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Temperature dependence of the side-jump spin Hall conductivity
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In the conventional paradigm of the spin Hall effect, the side-jump conductivity due to electron-phonon
scattering is regarded to be temperature independent. In contrast, we draw the distinction that, while this
side-jump conductivity is temperature independent in the classical equipartition regime where the longitudinal
resistivity is linear in temperature, it can be temperature dependent below the equipartition regime. The
mechanism resulting in this temperature dependence differs from the familiar one of the longitudinal resistivity.
In the concrete example of Pt, we show that the change of the spin Hall conductivity with temperature can be as
high as 50%. Experimentally accessible high-purity Pt is proposed to be suitable for observing this prominent
variation below 80 K.
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I. INTRODUCTION

The spin Hall effect refers to a transverse spin current in
response to an external electric field [1]. In strongly spin-
orbit-coupled electronic systems such as 4d and 5d transi-
tion metals [2–10] and Weyl semimetals [11], the spin Hall
conductivity due solely to the geometry of Bloch bands, the
so-called spin Berry curvature, has attracted much attention.
Additionally, there is a scattering-induced mechanism called
the side jump, the contribution of which to the spin Hall
conductivity turns out to be of zeroth order of scattering time
and independent of the density of a given type of impuri-
ties [1]. Furthermore, the side-jump spin Hall conductivity
arising from the electron-phonon scattering is conventionally
regarded to be temperature (T ) independent although the
phonon density varies with T [12,13].

In this paper we draw the distinction that, while the
electron-phonon scattering-induced side-jump spin Hall con-
ductivity is T independent in the classical equipartition regime
where the longitudinal resistivity ρ is linear in T , it can be
T dependent at temperatures below the equipartition regime
in strongly spin-orbit-coupled systems. This character dis-
tinguishes the side jump from the geometric contribution,
and provides a mechanism for T -dependent spin Hall con-
ductivities in high-purity experimental samples. An intuitive
picture is proposed for the T dependence of the side-jump
conductivity, which differs from ρ, which is always T depen-
dent. Moreover, our first-principles calculation demonstrates
a prominent T variation of the spin Hall conductivity in
experimentally accessible high-purity Pt below 80 K.

We consider strongly spin-orbit-coupled multiband sys-
tems. The Fermi energy and the interband splitting around
the Fermi level are assumed to be much larger than
room temperature, thus the thermal smearing of the Fermi
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surface is negligible. Aiming to provide semiquantitative and
intuitive understanding, the electron-phonon scattering is ap-
proximated by a single-electron elastic process, which can
be called the “quasi-static approximation.” In calculating the
resistivity resulting from phonon scattering, this approxima-
tion produces not only the correct low-T power law (ρ ∼ T 5

for three-dimensional isotropic single-Fermi-surface systems)
[14] but also the values that are quantitatively comparable
with experimental data [15]. When applied to the side-jump
transport, the high-T and low-T asymptotic behaviors are
grasped in this approximation. Quantitative deviations appear-
ing in the intermediate temperature regime are not essential
for the present purpose.

The side jumps were originally proposed as the sideways
shifts in opposite transverse directions of carriers with differ-
ent spins, when they are scattered by spin-orbit active impuri-
ties [12,16]. This picture works well in systems with weak
spin-orbit coupling [17–19], where the spin-orbit-induced
band splitting is smeared by disorder broadening [1], whereas
in strongly spin-orbit-coupled Bloch bands of current interest
the side-jump contribution arises microscopically from the
scattering-induced band-off-diagonal elements of the out-of-
equilibrium density matrix [20–23]. This corresponds, in the
Boltzmann transport formalism, to the dressing of Bloch
states by interband virtual scattering processes involving off-
shell states away from the Fermi surface [24].

Our paper is organized as follows. In Sec. II we present
the theory for the side-jump spin Hall effect, emphasizing the
indispensable role played by off-shell Bloch states. In Sec. III,
the T dependence of the phonon-induced side-jump spin Hall
conductivity is analyzed, including the general argument and
an intuitive physical picture. This T dependence is supported
by the first-principles calculations in pure Pt in Sec. IV, where
a T variation of the spin Hall conductivity up to 50% is found.
Experimentally accessible high-purity Pt is proposed to be a
compelling candidate to observe the predicted phenomenon.
Finally, in Sec. V, we conclude this paper.
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II. TRANSPORT FORMALISM INVOLVING
OFF-SHELL STATES

In weakly disordered crystals perturbed by a weak external
electric field E, the expectation value of an observable A
(assumed to be a vector without loss of generality) reads

〈A〉 =
∑

l

Al fl (1)

in the Boltzmann transport formalism, where fl is the oc-
cupation function of the carrier state marked by l = (η, k)
with η the band index and k the crystal momentum, and Al

is the quantum-mechanical average on state l . The carrier
state is the Bloch state dressed by interband virtual processes
induced by both the electric field and the scattering [24]. In
the linear-response and weak scattering regime, these two
dressing effects are independent [24]:

Al = A0
l + Abc

l + ASJ
l , (2)

where
(
Abc

l

)
β

= e

h̄
Eα�A

αβ (ηk) (3)

arises from the electric-field induced dressing, with

�A
αβ (ηk) = −2h̄2 Im

∑
η′′ �=η

vηη′′
α (k)Aη′′η

β
(k)

(εηk − εη′′k )2
, (4)

and
(
ASJ

l

)
β

= −2π
∑
η′k′

Wkk′δ(εηk − εη′k′ )

× Im

⎡
⎣ ∑

η′′ �=η′

〈uηk|uη′k′ 〉〈uη′′k′ |uηk〉Aη′η′′
β (k′)

εη′k′ − εη′′k′

−
∑
η′′ �=η

〈uη′′k|uη′k′ 〉〈uη′k′ |uηk〉Aηη′′
β

(k)

εηk − εη′′k

⎤
⎦ (5)

originates from the scattering-induced dressing. Equation (5)
is diagrammatically represented in Fig. 1. The summation
over repeated spatial indices α and β is implied hereafter.
Here Aη′′η

β (k) ≡ 〈uη′′k|Aβ |uηk〉 with |uηk〉 the periodic part

of the Bloch state. For impurities, Wkk′ = ni|V o
kk′ |2, with ni

the impurity density and V o
kk′ the plane-wave part of the

matrix element of the impurity potential. For electron-phonon
scattering,

Wkk′ = 2Nq

V

∣∣U o
kk′

∣∣2
, (6)

where U o
k′k is the plane-wave part of the electron-phonon ma-

trix element, Nq is the Bose occupation function of phonons
(q is the wave vector of phonons with energy h̄ωq), V is the
volume (area in two dimensions) of the system, and the factor
2 accounts for the absorption and emission of phonons.

When calculating the electric current A = ev, �A
αβ and vSJ

l
are the Berry curvature and “side-jump velocity” [22,24,25],
respectively. When calculating the spin current A = j, �A

αβ is
the so-called spin Berry curvature [11], whereas ASJ

l provides
the spin-current counterpart of the side-jump velocity [24,26].

FIG. 1. Graphical representation of Eq. (5), where the off-shell
states away from the Fermi surface are marked by red arrows. Wkk′

is represented by the disorder line connected with two interaction
vertices.

The occupation function of the carrier states is de-
composed, around the Fermi distribution f 0

l , into fl =
f 0
l + g2s

l + ga
l . Its out-of-equilibrium part satisfies the lin-

earized steady-state Boltzmann equations eE · v0
l ∂ f 0

l /∂εl =
−∑

l ′ w
2s
ll ′ (g

2s
l − g2s

l ′ ) and

eE · vSJ
l ∂ f 0

l /∂εl =
∑

l ′
w2s

ll ′
(
ga

l − ga
l ′
)

(7)

in the presence of weak scalar disorder [22]. w2s
ll ′ = 2π

h̄
Wkk′ |〈ul |ul ′ 〉|2δ(εl − εl ′ ) is the lowest-Born-order scattering
rate, and v0

l is the usual band velocity.
Collecting the above ingredients, the spin Hall current is

jSH = jbc
SH + jSJ

SH + jad
SH. The first two terms,

jbc
SH =

∑
l

(
jbc
l

)
f 0
l , jSJ

SH =
∑

l

(
jSJ
l

)
g2s

l , (8)

arise from off-shell-state induced corrections to the semi-
classical value of j0

l , whereas jad
SH = ∑

l j0
l ga

l incorporates
the nonequilibrium occupation function modified by off-shell
states, since ga

l appears as a response to the generation term
proportional to the side-jump velocity vSJ

l [25]. In calculating
the anomalous Hall (AH) current [21] A = ev, jSJ

AH and jad
AH

are related to the transverse (sideways) and longitudinal com-
ponents of vSJ

l , respectively [25]. Thereby their sum is also
often referred to as the side-jump contribution in the literature
on the anomalous Hall effect [21,22,25]. Given this conven-
tion, we also include the jad

SH contribution, although jad
AH has

nothing to do with the original concept of side jump, and the
microscopic theory [20,23] indeed shows that ga

l is not related
to the interband elements of the out-of-equilibrium density
matrix. In fact, in two-dimensional nonmagnetic models for
the spin Hall effect, such as the two-dimensional electronic
systems with Rashba, cubic Rashba, and Dresselhaus spin-
orbit couplings [27–32], the spin current operator (for the out-
of-plane spin component) has only interband matrix elements,
i.e., j0

l = 0, thus jad
SH does not appear at all.
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III. PHONON-INDUCED T DEPENDENCE OF SPIN
HALL CONDUCTIVITY

In order to show the T dependence of the phonon-induced
side-jump spin Hall conductivity, we first prove that its values
in the low-T and high-T limits can be different.

In the low-T limit, Wkk′ for phonon scattering is highly
peaked at the vanishing scattering angle, and the on-shell
scattering can only be the intraband transition, hence in Eq. (5)
η′ = η and k′ is very close to k. We then expand the in-
tegrand up to the first order of (k′ − k), getting (ASJ

l )
β

=∑
k′ w̃2s

l ′l�
A
αβ (ηk)(k′ − k)α , with w̃2s

l ′l = 2π
h̄ Wkk′δ(εηk − εηk′ )

the scattering rate in the small-scattering-angle limit. Con-
currently, vSJ

l = ∑
k′ w̃2s

l ′l�(l ) ×(k′ − k) (� is the vector
form of the ordinary Berry curvature) yields ga

l = eE ·
[k × �(l )]∂ f 0

l /∂εl . Thus one has

(
jSJ
SH

)
β

= e
∑

l

kα�
j
αβ

(l )E · v0
l ∂ f 0

l /∂εl (9)

and
(

jad
SH

)
β

= e
∑

l

(
j0
l

)
β
E · [k × �(l )]∂ f 0

l /∂εl . (10)

Thus σSH = ( jSH)x/Ey is a T -independent constant in the low-
T limit. It is clear that this constant equals that contributed by
scalar impurities in the long-range limit, the Wkk′ of which
is also highly concentrated around the vanishing scattering
angle.

In the high-T limit, the phonon energy is much smaller than
kBT , indicating Wkk′ = 2kBT V−1|U o

k′k|2/h̄ωq; then we have
g2s

l ∼ T −1, jSJ
l ∼ T , and ga

l ∼ T 0, and, consequently,

ρ ∼ T, σSH ∼ T 0. (11)

Accordingly, in practice the high-T limit is identified as the
equipartition regime with linear-in-T resistivity [14]. This
regime is usually marked qualitatively by T > TD in text-
books, with TD the Debye temperature, but can extend prac-
tically to about T > TD/3 in Pt, Cu, and Au [15,33], and to
about T > TD/5 in Al [33]. Additionally, it is apparent that the
T -independent σSH in the equipartition regime can be different
from that in the low-T limit.

To acquire a more transparent picture, we assume any
large-angle electron-phonon scattering can occur via normal
processes, and we take the approximation of the deformation-
potential electron-acoustic phonon coupling, for which an
electron-phonon coupling constant can be introduced as
[34,35] λ2 = 2V−1|U o

k′k|2/h̄ωq, hence we arrive at Wkk′ =
λ2kBT in the high-T regime. This Wkk′ is uniformly distributed
on the Fermi surface, similar to Wkk′ = niV 2

i contributed by
randomly distributed zero-range scalar impurities, with Vi the
strength. Therefore, we infer that the σSH due to phonons
in the high-T equipartition regime takes the same value as
that due to zero-range scalar impurities. This speculation
can be verified by noticing that g2s,ep

l λ2kBT = g2s,ei
l niV 2

i ,

(ASJ
l )

ep
/λ2kBT = (ASJ

l )
ei
/niV 2

i , and ga,ep
l = ga,ei

l , where the
superscripts “ep ” and “ei” mean the contributions due to
electron-phonon scattering and zero-range scalar impurities,
respectively.

According to the above results, σSH induced by electron-
acoustic phonon scattering is T dependent provided that the
σSH values induced by scalar impurity scattering in the long-
range and zero-range limits are different. This unexpected
relation in turn provides a qualitative picture for comprehend-
ing the T dependence of the phonon-induced side jump, by
analogy with the recently revealed sensitivity of the side-
jump conductivity to the scattering range of impurities [36].
The accessible phase space of the electron-phonon scattering
changes with temperature, thus implying a T -dependent aver-
age momentum transfer, i.e., effective range, of this scattering.

Note that this mechanism differs from that for the T -
dependent ρ. To directly see this point, one need only consider
the fact that in the equipartition regime σSH ∼ T 0 although
ρ ∼ T is still T dependent.

The above revealed relation facilitates judging whether
a model system has a T -dependent phonon-induced side-
jump conductivity based on the familiar knowledge about
the impurity-induced side jump. There are models which
possess different side-jump conductivities induced by scalar
impurity-scattering in the long-range and zero-range limits,
such as the Luttinger model describing p-type semiconduc-
tors [37] and the k-cubic Rashba model for two-dimensional
heavy-hole gas in confined quantum wells [28]. In these sys-
tems the phonon-induced side-jump conductivities are thus T
dependent.

In the k-cubic Rashba model [31,32], the Hamiltonian
reads

Ĥ = h̄2k2

2m
+ i

αR

2
(σ̂+k3

− − σ̂−k3
+), (12)

where k = k(cos φ, sin φ) is the two-dimensional wave vec-
tor, k± = kx ± iky, σ̂ ’s are Pauli matrices with σ̂± =
σ̂x ± iσ̂y, and αR is the spin-orbit coupling coefficient that
can be tuned to very large values by the gate voltage
[32]. The spin current operator [29,30] ĵx = 3h̄

2
1
2 {σ̂z, v̂x} has

only interband components, hence jSH = jbc
SH + jSJ

SH. Let-
ting η = ± label the two Rashba bands, the spin Berry
curvature is �

j
yx(ηk) = −η

9h̄3 sin2 φ

4mαRk3 , thus σ bc
SH = ( jbc

SH)x/Ey =
9eh̄2

16πmαR

∑
η ηk−1

η [28,29], with kη the Fermi wave number of
band η. The side-jump spin Hall conductivity due to electron-
phonon scattering in the low-T limit is given by Eq. (9) as

σ SJ
SH = (

jSJ
SH

)
x/Ey = 1

4
σ bc

SH. (13)

When mαR/h̄2 � 1/
√

πn [29], one has σ SJ
SH = 9e/32π . In the

high-T regime, we have jSJ
l = 0, leading to

σ SJ
SH = 0. (14)

Since the side-jump conductivities in the high-T and low-T
limits are different, there must be a crossover in the interme-
diate regime resulting in the T -dependent behavior.

IV. TEMPERATURE-DEPENDENT SPIN HALL
CONDUCTIVITY IN PURE PLATINUM

To show the applicability of our theoretical ideas in real
materials, we perform a first-principles calculation to the spin
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FIG. 2. Calculated longitudinal resistivity ρ (a) and spin Hall
conductivity σSH (b) of pure Pt as a function of temperature. The
black dashed line in panel (a) illustrates the linear dependence.

Hall conductivity of pure Pt in the range 20–300 K. The min-
imal interband splitting around the Fermi level of Pt is much
larger than 300 K [9], thus the spin Berry-curvature contribu-
tion should be T independent up to 300 K. The temperature
is modeled by populating the calculated phonon spectra of Pt
into a large supercell with its length L along fcc [111] and
5 × 5 unit cells in the lateral dimensions [15,38]. Then the
transport calculation is carried out using the above disordered
(finite-temperature) supercell sandwiched by two perfectly
crystalline (zero-temperature) Pt electrodes. The scattering
matrix is obtained using the so-called wave-function matching
technique within the Landauer-Büttiker formalism [38]. The
calculated total resistance of the scattering geometry is found
to be linearly dependent on L following Ohm’s law. By
varying L in the range of 5–60 nm, we extract the resistivity
at every temperature using a linear least-squares fitting for
the calculated resistances. For each L, at least ten random
configurations have been considered to ensure both average
value and standard deviation well converged with respect
to the number of configurations. The calculated resistivity
ρ is plotted in Fig. 2(a) as a function of temperature. The
spin-Hall angle �SH is computed by examining the ratio of
transverse spin current density and longitudinal charge current
density [10]. At every temperature, we use more than 20
random configurations, each of which contains 60-nm-long
disordered Pt. Then the spin Hall conductivity is obtained as
σSH = (h̄/e)�SH/ρ, shown in Fig. 2(b).

For T � 80 K, a linear-in-T ρ is obtained, and σSH

is approximately a constant of 1.6 × 105h̄/e(� m)−1 [10].
Below the equipartition regime, ρ deviates from the lin-
ear T dependence [illustrated by the black dashed line in
Fig. 2(a)], and concurrently the calculated σSH increases with
decreasing temperature. At T = 20 K, σSH reaches 2.3 ×
105h̄/e(� m)−1. Compared to the value at 80 K, the T vari-
ation of σSH is as large as 50%. This T dependence begins
when the temperature drops below the equipartition regime,
in agreement with our theoretical prediction.

Finally, we discuss the possibility of observing the pre-
dicted effect in experiments. In high-purity metals, the
electron-electron scattering dominates over the electron-
phonon scattering in determining transport behaviors at very
low temperature. To observe our prediction, lower character-
istic temperature Tt marking the crossover from the electron-
electron dominated regime to the electron-phonon dominated
one is required, such that the intermediate range from Tt

to the high-T equipartition regime is wide enough. In ex-
perimentally accessible high-purity Pt samples with residual
resistivity as small as 10−3-10−2 μ� cm [39,40], Tt can be
as low as 10 K, and at T = 20 K the phonon-induced ρ is
nearly one order of magnitude larger than that contributed
by the electron-electron scattering and the residual resistivity
[40]. Because in high-purity Pt the T -linear scaling of ρ

emerges at T � 80 K [15], the suitable range for observing
the first-principles predicted T dependence of σSH [Fig. 2(b)]
is 20 � T � 80 K. Very recently experimentalists have been
developing new techniques, with which the spin current is
generated and detected in a single transition-metal sample,
thus avoiding all the complications associated with the in-
terfaces and shunting effect [7,8]. The predicted effect is
expected to be observed as the quality of Pt samples in such
measurements is improved.

V. SUMMARY

In summary, we have drawn the distinction that the side-
jump spin Hall conductivity, while T independent in the clas-
sical equipartition regime where the longitudinal resistivity is
linear in T , is T dependent below the equipartition regime.
This contradicts the conventional belief that the side-jump
conductivity due to electron-phonon scattering is T indepen-
dent. The mechanism resulting in this T dependence differs
from that of the longitudinal resistivity, which is always
T dependent. Our theoretical idea gains support from first-
principles calculations in Pt, for which the T variation of the
spin Hall conductivity below the equipartition regime is found
to be as high as 50%. Experimentally accessible high-purity Pt
is argued to be suitable for observing this prominent variation
below 80 K.
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