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Josephson radiation is a powerful method to probe Majorana zero modes in topological superconductors.
Recently, Josephson radiation with half the Josephson frequency has been experimentally observed in a
HgTe-based junction, possibly from Majorana zero modes. However, this radiation vanishes above a critical
voltage, sharply contradicting previous theoretical results. In this Rapid Communication, we theoretically obtain
a radiation spectrum quantitatively in agreement with the experiment after including the nonlinear dynamics
of the Majorana states into a standard resistively shunted junction model. We further predict two alternative
structures of the radiation spectrum for future experimental verification: an interrupted emission line and a
chaotic regime. We develop a fixed-point analysis to understand all these features. Our results resolve an apparent
discrepancy between theory and experiments, and will inspire the reexamination of structures in radiation spectra
of various topological Josephson junctions.
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The fault-tolerant quantum storage and operation is one
of the promising schemes for achieving quantum computa-
tion [1]. It is based on the premises of non-Abelian statis-
tics, which is associated with the Majorana zero modes in
topological superconductors [2]. Identifying the Majorana
zero modes in realistic experimental setups remains a chal-
lenge [3]. Among various methods [4–6], the Josephson effect
has attracted considerable attention due to its phase-sensitive
nature [7–20]. The Majorana zero modes in a Josephson
junction carry a nontrivial Josephson current with 4π peri-
odicity in the Josephson phase [21,22], which is in contrast to
the 2π -periodic Josephson current in conventional junctions.
However, its direct measurement is hindered by the coupling
to other distant Majorana zero modes or other quasiparticle
excitations [23–26]. The hybridization opens a small gap
in the 4π -periodic Andreev levels and breaks the local
parity conservation [23], reducing the 4π periodicity to 2π

periodicity.
To circumvent this difficulty one can drive nonequilib-

rium dynamics with a timescale shorter than the equilibra-
tion time [27–36], extracting 4π -periodic information from
the electromagnetic radiation of the junction [13,15,17]. An
extra emission line in the spectrum function with half of the
Josephson frequency fJ/2 was expected as a result of the 4π -
periodic Josephson relation from Majorana zero modes [33],
as illustrated in Fig. 1(a). In a recent experiment [13], this
emission line was indeed observed in a HgTe-based topo-
logical junction. However, it mysteriously vanishes above a
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critical voltage, which is inconsistent with previous theories
on the Josephson radiation [13]. This discrepancy endangers
the claim of the Majorana zero modes in such topological
junctions.

In this Rapid Communication, we reveal that the Joseph-
son radiation spectra found in the experiments can be well
explained after considering the correlation between the non-
linear dynamics of the Josephson phase and the time evo-
lution of Majorana states [37]. By including the Majorana
states into the standard resistively shunted junction model,
we show that this correlation induces an exact cancellation
of the 4π -periodic Josephson current for voltages above a
critical value, which leads to the vanishment of fJ/2 radia-
tion. In particular, our results show a quantitative agreement
with the experimental data. For a better understanding, we
cast the model into an equivalent classical model with three
nonlinear equations, and use the method of averaging to obtain
the fixed-point portrait. We find that the vanishment of the
emission line can be well characterized by behaviors of the
fixed points. We also predict different interrupted emission
lines and chaotic dynamics in parameter regimes not yet
experimentally explored. Our results highlight the rich physics
stemming from the interplay between nonlinear dynamics and
nontrivial topology in quantum materials.

Superposition of Majorana states with opposite parities.
Before theoretically demonstrating the vanishment of the
emission line with the frequency fJ/2, we first come to the
conventional wisdom for the analysis of Josephson radiation
from the 4π -periodic Josephson effect, and see its limitations
in explaining the existing experiments.

For a topological Josephson junction, it is well known
that the Majorana zero modes carry the Josephson
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FIG. 1. (a) Schematic setup for Josephson radiation from an
overdamped junction with Majorana zero modes. The junction is
formed by two ordinary s-wave superconductors (gray) on top of
a quantum-spin-Hall insulator (blue), whose edge states host four
Majorana zero modes. Cooper-pair tunneling emits Josephson ra-
diation with a quantized frequency fJ = 2eV/h, while the single-
electron tunneling through Majorana zero modes emits radiation
with half frequency fJ/2. (b) Radiation spectra from the numerical
simulations of a quantum resistively shunted junction model. The
fJ/2 emission line vanishes above a critical voltage, in agreement
with recent experimental results (gray patch). The appearance of the
fJ/2 line corresponds to the nonzero expectation value |ψ1|2 − |ψ0|2
of the two-level system from Majorana zero modes, as illustrated on
the left. Parameters are EM = 19.6 μeV, δ = 0.196 μeV, R = 50 �,
IM = 16 nA, and IJ = 63 nA in Eqs. (2) and (3), which are realistic
values close to the estimations in the experiment [13]. We scan
Iin ∈ [0, 0.7 μA] to obtain radiation spectra for V0 ∈ [0, 35 μV].

current [21,23] with a 4π -periodic current-phase relation
I ∝ ± sin θ/2, where θ is the Josephson phase and the
plus/minus sign represents the fermionic parity defined by
the two Majorana zero modes. If we consider a dc voltage V0,
the Josephson phase increases linearly with time according
to the ac Josephson relation θ (t ) = 2eV0t/h̄, and leads to
I ∝ ± sin eV0t/h̄, which induces electromagnetic radiation
with a frequency of eV0/h. It is exactly half of the conventional
quantized Josephson frequency fJ = 2eV0/h. Pictures may
become even clearer from a quantum point of view. The radia-
tion with frequency fJ represents the energy loss for a Cooper
pair to tunnel through a junction biased with voltage V0, while
the radiation with frequency fJ/2 corresponds to the coherent
single-electron tunneling through the Majorana channel, as
illustrated in Fig. 1(a). It is important to see that whichever
picture we take, the fJ/2 radiation is predicted to exist for
all voltages by the theory, which thus cannot explain its
vanishment above a critical voltage in the recent experiment.

The central idea of solving this discrepancy lies at the
plus/minus sign in front of the current-phase relation. At
first glance, one can take either sign since the radiation
spectra are identical. A more careful examination, however,
brings to light a key observation that the sign itself can

be time dependent, and correlate with the dynamics of the
Josephson phase, possibly causing a dramatic modification
of the radiation spectra. To correctly take this phenomenon
into consideration, the fermionic parity of the Majorana zero
modes must be examined in more detail. The two Majorana
zero modes γ1 and γ2 define a parity operator ŝz = iγ1γ2

which has two eigenstates, ŝz|0〉 = −|0〉 and ŝz|1〉 = |1〉. In
the junction these two states constitute a typical two-level
system and the system can stay at the superposition state
|ψ〉 = ψ0|0〉 + ψ1|1〉. The supercurrent through the Majorana
zero modes should be determined by the expectation value of
the parity operator [23,37]

I = IM〈ψ |ŝz|ψ〉 sin(eV0t/h̄), (1)

with 〈ψ |ŝz|ψ〉 = |ψ1|2 − |ψ0|2.
Now the physics is clear. If |ψ〉 stays on the eigenstate

|0〉 or |1〉, we have 〈ψ |ŝz|ψ〉 = ±1 and the 4π -periodic
emission line exists for all voltages, which contradicts the
experimental results. However, if |ψ〉 is a superposition state
with |ψ0| = |ψ1|, we have 〈ψ |ŝz|ψ〉 = 0, which means zero
current through the Majorana channel. As we will see in the
following, the equal superposition state is indeed the case
for high voltage due to the correlation between the nonlinear
dynamics of the Josephson phase and the time evolution of
hybridized Majorana states. This naturally explains the exper-
imentally observed vanishment of the 4π -periodic radiation.

Numerical simulation of experimental observation. The
complete model for the dynamics in this junction requires the
inclusion of a dynamical equation for the two-level system.
This has been established in a quantum resistively shunted
junction model [37,38]. For a HgTe-based junction, a minimal
model requires two ordinary s-wave superconductors on top
of a quantum-spin-Hall insulator [23], as shown in Fig. 1(a).
When we consider the total parity conservation [37,39],
we can obtain the Schrödinger equation for the two-level
system as

ih̄
d

dt

(
ψ0

ψ1

)
=

(
EM cos θ

2 δ

δ −EM cos θ
2

)(
ψ0

ψ1

)
, (2)

where EM represents the Josephson energy from the cou-
pling between the Majorana zero modes at the left and
right interface, and δ is the hybridization energy from the
wave-function overlap between the Majorana zero modes at
the upper and lower edge in Fig. 1(a) [39]. We notice that
the Josephson phase θ is a variable of the Hamiltonian of the
two-level system, meaning that the Josephson phase dynamics
directly influences the evolution of the wave function. The
Hamiltonian in Eq. (2) is originally derived when a ferro-
magnet was introduced to break the time-reversal symme-
try [23]. The experiment, however, is performed on a junction
where time-reversal symmetry is not explicitly broken by a
ferromagnet or a magnetic field [13]. Among the theoretical
mechanisms for explaining this issue [39–42], we adopt the
implicit time-reversal symmetry breaking picture [13], and
build our minimal model based on the experimental facts of
the existing fJ/2 radiation.

By solving the Schrödinger equation, we can obtain the
Josephson current carried by the Majorana zero modes.
Adding this tunneling current to the resistively shunted
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junction equation [43], we arrive at the dynamical equation
for the Josephson phase,

θ̇ = 2eR

h̄

[
Iin − IJ sin θ − IM(|ψ1|2 − |ψ0|2) sin

θ

2

]
, (3)

where R is the resistance of the junction, Iin is the injected
current, IJ represents the maximum 2π -periodic supercurrent
from the Cooper-pair tunneling [44], and IM represents the
maximum 4π -periodic supercurrent from the single charge
tunneling through Majorana zero modes. Equations (2) and (3)
couple the Josephson phase θ and the Majorana state |ψ〉,
and must be solved simultaneously to obtain the full dynam-
ics of the junction. This is a minimal model for studying
the dynamics of the topological Josephson junctions. It can
be interpreted as equations of motion for a particle with a
pseudospin- 1

2 , subject to a one-dimensional spin-dependent
potential. This model has been used to successfully explain
the nontrivial hysteretic I-V curves in topological Josephson
junctions [37].

The analysis of radiation spectra is based on the solution of
Eqs. (2) and (3). Upon the injected current Iin being larger than
the critical current, the Josephson phase begins to increase
with an oscillating velocity, which induces both dc and ac
voltage by checking V (t ) = h̄θ̇ (t )/2e. The dc voltage pumps
in energy and the ac voltage emits electromagnetic energy.
Numerically, we take a Fourier transformation to obtain
the spectrum function v( f , Iin ) = 1

T

∫ T
0 V (t, Iin )e−i2π f t dt by

sweeping the values of f and Iin. Here, the zero-frequency
spectrum function is the dc voltage V0 ≡ v( f = 0, Iin ). We
then rewrite the finite frequency spectrum as a function of fre-
quency and dc voltage v( f ,V0) to compare with experiments.
When |ψ1|2 − |ψ0|2 is fixed and nonzero, we can analytically
obtain V (t ) = ∑

n v(n fJ/2)ei2πn fJ/2 which has quantized fre-
quencies [39].

We have specifically chosen realistic parameters to ob-
tain the emission lines shown in Fig. 1(b). Several straight
emission lines are presented, corresponding to the quantized
radiation frequencies fJ/2, fJ, and higher harmonics. All the
emission lines are sharp and straight, consistent with the
quantization feature of the Josephson radiation that appeared
in conventional junctions. The surprise comes from the fJ/2
emission line. Our simulation shows a unique feature: The
emission line vanishes above a critical voltage.

This unusual feature is highly relevant to recent experimen-
tal observations and beyond the limitations of the conventional
resistively shunted junction (RSJ) model. As reported in a
HgTe-based topological junction in Ref. [13], a clear termi-
nation of the fJ/2 emission line is observed. The gray patch in
Fig. 1(b) is the radiation spectrum observed in the experiment
for the fJ/2 frequency, which is dragged out from Fig. 2(f)
in Ref. [13]. With our realistic parameters, we can repeat this
experimental data as shown by the solid line overlapping with
the shadow. The correlation between the Josephson phase and
the wave function of the Majorana state in the dynamics is
crucial for this phenomenon.

Prediction of the interrupted emission line and chaotic
dynamics. Besides the successful theoretical duplication of
the vanishment of the fJ/2 Josephson radiation at high volt-
ages, we further find another phenomenon: The emission

FIG. 2. Radiation spectra from the numerical simulations of
the quantum resistively shunted junction model for four typical
parameters: (a) R/R0 = 0.5, (b) R/R0 = 5, (c) EM/EM0 = 1.5, and
(d) EM/EM0 = 0.5, where R0 and EM0 represent the parameters used
in Fig. 1(b), while all other parameters are taken the same.

line is interrupted at low voltages. This is especially clear
for f ∈ [0, 2 GHz] in Fig. 1(b). We intentionally changed
the background color in this range because it is outside the
detection area of the previous experiment [13]. We point
out that, in the existing experimental data, there is already
some slight discontinuity in the fJ/2 emission line, which
might be relevant to our prediction. In the meantime, we
also notice interesting chaotic behavior at the zero-voltage
limit, shown as noiselike results at the bottom of Fig. 1(b).
These chaotic behaviors originate from the nonlinearity in the
dynamics. Noticing that noiselike signals already emerge in
recent experiments [17], we expect an experimental check in
the near future on these predictions.

Now let us explore why the radiation vanishes above the
critical voltage and the emission line is interrupted at low
voltages. For a nonzero voltage, |ψ1|2 − |ψ0|2 evolves to a
static value if the dynamics is not chaotic. This value as a
function of V0 is shown on the left-hand side of Fig. 1(b).
For certain regimes of V0, this value becomes zero in this
dynamics, which leads to zero tunneling current through the
Majorana channel. This is the reason for the vanishment of
fJ/2 radiation. Outside these regimes, currents from opposite
parities do not cancel (|ψ1|2 − |ψ0|2 �= 0), so we can have the
fJ/2 emission line. Therefore, we get an interrupted emission
line. We can see clearly the quantitative matching between
the zero expectation value and the vanishment of the fJ/2
emission line. In particular, for the high-voltage limit, |ψ1|2 −
|ψ0|2 is always zero. We thus have a critical voltage above
which the emission line is always absent.

Now we investigate how the above features change with
experimentally controllable parameters. In Figs. 2(a) and 2(b)
we change the resistance to half and ten times the value
used in Fig. 1(b). We find that changing the resistance does
not influence the critical voltage. However, the interrupted
feature is significantly modulated. The reduction of the re-
sistance shortens the emission segments, while increasing
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the resistance results in elongation of the segments. For a
large resistance, as shown in Fig. 2(b), the segments fuse
into a single emission line. In this limit, we can no longer
see the interruption. In Figs. 2(c) and 2(d) we modulate the
Josephson energy EM to half and twice the value used in
Fig. 1(b). We find that the critical voltage is proportional to
the Josephson energy, which is suitable for an experimental
check since the Josephson energy can be easily modulated
by orders with a gate voltage. These results for different
parameters provide detailed guidance to check the structure
of the Josephson radiations from the 4π -periodic Josephson
relation experimentally.

Theoretical understanding based on fixed-point analysis.
The key ingredient to our explanation of the vanishing fJ/2
emission line is the damping of the expectation value |ψ1|2 −
|ψ0|2 which causes a perfect cancellation of the 4π -periodic
supercurrent. This quantum damping can be understood more
transparently by casting the quantum resistively shunted junc-
tion model into a classical nonlinear model [45–47]. We define
sz = |ψ1|2 − |ψ0|2 and φ = arg ψ1 − arg ψ0. Equations (2)
and (3) are transformed into three classical equations,

θ̇ = 1

τθ

(1 − I1 sin θ − I2sz sin θ/2), (4)

φ̇ = 1

τφ

cos
θ

2
+ sz

τs

√
1 − s2

z

cos φ, (5)

ṡz = − 1

τs

√
1 − s2

z sin φ, (6)

where I1 = IJ/Iin and I2 = IM/Iin. We define three typical
timescales τθ = h̄/2eRIin, τφ = h̄/EM, and τs = h̄/δ. They
determine the scale of velocity for the dynamics of the θ , φ,
and sz, respectively.

This mapping to a pure classical model enables analysis for
the dynamics of sz through the method of averaging. Since δ

is exponentially suppressed by the width of the junction and
usually very small in the realistic junctions, we can treat sz

as the slow variable and fix its value to solve Eqs. (4) and (5)
first. After obtaining the solution φ(t, sz ), we can then average
sin φ over a time period of T with τφ � T � τs, which gives
a quantity f (sz ) = 1

T

∫ T
0 dt sin φ(t, sz ). Plugging it back into

Eq. (6), we arrive at a self-consistent equation for the slow
variable sz as

ṡz = − f (sz )

τs

√
1 − s2

z . (7)

This equation determines the phase-space flow for sz.
Two typical examples of such flow for the high- and low-

voltage regime are shown in Fig. 3(a), where the direction
of the phase-space flow is indicated by small arrows. By
obtaining the fix points with ṡz = 0, we notice a fixed point
at sz = 0 for both cases. For the high-voltage scenario shown
as the red-curve, this fixed point is the only stable fixed point,
which dominates the whole phase space. Any initial state for
sz inevitably flows to sz = 0. The corresponding time evolu-
tion of sz is shown as the red curve of Fig. 3(b), which can be
analytically described with a damped oscillating evolution as
sz(t ) ≈ e−t/τd cos(t/τs) with τd ≈ τsτφ/τθ [37]. For the low-
voltage case, however, this fixed point at sz = 0 becomes an
unstable one, which can be easily read out from the reversal of
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FIG. 3. (a) Phase-space flow for two typical excess voltages
Vex = 0.556EM/2e (red curve) and Vex = 0.498EM/2e (blue curve).
(b) Time evolution of sz = |ψ1|2 − |ψ0|2 for the high-voltage case
V0 = 20 μeV (red curve) and the low-voltage case V0 = 14 μeV
(blue curve). (c) Demonstration of stable fixed points (red dots)
and unstable fixed points (blue crosses) under the variation of the
excess voltages. Other parameters are taken the same as in Fig. 1(b).
(d) Illustration of the bifurcation of fixed points with parameters the
same as Fig. 2(b).

the flow directions in Fig. 3(a). For this case, the system flows
to the stable fixed point at sz �= 0, shown as the blue curve of
Fig. 3, then the nonvanishing fJ/2 radiation is expected.

To see the behavior of the phase-space flow more clearly,
we demonstrate the portrait of the fixed points as a function
of the excess voltage Vex ≡ (Iin − Ic)R in Fig. 3(c), with Ic

the critical current above which the voltage emerges. Let us
read this figure from the high-voltage to low-voltage regime.
We first find that sz = 0 is the only stable fixed point at large
voltages (red dots). Below a critical excess voltage around
Vex = 0.5EM/2e, sz = 0 changes to an unstable fixed point.
The system should flow to other stable fixed points at sz �= 0,
which leads to nonvanishing fJ/2 radiation. We notice that the
fixed point at sz = 0 switches its stability character multiple
times at low voltages, which explains the interrupted line
in Fig. 1(b). Another important feature of this fixed-point
portrait is the generation of more fixed points when decreasing
the voltage. For a clear demonstration, we trace the fixed
points with lines and plot them as a function of 1/Vex in
Fig. 3(d). We find that the fixed points are generated with a
process of splitting one fixed point into three fixed points. This
process is known as bifurcation. With decreasing voltage, the
bifurcation generates more and more fixed points. When the
fixed points become condensed enough that the system could
freely wander around the stable ones, the chaotic dynamics
naturally emerges. This bifurcation is a standard route towards
chaos, and qualitatively explains the noiselike signal at the
bottom of Figs. 1(b) and 2.

Conclusion. In summary, we use a quantum resistively
shunted junction model to study the Josephson radiation of a
topological junction. We find that the 4π -periodic Josephson
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radiation vanishes above a critical voltage, which explains a
recent experiment on HgTe-based topological Josephson junc-
tions. We further predict additional interrupted emission lines
and chaotic features in the radiation spectra, which provide
guidance for checking the structure of radiation spectra in
topological Josephson junctions, and expect their verification
by future experiments with a broader parameter range.
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