potentially

influencing a relation are relevant in a given situ-

ation, so we check various combinations of them

that correspond to different usage patterns.

Some factors involve scene statistics, e.g., when

determining nearness of A and B, the distribution

of other objects is important. First, raw context-

independent value is computed, which is then

scaled up or down, depending on the raw scores

for other objects, e.g., let near raw(A,B) =
0.55. If B is the closest object to A, i.e.,

near raw(C,A) < 0.55, ∀C(C 6= B), we per-

ceive B as the best near-object of A. Thus, the

final score near(A,B) will be boosted by a small

(variable) amount.

4 Evaluation

We enlisted 5 volunteers, including native and non-

native English speakers. The participants were in-

structed to ask spatial questions of the general type

supported by the system, but without restriction on

wording; before their first session they were shown

a short demonstration of the expected kind of inter-

action with the system, including question-answer

exchanges. Each session started with the blocks

positioned in a row at the front of the table. The

participants were instructed to move the blocks

arbitrarily to test the robustness and consistency

of the spatial models. During each session they

were requested to ask 40-50 questions and mark

system’s answers as correct, partially correct or

incorrect. They were asked to indicate separately

if no answer could be given due to ASR errors or

when the answer (regardless of correctness) seemed

to be improperly or oddly phrased. The data are

presented in Table 1.

Table 1: Evaluation data.

Total number of questions 388

Bad transcripts due to ASR errors 59

Well-formed transcripts (no ASR errors, or fixed) 329

Correct answers 219 (66.6% of 329)

Partially correct answers 45 (13.7%)

Incorrect answers 65 (18.8%)

The answer was given but sounded unnatural/ungrammatical 25

We found that the system returns correct answer

in 67% of the cases. Including partially correct

ones, the accuracy rises to 80%. Given that inter-

annotator agreement of around 0.72 was observed

in (Platonov and Schubert, 2018) for human judge-

ments of prepositional relations on a 5-point Likert

scale, our results are reasonable. Such variability is

due to the fact that spatial relations are quite vague

and people’s intuitions differ significantly. Correct-

ness was tracked for both the ULFs produced and

the generated spoken answers. The spatial com-



ponent displays satisfactory sensitivity in terms of

the certainty cut-off threshold, i.e., the threshold

determining which objects are included seems in

accord with human intuitions. Below we present

separate evaluation data for the ULF parser.

Table 2: Evaluation data on ULF parsing.

Total number of spatial questions 635

Number of correctly interpreted questions 470

Number of incorrectly interpreted questions 165

Number of incorrect parses due to ASR errors 87

Accuracy 74.02%

Percentage of incorrect parses due to ASR errors 52.73%

Most errors in the ULF parsing are due to either

ASR errors, unsupported sentence constructions

(e.g., passive voice expressions, some prepositions,

etc.), or indexical questions (e.g., “What block did

I just move?”).

5 Conclusion and Future Work

We have built a spatial QA system for a physical

blocks world, already able to handle a majority

of questions in dialogue mode. We are not aware

of any other end-to-end system with comparable

abilities in QA about spatial relations. Our spatial

language model relies on intuitive computational

models of spatial prepositions that come close to

mirroring human judgments by combining geomet-

rical information with context-specific information

about the objects and the scene. This enables natu-

ral user-machine interaction. The ongoing work is

targeting world history-tracking to enable answer-

ing question like “Where was the Toyota block

initially?”
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