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We formulate a classical theory (ωcτ � 1 with ωc as the cyclotron frequency and τ as the relaxation
time) to study the influence of perpendicular magnetic field on the electron-impurity scattering process in
two-dimensional electron gas. To describe the curved incoming and outgoing trajectories, we introduce a general
recipe based on an abstraction of the actual impurity scattering process to define the scattering parameters
such as the incoming and outgoing momentum and coordinate jump. In this picture, we can conveniently
describe the skew scattering and coordinate jump, which will eventually modify the Boltzmann equation. We
find an anomalous Hall resistivity different from the conventional Boltzmann-Drude result and a negative
magnetoresistivity as a parabolic function of magnetic field. The origin of these results is analyzed. The relevance
between our theory and recent simulation and experimental works is also discussed.
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I. INTRODUCTION

Magnetotransport of two-dimensional electrons is an inter-
esting but complicated topic in condensed-matter physics. Its
various behaviors, such as the Shubnikov-de Haas oscillation
[1], quantum Hall conductance [1], linear magnetoresistance
[2], etc., contain a wealth of information about the underlying
systems. However, one of the simplest questions in this field,
i.e., how the electron transports through disordered materials
under a magnetic field in the classical regime, has not been
fully understood yet.

In the classical (ωcτ � 1) regime, the electron transport
can be generally described by the Boltzmann equation [3].
However, it has been pointed out that the Boltzmann equation
has to be revised to incorporate the memory effect (also called
non-Markovian effect [4–9]), resulting from the bending of
electronic trajectories by the Lorentz force. There are two
configurations of memory effect, i.e., either repeatedly scat-
tering on the same impurity or repeatedly passing through a
region without scattering (the latter one is also called Corridor
effect [4–7]). In addition to the memory effect, there is an
equally important issue that needs to be addressed, i.e., how
the magnetic field affects a single electron-impurity scattering
event. This problem shares the same origin with the memory
effect—bending trajectories, but solves for one-time scatter-
ing configuration, in contrast to the two configurations of
memory effect. This problem has a fundamental difficulty in
defining scattering parameters as the incoming and outgoing
asymptotic trajectories are bent by the magnetic field.

In this paper, we introduce a general recipe based on
an abstraction of the actual impurity scattering process to
define scattering parameters for the single elastic impurity
scattering. It yields the conventional scattering parameters
in the absence of the magnetic field. More importantly, it
can introduce an appropriate set of scattering parameters in
the presence of magnetic field to calculate the differential
cross section. Specifically, the real scattering process can be
abstracted into a sudden switch between the initial asymptotic

and final asymptotic trajectory. In this classical picture, we can
conveniently describe the skew scattering [10] and coordinate
jump [11], which will eventually modify the Boltzmann equa-
tion. We then apply this recipe to the two-dimensional Lorentz
model [12] where free electrons are subject to in-plane electric
field and out-of-plane magnetic field, and scattered by ran-
domly distributed hard-disk impurities.

We show the following results. (1) The magnetoresistivity
is a negative parabolic function of magnetic field. Our result,
together with the one from the previous theory of corridor
effect [7] yields a more accurate magnetoresistivity, closer
to the numerical result [6]. (2) The obtained Hall coefficient
becomes magnetic-field dependent, deviating from the Drude
theory. For experiments, this deviation needs to be taken into
account when converting the measured Hall coefficients to
real electron densities. (3) The longitudinal relaxation time
obtained in our theory depends on magnetic field which
deviates from the Drude theory.

This paper is organized in the following way. In Sec. II,
we present the general recipe to define scattering param-
eters for the impurity scattering and use it to discuss the
skew scattering and coordinate jump under magnetic field.
The conventional Boltzmann equation is thus modified by
these two mechanisms in the linear response regime [13].
In Sec. III, we solve the modified Boltzmann equation for
the two-dimensional Lorentz model and derive the anomalous
Hall resistivity and negative magnetoresistivity. In Sec. IV, we
compare our result with relevant simulations and experiments.
Finally, we introduce a phenomenological method to include
skew scattering into the Drude model.

II. CLASSICAL THEORY OF IMPURITY SCATTERING
AND ELECTRON TRANSPORT UNDER MAGNETIC FIELD

In this section, we will formulate a classical theory of im-
purity scattering and electron transport in a two-dimensional
plane influenced by the external perpendicular magnetic field.
Our theory only considers a single scattering event and
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neglects the well-studied memory effect, correlation effect,
and localization effect [14]. One possible application of our
theory is the electron transport in randomly distributed two-
dimensional antidots under magnetic field. The antidots are
geometrical holes punched into two-dimensional electron gas
(2DEG) on semiconductor GaAs [15–18].

Our theory requires that the impurity characteristic size a
is much smaller than the mean-free path l , which is further
smaller than the cyclotron radius R. This condition is due
to the following assumptions. First, we assume a central
scattering potential with a characteristic length scale a for a
single scatterer. Second, our theory is developed under dilute
limit of impurity concentration nia2 � 1 (where ni is impurity
density), and we only consider the single impurity scattering.
This condition also suggests that a � l with l being the
mean-free path, due to the fact that nia2 = a/l . Third, from the
classical regime ωcτ � 1 (where ωc is cyclotron frequency,
and τ is relaxation time), the cyclotron radius R is larger than
the mean-free path, i.e., R > l . Summing up all the above
requirements, the precondition of our theory is a � l < R. We
note that this condition is the same with that for the corridor
effect in literature [6,7].

The derivation and discussion in this section are organized
as follows. First, we review a critical issue in formulating
our theory: As the incoming and outgoing asymptotic tra-
jectories are bent by the magnetic field, it is not clear how
to parametrize them. To resolve this issue, we introduce a
general recipe to redefine the impact parameter, the incoming
and outgoing momentum, and the scattering angle. Then
we use them to naturally describe and calculate the skew
scattering and coordinate jump at the presence of the magnetic
field, which will eventually modify the Boltzmann transport
equation.

A. Abstraction of impurity scattering process

Our final goal is to study the electron transport under
magnetic field in a classical picture. Therefore, we will use
the Boltzmann transport equation. It contains two parts: One
describes the electron drifting between collisions driven by
external forces and the other one describes the electron scat-
tering off impurities that leads to electronic steady states. In
our situation, the drifting part is simply driven by the Lorentz
force, which is well known. Therefore, we will focus on the
impurity scattering under magnetic field.

There is a critical issue in describing such a scattering
process classically. To see this, we first review the con-
ventional electron-impurity scattering in the absence of the
magnetic field. In Fig. 1, we plot such a scattering process.
The real electron trajectory is represented by the solid curve,
with the arrow showing the direction of the electron motion.
Then scattering parameters such as the impact parameter,
the incoming and outgoing momentum, and the scattering
angle are easily defined from the incoming and outgoing
asymptotic trajectories, as illustrated in Fig. 1. In the pres-
ence of a constant out-of-plane magnetic field, however,
such definition of scattering parameters does not work, be-
cause the above quantities vary in time in the asymptotic
sense due to the curved incoming and outgoing asymptotic
trajectories.

FIG. 1. The illustration of a general scattering process without
magnetic field. The solid curve is the real trajectory starting from the
color red and ending with the color blue. The red and blue dashed
lines are the initial and final asymptotic trajectory, respectively. The
red and blue empty dots are the starting point and ending point,
respectively. The green line is the event line passing through the
starting point and impurity center.

To resolve this issue, we propose a recipe to define those
scattering parameters generally. First, we introduce the ab-
straction of the impurity scattering process. It proceeds as
follows: We assume the scattering occurs suddenly at the time
t = 0; we then use the asymptotic trajectories as t → −∞ and
t → ∞ to replace the true trajectory at t < 0 and at t > 0,
respectively. We call those imaginary trajectories the initial
and final asymptotes, respectively. We define this method as
the abstraction of the impurity scattering process, as it only
keeps the essence of the scattering process, i.e., the transition
from the initial asymptote to the final asymptote, and abstract
the detail of the transition as a sudden switch.

There is a degree of freedom in the above procedure. Note
that even though we have restricted the scattering to occur at
t = 0, this point itself is not well defined. In other words, we
have the freedom to define this artificial point. For a central
scattering potential, we can fix this issue by requiring that at
t = 0 the electron reaches the point in the initial asymptote
closest to the scatter. We call this point the starting point
(represented by the red dot in Fig. 1). If the scattering potential
respects the rotational symmetry, the starting point in different
initial asymptotes forms a straight line called the event line
which marks the occurring of scattering event as illustrated in
Fig. 1. It turns out that the event line is orthogonal to the initial
asymptotes and passes the center of the scatterer.

With the help of the abstraction of the impurity scatter-
ing process, we define the scattering parameters as follows.
We define the distance between the starting point and the
scattering center to be the impact parameter, the momentum
at t = 0− and t = 0+ to be the incoming and outgoing mo-
mentum, respectively, and the angle between the incoming
and outgoing momentum to be the scattering angle. Those
scattering parameters reduce to the conventional ones in the
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FIG. 2. The illustration of the conventional hard ball scattering
with no magnetic field. The red and blue empty dots are the starting
point and ending point, respectively. The green line is the event line
passing through the starting point and impurity center. The initial
asymptote and final asymptote are marked by dashed red and blue
lines with the incoming momentum k, the outgoing momentum k′,
and the angle of scattering θ , the impact parameter b. The coordinate
jump can be divided into two directions, which are transverse jump
and longitudinal jump.

absence of the magnetic field, as shown in Fig. 1. We further
define the point in the final asymptote at t = 0+ to be the
ending point (represented by the blue dot in Fig. 1). This
definition of scattering parameters is clearly independent of
the scattering details and works for any type of initial and final
asymptotes.

Using the above concepts, the abstraction of the scattering
process can be concisely stated as follows: The electron moves
along the initial asymptote to the starting point, gets scattered
to the ending point, and finally moves away from the scatterer
along the final asymptote.

B. Application to hard disk potential

We first apply the abstraction of the scattering process
to hard disk potential in the absence of magnetic field. By
applying to this fully known case, we aim at a necessity
check of the correctness of our theory. Consider an electron
incident on a hard disk potential with straight line trajectory
(Fig. 2). The real trajectory (solid lines) changes its direction
after the electron hits the scatterer. However, the initial and
final asymptote (dashed lines) can be elongated along the real
trajectory and pass through the scatterer. The event line that
marks the occurrence of the scattering event passes through
the center of scatterer and the starting point (red empty dot)
on the initial asymptote. The incoming momentum k and
outgoing momentum k′ are defined as the starting (red empty
dot) and ending points (blue empty dot) on the initial and final
asymptotes, respectively.

In contrast, in the presence of magnetic field, the trajectory
is bent, and we use the abstraction of the scattering process

FIG. 3. The illustration of electron scattering on hard disk impu-
rity with cyclotron orbit under magnetic field. The impurity radius
is a. The cyclotron radius is R. The red and blue solid lines are the
real trajectory of the incoming and outgoing electrons, respectively.
The red and blue complete circle forms the initial asymptote and
final asymptote. The red and blue empty dots are the starting point
and ending point, respectively. The incoming momentum k and the
outgoing momentum k′ are along the tangential direction at the
starting point and ending point. The angle of scattering θ is the angle
between k and k′.

discussed in the previous subsections to define scattering pa-
rameters, as shown in Fig. 3. The incoming momentum k and
outgoing momentum k′ cannot be defined straightforwardly,
due to the directions of the initial/final asymptote changes
over time. As shown in Fig. 3, the red and blue dashed lines
are the asymptotic trajectory which completes the circular
trajectory. The incoming k and outgoing k′ are defined along
the tangential direction to the initial asymptote and final
asymptote at the starting point and ending point, respectively
(see Fig. 3). The k and k′ are rotated by the same angle in unit
time.

In Appendix E, we demonstrate how the abstraction
method can be applied to the soft potential under magnetic
field.

C. Skew scattering under magnetic field

In this section, we discuss the skew scattering in the classi-
cal picture. As shown in previous literature, the antisymmetric
part of the probability of scattering Wkk′ leads to the skew scat-
tering [10]. Wkk′ (probability of scattering of k → k′ process)
is related to the differential cross section as Wkk′ = nivk�kk′ ,
where ni is the impurity concentration and vk is the electron
velocity. For hard-disk potentials, the scattering is elastic, i.e.,
|vk| = |vk′ |. Therefore, a nontrivial antisymmetric part of Wkk′

only comes from that �kk′ �= �k′k.
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FIG. 4. The plots of the differential cross section of two pro-
cesses: k → k′ and k′ → k, respectively, in the unit of impurity
radius a. The ratio a

R = 0.16. The �kk′ does not overlap with �k′k,
which leads to skew scattering.

Using the scattering parameters shown in Fig. 3, the differ-
ential cross section is easily calculated by �kk′ = | db

dθ
|. Here

we use the fact that b is only a function of θ and k = |k| due
to the rotational symmetry and the elastic nature of scattering.
For the two-dimensional Lorentz model, the relation between
b and θ and k with [R = h̄k/(eB)] is given by (derived in
Appendix A)

b(θ, k) = −R +
√

a2 + R2 + 2aR cos
θ

2
. (1)

Therefore, the differential cross section reads

�kk′ = a sin θ
2

2
√

1 + 2 a
R cos θ

2 + (
a
R

)2
. (2)

On the other hand, the differential cross section of the
inverse process k′ → k is labeled by �k′k, and can be calcu-
lated as follows: �k′k = | db

dθ
|
θ→2π−θ

. Therefore, its expression
reads

�k′k = a sin θ
2

2
√

1 − 2 a
R cos θ

2 + (
a
R

)2
. (3)

We plot �kk′ and �k′k in Fig. 4. It shows that �kk′ �= �k′k,
leading to the nontrivial skew scattering contribution to the
electron transport in the two-dimensional Lorentz model. In
Eq. (22) in Sec. III B and Sec. IV C, we will find out that
only when �kk′ �= �k′k, is there 1

τ⊥ �= 0 ( 1
τ⊥ is the reciprocal

of transverse relaxation time), which is the signature of skew
scattering. We further comment that the nature of the above
inequivalence is a finite magnetic field, i.e., only in the limit
B → 0, R → ∞ and hence �kk′ − �k′k → 0. Therefore, a
finite magnetic field is essential to the skew-scattering mecha-
nism, which breaks the time-reversal symmetry. Moreover, the
leading order contribution to �kk′ − �k′k is proportional to a

R
as shown in Eq. (22) in Sec. III B. Therefore, the correction
to the Boltzmann transport theory by the skew scattering is
relatively small due to the smallness of a

R .

D. Coordinate jump under magnetic field

In this section, we discuss the coordinate jump [11,19,20],
labeled by δrk′k (coordinate jump from k → k′). In our recipe
of describing the impurity scattering, it can be conveniently
defined as the difference between the starting point rs and the
ending point re: δrk′k = re − rs. It can be further divided into
longitudinal jump and transverse jump, which are parallel
and orthogonal to the incoming momentum k, respectively
(Fig. 2).

As the incoming momentum is along the x axis, the longi-
tudinal jump is δxk′k, and the transverse jump is δyk′k. Similar
to the differential cross section, the coordinate jump is also a
function of θ and k, and can be calculated as follows, based on
the two-dimensional Lorentz model (derived in Appendix B):

δxk′k = R

⎡
⎣sin θ − sin θ + 2 a

R sin
(

θ
2

)
√

1 + 2a
R cos

(
θ
2

) + a2

R2

⎤
⎦x̂ , (4)

δyk′k = 2R sin2

(
θ

2

)⎡
⎣1 − 1√

1 + 2a
R cos

(
θ
2

) + a2

R2

⎤
⎦ŷ . (5)

Generally, the coordinate jump has two contributions to the
electron transport. First, it may induce a net jump velocity vc j

that modifies the electronic drift velocity,

vc j =
∑

k′
Wkk′δrk′k =

∫ 2π

0
dθniv�kk′δrk′k, (6)

with v = h̄k/m. Second, it leads to an electrostatic potential
difference eE · δrk′k and thus affects the electronic equilib-
rium distribution function.

As will be seen from Eqs. (26)–(31) of Sec. III B, the side
jump can be expanded as a power series with respect to a

R . Due
to the smallness of a

R , the side jump correction to the Drude
theory is relatively small.

Finally, we comment that as B → 0, the transverse jump
does not have a net jump velocity, as the system respects a
mirror symmetry with the mirror passing through the scatterer,
parallel to k, and normal to the material plane. On the other
hand, the longitudinal jump is not restricted by any symmetry
and hence the net jump velocity is nonzero. Both statements
can be easily verified for the two-dimensional Lorentz model
using Eqs. (2), (4), (5), and (6).

E. The nature of the anisotropic scattering

At first glance, the assignment of the scattering events of
t = 0 at the event line instead of the circular boundary of
scatter is counterintuitive and artificial. However, it has deeper
physical ground underneath.

The advantage of using the event line defined in our theory
instead of the colliding boundary is that the cross-sectional
area (which overlaps with the event line) is the projection of
the boundary. The incoming scattering events are uniformly
distributed on the event line with momentum perpendicular
to the event line but not uniform on the boundary. Therefore,
the number of electrons being scattered is proportional to the
cross-sectional area on the event line. This provides conve-
nience to count the number of scattering events and scattering
cross sections.
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FIG. 5. The illustration of “π event” (when the scattering angle
is π ) in the absence and presence of magnetic field.

To understand the nature of anisotropic scattering, we
define π event as the scattering event with scattering angle
θ = π . When there is no magnetic field, the π event evenly
divides the cross-sectional area along the event line (Fig. 5)
and there is no skew scattering. When there is magnetic field
present, the π event unevenly divides the cross-sectional area
on the event line (Fig. 5), resulting in the uneven division of
the number of electrons being scattered up (with the scattering
angle within [0, π ]) and scattered down (with the scattering
angle within [π, 2π ]). This is shown in Fig. 6, where the
red shaded area (corresponding to the cross-sectional area
being scattered up) is smaller than the green shaded area
(corresponding to the cross-sectional area being scattered
down).

We provide a second way to understand the anisotropic
scattering in Appendix F.

F. Modified Boltzmann equation

The Boltzmann equation can be generalized to include the
skew scattering and coordinate jump, reading (e > 0)

(−e)(E + v × B) · ∂ fk

h̄∂k

= −niv

∫ 2π

0
dθ [�kk′ f (ε, k) − �k′k f (ε, k′)

+�k′k∂ε f 0eE · δrk′k], (7)

where f 0 is the equilibrium distribution function. We em-
phasize that in the above equation, |k′| = |k| because the
scattering is elastic.

To solve up to the linear order of electric field, we assume
that

f (ε, k) = f 0(ε) + gr (ε, k) + gcj(ε, k), (8)

where gcj(ε, k) is the part of the nonequilibrium distribution
function purely due to the coordinate jump (or called anoma-
lous distribution function), and gr is the nonequilibrium distri-
bution function in the absence of coordinate jump (or called
normal distribution function). Combining Eqs. (7) and (8),
keeping the terms of linear order in the electric and magnetic
field, and ignoring the coupling between skew scattering and
coordinate jump, the Boltzmann equation is decomposed into
two equations:

(−e)E · ∂ f 0

h̄∂k
+ (−e)(v × B) · ∂gr

k

h̄∂k

= −
∫ 2π

0
dθniv

[
�kk′gr

k − �k′kgr
k′
]
, (9)

FIG. 6. The plot of differential cross section of k → k′ process
in the unit of impurity radius a. The vertical black line marks the
π event. The red shaded area is the cross-sectional area within
scattering angle [0, π ]. The green shaded area is the cross-sectional
area within scattering angle [π, 2π ]. The π -event unevenly divides
the cross-sectional area, with the red shaded area smaller than the
green shaded area.

(−e)E ·
(∫ 2π

0
dθniv�k′kδrk′k

)
∂ε f 0 − (−e)(v × B) · ∂gcj

k

h̄∂k

=
∫ 2π

0
dθniv

[
�kk′gcj

k − �k′kgcj
k′
]
. (10)

With all the above ingredients, the electrical current density
is given by

j = (−e)
∫

dk
4π2

[gr + gcj][v + vc j]. (11)

III. SOLUTIONS OF THE BOLTZMANN EQUATION

A. Zero magnetic-field case

In this case, only the longitudinal coordinate jump
along the k-direction exists. vc j ≡ ∫ 2π

0 dθniv�(θ )δrk′k =
−v 3πnia2

4 , which is along the opposite direction to v.
The Boltzmann equation is solved as

gr
k = (−∂ε f 0)(−e)E · vτ 0(ε), (12)

gcj
k = (∂ε f 0)(−e)E · vc jτ 0(ε), (13)

where 1
τ 0(ε) = niv

8a
3 . The electric current density is therefore

jx ≡ (σ 0 + σ c j1 + σ c j2 + σ c j1,c j2)Ex with

σ 0 = (−e)
∑

k

gr
k

Ex
vx = ne2τ 0(εF )

m
, (14)

σ cj1 = (−e)
∑

k

gcj
k

Ex
vx = 3niπa2

4

ne2τ 0(εF )

m
, (15)

σ cj2 = (−e)
∑

k

gr
k

Ex
vcj

x = −σ cj1, (16)
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and

σ cj1,cj2 = (−e)
∑

k

gcj
k

Ex
vcj

x = −ne2τ 0(εF )

m

(
3niπa2

4

)2

, (17)

where the carrier density n = mεF

π h̄2 with εF the Fermi energy.
Here, σ 0 is the conventional zero-field conductivity in

the Drude theory. σ cj1 is the conductivity induced by the
anomalous distribution from the coordinate jump. σ cj2 is
the conductivity induced by the velocity correction from the
coordinate jump. It cancels σ cj1. σ cj1,cj2 is the conductivity
with both the distribution and velocity being corrected by the
coordinate jump. Therefore, the total electrical conductivity is

σ = σ 0 + σ cj1,cj2 = ne2τ 0(εF )

m

[
1 −

(
3

4
niπa2

)2
]
. (18)

There is a correction to the electron density, because the
electrons are only present in the free area excluding the
area occupied by impurities. The electron density n = N

A−Ai
=

nD

1− Ai
A

, where A and Ai represent the total 2D area and the area

occupied by the hard disk impurities, respectively, and Ai
A =

πnia2, and nD = N
A is the electron density without the correc-

tion to exclude the area that impurities take. Thus, the Fermi
momentum kF = √

2πn = kF
D√

1− Ai
A

, where kD
F = √

2πnD.

Therefore, the measured electrical conductivity is also
corrected by

σ M = σ
A − Ai

A

= nDe2τD

m

[
1 −

(
3

4
πnia

2

)2
]√

1 − πnia2, (19)

with the Drude transport relaxation rate 1/τD = niv
D
F

8a
3

a constant. The conductivity in our theory σ M is lower
than the Drude conductivity σ D = nDe2τD

m by a factor of

[1 − ( 3
4πnia2)

2
]
√

1 − πnia2 as can be seen from Eq. (19),
which decreases as a function of the dimensionless quantity
nia2. The deviation of the diffusion coefficient from the Drude
model in a previous computer simulation of Lorentz model
with overlapped hard sphere impurities [12] is similar to that
in our theory.

B. Low magnetic-field case: Hall coefficient
and magnetoresistivity

In this section, we evaluate the conductivity under a weak
magnetic field. We first discuss the contribution from the skew
scattering. According to previous discussions, we need to
solve the distribution function using Eq. (9).

gr
k = (−∂ε f 0)(−e)[E · vτ L(ε) + (ẑ × E) · vτ T (ε)] into

Eq. (9) and obtain

τ L(ε) = τ ‖(ε)

1 + [
ωcτ ‖(ε) + τ ‖(ε)

τ⊥(ε)

]2 ,

τ T (ε) =
[
ωcτ

‖(ε) + τ ‖(ε)

τ⊥(ε)

]
τ L(ε), (20)

FIG. 7. The plot of the reciprocal of transverse relaxation time
1

τ⊥ in the unit of niav, where a is the impurity radius, ni is the
impurity density, and v is the electron velocity. The 1

τ⊥ is always
negative as long as a < R.

where we define

1

τ ‖(ε)
=

∫ 2π

0
dθniv[�A(1 + cos (θ )) + �S (1 − cos (θ ))]

= 8

3
niva

[
1 − 1

5

( a

R

)2
+ O

((
a

R

)4)]
, (21)

1

τ⊥(ε)
=

∫ 2π

0
dθniv[�S − �A] sin (θ )

= −π

4
niva

a

R

[
1 + O

((
a

R

)2)]
. (22)

Here �A = 1
2 (�kk′ − �k′k ), which is the antisymmet-

ric part of the differential cross section, and �S =
1
2 (�k′k + �kk′ ), which is the symmetric part of the differential
cross section. τ⊥ is purely due to the skew scattering, i.e.,
�kk′ �= �k′k. In our theory, only when B �= 0, �kk′ �= �k′k.

Generally, we prove that τ ‖ is purely contributed by �S

by showing
∫ 2π

0 dθ�A(1 + cos(θ )) = 0, and τ⊥ is purely

contributed by �A by showing
∫ 2π

0 dθ�S sin (θ ) = 0 (see
Appendix D). As a result, τ ‖ is not enough to characterize the
collision process as long as the scattering probability contains
an antisymmetric part, in which case, τ⊥ naturally emerges.

In our example, 1
τ⊥ is always negative [as shown in Eq. (22)

and Fig. 7]. Moreover, the ratio of τ ‖ to τ⊥ is proportional
to a/R. Since we are considering the weak magnetic field
scenario with a large R (R > a), |τ⊥| will be bigger than |τ ‖|.
Taking the data from the second row of Table I as an example
where β = 0.6, a

R = 2βc
π

= 0.06, the ratio of τ ‖ to τ⊥ is then
around −0.017.

The finite magnetoresistance in our theory is crucially
provided by the finite impurity size a. As Eq. (22) shows, 1

τ⊥

exists only when a
R is finite. As Eq. (21) shows, 1

τ ‖ deviates
from Drude model, only when a

R is finite. Generally speaking,
it also indicates that longer range scatterers lead to a more
significant deviation from the Drude model at low magnetic
fields. This phenomenon is consistent with literature [16],
emphasizing that the classical magnetoresistance is crucially
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TABLE I. The comparison between the summation of analytical results from Ref. [7] and our theory, and the numerical results from

Ref. [6]. The second column is calculated based on
( δρ‖

cρ0

)an
being the magnetoresistivity calculated by our formula. The third column

δρ′
‖

cρ0
is the

quadratic contribution due to the influences of magnetic field on returns after multiple scatterings in Ref. [7]. The fourth column
( δρCor

‖
cρ0

)th
is the

analytical values of magnetoresistivity influenced by Corridor effect in Ref. [7]. The fifth column is the summation of all the analytical results
from Ref. [7]. The sixth column includes our results, in addition to the previous analytical results in the fifth column. The seventh column

(
δρ‖
cρ0

)
si

is the simulation result of magnetoresistivity in Ref. [6].

β
( δρ‖

cρ0

)an δρ′
‖

cρ0

( δρCor
‖

cρ0

)th δρ′
‖

cρ0
+ ( δρCor

‖
cρ0

)th ( δρ‖
cρ0

)an + δρ′
‖

cρ0
+ ( δρCor

‖
cρ0

)th ( δρ‖
cρ0

)si

β/c = 3, β = 0.45 −0.0074 −0.026 −0.0605 −0.0865 −0.094 −0.1
β/c = 4, β = 0.6 −0.013 −0.046 −0.07 −0.116 −0.13 −0.14
β/c = 5, β = 0.75 −0.021 −0.072 −0.076 −0.148 −0.17 −0.19
β/c = 5.5, β = 0.825 −0.025 −0.087 −0.0796 −0.167 −0.19 −0.24
β/c = 6, β = 0.9 −0.03 −0.103 −0.086 −0.189 −0.22 −0.28

affected by long-range disorder. We will explore more about
the long-range disorder case in Appendix E.

The conductivity resulted from the skew scattering is[
σxx

σyx

]
=

ne2τ ‖
m

1 + (
ωcτ ‖ + τ ‖

τ⊥
)2

[
1(

eB + m
τ⊥

)
τ ‖
m

]
. (23)

Converting the conductivity in Eq. (23) into resistivity,
we get

ρxx = m

e2τ ‖n
, (24)

ρxy = −
(

B

en
+ m

e2τ⊥n

)
, (25)

where 1
τ ‖ and 1

τ⊥ was derived in Eqs. (21) and (22), respec-
tively.

As Eqs. (24) and (25) show, τ ‖ contributes to the negative
magnetoresistance, while τ⊥ contributes to the anomalous
Hall effect. The 1

τ ‖ decreases with the increase of magnetic
field, which results in the negative magnetoresistance. We
will explore more of τ⊥ from the Drude theory perspective
in Sec. IV C, Discussion.

We now discuss the contribution from coordinate jump to
the conductivity. For the anomalous distribution function due
to coordinate jump, we first calculate∫ 2π

0
dθniv�k′kδrk′k = nia

2(C‖
a v + C⊥

a ẑ × v), (26)

and ∫ 2π

0
dθniv�kk′δrk′k = nia

2(C‖
c jv + C⊥

c j ẑ × v), (27)

where

C‖
a ≡ −3

4
π + 7π

16

( a

R

)2
+ O

( a

R

)4
, (28)

C⊥
a ≡ 16

15

a

R
+ 88

105

( a

R

)3
+ O

( a

R

)5
, (29)

C‖
c j ≡ −3

4
π + π

16

( a

R

)2
+ O

( a

R

)4
, (30)

C⊥
c j ≡ 8

105

( a

R

)3
+ O

( a

R

)5
. (31)

Then we plug in the following ansatz:

gcj
k = (−∂ε f 0)(−e)nia

2[E · vτ L,cj(ε) + (ẑ × E) · vτ T,cj(ε)],
(32)

into Eq. (10) and get

τ L,c j (ε) =
−C‖

a − C⊥
a

[
ωcτ

‖(ε) + τ ‖(ε)
τ⊥(ε)

]
1 + (

ωcτ ‖(ε) + τ ‖(ε)
τ⊥(ε)

)2 τ ‖(ε), (33)

τ T,c j (ε) =
C⊥

a − C‖
a

(
ωcτ

‖(ε) + τ ‖(ε)
τ⊥(ε)

)
1 + (

ωcτ ‖(ε) + τ ‖(ε)
τ⊥(ε)

)2 τ ‖(ε). (34)

Combining the skew scattering and coordinate jump con-
tributions to the conductivity, we obtain the following result:

σ|| ≡ jx
Ex

= σxx(1 + tan2 θH ), (35)

RH (εF , B) ≡ Ey

jxB
= − 1

B

tan θH

σxx(1 + tan2 θH )
, (36)

where tan θH ≡ σyx

σxx
denotes the Hall angle, and the Hall co-

efficient RH depends on the magnetic field and εF . Usually,
only the magnetic field-independent Hall coefficient RH |B=0

is needed. The magnetoresistivity is δρxx (B)
ρxx (B=0) = − δσxx (B)

σxx (B=0) ,

where ρxx = σ−1
xx is the resistivity and δσxx(B) ≡ σxx(B) −

σ||(B = 0) is the magnetoconductivity. Because[
σxx

σyx

]
= e2εF

π h̄2

[
1 + nia2C‖

c j −nia2C⊥
c j

nia2C⊥
c j 1 + nia2C‖

c j

][
τ L + nia2τ L,c j

τ T + nia2τ T,c j

]
.

(37)
In the case of nia2 � 1 and ωcτ

0 < 1, we can neglect C⊥
c j

and obtain[
σxx

σyx

]
= ne2

m

(1 + nia2C‖
c j )τ

‖

1 + (
ωcτ ‖ + τ ‖

τ⊥
)2

×
[

1 + nia2
[ − C‖

a − C⊥
a

(
ωcτ

‖ + τ ‖
τ⊥

)]
(
ωcτ

‖ + τ ‖
τ⊥

) + nia2
[
C⊥

a − C‖
a

(
ωcτ

‖ + τ ‖
τ⊥

)]
]
.

(38)

This is the complete expression of the conductivity including
the skew scattering and coordinate jump effect. Then we can
solve for the Hall coefficient and the magnetoresistivity.
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The full expression of Hall angle is given by

tan θH =
(
ωcτ

‖ + τ ‖
τ⊥

) + nia2
[
C⊥

a − C‖
a

(
ωcτ

‖ + τ ‖
τ⊥

)]
1 + nia2

[ − C‖
a − C⊥

a

(
ωcτ ‖ + τ ‖

τ⊥
)] . (39)

To expand the Hall coefficient and the magnetoresistivity,
we use the approximation nia2 � 1. The Hall angle and the
magnetoconductivity are

tan θH � ωcτ
0

[
1 − π

4
nia

2 + 128

45
(nia

2)2

]
, (40)

and

σ||(B) − σ||(0)

σ||(0)
� 64

15
(nia

2ωcτ
0)2 = 3

5

( a

R

)2
> 0, (41)

respectively. The correction due to the effective area of free
space excluding the area of all the impurities is of higher order
and thus neglected.

The magnetoresistivity δρ‖(B)
ρ‖(0) � − 64

15 (nia2ωcτ
0)2 is nega-

tive, and is composed of three contributions: (1) the con-
tribution from the Hall angle, more specifically, from the
anomalous distribution function to the Hall transport (C⊥

a →
τ T,c j → tan θH ), (2) the magnetic-field-induced correction to
the longitudinal transport relaxation time [(τ ‖ − τ 0))→σxx )],
and (3) the contribution of anomalous distribution function to
the longitudinal transport (C⊥

a →τ L,c j→σxx ).
The leading order correction of the Hall angle −π

4 nia2ωcτ
0

stems from the magnetic-field-induced skew scattering. This
result is comparable to the Hall angle from the classical
memory effect [8] in the limit nia2 � ωcτD � 1: δRcm

H /RB
H =

− 32
9π

nia2, where RB
H is the Hall coefficient in the conventional

Boltzmann theory RB
H = − 1

nDe = − 1
ne(1−πnia2 ) , and δRcm

H is the
difference between the Hall coefficient corrected by classical
memory effect and the conventional Hall coefficient.

In experiments, to obtain the real electron density n from
the measured Hall coefficient, the correction to RH has to be
included. The Hall coefficient is RH = −1/n′e, where n′ is the
effective electron density n′ ≈ n

(1− c
4 + 128c2

45π2 )
and c = πa2ni. We

use the value of c = 0.15 here as an example (this value is
also used in the discussion) and find that n′ ≈ n

0.97 , which is
equivalent to a 3% error. This error is larger when the impurity
density increases.

We note that in a previous work [21], it is already recog-
nized that there may be corrections to the Hall coefficient.
However, their result is due to the magnetic-field-affected
Bloch-electron drifting motion, and is proportional to the

1
(τ 0 )2 [or equivalently, (nia2)2]. In comparison, our correction
here has different origins (magnetic-field-affected electron-
impurity scattering), as well as different scaling behavior (i.e.,
proportional to nia2).

IV. DISCUSSIONS

A. Magnetoresistivity in comparison with simulation
at low magnetic field

In this section, we demonstrate that our theory, together
with the memory effect discussed in literature [6,7], can yield
a better understanding of the numerical simulation of the
electron transport in the Lorentz model [6]. At low magnetic

FIG. 8. The plots of the numerical magnetoresistivity in the
seventh column of Table I, the magnetoresistivity from corridor
effect in the fourth column of Table I, and the addition of our
magnetoresistivity in the second column of Table I with the result
from corridor effect, respectively.

field ωcτ
0 < 1, the literature [6,7] predicted a negative mag-

netoresistivity due to the influence of magnetic field on the
corridor effect (enhancing the backscattering from the first
impurity to the second impurity and back to the first impurity)
and on multiple scatterings.

In Table I, we compare the numerical simulation of the
electron transport with our theory as well as the memory
effect. The relevant parameters are defined as follows: c =
πnia2 = 0.15, β = ωcτ = 4

3ωcτ
0, where τ = (2vnia)−1 is the

single-particle scattering time. The second column ( δρ‖
cρ0

)
an =

− 12
5π2 cβ2, which can be obtained from Eq. (41) in our theory.

The third column is calculated based on the expression
δρ ′

‖
cρ0

=
− 0.4

π
β2, which is the quadratic contribution due to the influ-

ence of magnetic field on multiple scatterings in Ref. [7]. The

fourth column (
δρCor

‖
cρ0

)
th

is calculated based on the analytical
expression of magnetoresistivity due to the Corridor effect
in Ref. [7]. The fifth column is the summation of all the
analytical results from Ref. [7]. The sixth column includes our
results in addition to the previous analytical results in the fifth

column. The seventh column ( δρ‖
cρ0

)
si

is the simulation result of
magnetoresistivity in Ref. [6].

As can be seen from Table I, the inclusion of ( δρ‖
cρ0

)
an

(the
magnetoresistivity calculated in our theory) yields a more
accurate magnetoresistivity, closer to the simulation result,
especially under relatively small magnetic field (β = 0.45 and
β = 0.6). This is also reflected in Fig. 8. Under relatively large
magnetic field, the deviation of the analytical values from the
simulation values increases. We comment that both our theory
and the corridor effect in literature [6,7] gradually become less
accurate when β increases. Therefore, at large β, the current
theory may not be accurate.

We choose the value of c = πnia2 = 0.15 in Table I be-
cause we want to compare with the results from literature
[6,7], where the largest value of c is 0.15. We choose a larger
value of c because the larger c is, the more significant the
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negative magnetoresistivity effect in our theory. The reason
can be found from the expression (δρ‖)an/δρ ′

‖ = 6nia2. As
can be seen from Table I, the weight of our theory (column 2)
in the total theoretical magnetoresistivity (column 6) increases
from 8% to 14%, showing a growing importance of our theory
when increasing magnetic field.

B. Magnetoresistivity in comparison with experimental results

In this subsection, we discuss the possible relevance of our
result to experiments. The negative parabolic magnetoresis-
tivity has been observed in a corrugated 2DEG in GaAs wells
[22]. Although the authors explained their observation using
the Corridor effect, the fitting value for nia2 is far beyond its
valid range (in literature [7], the fitting of correlation effect to
the experiment has suggested a parameter nia2 = 2.6, while
its theory of the corridor effect requires nia2 � 1). Thus, the
magnetoresistivity theory in terms of corridor effect in the
2D Lorentz model may not provide a suitable description for
the experiments with low magnetic field. In comparison, if
we fit the experimental parabolic negative magnetoresistivity
in low magnetic field to our formula, we get a reasonable
value nia2 = 0.12, which may provide a second viewpoint to
theoretically interpret the experiment. Note that our theory
is not quantitatively accurate once the deviations from the
Drude’s behavior become significant, while the magnitude of
the quadratic magnetoresistance is around 1%—Fig. 2(b) in
literature [22]—which is indeed a weak deviation from the
Drude theory.

At high magnetic field regime, several classical theories
and experiments address magnetoresistance behaviors devi-
ating from the Drude’s behavior. For example, in literature
[23,24], the magnetic field and temperature-dependent mag-
netoresistance at high magnetic field is explained by the
classical theory of suppression of the chaotic dynamics in
smooth disordered potentials [25,26].

We also comment that, in some cases, the electron motion
is quasi-two-dimensional, and the vertical motion is not negli-
gible. One example is shown in literature [18], in which an in-
plane magnetic field is applied and the periodically distributed
large-scale impurities are prepared. This is, however, beyond
the scope of our theory.

C. Phenomenological inclusion of skew
scattering into the Drude model

In this subsection, we demonstrate that the skew scattering,
signified by 1

τ⊥ , can be phenomenologically included into

Drude framework using a tensor 1
τ

↔
.

In traditional Drude theory, the scattering rate 1
τ

is treated
as a scalar. The equation of motion is

mv̇ = −e(E + v × B) − mv
τ

. (42)

In the presence of out-of-plane magnetic field, due to
the rotational symmetry in the two-dimensional plane, 1

τ

becomes an antisymmetric tensor [10,19,27] with a nonzero

off-diagonal element:

↔
1

τ
=

(
1
τ ‖

1
τ⊥

− 1
τ⊥

1
τ ‖

)
. (43)

The modified equation of motion is

mv̇ = −e

(
Ex

Ey

)
− e

(
vyBz

−vxBz

)
− m

(
1
τ ‖

1
τ⊥

− 1
τ⊥

1
τ ‖

)(
vx

vy

)
, (44)

with the conductivity

σxx =
ne2τ ‖

m

1 + (
eB
m + 1

τ⊥
)2

τ ‖2
, σxy = − ne2

(
eB + m

τ⊥
)

τ ‖2

m2

1 + (
eB
m + 1

τ⊥
)2

τ ‖2
,

(45)
which gives the same result as that in the Boltzmann theory
Eq. (23) when considering only the skew scattering part. In the
Drude model, mv/τ is a resistive force. The physical meaning
of the anisotropic resistive force is that the direction of the
force is no longer the same with that of the velocity. This
anisotropic force in the Drude theory, on the other hand, is
equivalent to the anisotropic scattering in the Boltzmann the-
ory. The difference between Boltzmann theory and the Drude
phenomenological theory is that the Drude theory cannot
give a specific expression of the longitudinal and transverse
relaxation time.

Converting the conductivity into resistivity, we get

ρxx = m

e2τ ‖n
, (46)

ρxy = −
(

B

en
+ m

e2τ⊥n

)
. (47)

Based on our theory, from Eq. (21), we see that the magnetic-
field dependence of τ ‖ contributes to the negative magnetore-
sistance, while 1

τ⊥ contributes to the anomalous Hall effect.

V. CONCLUSION

In summary, we have formulated a classical theory for the
magnetotransport in the 2D Lorentz model. This theory takes
into account the effects of the magnetic field on the electron-
impurity scattering, using the recipe of the abstraction of the
real scattering process in the classical Boltzmann framework.
We find a correction to the Hall resistivity in the conventional
Boltzmann-Drude theory and a negative magnetoresistivity as
a parabolic function of magnetic field. The origin of these re-
sults has been analyzed. We have also discussed the relevance
between our theory and recent simulation and experimental
works.
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FIG. 9. The geometry of the scattering process in the presence
of magnetic field. Point O is the center of impurity. Points C and C′

are the center of the circle of the initial asymptote and the circle of
the final asymptote, respectively. Point A is the impact point on the
scatterer boundary. Point D is the closest approach to the scatterer on
the initial asymptote. Point E on the final asymptote is simultaneous
with point D.

APPENDIX A: DERIVATION OF DIFFERENTIAL
CROSS SECTIONS

The relation between impact parameter b and the scattering
angle θ in Eq. (1) is derived from the geometry of the
scattering process shown in Fig. 9. The scattering angle θ

is from k to k′. Because the direction of y axis is π
2 larger

than k, and the direction of vector
−→
EC′ is π

2 larger than k′,

the angle between vector
−→
EC′ and the y axis is equal to the

scattering angle θ . Equivalently, the angle between
−→
AC and−→

AC′ is equivalent to the scattering angle θ . Therefore, there is
a relation

θ

2
= π − ∠OAC. (A1)

Along with the cosine theorem for the ∠OAC: a2 + R2 −
2aR cos∠OAC = (b + R)2, there is

a2 + R2 + 2aR cos
θ

2
= (b + R)2. (A2)

Therefore, the expression of b in terms of θ is

b = −R +
√

a2 + R2 + 2aR cos
θ

2
. (A3)

For the inverse process k′ → k, the scattering angle is
2π − θ , which falls in the range of [0, 2π ]. We only focus
on the calculation within [0, 2π ], because the scattering has
periodicity of 2π . Beyond [0, 2π ], the scattering process is
the same in every 2π period. Substituting θ for 2π − θ in
Eq. (A3), we get the differential cross section for k′ → k

process:

b = −R +
√

a2 + R2 − 2aR cos
θ

2
. (A4)

As we see, the two processes k′ → k and k → k′ have
different differential cross sections, which leads to skew
scattering.

APPENDIX B: DERIVATION OF COORDINATE JUMP

The coordinate jump can be derived by δr =−→
OE − −→

OD, where D and E are the starting point

and ending point (Fig. 9).
−→
OE = −→

OC′ + −→
C′E .

−→
OC′ =

−(R + b) sin(2α)x̂ + (R + b) cos(2α)ŷ.
−→
C′E = R sin(θ )x̂ −

R cos(θ )ŷ. So
−→
OE = [−(R + b) sin(2α) + R sin(θ )]x̂ +

[(R + b) cos(2α) − R cos(θ )]ŷ.
Also, because

−→
OD = bŷ, there are

δx = [−(R + b) sin(2α) + R sin(θ )]x̂, (B1)

δy = [(R + b) cos(2α) − R cos(θ ) − b]ŷ. (B2)

To replace b and α in terms of R, a, θ , we get

δx = R

⎡
⎣sin θ − sin θ + 2 a

R sin
(

θ
2

)
√

1 + 2a
R cos

(
θ
2

) + a2

R2

⎤
⎦x̂, (B3)

δy = 2R sin2

(
θ

2

)⎡
⎣1 − 1√

1 + 2a
R cos

(
θ
2

) + a2

R2

⎤
⎦ŷ. (B4)

APPENDIX C: RIGOROUS TREATMENT
OF BOLTZMANN EQUATION

In general, the Boltzmann equation can be written as

(−e)(E + v × B) · ∂ fk

h̄∂k

= −
∫ 2π

0
dθ [Wkk′ f (ε, k)(1 − f (ε, k′))

−Wk′k f (ε, k′)(1 − f (ε, k))], (C1)

where Wkk′ is the probability of scattering from k to k′.
In a more rigorous treatment shown by Kohn and Luttinger

in Eq. (21) of Ref. [28], it makes a correspondence between
the classical distribution function and the quantum mechanical
density matrix. In this treatment, the right-hand side of the
Boltzmann equation becomes

(−e)(E + v × B) · ∂ fk

h̄∂k

= −
∫ 2π

0
dθ [Wkk′ f (ε, k) − Wk′k f (ε, k′)]. (C2)

This rigorous treatment in Boltzmann equation has been ap-
plied by previous literature ([27], [29], etc.).
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APPENDIX D: THE CONTRIBUTION OF DIFFERENTIAL
CROSS SECTION TO RELAXATION TIME

Generally, we will prove that τ ‖ is contributed purely
by �S , and τ⊥ is contributed purely by �A. We first ex-
press the differential cross section as a function of scat-
tering angle f (θ ). Then, �A = 1

2 ( f (θ ) − f (2π − θ )), �S =
1
2 ( f (θ ) + f (2π − θ )). We prove that the term �A(1 +
cos(θ )) in Eq. (21) and �S sin (θ ) in Eq. (22) vanishes after
integral by∫ 2π

0
dθ�A(1 + cos(θ ))

= 1

2

∫ 2π

0
dθ ( f (θ ) − f (2π − θ ))(1 + cos(θ ))

= 1

2

∫ 2π

0
dθ f (θ )(1 + cos(θ )) (D1)

−1

2

∫ 0

2π

d (2π − θ ) f (θ ) sin(1 + cos(2π − θ ))

= 0,

and ∫ 2π

0
dθ�S sin (θ )

= 1

2

∫ 2π

0
dθ ( f (θ ) + f (2π − θ )) sin (θ )

= 1

2

∫ 2π

0
dθ f (θ ) sin (θ ) (D2)

+ 1

2

∫ 0

2π

d (2π − θ ) f (θ ) sin (2π − θ )

= 0.

Therefore, we have demonstrated that the symmetric and
antisymmetric parts of the probability of scattering contribute
to the conventional transport relaxation time τ ‖ and the trans-
verse relaxation time τ⊥, respectively.

APPENDIX E: APPLICATION TO SOFT POTENTIAL
UNDER MAGNETIC FIELD

We here demonstrate how to apply our abstraction method
to the soft potential scattering in magnetic field. We assume a
central soft potential with a well-defined center of scattering.
The soft potential goes to zero at infinity. As a result, we
can draw a circle (green dashed circle) around the potential
center that is large enough so the interaction between electron
and potential outside the circle is negligible (see Fig. 10).
The real trajectory intersects the green dashed circle at two
points, A1 and A2. Before reaching A1 and after reaching
A2, the real trajectory coincides with the initial and final
asymptotes, respectively. We then extend the initial and final
asymptotes after A1 and before A2 to their intersecting point
A. The time from A to A1 and A to A2 are the same, due to
the mirror symmetry. The mirror symmetry is proven by the
following. The angular momentum outside the green circle L

FIG. 10. The plot of soft potential scattering. The green dashed
circle is the range within which the potential influences on. The
real trajectory, incoming with red solid curve and outgoing with
blue solid curve, intersects the green dashed circle at two points, A1
and A2. The red dashed curve and blue dashed curve are the initial
asymptote and final asymptote, respectively. A is the crossing point
between the red and blue dashed curves. The incoming trajectory and
the outgoing trajectory are symmetric about the mirror line, which
passes through point A and the scatterer center. The red dot D is the
starting point on the event line, and the blue dot E is the ending point
that is at the same time with the event line.

satisfies

dL
dt

= r × mv̇

= r × (−eṙ × B)

= −e(r · ṙ)B (E1)

= − d

dt

(
1

2
er2B

)
. (E2)

Therefore, the quantity r × mv + 1
2 er2B = const. The 1

2 er2B
is constant on the green circle because |r1| = |r2| = R. There-
fore, the angular momentum r × mv is constant at A1 and
A2. Due to energy conservation, |v1| = |v2|. Therefore, the
velocity at A1 and A2 is symmetric (if reversing the velocity
at A2 by π ) about the mirror line which passes through the
intersection of the elongated velocity of A1 and A2. The
intersection of the initial and final asymptote A falls on the
mirror line as well.

We can define the starting point and ending point in a
similar fashion. The starting point, marked D (red dot) in
Fig. 10, is the closest approach to the center of the scatterer on
the initial asymptote. The event line, connecting the starting
point and the center of the scatterer, marks the occurrence of
the scattering event. The blue dot on the final asymptote is the
ending point E , which satisfies that the time from A to D and
A to E are the same. By definition, both D and E are on the
asymptote, not on the real trajectory. Therefore, the ending
point E is not influenced by the scattering potential. The

134202-11



FENG, XIAO, GAO, AND NIU PHYSICAL REVIEW B 100, 134202 (2019)

FIG. 11. The sketch of scattering process from q → q′ and q′ →
q process: (1) with symmetric scattering angle θ and symmetric
impact parameter b = b′ due to reversed magnetic field and (2) with
symmetric scattering angle θ but different impact parameter b �= b′

due to correct magnetic field direction. The left side of the mirror
line plots the q → q′ process, and the right side of the mirror line
plots the q′ → q process. A and A′ are the impact points at each side.
b and b′ are the impact parameters at each side. In step (1), with
reversed magnetic field direction, the q → q′ and q′ → q processes
are symmetric with respect to the mirror line. Step (2) plots the
q′ → q process with correct magnetic-field direction. The impact
parameter b′ is no longer the same with b.

purpose of our method is to provide a way to appropriately
parametrize the scattering process.

In summary, the electron motion in a soft potential and
magnetic field can be abstracted as follows. The electron
moves along the initial asymptote to the starting point, gets
scattered to the ending point, and finally moves away from
the scatterer along the final asymptote. The initial asymptote,
final asymptote, and the event line have the same definition
with those defined in the paper with the hard disk potential.

As discussed in Sec. III B, the finite impurity range (green
dashed circle) is the key to differentiate the magnetoresis-

tance from Drude theory at low magnetic fields. For both
hard disk potential and soft potential, the larger the im-
purity range, the more significant influence it has on the
resistivity.

APPENDIX F: ALTERNATIVE UNDERSTANDING
OF ANISOTROPIC SCATTERING

We can use the impact point on the boundary of the scat-
terer to understand how differential cross section is different
between q → q′ and q′ → q processes, using the following
two steps as shown in Fig. 11 (where q and q′ are the
momentum on the scatterer boundary). (1) We first draw the
incoming trajectory for the q → q′ process. We then draw
a line crossing the center of the scatterer and parallel to the
tangent line at the impact point A as the mirror line. We
then draw the mirror image of the q → q′ process at the
right side of the mirror line [Fig. 11, step (1)]. The impact
point goes to A’, which is the mirror image of A. Now the
impact parameter is the same for the two processes, i.e.,
b = b′, which gives no skew scattering. (2) The magnetic-
field direction determines that the rotation of the electron
should be counterclockwise. However, upon doing step (1),
the rotation is clockwise in the q′ → q process, which is
incorrect. The correct way for q′ → q is to draw the coun-
terclockwise trajectory tangential to the incident and scattered
momentum at A’ [we only show the incident trajectory in
Fig. 11, step (2)]. It is clear that the impact parameter b′ is
different from b, which generates asymmetry between q → q′
and q′ → q processes. While the scattering angle stays the
same, the differential cross section is different due to � =
|db/dθ |. This analysis also shows the role of the magnetic
field in the skew scattering. The q′ → q process in step (1)
reverses the direction of the magnetic field. To correct this,
the electron trajectory has to be subject to another mirror/time
reversal operation as in step (2). The resulting correct q′ → q
process is thus no longer symmetric with the original q → q′
process.
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