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Theory of nonlinear Hall effects: Modified semiclassics from quantum kinetics
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We propose a modified Boltzmann nonlinear electric-transport framework which differs from the nonlinear
generalization of the linear Boltzmann formalism by a contribution that has no counterpart in linear response.
This contribution follows from the interband-coherence effect of dc electric fields during scattering and is related
to the interband Berry connection. As an application, we demonstrate it in the second-order nonlinear Hall effect
of the tilted massive Dirac model. The intuitive Boltzmann constructions are confirmed by a quantum kinetic
theory, which shows that the arbitrary nth-order nonlinear dc response up to the first three leading contributions
in the weak disorder potential is handled by the same few gauge-invariant semiclassical ingredients.
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I. INTRODUCTION

The nonlinear response to an applied electric field in
crystalline solids has attracted revived interest, owing to the
essential role played by the quantum geometry of the Bloch
wave function [1–4]. In the optical high-frequency regime of
the electric field, the shift current photogalvanic effect and
second harmonic generation have been shown to be related
to the Berry connection of each involved Bloch band [5,6].
In the low-frequency regime, higher-order moments of the
Berry curvature in momentum space emerge in the nonlinear
anomalous Hall responses in the absence of magnetic field,
such as the Berry curvature dipole [3,7–15] and quadrupole
[16] in second- and third-order Hall responses, respectively. In
particular, the second-order nonlinear response dominates the
anomalous Hall effect in time-reversal-invariant crystals that
break inversion symmetry, and has been observed in few-layer
WTe2 [17,18].

The quantum geometry of the Bloch electron also influ-
ences its scattering with disorder. A prominent case is the lin-
ear anomalous Hall effect [19], where nonzero Berry connec-
tion and curvature imply the presence of two asymmetric scat-
tering effects termed as skew scattering and side jump [20]. A
Boltzmann transport formalism for the linear anomalous Hall
effect has been established [21–25]. It has been generalized
phenomenologically in the recent efforts to understand the
second-order nonlinear response in the low-frequency limit
[26–29]. A basic question then arises: Is this framework valid
in nonlinear responses? The existing quantum transport theo-
ries [30,31] have not settled this issue. Moreover, there exist
two different proposals [26,28] to generalize phenomenologi-
cally the side-jump contribution to the second-order nonlinear
response. More importantly, one should worry whether there
is another contribution that is missed in the direct gener-
alization of the aforementioned semiclassical formalism. If

there is, can the nonlinear response still be grasped by the
few gauge-invariant semiclassical ingredients as in the linear
response?

In this paper we address all the above concerns in the dc
limit by developing a recursive quantum kinetic theory for
an arbitrary nth-order (finite n) electric current response. We
focus on the first three leading-order contributions in the weak
disorder potential V̂ (namely, V −2n, V −2n+1, V −2n+2 in the
nth-order electric transport), which are usually sufficient to
account for both the longitudinal and transverse transport in
the regime h̄/τ < � (τ is the scattering time, � is the band
splitting around the Fermi level). Remarkably, we find that an
arbitrary order nonlinear response retains the same structure
as the linear response, except for a contribution resulting from
the electric-field-induced interband virtual transition during
the scattering. This contribution only contributes to a nonlin-
ear response and is related to the interband Berry connection.
A modified Boltzmann nonlinear-response framework thus
emerges, establishing a consistency between the Boltzmann
and quantum kinetics in nonlinear (Hall) electric transport. As
an application, we show the aforementioned contribution in
the second-order nonlinear Hall effect of the two-dimensional
(2D) tilted massive Dirac model.

Our paper is organized as follows. In Sec. II we set forth the
modified Boltzmann theory for nonlinear electric transport,
which is applied to the model calculation of the second-order
nonlinear Hall effect in Sec. III. The quantum kinetic theory
that underlies the Boltzmann formulation is outlined in Sec.
IV, with the main ideas and results elaborated. Finally, we
compare our theory to other existing theories in Sec. V and
conclude this paper in Sec. VI. The detailed derivation of
our quantum kinetic theory is presented in the Supplemental
Material [32] (see also Ref. [33] therein) for the convenience
of interested readers.
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II. MODIFIED SEMICLASSICS

The outcomes of the quantum kinetic approach are found to
correspond to a semiclassical Boltzmann way of understand-
ing the nonlinear transport. In this section we first describe the
latter framework, considering its great physical transparency
and simplicity.

In the Boltzmann description of electronic transport in
crystalline solids, the charge current density is given by

j = e
∑

l

Flvl , (1)

where the occupation function Fl of the Bloch state |l〉 = |ηk〉,
with η the band index and k the crystal momentum, and
the velocity vl are two central quantities. In the perturbative
treatment for the weak electric field, Fl can be expanded in
terms of ascending powers (denoted by n) of the electric field
E, namely,

Fl =
∑
n�0

Fn,l , (2)

where Fn,l ∝ En is the occupation function responsible for the
nth-order electric transport.

In the conventional Boltzmann recipe the driving term by
the applied electric field and the collision term by scattering
are clearly separated in the steady-state Boltzmann equation
[34]

− e

h̄
E · ∂kFl =

∑
l ′

(
ω

(2)
l ′l Fl − ω

(2)
ll ′ Fl ′

)
. (3)

The semiclassical scattering rate, regarded to be independent
of the electric field, is given by the golden rule

ω
(2)
l ′l = ω

(2)
ll ′ = 2π

h̄
Wl ′lδ(εl − εl ′ ), Wl ′l = 〈|Vll ′ |2〉c. (4)

Here, Wl ′l is the scattering matrix element, and 〈· · · 〉c stands
for the disorder average. In the constant relaxation time
approximation the collision term on the right-hand side of
Eq. (3) reduces to Fl/τ , where 1/τ ∼ V 2, and the recursive
solution of this equation yields the scaling Fn,l ∼ Enτ n ∼
EnV −2n.

A. Modification to scattering by electric field

In the conventional Boltzmann equation the scattering pro-
cess is independent of the electric field. But this is not true
in general. A prominent example is the linear anomalous Hall
current originating from the work done by the electric field
during scattering. The key ingredient here is the coordinate
shift of a semiclassical electron during any scattering process
[20],

δrl ′l = Al ′ − Al − (∂k + ∂k′ ) argVl ′l , (5)

where Al = 〈uηk|i∂k|uηk〉 is the intraband Berry connection,
with |uηk〉 the periodic part of the Bloch state. This picture
implies that the energy conservation condition in the golden
rule [Eq. (4)] is modified to be

δ(εl − εl ′ + eE · δrl ′l ) � δ(εl − εl ′ ) + ∂δ(εl − εl ′ )

∂εl
eE · δrl ′l .

(6)

The direct generalization of this semiclassical construction
into nonlinear responses leads to an occupation function
which scales as Fn,l ∼ Enτ n−1 ∼ EnV −2n+2. This Fn,l yields
an important contribution to the second-order nonlinear Hall
effect [26,27,29]. Note that the first-order expansion in the
above equation is already sufficient to obtain the Fn,l of order
of V −2n+2.

We reveal in the following that there is another electric-
field-induced effect during scattering, which only contributes
to nonlinear responses. The intuitive motivation is that not
only the energy conservation delta function but also the scat-
tering matrix element Wl ′l of the semiclassical scattering rate
should be corrected by the E field. This term is an interband-
coherence (interband virtual transition) effect of the E field
during scattering. More precisely, the Bloch states involved
in the scattering have to be dressed by the electric field, thus
Vll ′ → 〈l̃|V̂ |l̃ ′〉, where |l̃〉 = |l〉 + |δE l〉 is the E-field-dressed
Bloch state, and

|δE l〉 = −e
′∑

l ′′
|l ′′〉E · Al ′′l

εl − εl ′′
(7)

arises from the electric-field-induced interband virtual tran-
sition [35]. All ′ = 〈uηk|i∂k|uη′k〉 is the interband Berry con-
nection. Hereafter the notation

∑′ means that all the index
equalities should be avoided in the summation. In order to
obtain the Fn,l of order of V −2n+2, it is sufficient to retain

Wl ′l → Wl ′l + δEWl ′l , (8)

where the E-field-corrected scattering matrix element is linear
in E and reads

δEWl ′l = 2 Re〈Vll ′ (〈l ′|V̂ |δE l〉 + 〈δE l ′|V̂ |l〉)〉c

= −eE ·
′∑

l ′′
2 Re

〈
Vll ′Vl ′l ′′Al ′′l

εl − εl ′′
+ Vll ′Al ′l ′′Vl ′′l

εl ′ − εl ′′

〉
c

. (9)

In Fig. 1 we show schematically the physical processes
described by δEWl ′l in a two-band system. The Fermi level
is assumed to locate at the conduction band. Because of the
presence of the vertical interband virtual transition induced
by the electric field, these scattering processes involve an
off-shell Bloch state away from the Fermi surface.

Collecting Eqs. (4), (6), (8), and (9), the E-field-corrected
scattering rate takes the following form,

δEω
(2)
l ′l = δE

1 ω
(2)
l ′l + δE

2 ω
(2)
l ′l , (10)

where

δE
1 ω

(2)
l ′l = 2π

h̄
Wl ′l

∂δ(εl − εl ′ )

∂εl
eE · δrl ′l , (11)

δE
2 ω

(2)
l ′l = 2π

h̄
δEWl ′lδ(εl − εl ′ ). (12)

While δE
1 ω

(2)
l ′l has been well known, δE

2 ω
(2)
l ′l is proposed in

the context of the nonlinear Hall effect. We note here that
interband virtual processes are also indispensable in δE

1 ω
(2)
l ′l

through the coordinate shift δrl ′l [20].
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FIG. 1. Schematics of Eq. (9) describing the electric-field-
induced interband virtual processes during scattering in two-band
systems. The contributions from (a) and (b) to δEWl ′ l are complex
conjugated, as are (c) and (d).

B. Boltzmann equation for nonlinear responses

Taking into account the effect of the E field during scatter-
ing, the Boltzmann equation (3) is modified to be

− e

h̄
E · ∂kFl =

∑
l ′

(
ω

(2)
l ′l + δEω

(2)
l ′l

)
(Fl − Fl ′ ). (13)

In combination with Eq. (2), it can be written in a recursive
form,

− e

h̄
E · ∂kFn−1,l −

∑
l ′

δEω
(2)
l ′l (Fn−1,l − Fn−1,l ′ )

=
∑

l ′

(
ω

(2)
l ′l Fn,l − ω

(2)
ll ′ Fn,l ′

)
(n � 1), (14)

where the effect of the electric field during scattering appears
as an effective driving term in the Boltzmann equation for
Fn,l , and Fn,l is accurate to the third leading order of the weak
disorder potential, namely, the order of V −2n+2.

In a linear response, n = 1, F0,l is the Fermi distribution
and (F0,l − F0,l ′ )δ(εl − εl ′ ) = 0, thus δE

2 ω
(2)
l ′l does not con-

tribute to the Boltzmann equation. This explains why this term
is absent in the Boltzmann theory of linear response [22]. By
contrast, it constitutes a basic ingredient of the Boltzmann
description of nonlinear responses.

Higher-order disorder corrections to ω
(2)
l ′l on the right-hand

side of Eq. (14) are included through replacing Vll ′ by the T
matrix Tll ′ [22,25]. The golden rule thus yields ωll ′ = ω

(2)
ll ′ +

ω
(3)
ll ′ + ω

(4)
ll ′ up to the first three leading orders of the disorder

potential. Hereafter the superscript (i) means the order in the
disorder potential. It is easy to check that such corrections
to δEω

(2)
l ′l are not needed provided that the electric current

is considered up to the three leading orders of the disorder
potential.

In the considered case the occupation function is the sum
of the leading (L), subleading (SL), and subsubleading (SSL)
contributions,

Fn,l = F L
n,l + F SL

n,l + F SSL
n,l , (15)

where F L
n,l , F SL

n,l , and F SSL
n,l are of order of V −2n, V −2n+1, and

V −2n+2, respectively. The semiclassical occupation functions
with a positive exponent of V can be neglected in the weak
disorder regime, thus in equilibrium F0,l = F L

0,l is just the
Fermi distribution and F SL

0,l = F SSL
0,l = 0. This point is in fact

implicit in previous works on the semiclassical Boltzmann
theories for the linear and nonlinear anomalous Hall effects
[22,26–29].

Therefore, the Boltzmann equation can be cast into the
following three equations,

− e

h̄
E · ∂kF L

n−1,l =
∑

l ′
ω

(2)
l ′l

(
F L

n,l − F L
n,l ′

)
, (16)

− e

h̄
E · ∂kF SL

n−1,l =
∑

l ′
ω

(2)
l ′l

(
F SL

n,l − F SL
n,l ′

)

+
∑

l ′

(
ω

(3)as
l ′l F L

n,l − ω
(3)as
ll ′ F L

n,l ′
)
, (17)

and

− e

h̄
E · ∂kF SSL

n−1,l −
∑

l ′
δEω

(2)
l ′l

(
F L

n−1,l − F L
n−1,l ′

)

=
∑

l ′
ω

(2)
l ′l

(
F SSL

n,l − F SSL
n,l ′

)

+
∑

l ′

(
ω

(4)as
l ′l F L

n,l − ω
(4)as
ll ′ F L

n,l ′
)
, (18)

which are of order of V −2n+2, V −2n+3, and V −2n+4, respec-
tively. In a linear response, n = 1, these three equations just
reduce to the familiar ones in the study of the linear anoma-
lous Hall effect [22]. In line with the Boltzmann recipe for
the linear response [22,35], the antisymmetric part [ωas

l ′l ≡
(ωl ′l − ωll ′ )/2] of ωll ′ , namely, ω

(3)as
ll ′ and ω

(4)as
ll ′ , yields the

skew scattering contribution to nonequilibrium phenomena,
while the inessential symmetric part of ω

(3)
ll ′ and ω

(4)
ll ′ has been

suppressed in the above three equations.
F SL

n,l arises from the conventional skew scattering induced
by non-Gaussian disorder, thus it can also be labeled by
F csk

n,l . F SSL
n,l comprises contributions from the skew scattering

induced by Gaussian disorder (through ω
(4)as
l ′l ) and the electric-

field-corrected scattering rate, thus can be decomposed into

F SSL
n,l = F Gsk

n,l + F a
n,l , (19)
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with

− e

h̄
E · ∂kF Gsk

n−1,l =
∑

l ′
ω

(2)
l ′l

(
F Gsk

n,l − F Gsk
n,l ′

)

+
∑

l ′

(
ω

(4)as
l ′l F L

n,l − ω
(4)as
ll ′ F L

n,l ′
)

(20)

and

− e

h̄
E · ∂kF a

n−1,l −
∑

l ′
δEω

(2)
l ′l

(
F L

n−1,l − F L
n−1,l ′

)

=
∑

l ′
ω

(2)
l ′l

(
F a

n,l − F a
n,l ′

)
. (21)

Here, F a
n,l can be further decomposed as F a

n,l = F a1
n,l + F a2

n,l , in
correspondence to Eq. (10). We note again that F a2

1,l = 0 in the
linear response.

C. Electric current in the semiclassical framework

It has been well known that vl is not equal to the usual
group velocity v0

l , but contains corrections from interband vir-
tual transitions induced by both the electric field and scatter-
ing [21,35]: vl = v0

l + vbc
l + v

sj
l . Here, vbc

l = e
h̄ (∂k × Al ) ×

E and v
sj
l = ∑

l ′ ω
(2)
l ′l δrl ′l are the Berry-curvature anomalous

velocity and side-jump velocity, respectively [20].
Therefore, the nth-order electric current is given by

jn = e
∑

l

F L
n,lv

0
l + e

∑
l

F csk
n,l v0

l

+ e
∑

l

F Gsk
n,l v0

l + e
∑

l

F a1
n,l v

0
l + e

∑
l

F a2
n,l v

0
l

+ e
∑

l

F L
n,lv

sj
l + e

∑
l

F L
n−1,lv

bc
l (22)

up to the first three leading orders of the weak disorder
potential. The third term on the second line is absent in all
recent works on the semiclassical Boltzmann theory of the
second-order nonlinear anomalous Hall effect [26–29].

Both F a1
n,l and v

sj
l are related to the coordinate shift, thereby

the sum of these two terms is usually referred to as the side-
jump contribution [20–22,26–29]. However, F a1

n,l has nothing
to do with the sideways shift, which is the original meaning of
side jump [36]. Accordingly, in the following the terminology
“side jump” is only assigned to the v

sj
l term.

III. MODEL CALCULATION IN SECOND-ORDER
NONLINEAR HALL EFFECT

To be specific, we illustrate the contribution from the F a2
n,l

term in the second-order nonlinear Hall effect in inversion-
breaking nonmagnetic materials [3,17,18]. To obtain an an-
alytic result, we follow the previous publications involving
δE

1 ω
(2)
l ′l [26,27,29] to take the constant relaxation time so that∑

l ′ ω
(2)
l ′l (F a2

2,l − F a2
2,l ′ ) = F a2

2,l /τ and

F a2
2,l = −τ

∑
k′

2π

h̄
δEWl ′lδ(εl − εl ′ )

(
F L

1,l − F L
1,l ′

)
. (23)

Here, F L
1,l solves the conventional Boltzmann equation (16),

reading F L
1,l = − e

h̄ E · ∂kF L
0,lτ in the constant relaxation time

FIG. 2. The second-order nonlinear Hall responses in the 2D
tilted massive Dirac model that are beyond the conventional Boltz-
mann equation, from the Berry curvature and side-jump velocities,
the E field working during scattering eE · δrl ′ l , and the interband
effect of the E field during scattering [Eq. (24)]. Parameters are cho-
sen as t = 0.1 eV Å, v = 1 eV Å, � = 0.1 eV, niV 2

0 = 102 (eV Å)2.
h = 2π h̄ is the Planck constant.

approximation. When the E field is applied in the x direction,
the resultant transverse current is

ja
y = e

∑
l

F a2
2,l v

0
l,y ≡ 
a

yxxExEx, (24)

where 
a
yxx is the corresponding second-order response co-

efficient. One can show that 
a
yxx can be nonzero when

the inversion symmetry is broken, even if the time-reversal
symmetry remains. This character is the same as the known
contributions of order of τ to the second-order nonlinear Hall
effect [27–29,31].

Let us take the 2D tilted massive Dirac model [3],

Ĥ0 = tkx + v(kxσx + kyσy) + �σz, (25)

with scalar disorder as a concrete example, which is the min-
imal model of the considered effect [3,17,27,29,31]. σx,y,z are
the Pauli matrices, and the gapped Dirac cone is tilted along
the x direction. Here, one can consider the contribution from
only one Dirac cone because, as addressed in Refs. [3,27],
taking into account that from another one of the pair of Dirac
cones simply doubles the obtained result.

When the Fermi level only intersects the upper (+) band
we have

δEWl ′l = Wk′k

2
eE ·

(
�+k′

�k
− �+k

�k′

)
ẑ × (k′ − k), (26)

where l = +k, l ′ = +k′, Wk′k = Wl ′l/|〈ul |ul ′ 〉|2, �+k is the
Berry curvature of the upper band, and �k = ε+

k − ε−
k . To

compare with other contributions obtained analytically for
this model, we also assume weak anisotropy t 
 v and take
[29,31] 1/τ = niV 2

0 (ε2
F + 3�2)/(4h̄v2εF ) in the presence of

pointlike impurities of density ni, for which Wk′k = niV 2
0 . It

follows that


a
yxx = − e3

2π h̄

t�

niV 2
0

3v2
(
ε2

F − �2
)2

ε3
F

(
ε2

F + 3�2
)2 (27)

up to the first order of t . As shown in Fig. 2, 
a
yxx is of the

similar magnitude to the previously identified contributions
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[3,26,29] that are also beyond the conventional Boltzmann
recipe [37].

IV. BOLTZMANN TRANSPORT EMERGING FROM
QUANTUM KINETICS

In this section we place the intuitive Boltzmann framework
on the foundation of quantum kinetics, by extending the
density-matrix equation of motion approach of Kohn and
Luttinger [23,38] to nonlinear responses.

A. Basic formulations

In the single-electron Hamiltonian ĤT = Ĥ0 + V̂ + ĤE ,
Ĥ0 is the equilibrium disorder-free one, V̂ is the potential
produced by randomly distributed impurities, and the E-field
term ĤE = −eE · rest is switched on adiabatically from the
remote past t = −∞. The physical situation is obtained by
taking the limit s → 0+ [38]. In the case of a weak E
field, the single-particle density matrix is decomposed into
ρ̂T = ∑

n�0 ρ̂n, where ρ̂0 is its equilibrium value, and ρ̂n ∝
En satisfies ρ̂n(t → −∞) = 0 for n � 1. Then the quantum
Liouville equation reduces to [Ĥ0 + V̂ , ρ̂0] = 0 and

ih̄
∂ρ̂n

∂t
= [ĤE, ρ̂n−1] + [Ĥ0 + V̂ , ρ̂n] (n � 1), (28)

where [ĤE, ρ̂n−1] enables the recursion from ρ̂n−1 to ρ̂n.
Utilizing the ansatz [38] ρ̂n = f̂nenst , where f̂ = ∑

n�0 f̂n is
the single-particle density matrix at the time of interest t = 0,
in the Bloch representation of Ĥ0 we have (n � 1)

(εl − εl ′ − ih̄ns) fn,ll ′ =
∑

l ′′
( fn,ll ′′Vl ′′l ′ − Vll ′′ fn,l ′′l ′ )

+ eE · [r, f̂n−1]ll ′ . (29)

When l = l ′ the equation of motion (29) reduces to (see more
details in Refs. [25,38,39])

0 = Cn,l +
′∑
l ′

( fn,ll ′Vl ′l − Vll ′ fn,l ′l ), (30)

otherwise we have ( fn,l ≡ fn,ll )

fn,ll ′ = Cn,ll ′

εl − εl ′ − ih̄ns
+ fn,l − fn,l ′

εl − εl ′ − ih̄ns
Vll ′

+
′∑

l ′′

fn,ll ′′Vl ′′l ′ − Vll ′′ fn,l ′′l ′

εl − εl ′ − ih̄ns
(l �= l ′), (31)

where Vll is absorbed into H0 and then Vll = 0 [38]. Here,

Cn,l = eE · {i∂k fn−1,l + [A, f̂n−1]ll}, (32)

and

Cn,ll ′ = eE · {i(∂k + ∂k′ ) fn−1,ll ′ + [A, f̂n−1]ll ′ }. (33)

According to Eq. (31), in the case of weak disorder poten-
tial fn,ll ′ is generally one order of V higher than fn,l . Thereby,
Eq. (31) can be solved by an iterative procedure, which yields
the expression for fn,ll ′ in terms of fn,l [23,38]. Substituting
this solution into Eq. (30) leads to an equation only concerning
the diagonal element fn,l for n � 1. The disorder average
of this latter equation yields a Boltzmann-type equation for

〈 fn,l〉c, provided that one assumes fn,l is self-averaged, i.e.,
〈 fn,lVV 〉c = 〈 fn,l〉c〈VV 〉c. This assumption plays a similar
role to that of the assumption of molecular chaos in deriving
the classical Boltzmann equation from the classical Liouville
equation [40]. One can then identify 〈 fn,l〉c with the occupa-
tion function used in the Boltzmann framework,

Fn,l ≡ 〈 fn,l〉c, Fl ≡ 〈 fl〉c =
∑
n�0

〈 fn,l〉c. (34)

On the other hand, the nth-order charge current in the
density-matrix formulation is given by

jn = jd
n + jod

n , (35)

where jd
n = e

∑
l 〈 fn,l〉cv

0
l and jod

n = e
∑′

ll ′ 〈 fn,ll ′ 〉cv
0
l ′l are the

band-diagonal and band-off-diagonal (the matrix element of
velocity operator v0

l ′l is diagonal in k) responses, respectively.

B. Band-diagonal response

We first illustrate the aforementioned iterative procedure
in its lowest order, where Cn,l = ieE · ∂k fn−1,l , and fn,ll ′ is
given by the second term on the right-hand side of Eq. (31).
Plugging them into Eq. (30) leads to, after disorder average,
the most conventional Boltzmann equation (16). Then, up to
the third-order iteration the Boltzmann equations (17) and
(18) also emerge after the disorder average, thus

jd
n = e

∑
l

F L
n,lv

0
l + e

∑
l

F csk
n,l v0

l

+ e
∑

l

F Gsk
n,l v0

l + e
∑

l

F a1
n,l v

0
l + e

∑
l

F a2
n,l v

0
l . (36)

Most details of the iteration procedure have in fact already
been presented in previous papers [23,25,38,39], and are also
provided in the Supplemental Material [32] for the conve-
nience of the interested readers.

It is apparent that in the higher orders of the iteration
Cn,l contains the combination effect of the electric field and
disorder, which leads finally to the additional driving term
related to δEω

(2)
l ′l . In the linear anomalous Hall effect, only the

coordinate-shift-related component, namely, δE
1 ω

(2)
l ′l , survives

in the resulting Boltzmann equation, as has been elaborated in
Refs. [23,25,39]. On the other hand, in nonlinear responses the
additional driving term related to δE

2 ω
(2)
l ′l is derived from the

quantum kinetics, as is detailed in the Supplemental Material
[32].

Lastly, we emphasize that the equilibrium density matrix
deserves separate discussions. It should be obtained from
the definition of the single-particle density matrix [32], and
the leading value is f0,ll ′ = δll ′ f0,l , with f0,l the Fermi dis-
tribution. Note that the equilibrium density matrix is also
altered by disorder and thus does not coincide with f0,l .
Through the C1,ll ′ term, the disorder-induced corrections to
f0,ll ′ incorporate the effect of the E field during scattering
into linear response. The neglect of this fact would lead to the
absence of the eE · δrl ′l contribution to f1,l . In fact, this is one
of the main differences between the Kohn-Luttinger approach
and another quantum kinetic approach employed recently to
study the linear and nonlinear anomalous Hall effects [31,41].
More detailed discussions on this issue are presented later.
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TABLE I. Correspondence of Boltzmann transport to the band-
off-diagonal (od) and band-diagonal (d) responses of density matrix.
vbc

l and v
sj
l are the Berry-curvature and side-jump velocities, respec-

tively. δEω
(2)
l ′l is the E-field-corrected scattering rate. ω

(3)as
ll ′ and ω

(4)as
ll ′

yield the skew scattering.

Semiclassical ingredients Density-matrix response

vbc
l jod

n

v
sj
l jod

n

δEω
(2)
l ′l = δE

1 ω
(2)
l ′l + δE

2 ω
(2)
l ′l jd

n

ω
(3)as
ll ′ , ω

(4)as
ll ′ jd

n

C. Band-off-diagonal response

The leading nonzero contribution to the off-diagonal re-
sponse jod

n is of O(V −2n+2), given by the second-order itera-
tion of Eq. (31),

〈 fn,ll ′ 〉c = eE · All ′
(
F L

n−1,l ′ − F L
n−1,l

)
εl − εl ′ − ih̄ns

+
′∑

l ′′

〈Vll ′′Vl ′′l ′ 〉c

εl − εl ′ − ih̄ns

×
[

F L
n,l − F L

n,l ′′

εl − εl ′′ − ih̄ns
− F L

n,l ′′ − F L
n,l ′

εl ′′ − εl ′ − ih̄ns

]
, (37)

and can be readily cast into [32]

jod
n = e

∑
l

F L
n−1,lv

bc
l + e

∑
l

F L
n,lv

sj
l . (38)

Here, vbc
l and v

sj
l coincide respectively with the Berry-

curvature anomalous velocity and side-jump velocity [35].
Summing up, our quantum kinetic theory shows that arbi-

trary nth-order response retains the same form of Eqs. (35),
(36), and (38), namely, the semiclassical Boltzmann result
Eq. (22), up to the first three leading-order contributions
in the weak disorder potential. The correspondence of the
basic ingredients in the Boltzmann theory to the density-
matrix response is summarized in Table I. It is worthwhile
to remind here that interband virtual processes play the es-
sential role also in the band-diagonal response of the density
matrix.

V. COMPARISON TO OTHER THEORIES

We start by noting that a similar idea to the intuitive consid-
eration leading to the E-field-influenced scattering matrix el-
ement Eq. (9) also appeared in two publications by Tarasenko
[42,43]. In these two papers a nonlinear current arises due
to the E-field-induced admixture of excited conduction- and
valence-band states to the ground-subband wave function in
quantum wells. In fact, one can find that our Eqs. (7)–(9) are
quite similar to Eqs. (13)–(15) in Ref. [42]. The difference is
that, in Refs. [42,43] the electric-field component Ez (in the
z direction of the quantum well) mixes the quantum-confined
states, whereas in the present work the electric field Ex mixes
the Bloch states of electrons.

Next, we compare our theory to the previous works on the
Boltzmann formulation of the nonlinear Hall effect [26–29].
All these works just generalized the Boltzmann theory for the
linear anomalous Hall effect [22] directly and phenomeno-

logically into the nonlinear response. First, the δE
2 ω

(2)
l ′l term

proposed in the present study has no counterpart in the linear
response and thus is beyond such a direct generalization of the
linear theory. Second, our quantum theory supports the form
of the coordinate-shift-related δE

1 ω
(2)
l ′l speculated intuitively

in Refs. [26,27,29], which differs from the one proposed in
Ref. [28].

Our theory is also different from the other quantum kinetic
one of the nonlinear Hall effect posted recently [31]. This lat-
ter theory is based on the nonlinear generalization of a linear-
response density-matrix theory [41]. Thus in the following we
discuss first the difference between this linear-response theory
and ours, and then that between the theory of Ref. [31] and
ours.

The whole second line of Eq. (36), which arises from the
band-diagonal response of the density matrix, is missed in
the linear-response theory of Ref. [41]. First, in this theory
the equilibrium density matrix is identified to be just the
Fermi distribution. However, as we have stressed in the last
paragraph of Sec. IV B, the equilibrium density matrix is
not equal to the Fermi distribution and has the disorder-
induced correction. It is this correction that leads finally to
the coordinate-shift-related δE

1 ω
(2)
l ′l and thus to F a1

1,l [23,25,39].
Second, the theory of Ref. [41] only considers the lowest-
order Born approximation in calculating the scattering rate,
thus F Gsk

1,l is missed. The theory of Ref. [41] was shown
to work well for the linear anomalous Hall effect in the
spin-polarized Rashba model and for the spin Hall effect in
the Rashba model. However, the peculiarity of the Rashba
models in fact plays a basic role in this success: In the spin-
polarized Rashba model F Gsk

n,l + F a1
n,l = 0 in the case of scalar

pointlike impurities within the noncrossing approximation for
F Gsk

n,l [44], whereas in the Rashba model the diagonal element
of the spin-current operator js in the Bloch representation
is zero [( js)0

l = 0] [45]. Therefore, when applied to another
model, such as the two-dimensional gapped Dirac model, one
can check that the theory of Ref. [41] cannot reproduce the
same anomalous Hall conductivity as the previous theories
[21].

Now we turn to the theory of Ref. [31]. In the case of
linear response, this theory still misses the disorder-induced
correction to the equilibrium density matrix, thus missing the
contribution from F a1

1,l . To be more specific, one can check that
the side-jump conductivity in the first equation of Eq. (26) of
Ref. [31] is in fact only one half of the side-jump conductivity
defined in Ref. [21]. Another half, namely, the contribution
from F a1

1,l , disappears: It is contained in neither the first nor
the second equation of Eq. (26) of Ref. [31].

Because the linear-response density matrix is vital in pro-
ducing the nonlinear-response one, the aforementioned differ-
ence makes the nonlinear theory of Ref. [31] also different
from ours. While the band-off-diagonal response Eq. (38) is
produced in Ref. [31], the second line of the band-diagonal
response Eq. (36) is not. This means that only the Berry-
curvature dipole and side-jump velocity contributions to the
second-order nonlinear Hall effect proposed in the previous
semiclassical theory [26–29] have been identified in the quan-
tum kinetic theory of Ref. [31]. At the present stage only our
theory establishes the consistency between the Boltzmann and
quantum kinetics in nonlinear responses.
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VI. CONCLUSION

In conclusion, we have proposed a modified Boltzmann
framework for nonlinear electric transport, and identified an
interband-coherence effect induced by dc electric fields during
scattering. This effect has no counterpart in linear response,
and thus is missed in the previous nonlinear Boltzmann for-
malism for the nonlinear Hall effect which is just the direct
generalization of the linear Boltzmann theory. The proposed
Boltzmann formulation has been confirmed by a quantum
kinetic theory. This theory also shows that an arbitrary nth-
order nonlinear response to a dc electric field, up to the first

three leading contributions in the weak disorder potential,
is handled by the same few gauge-invariant semiclassical
ingredients.
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