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Abstract

Motivated by the emerging use of multi-agent reinforcement learning (MARL) in engineering
applications such as networked robotics, swarming drones, and sensor networks, we investigate
the policy evaluation problem in a fully decentralized setting, using temporal-difference (TD)
learning with linear function approximation to handle large state spaces in practice. The goal
of a group of agents is to collaboratively learn the value function of a given policy from locally
private rewards observed in a shared environment, through exchanging local estimates with
neighbors. Despite their simplicity and widespread use, our theoretical understanding of such
decentralized TD learning algorithms remains limited. Existing results were obtained based on
i.i.d. data samples, or by imposing an ‘additional’ projection step to control the ‘gradient’ bias
incurred by the Markovian observations. In this paper, we provide a finite-sample analysis of
the fully decentralized TD(0) learning under both i.i.d. as well as Markovian samples, and prove
that all local estimates converge linearly to a small neighborhood of the optimum. The resultant
error bounds are the first of its type—in the sense that they hold under the most practical
assumptions —which is made possible by means of a novel multi-step Lyapunov analysis.

1 INTRODUCTION

Reinforcement learning (RL) is concerned with how artificial agents ought to take actions in an un-
known environment so as to maximize some notion of a cumulative reward. Thanks to its generality,
RL has been widely studied in many areas, such as control theory, game theory, operations research,
multi-agent systems, machine learning, artificial intelligence, and statistics [25]. In recent years,
combining with deep learning, RL has demonstrated its great potential in addressing challenging
practical control and optimization problems [18, 23, 34, 22]. Among all possible algorithms, the
temporal difference (TD) learning has arguably become one of the most popular RL algorithms so
far, which is further dominated by the celebrated TD(0) algorithm [24]. TD learning provides an
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iterative process to update an estimate of the so-termed value function vµ(s) with respect to a given
policy µ based on temporally successive samples. Dealing with a finite state space, the classical
version of the TD(0) algorithm adopts a tabular representation for vµ(s), which stores entry-wise
value estimates on a per state basis.

Although it is conceptually simple as well as easy-to-implement, the tabular TD(0) learning
algorithm can become intractable when the number of states grows large or even infinite, which
emerges in many contemporary control and artificial intelligence problems of practical interest. This
is also known as the “curse of dimensionality” [2]. The common practice to bypass this hurdle, is to
approximate the exact tabular value function with a class of function approximators, including for
example, linear functions or nonlinear ones using even deep neural networks [25].

Albeit nonlinear function approximators using e.g., deep neural networks [18, 29], can be more
powerful, linear approximation allows for an efficient implementation of TD(0) even on large or
infinite state spaces, which has been demonstrated to perform well in a variety of applications
[21], [25]. Specifically, TD learning with linear function approximation parameterizes the value
function with a linear combination of a set of preselected basis functions (a.k.a., feature vectors)
induced by the states, and estimates the coefficients in the spirit of vanilla TD learning. Indeed,
recent theoretical RL efforts have mostly centered around linear function approximation; see e.g.,
[13, 1, 3, 12, 11, 31].

Early theoretical convergence results of TD learning were mostly asymptotic [24, 13, 1, 20]; that
is, results that hold only asymptotically when the number of updates (data samples) tends to infinity.
By exploring the asymptotic behavior, TD(0) learning with linear function approximation can be
viewed as a discretized version of an ordinary differential equation (ODE) [27], or a linear dynamical
system [6], so TD(0) updates can be seen as tracking the trajectory of the ODE provided the learning
rate is infinitely small [27]. Indeed, this dynamical systems perspective has been widely used to study
the asymptotic convergence of general stochastic approximation algorithms [6]. Motivated by the
need for dealing with massive data in modern signal processing, control, and artificial intelligence
tasks (e.g., [7, 18]), recent interests have centered around developing non-asymptotic performance
guarantees that hold with even finite data samples and help us understand the efficiency of the
algorithm or agent in using data.

Non-asymptotic analysis of RL algorithms, and TD learning in particular, is generally more
challenging than their asymptotic counterpart, due mainly to two reasons that: i) TD updates do
not correspond to minimizing any static objective function as standard optimization algorithms
do; and, ii) data samples garnered along the trajectory of a single Markov chain are correlated
across time, resulting in considerably large (possibly uncontrollable) instantaneous ‘gradient’ bias
in the updates. Addressing these challenges, a novel suite of tools has lately been put forward. A
convex-concave saddle-point formulation was introduced by [16] to facilitate finite-time analysis. of
a TD variant, termed gradient (G) TD with linear function approximation. Adopting the dynamical
system viewpoint, the iterates of TD(0) updates after a projection step were shown converging to the
equilibrium point of the associated ODE at a sublinear rate in [8]. With additional transformation
and/or projection steps, finite-time error bounds of a two-timescale TD learning algorithm developed
by [26] were established in [11, 32]. The authors in [3] unified finite-time results of TD(0) with linear
function approximation, under both identically, and independently distributed (i.i.d.) noise, as well,
as Markovian noise.

In summary, these aforementioned works in this direction either assume i.i.d. data samples [8],
or have to incorporate a projection step [3]. As pointed out in [8] however, although widely adopted,
i.i.d. samples are difficult to acquire in practice. On the other hand, the projection step is imposed
only for analysis purposes, which requires prior knowledge to select the size of a feasibility set. More-
over, most existing theoretical RL studies have considered the centralized setting, except for e.g.,
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[28, 9] concerning theoretical aspects of decentralized RL under the i.i.d. assumption and/or with
the projection step; while early efforts on multi-agent RL focused on empirical performances [10]. In
a fully decentralized setting, multi-agents share a common environment but observe private rewards.
With the goal of jointly maximizing the total accumulative reward, each agent can communicate
with its neighbors, and updates the parameter locally. Such decentralized schemes appear naturally
in numerous applications, including, for instance, robotics [33], mobile sensor networks [14], and
drone control [35].

As a complementary to existing theoretical RL efforts, this paper offers a novel finite-sample anal-
ysis for a fully decentralized TD(0) algorithm with linear function approximation. For completeness
of our analytical results, we investigate both the i.i.d. case as, well as, the practical yet challenging
Markovian setting, where data samples are gathered along the trajectory of a single Markov chain.
With communications of local parameter estimates between neighbors, we first establish consensus
among all agents. To render the finite-time analysis under the Markovian noise possible, we invoke
a novel multi-step Lyapunov approach [30], which successfully eliminates the need for a projection
step as required by [9]. Our theoretical results show that a fully decentralized implementation of
the original TD(0) learning, converges linearly to a neighborhood of the optimum under both i.i.d.
and Markovian observations. Furthermore, the size of this neighborhood can be made arbitrarily
small by choosing a small enough stepsize. In a nutshell, the main contributions of this paper are
summarized as follows.

c1) We investigate the fully decentralized TD(0) learning with linear function approximation, and
establish the multi-agent consensus, as well as their asymptotic convergence; and,

c2) We provide finite-time error bounds for all agents’ local parameter estimates in a fully decen-
tralized TD(0) setting, under both i.i.d. and Markovian observations, through a multi-step
Lyapunov analysis.

2 DECENTRALIZED REINFORCEMENT LEARNING

A discounted Markov decision process (MDP) is a discrete-time stochastic control process, which
can be characterized by a 5-tuple (S,A, P a, Ra, γ). Here, S is a finite set of environment and agent
states, A is a finite set of actions of the agent, P a(s, s′) = Pr(s′|s, a) is the probability of transition
from state s ∈ S to state s′ upon taking action a ∈ A, Ra(s, s′) : S×S → R represents the immediate
reward received after transitioning from state s to state s′ with action a, and γ is the discounting
factor.

The core problem of MDPs is to find a policy for the agent, namely a mapping µ : S × A →
[0, 1] that specifies the probability of choosing action a ∈ A when in state s. Once an MDP is
combined with a policy, this fixes the action for each state and their combination determines the
stochastic dynamics of a Markov chain [4]. Indeed, this is because the action a chosen in state s
is completely determined by µ(s, a), then Pr(s′|s, a) reduces to Pµ(s, s′) =

∑
a∈A µ(s, a)P a(s′|s), a

Markov transition matrix P µ. Likewise, immediate reward Ra(s, s′) also simplifies to the expected
reward Rµ(s, s′) =

∑
a∈A µ(s, a)P a(s′|s)Ra(s′|s).

The quality of policy µ is evaluated in terms of the expected sum of discounted rewards over all
states in a finite-sample path while following policy µ to take actions, which is also known as the
value function vµ : S → R. In this paper, we focus on evaluating a given policy µ, so we will neglect
for notational brevity the dependence on µ hereafter. Formally, v(s) is defined as follows

v(s) = E
[ ∞∑
k=0

γkR(s(k), s(k + 1))
∣∣∣s(0) = s

]
, ∀s ∈ S (1)
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where the expectation is taken over all transitions from k = 0 to k = +∞.
Assuming a canonical ordering on the elements of S, say a renumbering {1, 2, . . . , |S|}, we can

treat v as a |S|-dimensional vector v := [v(1) v(2) · · · v(|S|)]> ∈ R|S|. It is well known that the
value function v(s) in (1) satisfies the so-called Bellman equation [2]

v(s) =
∑
s′∈S

Pss′
[
R(s, s′) + γv(s′)

]
, ∀s ∈ S. (2)

If the transition probabilities {Pss′} and the expected rewards {R(s, s′)} were known, finding v ∈ R|S|
is tantamount to solving a system of linear equations described by (2). It is obvious that when the
number of states |S| is large or even infinite, exact computation of v can become intractable, which is
also known as the “curse of dimensionality” [2]. This thus motivates well a low-dimensional (linear)
function approximation of v(s), parameterized by an unknown vector θ ∈ Rp as follows

v(s) ≈ ṽ(s, θ) = φ>(s)θ, ∀s ∈ S (3)

where we oftentimes have the number of unknown parameters p� |S|; and φ(s) ∈ Rp is a preselected
feature or basis vector characterizing state s ∈ S.

For future reference, let vector ṽ(θ) := [ṽ(1, θ) ṽ(2,θ) · · · ṽ(|S|, θ)]> collect the value function
approximations at all states, and define the feature matrix

Φ :=


φ>(1)
φ>(2)

...
φ>(|S|)

 ∈ R|S|×p

then it follows that
ṽ(θ) = Φθ. (4)

Regarding the basis vectors {φ(s)} (or equivalently, the feature matrix Φ), we make the next
two standard assumptions [27]: i) ‖φ(s)‖ ≤ 1, ∀s ∈ S, that is, all feature vectors are normalized;
and, ii) Φ is of full column rank, namely, all feature vectors are linearly independent.

With the above linear approximation, the task of seeking v boils down to find the parameter
vector θ∗ that minimizes the gap between the true value function v and the approximated one
ṽ(θ). Among many possibilities in addressing this task, the original temporal difference learning
algorithm, also known as TD(0), is arguably the most popular solution [24]. The goal of this
paper is to develop decentralized TD(0) learning algorithms and further investigate their finite-time
performance guarantees in estimating θ∗. To pave the way for decentralized TD(0) learning, let us
start off by introducing standard centralized version below.

2.1 Centralized Temporal Difference Learning

The classical TD(0) algorithm with function approximation [24] starts with some initial guess
θ(0) ∈ Rp. Upon observing the kth transition from state s(k) to state s(k + 1) with reward
r(k) = R(s(k, s(k + 1))), it first computes the so-called temporal-difference error, given by

d(k) = r(k) + γṽ(s(k + 1), θ(k))− ṽ(s(k),θ(k)) (5)

which is subsequently used to update the parameter vector θk as follows

θ(k + 1) = θ(k) + αd(k)∇ṽ(s(k),θ(k)). (6)
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Here, α > 0 is a preselected constant stepsize, and the symbol ∇ṽ(s(k),θ(k)) = φ(s(k)) denotes
the gradient of ṽ(s(k),θ) with respect to θ evaluated at the current estimate θ(k). For ease of
exposition, we define the ‘gradient’ estimate g(k) as follows

g(θ(k), ξk) := d(k)∇ṽ(s(k),θ(k))

= φ(s(k))
[
γφ>(s(k + 1))− φ>(s(k))

]
θ(k) + r(k)φ(s(k)). (7)

where ξk captures all the randomness corresponding to the k-th transition (s(k), s(k+1), {rm(k)}m∈M).
Thus, the TD(0) update (6) can be rewritten as

θ(k + 1) = θ(k) + αg(θ(k), ξk). (8)

Albeit viewing g(θ(k), ξk) as some negative ‘gradient’ estimate, the TD(0) update in (8) based
on online rewards resembles that of the stochastic gradient descent (SGD). It is well known, however,
that even the TD(0) learning update does not correspond to minimizing any fixed objective function
[25]. Indeed, this renders convergence analysis of TD algorithms rather challenging, letting alone the
non-asymptotic (i.e., finite-time) analysis. To address this challenge, TD learning algorithms have
been investigated in light of the stability of a dynamical system described by an ordinary differential
equation (ODE) [6, 27, 30].

Before introducing the ODE system for (8), let us first simplify the expression of g(θ(k)). Upon
defining

H(ξk) := φ(s(k))
[
γφ>(s(k + 1))− φ>(s(k))

]
(9)

and
b(ξk) := r(k)φ(s(k)) (10)

the gradient estimate g(θ(k)) can be re-expressed as follows

g(θ(k), ξk) = H(ξk)θ(k) + b(ξk). (11)

Assuming that the Markov chain is finite, irreducible, and aperiodic, there exists a unique sta-
tionary distribution π ∈ R1×|S| [15], adhering to πP = π. Moreover, let D be a diagonal matrix
holding entries of π on its main diagonal. We also introduce r′(s) :=

∑
s′∈S P (s, s′)R(s, s′) for all

s ∈ S and collect them into vector r′ =
[
r′(1) r′(2) · · · r′(|S|)

]>
.

It is not difficult to verify that after the Markov chain reaches the stationary distribution, then
the following limits hold true

H̄ := lim
k→∞

E[H(ξk)] = ΦD(γPΦ> −Φ>) (12)

b̄ := lim
k→∞

E[b(ξk)] = ΦDr′ (13)

yielding
ḡ(θ) := H̄θ + b̄. (14)

It has been shown that, under mild conditions on the stepsize α, the TD(0) update (6) or (8)
can be understood as tracking the following ODE [27]

θ̇ = ḡ(θ). (15)

For any γ ∈ [0, 1), it can be further shown that albeit not symmetric, matrix H̄ is negative
definite, in the sense that θ>H̄θ < 0 for any θ 6= 0. Appealing to standard linear systems theory
(see e.g., [5]), we have that the ODE (15) admits a globally, asymptotically stable equilibrium point
θ∗, dictated by

ḡ(θ∗) = H̄θ∗ + b̄ = 0. (16)
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2.2 Decentralized Temporal Difference Learning

The goal of this paper is to investigate the policy evaluation problem in the context of multi-agent
reinforcement learning (MARL), where a group of agents operate to evaluate the value function in
an environment. Suppose there is a set M of agents with |M| = M , distributed across a network
denoted by G = (M, E), where E ⊆ M ×M represents the edge set. Let Nm ⊆ M collect the
neighbor(s) of agent m ∈ M, for all m ∈ M. We assume that each agent locally implements a
stationary policy µm. As explained in the centralized setting, when combined with fixed policies
{µm}m∈M, the multi-agent MDP can be described by the following 6-tuple(

S, {Am}Mm=1, P, {Rm}Mm=1, γ,G
)

(17)

where S is a finite set of states shared by all agents, Am is a finite set of actions available to agent
m, and Rm is the immediate reward observed by agent m. It is worth pointing out that, here, we
assume there is no centralized controller that can observe all information; instead, every agent can
observe the joint state vector s ∈ S, yet its action am ∈ Am as well as reward Rm(s, s′) is kept
private from other agents.

Specifically, at time instant k, each agent m observes the current state s(k) ∈ S and chooses
action a ∈ Am according to a stationary policy µm. Based on the joint actions of all agents, the
system transits to a new state s(k+1), for which an expected local reward rm(k) = Rm(s(k), s(k+1))
is revealed to agent m. The objective of multi-agent policy evaluation is to cooperatively compute
the average of the expected sums of discounted rewards from a network of agents, given by

vG(s) = E
[

1

M

∑
m∈M

∞∑
k=0

γkRm(s(k), s(k + 1))
∣∣∣s(0) = s

]
. (18)

Similar to the centralized case, one can show that vG(s) obeys the following multi-agent Bellman
equation

vG(s) =
∑
s′∈S

Pss′
[ 1

M

∑
m∈M

Rm(s, s′) + γvG(s′)
]
, ∀s ∈ S. (19)

Again, to address the “curse of dimensionality” in exact computation of vG when the space S
grows large, we are particularly interested in low-dimensional (linear) function approximation ṽG(s)
of vG(s) as given in (3), or (4) in a matrix-vector representation.

Define bm(k) := rm(k)φ(s(k)), b̄m = Eπ[bm(k)], bG := 1
M

∑
m∈M bm(k) and b̄G := 1

M

∑
m∈M b̄m.

As all agents share the same environment by observing a common state vector s(k), and differ only
in their rewards, the parameter vector θ∗ such that the linear function approximator ṽG = Φθ∗

satisfies the multi-agent Bellman equation (19); that is,

H̄θ∗ + b̄G = 0 (20)

We are ready to study a standard consensus-based distributed variant of the centralized TD(0)
algorithm, which is tabulated in Algorithm 1 for reference. Specifically, at the beginning of time
instant k, each agent m first observes (s(k), s(k + 1), Rm(s(k), s(k + 1))) and calculates the local
gradient

gm(θm(k), ξk) := φ(s(k))
[
γφ>(s(k + 1))− φ>(s(k))

]
θm(k) + rm(k)φ(s(k)) (21)

Upon receiving estimates {θm′(k)} from its neighbors m′ ∈ Nm, agent m updates its local estimate
θm(k) according to the following recursion

θm(k + 1) =
∑
m′∈M

Wmm′θm′(k) + αgm(θm(k), ξk), ∀m ∈M (22)
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Algorithm 1 Decentralized TD(0) learning

1: Input: stepsize α > 0, feature matrix Φ, and weight matrix W .
2: Initialize: {θm(0)}m∈M.
3: for k = 0, 1, · · · ,K do
4: for m = 1, 2, · · · ,M do
5: Agent m receives θm′(k) from its neighbors m′ ∈ Nm;
6: Agent m observes (s(k), s(k + 1), rm(k)), and computes gm(θm(k)) according to (21);
7: Agent m updates θm(k) via (22), and broadcasts θm(k + 1) to its neighbors m′ ∈ Nm.
8: end for
9: end for

where Wmm′ is a weight attached to the edge (m,m′); and Wmm′ > 0 if m′ ∈ Nm, and Wmm′ = 0,
otherwise. Throughout this paper, we have following assumption on the network.

Assumption 1. The communication network is connected and undirected, and the associated weight
matrix W is a doubly stochastic matrix.

For ease of exposition, we stack up all local parameter estimates {θm}m∈M into matrix

Θ :=


θ>1
θ>2
...
θ>M

 ∈ RM×p. (23)

and similarly for all local gradient estimates {gm(θm)}m∈M

G(Θ, ξk) :=


g>1 (θ1, ξk)
g>2 (θ2, ξk)

...
g>M (θM , ξk)

 ∈ RM×p (24)

which admits the following compact representation

G(Θ, ξk) = ΘH>(ξk) + r(k)φ>(s(k)) (25)

where r(k) = [r1(k) r2(k) · · · rM (k)]> concatenates all local rewards. With the above definitions,
the decentralized TD(0) updates in (22) over all agents can be collectively re-written as follows

Θ(k + 1) = WΘ(k) + αG(Θ(k), ξk). (26)

In the sequel, we will investigate finite-sample analysis of the decentralized TD(0) learning algo-
rithm in (26) in two steps. First, we will show that all local parameters reach a consensus, namely,
converge to their average. Subsequently, we will prove that the average converges to the Bellman
optimum θ∗.

To this end, let us define the average θ̄ := (1/M)ΘT1 of the parameter estimates by all agents,
which can be easily shown using (26) to exhibit the following average system (AS) dynamics

AS : θ̄(k + 1) = θ̄(k) +
α

M
G>(Θ(k), ξk)1. (27)
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Subtracting from each row of (26) (namely, each local parameter estimate) the average estimate in
(27), yields

Θ(k + 1)− 1θ̄>(k + 1) = WΘ(k)− 1θ̄>(k)+ αG(Θ(k), ξk)− α

M
11>G(Θ(k), ξk)

= WΘ(k)− 1θ̄>(k) + α
(
I − 11>

M

)
G(Θ(k), ξk). (28)

For notational convenience, we define the network difference operator ∆ := I − (1/M)11>.
Since W is a doubly stochastic matrix, it can be readily shown that ∆Θ = Θ− 1θ̄>capturing the
difference between local estimates and the global average. After simple algebraic manipulations, we
deduce that the parameter difference system (DS) evolves as follows

DS : ∆Θ(k + 1) = W∆Θ(k) + α∆G(Θ(k)). (29)

3 NON-ASYMPTOTIC PERFORMANCE GUARANTEES

The goal of this paper is to gain deeper understanding of statistical efficiency of decentralized TD(0)
learning algorithms, and investigate their finite-time performance. In this direction, we will start off
by establishing convergence of the DS in (29), that is addressing the consensus among all agents.
Formally, we have the following result, whose proof is postponed to Appendix A for readability.

Theorem 1. Assume that all local rewards are uniformly bounded as rm(k) ∈ [0, rmax], ∀m ∈ M,
and the feature vectors φ(s) have been properly scaled such that ‖φ(s)‖ ≤ 1, ∀s ∈ S. For any
deterministic initial guess Θ(0) and any constant stepsize 0 < α ≤ (1 − λW2 )/4, the parameter
estimate difference over the network at any time instant k ∈ N+, satisfies the following

‖∆Θ(k)‖F ≤
(
λW2 +2α

)k‖∆Θ(0)‖F +
2α
√
Mrmax

1−λW2
(30)

where 0 < λW2 < 1 denotes the second largest eigenvalue of W .

Regarding Theorem 1, some remarks come in order.
To start, it is clear that the smaller λW2 is, the faster the convergence is. In practice, it is possible

that the operator of the multi-agent system has the freedom to choose the weight matrix W , so
we can optimize the convergence rate by carefully designing W . Furthermore, as the number k of
updates grows large, the first term on the right-hand-side of (30) becomes negligible, implying that
the parameter estimates of all agents converge to a small neighborhood of the global average θ̄(k),
whose size is proportional to the constant stepsize α > 0 (multiplied by a certain constant depending
solely on the communication network). It is also worth mentioning that the upper bound imposed
on the stepsize 0 < α ≤ (1− λW2 )/4 is just a sufficient but not necessary condition for convergence.
In fact, it can be checked that any stepsize 0 < α < (1 − λW2 )/4 can guarantee exponentially fast
consensus of the multi-agents’ parameter estimates (up to a small constant error).

So far, we have established the convergence of the DS. What remains is to show that the global
average θ̄(k) converges to the optimal parameter value θ∗ [cf. (20)], which is equivalent to showing
convergence of the AS in (27). In this paper, we investigate finite-time performance of decentralized
TD(0) learning from data samples observed in two different settings, that is the i.i.d. setting as well
as the Markovian setting, which occupy the ensuing two subsections.
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3.1 The I.I.D. Setting

In the i.i.d. setting, we assume that data observations {(s(k), s(k+ 1), {rm(k)}m∈M)}k∈N+ sampled
along the trajectory of the underlying Markov chain are i.i.d.. Nevertheless, s(k) and s(k + 1)
are dependent within each data tuple. Indeed, the i.i.d. setting can be regarded as a special
case of the Markovian setting detailed in the next subsection, after the Markov chain has reached a
stationary distribution. That is, the i.i.d. setting or assuming i.i.d. samples {(s(k), s(k+1), rm(k))}k
is equivalent to considering Markov chains in stationary distributions. To see this, consider the
probability of the tuple (s(k), s(k + 1), rm(k)) taking any value (s, s′, rm) ⊆ S × S × R

Pr{(s(k), s(k + 1)) = (s, s′)} = π(s)P (s, s′). (31)

An alternative way to obtain i.i.d. samples is to generate independently a number of trajectories
and using first-visit methods; see details in [2].

With i.i.d. data samples, we can establish the following result which characterizes the relationship
between (1/M)G>(Θ, ξj)1 and ḡ.

Lemma 1. Let {F(k)}k∈N+ be an increasing family of σ-fields, with Θ(0) being F(0)-measurable,
and G(Θ(k), ξk) being F(k)-measurable. The average (1/M)G>(Θ(k), ξk)1 of the gradient estimates
at all agents is an unbiased estimate of ḡ(θ̄(k)); that is,

Eπ
[

1

M
G>(Θ(k), ξk)1− ḡ(θ̄(k))

∣∣∣F(k)

]
= 0, ∀ξk (32)

and the variance satisfies

Eπ

[∥∥∥∥ 1

M
G>(Θ(k), ξk)1− ḡ(θ̄(k))

∥∥∥∥2 ∣∣∣F(k)

]
≤ 4β2‖θ̄(k)− θ∗‖2 + 4β2‖θ∗‖2 + 8r2

max, ∀ξj (33)

where β is the maximum spectral radius of matrices H(ξk)− H̄ for all k.

The proof is relegated to Appendix B. This lemma suggests that (1/M )G>(Θ(k), ξj)1 is a noisy
estimate of ḡ(θ̄(k)), and the noise is zero-mean and its variance depends only on θ̄(k). Evidently,
the maximum spectral radius of H(ξk)− H̄ can be upper bounded by 2(1 + γ) using the definitions
of H(ξk) in (9) and H̄ in (12).

We are now ready to state our main convergence result in the i.i.d. setting.

Theorem 2. Letting λH̄max < 0 denote the largest eigenvalue of H̄ given in (12). For any constant

stepsize 0 < α ≤ − λH̄
max

2[4β2+(λH̄
min)2]

, the average parameter estimate over all agents converges linearly

to a small neighborhood of the equilibrium point θ∗; i.e.,

E
[∥∥θ̄(k)− θ∗

∥∥2
]
≤ ck1

∥∥θ̄(0)− θ∗
∥∥2

+ c2α (34)

where the constants 0 < c1 := 1 + 2αλH̄max + 8α2β2 + 2α2(λH̄min)2 < 1 and c2 :=
8β2‖θ∗‖2+16r2

max

−λH̄
max

.

Please see a proof in Appendix C. Particularly for the i.i.d. setting, the AS drives θ̄(k) to the
optimal solution θ∗ as SGD does, which is indeed due to the fact that (1/M )G>(Θ(k), ξj)1 is an
unbiased estimate of ḡ(θ̄(k)).

Putting together the convergence result of the global parameter estimate average in Theorem 2
as, well as, the established consensus among the multi-agents’ parameter estimates in Theorem 1,
it follows readily convergence of the local parameter estimates {θm}m∈M, summarized in the next
proposition, for which the proof is provided in Appendix D.
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Proposition 1. Choosing any constant stepsize 0 < α < αmax , min
{

1−λW
2

4 ,− λH̄
max

2[4β2+(λH̄
min)2]

}
, then

the decentralized TD(0) update in (22) guarantees that each local parameter estimate θm converges
linearly to a neighborhood of the optimum θ∗; that is,

E
[∥∥θm(k)− θ∗

∥∥2
]
≤ ck3V0 + c4α, ∀m ∈M (35)

where the constants c3 := max{(λW2 + 2αmax)2, c1}, V0 := 2 max{4‖∆Θ(0)‖2F , 2‖θ̄(0)− θ∗‖2}, and

c4 := αmax
8M2r2

max

(1−λW
2 )2 +

16β2‖θ∗‖2+32r2
max

−λH̄
max

.

3.2 The Markovian Setting

Although the i.i.d. assumption on the data samples {(s(k), s(k + 1), rm(t))}k helps simplify the
analysis of TD(0) learning, it represents only an ideal setting, and undermines the practical merits.
In this subsection, we will consider a more realistic scenario, where data samples are collected along
the trajectory of a single Markov chain starting from any initial distribution. For the resultant
Markovian observations, we introduce an important result bounding the bias between the time-
averaged ‘gradient estimate’ G(Θ, ξk) and the limit ḡ(θ̄), where ξk captures all the randomness
corresponding to the k-th transition (s(k), s(k + 1), {rm(k)}m∈M).

Lemma 2. Let {F(k)}k∈N+ be an increasing family of σ-fields, with Θ(0) being F(0)-measurable,
and G(Θ, ξk) being F(k)-measurable. Then, for any given Θ ∈ Rp and any integer j ∈ N+, the
following holds

∥∥∥ 1

KM

k+K−1∑
j=k

E
[
G>(Θ, ξj)1

∣∣F(k)
]
− ḡ(θ̄)

∥∥∥ ≤ σk(K)(‖θ̄ − θ∗‖+ 1). (36)

where σk(K) := (1+γ)ν0ρ
k

(1−ρ)K ×max{2‖θ∗‖+ rmax, 1}, with constants ν0 > 0 and 0 < ρ < 1 determined

by the Markov chain. In particular for any k ∈ N+, it holds that σk(K) ≤ (1+γ)ν0

(1−ρ)K ×max
{

2‖θ∗‖ +

rmax, 1
}
, σ(K).

The detailed proof is included in Appendix E. Comparing Lemma 2 with Lemma 1, the con-
sequence on the update (26) due to the Markovian observations is elaborated in the following two
remarks.

Remark 1. In the Markovian setting, per time instant k ∈ N, the term (1/M)G>(Θ(k), ξk)1
is a biased estimate of ḡ(θ̄(k)), but its time-averaged bias over a number of future consecutive
observations can be upper bounded in terms of the estimation error ‖θ̄(k) − θ∗‖. Nonetheless, the
instantaneous bias, that is when K = 1, may be sizable or even uncontrollable as there is no constraint
on σ(1).

Remark 2. The results in Lemma 1 for i.i.d. samples correspond to requiring σ(K) = 0 for all
K ∈ N+ in Lemma 2. That is, the i.i.d. setting is indeed a special case of the Markovian one.

In fact, due to the unbiased ‘gradient’ estimates under i.i.d. samples, we were able to directly
investigate the convergence of θ̄(k)−θ∗. In the Markovian setting however, since we have no control
over the instantaneous gradient bias, it becomes challenging, if not impossible, to directly establish
convergence of θ̄(k) − θ∗ as dealt with in the i.i.d. setting. In light of the result on the bounded
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time-averaged gradient bias in Lemma 2, we introduce the following multi-step Lyapunov function
that involves K future consecutive estimates {θ̄(k)}k0+K−1

k=k0
:

V(k) :=
k+K−1∑
j=k

∥∥θ̄(j)− θ∗
∥∥2
, k ∈ N+. (37)

Concerning the multi-step Lyapunov function, we establish the following result and the proof is
relegated to Appendix F.

Lemma 3. Define the following functions

Γ1(α,K) = 32α3K4(1 + 2α)2K−4 + 32Kα+ 8αK2(1 + 2α)K−2 + 4Kσ(K)

Γ2(α,K) =
[
32α3K4(1 + 2α)2K−4 + 32Kα+ αK2(1 + 2α)K−2

]
‖θ∗‖2

+
[
4α3K4(1 + 2α)2K−4 +

1

2
αK2(1 + 2α)K−2 + 4αK

]
r2
max +

1

2
Kσ(K)

There exists a pair of constants (αmax, KG) such that 0 < 1+2αKGλ
H̄
max +αΓ1(αmax,KG) < 1 holds

for any fixed α ∈ (0, αmax) and K = KG. Moreover, the multi-step Lyapunov function satisfies

E
[
V(k + 1)− V(k)

∣∣F(k)
]
≤ α

[
2KGλ

H̄
max + Γ1(αmax,KG)

]∥∥θ̄(k)− θ∗
∥∥2

+ αΓ2(αmax,KG). (38)

Here, we show by construction the existence of a pair (αmax, KG) meeting the conditions on the
stepsize. Considering the monotonicity of function σ(K), a simple choice for KG is

KG = min
K

{
K
∣∣σ(K) < −1

4
λH̄max

}
. (39)

Fixing K = KG ≥ 1, it follows that

2KλH̄max + Γ1(α,K) = Γ0(α,KG) (40)

where Γ0(α,KG) = 32α3K6
G(1+2α)2KG−4 +32α+8αK3

G(1+2α)KG−2 +KGλ
H̄
max can be shown to be

monotonically increasing in α. Considering further that Γ0(0,KG) = KGλ
H̄
max < 0, then there exist

a stepsize α0 such that Γ0(α0,KG) = 1
2KGλ

H̄
max < 0 holds.

Setting now

αmax := min

{
− 1

2KGλH̄max

, α0

}
(41)

then one can easily check that 0 < 1 + 2αKλH̄max + Γ1(α,K) ≤ 1 + 1
2αKGλ

H̄
max < 1 holds true for

any constant stepsize 0 < α < αmax. In the remainder of this paper, we will work with K = KG and
0 < α < αmax, yielding

Γ0(0,KG) = KGλ
H̄
max ≤ 2KGλ

H̄
max + Γ1(α,KG)

≤ 1

2
KGλ

H̄
max (42)

where the first inequality uses the fact that Γ0(α,KG) is an increasing function of α > 0, while the
second inequality follows from the definition of α0.

Before presenting the main convergence results in the Markovian setting, we provide a lemma that
bounds the multi-step Lyapunov function along the trajectory of a Markov chain. This constitutes
a building block for establishing convergence of the averaged parameter estimate.
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Lemma 4. The multi-step Lyapunov function is upper bounded as follows

V(k) ≤ c5
∥∥θ̄(k)− θ∗

∥∥2
+ c6α

2, ∀k ∈ N+ (43)

where the constants c5 and c6 are given by

c5 :=
(3 + 12α2

max

)KG − 1

2 + 3α2
max

c6 :=
6(3 +12α2

max)
[
(3 +12α2

max)KG−1− 1
]
− 6KG + 6

2 + 12α2
max

(4‖θ∗‖2 + r2
max

)
.

We present the proof in Appendix G. With the above two lemmas, we are now on track to state
our convergence result for the averaged parameter estimate, in a Markovian setting.

Theorem 3. Define constants c7 := 1 + (1/2c5)αmaxKGλ
H̄
max ∈ (0, 1), and c′8 :=

[
16α2

maxK
6
G(1 +

2αmax)2KG−4 + 32KG + 2K3
G(1 + 2αmax)KG−2

]
‖θ∗‖2 + 4KGr

2
max− 1

8KGλ
H̄
max− αmaxc6

c5
KGλ

H̄
max. Then,

fixing any constant stepsize 0 < α < αmax and K = KG defined in (39), the averaged parameter
estimate θ̄(k) converges at a linear rate to a small neighborhood of the equilibrium point θ∗; that is,

E
[∥∥θ̄(k)− θ∗

∥∥2
]
≤ c5ck7

∥∥θ̄(0)− θ∗
∥∥2 − 2c5c

′
8

KGλH̄max

α+ min
{

1, ck−kα7

}(
α2c6 −

2c5c
′
8

KGλH̄max

)
(44)

where kα := max{k ∈ N+|ρk ≥ α}.

The proof is relegated to Appendix H. As a direct consequence of Theorems 1 and 3, our final
convergence result on all local parameter estimates comes ready.

Proposition 2. Choosing a constant stepsize 0 < α < min
{
αmax, (1 − λW2 )/4

}
, and any integer

K ≥ KG, each local parameter θm(k) converges linearly to a neighborhood of the equilibrium point
θ∗; that is, the following holds true for each m ∈M

E
[∥∥θm(k)− θ∗

∥∥2
]
≤ ck9 V ′0 +

8α2Mr2
max(

1− λW2
)2 − 2c5c

′
8

KGλH̄max

α+min
{

1, ck−kα7

}(
α2c6 −

2c5c
′
8

KGλH̄max

)
where the constants c9 := max{(λW2 +2αmax)2, c7}, and V ′0 := 2 max{4‖∆Θ(0)‖2F , 2c5‖θ̄(0)−θ∗‖2}.

The proof is similar to that of Proposition 1, and hence is omitted here. Proposition 2 establishes
that even in a Markovian setting, the local estimates produced by decentralized TD(0) learning
converge linearly to a neighborhood of the optimum. Interestingly, different than the i.i.d. case,
the size of the neighborhood is characterized in two phases, which correspond to Phase I (k ≤ kα),
and Phase II (k > kα). In Phase I, the Markov is far from its stationary distribution π, giving rise
to sizable gradient bias in Lemma 2, and eventually contributing to a constant-size neighborhood
−2c5c

′
8/(KGλ

H̄
max); while, after the Markov chain gets close to π in Phase II, confirmed by the

geometric mixing property, we are able to have gradient estimates of size-O(α) bias in Lemma 2,
and the constant-size neighborhood vanishes with ck−kα7 .

4 SIMULATIONS

In order to verify our analytical results, we carried out experiments on a multi-agent networked
system. The details of our experimental setup are as follows: the number of agents M = 30, the
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Figure 1: Consensus and convergence of decentralized TD(0) learning

state space size |S| = 100 with each state s being a vector of length |s| = 20, the dimension of
learning parameter θ is p = 10, the reward upper bound rmax = 10, and the stepsize α = 0.01.
The feature vectors are cosine functions, that is, φ(s) = cos(As), where A ∈ Rp×|s| is a randomly
generated matrix. The communication weight matrix W depicting the neighborhood of the agents
including the topology and the weights was generated randomly, with each agent being associated
with 5 neighbors on average. As illustrated in Fig. 1(a), the parameter average θ̄ converges to a
small neighborhood of the optimum at a linear rate. To demonstrate the consensus among agents,
convergence of the parameter norms ‖θm‖ for m = 1, 2, 3, 4 is presented in Fig. 1(b), while that of
their first elements |θm,1| is depicted in Fig. 1(c). The simulation results corroborate our theoretical
analysis.

5 CONCLUSIONS

In this paper, we studied the dynamics of a decentralized linear function approximation variant of the
vanilla TD(0) learning, for estimating the value function of a given policy. Allowing for neighboring
communications of local parameter estimates, we proved that such decentralized TD(0) algorithms
converge linearly to a small neighborhood of the optimum, under both i.i.d. data samples as, well
as, the realistic Markovian observations collected along the trajectory of a single Markov chain. To
address the ‘gradient bias’ in a Markovian setting, our novel approach has been leveraging a carefully
designed multi-step Lyapunov function to enable a unique two-phase non-asymptotic convergence
analysis. Comparing with previous contributions, this paper provides the first finite-sample error
bound for fully decentralized TD(0) learning under challenging Markovian observations.
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Supplementary materials for
“Finite-Sample Analysis of Decentralized

Temporal-Difference Learning with Linear Function
Approximation”

A Proof of Theorem 1

Proof. From the definition of G(Θ) in (24), we have that

G(Θ(k), ξk) =


θ>1 (k)[γφ(s(k + 1))− φ(s(k))]φ>(s(k))
θ>2 (k)[γφ(s(k + 1))− φ(s(k))]φ>(s(k))

...
θ>M (k)[γφ(s(k + 1))− φ(s(k))]φ>(s(k))

+


r1(k)φ>(s(k))
r2(k)φ>(s(k))

...
rM (k)φ>(s(k))


= Θ(k)

[
γφ(s(k + 1))− φ(s(k))

]
φ>(s(k)) + r(k)φ>(s(k))

= Θ(k)H>(ξk) + r(k)φ>(s(k))

where we have used the definitions that r(k) = [r1(k) r2(k) · · · rM (k)]> andH(ξk) := φ(s(k))[γφ>(s(k+
1))− φ>(s(k))]. Using standard norm inequalties, it follows that

‖∆G(Θ(k), ξk)‖F ≤
∥∥[γφ(s(k + 1))− φ(s(k))]φ>(s(k))

∥∥
F
· ‖∆Θ(k)‖F +

∥∥r(k)φ>(s(k))
∥∥
F

≤
[
‖γφ(s(k + 1))‖F + ‖φ(s(k))‖F

]
· ‖φ>(s(k))‖F · ‖∆Θ(k)‖F + ‖r(k)‖F · ‖φ(s(k))‖F

≤ (1 + γ)‖∆Θ(k)‖F +
√
Mrmax (45)

≤ 2‖∆Θ(k)‖F +
√
Mrmax (46)

where 1 + γ ≤ 2 for the discounting factor 0 ≤ γ < 1, and the last inequality holds since feature
vectors ‖φ(s)‖ ≤ 1, rewards r(k) ≤ rmax, and the Frobenious norm of rank-one matrices is equivalent
to the `2-norm of vectors. For future reference, notice from the above inequality that λmax(H(ξk)) ≤
‖H(ξk)‖F =

∥∥[γφ(s(k + 1))− φ(s(k))]φ>(s(k))
∥∥ ≤ 1 + γ ≤ 2, for all k ∈ N+.

It follows from (29) that

‖∆Θ(k + 1)‖F ≤ ‖W∆Θ(k)‖F + α‖∆G(Θ(k))‖F
≤
[
λW2 + 2α

]
‖∆Θ(k)‖F + α

√
Mrmax (47)

where the second inequality is obtained after using (45), and the following inequality [19, 17]

‖W∆Θ(k)‖F =

∥∥∥∥W (
I − 1

M
11>

)
Θ(k)

∥∥∥∥ ≤ λW2 ‖∆Θ(k)‖F . (48)

Then applying (47) recursively from iteration k to 0 gives rise to

‖∆Θ(k)‖F ≤
(
λW2 + 2α

)k‖∆Θ(0)‖F + α
√
Mrmax

k−1∑
i=0

(
λW2 + 2α

)i
≤
(
λW2 + 2α

)k‖∆Θ(0)‖F +
α
√
Mrmax

1− λW2 − 2α
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≤
(
λW2 + 2α

)k‖∆Θ(0)‖F + α · 2
√
Mrmax

1− λW2
(49)

where the last inequality is a consequence of using the fact that 0 < α < 1
2 ·

1−λW
2

2 . This concludes
the proof of Theorem 1.

B Proof of Lemma 1

Proof. Recalling the definitions of H(ξk) (H̄) and b(ξk) (b̄), it is not difficult to verify that in the
stationary distribution π of the Markov chain, the expectations of H(ξk) and b(ξk) obey

Eπ[H(ξk)] = H̄ (50)

and
Eπ[bG(ξk)] = b̄G . (51)

Thus,

Eπ
[

1

M
G>(Θ(k), ξk)1

∣∣∣F(k)

]
= Eπ

[
H(ξk)θ̄(k) + bG(ξk)

∣∣F(k)
]

= H̄θ̄(k) + b̄G (52)

and its variance satisfies

Eπ
[∥∥∥ 1

M
G>(Θ(k), ξk)1− ḡ(θ̄(k))

∥∥∥2∣∣∣F(k)

]
= Eπ

[∥∥(H(ξk)− H̄)θ̄(k) + bG(ξk)− b̄G
∥∥2∣∣F(k)

]
≤ Eπ

[
2
∥∥(H(ξk)− H̄)θ̄(k)

∥∥2
+ 2
∥∥bG(ξk)− b̄G

∥∥2∣∣F(k)
]

≤ 2β2‖θ̄(k)− θ∗ + θ∗‖2 + 8r2
max

≤ 4β2‖θ̄(k)− θ∗‖2 + 4β2‖θ∗‖2 + 8r2
max (53)

where β denotes the largest absolute value of eigenvalues of H(ξk)− H̄, for any k ∈ N+.

C Proof of Theorem 2

Proof. Clearly, it holds that

Eπ[‖θ̄(k + 1)− θ∗‖2
∣∣F(k)] = Eπ

[∥∥∥θ̄(k)− θ∗ + α
1

M
G>(Θ, ξk)1

∥∥∥2∣∣∣F(k)
]

≤ ‖θ̄(k)− θ∗‖2 + 2α

〈
θ̄(k)− θ∗,Eπ

[ 1

M
G(Θ(k), ξk)T1

∣∣∣F(k)
]〉

+ α2Eπ
[∥∥∥ 1

M
G(Θ(k), ξk)T1− ḡ(θ̄(k)) + ḡ(θ̄(k))

∥∥∥2∣∣F(k)
]

≤ ‖θ̄(k)− θ∗‖2 + 2α
〈
θ̄(k)− θ∗, ḡ(θ̄(k))− ḡ(θ̄∗)

〉
+ 2α2(β2‖θ̄‖2 + r2

max) + 2α2‖ḡ(θ̄(k))− ḡ(θ̄∗)‖2

≤ ‖θ̄(k)− θ∗‖2 + 2α
〈
θ̄(k)− θ∗, H̄(θ̄(k)− θ∗)

〉
+ 2α2(4β2‖θ̄ − θ∗‖2 + 4β2‖θ∗‖2 + 8r2

max) + 2α2‖H̄(θ̄(k)− θ∗)‖2

≤
[
1 + 2αλH̄max + 8α2β2 + 2α2(λH̄min)2

]
‖θ̄(k)− θ∗‖2

+ (8α2β2‖θ∗‖2 + 16α2r2
max). (54)

18



where λH̄max and λH̄min are the largest and the smallest eigenvalues of H̄, respectively. Because H̄ is

a negative definite matrix, then it follows that λH̄min < λH̄max < 0.

Defining constants c1 := 1 + 2αλH̄max + 8α2β2 + 2α2(λH̄min)2, and choosing any constant stepsize α

obeying 0 < α ≤ − 1
2 ·

λH̄
max

4β2+(λH̄
min)2

, then we have c1 < 1 and 1
1−c1 ≤ −

1
αλH̄

max

. Now, taking expectation

with respect to F(k) in (54) gives rise to

E
[
‖θ̄(k + 1)− θ∗‖2

]
≤ c1E

[
‖θ̄(k)− θ∗‖2

]
+ (8α2β2‖θ∗‖2 + 16α2r2

max). (55)

Applying the above recursion from iteration k to iteration 0 yields

E
[
‖θ̄(k)− θ∗‖2

]
≤ ck1‖θ̄(0)− θ∗‖2 +

1− ck1
1− c1

(
8α2β2‖θ∗‖2 + 16α2r2

max

)
≤ ck1‖θ̄(0)− θ∗‖2 +

8α2β2‖θ∗‖2 + 16α2r2
max

−αλH̄max

≤ ck1‖θ̄(0)− θ∗‖2 + αc2 (56)

where c2 :=
8β2‖θ∗‖2+16r2

max

−λH̄
max

, and this concludes the proof.

D Proof of Proposition 1

Proof. We have that

E
[
‖θm(k)− θ∗‖2

]
= E

[
‖θm(k)− θ̄(k) + θ̄(k)− θ∗‖2

]
≤ 2E

[
‖θm(k)− θ̄(k)‖2

]
+ 2E

[
‖θ̄(k)− θ∗‖2

]
≤ 2E

[
‖∆Θ(k)‖2F

]
+ 2E

[
‖θ̄(k)− θ∗‖2

]
≤ 2E

[(
λW2 + 2α

)k‖∆Θ(0)‖F +
2α
√
Mrmax

1− λW2

]2

+ 2ck1‖θ̄(0)− θ∗‖2 + 2αc2

≤ 4
(
λW2 + 2α

)2k‖∆Θ(0)‖2F +
8α2Mr2

max

(1− λW2 )2
+ 2ck1‖θ̄(0)− θ∗‖2 + 2αc2. (57)

where the third inequality follows from using (30) and (56). Letting c3 := max{
(
λW2 + 2α

)2
, c1},

V0 := 2 max{4‖∆Θ(0)‖2F , 2‖θ̄(0) − θ∗‖2}, and c4 := α · 8Mr2
max

(1−λW
2 )2 +

16β2‖θ∗‖2+32r2
max

−λH̄
max

, then it is

straightforward from (57) that our desired result follows; that is,

E
[
‖θm(k)− θ∗‖2

]
≤ ck3V0 + c4α (58)

which concludes the proof.

E Proof of Lemma 2

Proof. For notational brevity, let rG(k) := (1/M)
∑
m∈M rm(k) for each k ∈ N+. It then follows

that∥∥∥ 1

KM

k+K−1∑
j=k

E
[
G>(Θ, ξj)1

∣∣F(k)
]
− ḡ(θ̄)

∥∥∥
19



=
∥∥∥ 1

K

k+K−1∑
j=k

E
[
φ(s(k))[γφ(s(k + 1))− φ(s(k))]>θ̄ +

1

M
φ(s(k))r>(k)1

]
− Eπ

[
g(θ̄)

]∥∥∥
=
∥∥∥ 1

K

k+K−1∑
j=k

∑
s∈S

(
Pr
[
s(j) = s|F(k)

]
− π(s)

) [
φ(s)

(
γP (s, s′)φ(s′)− φ(s)

)>
(θ̄ + θ∗) + rG(s)φ(s)

] ∥∥∥
≤ max

s,s′

∥∥∥φ(s)
[
γP (s, s′)φ(s′)− φ(s)

]>
(θ̄ + θ∗) + rG(s)φ(s)

∥∥∥
× 1

K

k+K−1∑
j=k

∑
s∈S

∣∣∣Pr[s(j) = s|F(k)]− π(s)
∣∣∣

≤ (1 + γ)
(
‖θ̄ − θ∗‖+ 2‖θ∗‖+ rmax

)
× 1

K

k+K−1∑
j=k

ν0ρ
k · ρj−k

≤ (1 + γ)ν0ρ
k

(1− ρ)K
(‖θ̄ − θ∗‖+ 2‖θ∗‖+ rmax)

≤ σk(K)
(
‖θ̄ − θ∗‖+ 1

)
(59)

where σk(K) = (1+γ)ν0ρ
k

(1−ρ)K × max
{

2‖θ∗‖ + rmax, 1
}

, and the second inequality arises from the fact

that any finite-state, irreducible, and aperiodic Markov chains converges geometrically fast (with
some initial constant ν0 > 0 and rate 0 < ρ < 1) to its unique stationary distribution [15, Thm.
4.9]. Thus, we conclude that Lemma 2 holds true with monotonically decreasing function σ(K) of
K ∈ N+ as defined above.

F Proof of Lemma 3

Proof. Recalling the definition of our multi-step Lyapunov function, we obtain that

E
[
V(k + 1)− V(k)

∣∣F(k)
]

= E
[
‖θ̄(k +K)− θ∗‖2 − ‖θ̄(k)− θ∗‖2

∣∣F(k)
]
. (60)

Thus, we should next derive the bound of the right hand side of above equation. Following from
iterate (27), we can write

θ̄(k +K) = θ̄(k) +
α

M

k+K−1∑
j=k

G>(Θ(j), ξj)1. (61)

As a consequence (without particular statement, the expectation in the rest of this proof is taken
with respect to the ξk to ξk+K−1 conditioned on ξ0 to ξk−1),

E
[
‖θ̄(k +K)− θ∗‖2

∣∣F(k)
]

= E
[∥∥∥θ̄(k)− θ∗ +

α

M

k+K−1∑
j=k

G>(Θ(j), ξj)1
∥∥∥2∣∣F(k)

]

= E
[∥∥∥θ̄(k)− θ∗ +

α

M

k+K−1∑
j=k

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1 +G>(Θ(k), ξj)1

]∥∥∥2∣∣∣F(k)

]
= ‖θ̄(k)− θ∗‖2
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+ 2αE
[〈
θ̄(k)− θ∗,Kḡ(θ̄(k))+

1

M

k+K−1∑
j=k

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1+G>(Θ(k), ξj)1

]
−Kḡ(θ̄(k))

〉∣∣∣F(k)

]

+ α2E
[∥∥∥ 1

M

k+K−1∑
j=k

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1 +G>(Θ(k), ξj)1

]∥∥∥2∣∣∣F(k)

]
= ‖θ̄(k)− θ∗‖2 + 2αE

[〈
θ̄(k)− θ∗,Kḡ(θ̄(k))−Kḡ(θ∗)

〉 ∣∣∣F(k)
]

︸ ︷︷ ︸
the second term

+ 2αE
[〈
θ̄(k)− θ∗,

k+K−1∑
j=k

1

M

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1

]〉 ∣∣∣F(k)

]
︸ ︷︷ ︸

the third term

+ 2αE
[〈
θ̄(k)− θ∗,

k+K−1∑
j=k

1

M
G>(Θ(k), ξj)1−Kḡ(θ̄)

〉∣∣∣F(k)

]
︸ ︷︷ ︸

the fourth term

+ α2E
[∥∥∥∥ 1

M

k+K−1∑
j=k

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1 +G>(Θ(k), ξj)1

]∥∥∥∥2∣∣∣F(k)

]
︸ ︷︷ ︸

the last term

(62)

where the second and the third equality result from adding and subtracting the same terms and the
last equality holds since ḡ(θ∗) = 0. In the following, we will bound the four terms in the above
equality.

1) Bounding the second term. As a direct result of the definition of ḡ(θ), we have that
ḡ(θ̄)− ḡ(θ∗) = H̄(θ̄ − θ∗). Therefore, it holds that

2αE
[〈
θ̄(k)− θ∗,Kḡ(θ̄(k))−Kḡ(θ∗)

〉 ∣∣∣F(k)
]

= 2αKE
[
(θ̄(k)− θ∗)>H̄(θ̄(k)− θ∗)|F(k)

]
≤ 2αKλH̄max‖θ̄(k)− θ∗‖2 (63)

where λH̄max is the largest eigenvalue of H̄. Because H̄ is a negative definite matrix, it holds
that λH̄max < 0.

2) Bounding the third term. Defining first p(k,Θ(k),K) :=
∑k+K−1
j=k

1
M

[
G>(Θ(j), ξj)1 −

G>(Θ(k), ξj)1
]
, then it follows that

p(k,Θ(k),K) =

k+K−2∑
j=k

1

M

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1

]
+

1

M

[
G>(Θ(k +K − 1), ξk+K−1)1−G>(Θ(k), ξk+K−1)1

]
= p(k,Θ(k),K − 1) +

1

M

[
G>(Θ(k +K − 1), ξk+K−1)1−G>(Θ(k), ξk+K−1)1

]
= p(k,Θ(k),K − 1) +H(k +K − 1)[θ̄(k +K − 1)− θ̄(k)].
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Recalling that 2 is the largest absolute value of eigenvalues of H(k) for any k ∈ N+ (which
clearly exists and is bounded due to the bounded feature vectors φ(s) for any s ∈ S), the norm
of p(k,Θ(k),K) can be bounded as follows

‖p(k,Θ(k),K)‖ ≤ ‖p(k,Θ(k),K − 1‖+ 2‖θ̄(k +K − 1)− θ̄(k)‖

= ‖p(k,Θ(k),K − 1)‖+ 2α

∥∥∥∥ k+K−2∑
j=k

1

M

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1

]

+
k+K−2∑
j=k

1

M
G>(Θ(k), ξj)1

∥∥∥∥
≤ (1 + 2α)‖p(k,Θ(k),K − 1)‖+ 2

k+K−2∑
j=k

α‖H(j)θ̄(k) + bG‖

≤ (1 + 2α)‖p(k,Θ(k),K − 1)‖+ 4α

( k+K−2∑
j=k

‖θ̄(k)‖+
rmax

2

)
where the last inequality follows from ‖H(j)θ̄(k)‖ ≤ 2‖θ̄(k)‖ for any j ≥ 0. Following the

above recursion, we can write

‖p(k,Θ(k),K)‖ ≤ (1 + 2α)K‖p(k,Θ(k), 0)‖+ 4αK‖θ̄(k)‖
K−1∑
j=0

(1 + 2α)j(K − 1− j)

≤ 4α(‖θ̄(k)‖+
rmax

2
)
K−1∑
j=0

(1 + 2α)j(K − 1− j)

(64)

where the second inequality because ‖p(k,Θ(k), 0)‖ = 0.

For any positive constant x 6= 1 and K ∈ N+, the following equality holds

K−1∑
j=0

xj(K − 1− j) =
xK −Kx+K − 1

(1− x)2
. (65)

Substituting x = (1 + 2α) into (65) along with plugging the result into (64) yields

‖p(k,Θ(k),K)‖ ≤ (1 + 2α)K − 2Kα− 1

α
K‖θ̄(k)‖. (66)

According to the mid-value theorem, there exists some suitable constant δ ∈ [0, 1] such that
the following holds true

(1 + 2α)K = 1 + 2Kα+
1

2
K(K − 1)(1 + δ(2α)K−2(2α)2

≤ 1 + 2Kα+
1

2
K2(1 + 2α)K−2(2α)2. (67)

Thus, it is clear that

(1 + 2α)K − 2Kα− 1

α
≤ 2αK2(1 + 2α)K−2. (68)
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Upon plugging (68) into (66), it follows that

‖p(k,Θ(k),K)‖ ≤ 2αK2(1 + 2α)K−2(‖θ̄(k)‖+
rmax

2
)

≤ 2αK2(1 + 2α)K−2(‖θ̄(k)− θ∗‖+ ‖θ∗‖+
rmax

2
). (69)

Now, we turn to the third term in (62)

2αE
[〈
θ̄(k)− θ∗,

k+K−1∑
j=k

1

M

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1

]〉 ∣∣∣F(k)

]
= 2αE

[〈
θ̄(k)− θ∗,p(k,Θ(k),K)

〉
|F(k)

]
≤ 2αE

[
‖θ̄(k)− θ∗‖ · ‖p(k,Θ(k),K)‖

∣∣F(k)
]

= 2α‖θ̄(k)− θ∗‖ · E
[
‖p(k,Θ(k),K)‖

∣∣F(k)
]

≤ 4α2K2(1 + 2α)K−2‖θ̄(k)− θ∗‖ · (‖θ̄(k)− θ∗‖+ ‖θ∗‖+
rmax

2
)

≤ 4α2K2(1 + 2α)K−2
(

2‖θ̄(k)− θ∗‖2 +
1

4
‖θ∗‖2 +

rmax

8

)
. (70)

where the second inequality is obtained by plugging in (69), and the last one follows from the
inequality a(a+ b) ≤ 2a2 + (1/4)b2.

3) Bounding the fourth term. It follows that

2αE
[〈
θ̄(k)− θ∗,

k+K−1∑
j=k

1

M
G>(Θ(k), ξj)1−Kḡ(θ̄(k))

〉∣∣∣F(k)

]

= 2α

〈
θ̄(k)− θ∗,E

[ k+K−1∑
j=k

1

M
G(Θ(k), ξj))

T1−Kḡ(θ̄(k))
∣∣∣F(k)

]〉

≤ 2α‖θ̄(k)− θ∗‖ ·
∥∥∥E[ k+K−1∑

j=k

1

M
G(Θ(k), ξj))

T1−Kḡ(θ̄(k))
∣∣∣F(k)

]∥∥∥
≤ 2αKσ(K)‖θ̄(k)− θ∗‖(‖θ̄(k)− θ∗‖+ 1)

≤ 2αKσ(K)
(

2‖θ̄(k)− θ∗‖2 +
1

4

)
. (71)

4) Bounding the last term. Evidently, we have that

∥∥∥ 1

M

k+K−1∑
j=k

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1 +G>(Θ(k), ξj)1

]∥∥∥2

≤ 2 ‖p(k,Θ(k),K)‖2 + 2
∥∥∥ k+K−1∑

j=k

1

M
G>(Θ(k), ξj)1

∥∥∥2

≤ 2 ‖p(k,Θ(k),K)‖2 + 2
∥∥∥ k+K−1∑

j=k

H(j)θ̄(k) +
1

M
r>(j)1φ(j)

∥∥∥2
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≤ 16α2K4(1 + 2α)2K−4‖θ̄(k)‖2 + 16K‖θ̄(k)‖2 +
[
α2K4(1 + 2α)2K−4 + 4K

]
r2
max

≤
[
32α2K6(1 + 2α)2K−4 + 32K

](
‖θ̄(k)− θ∗‖2 + ‖θ∗‖2

)
+
[
α2K4(1 + 2α)2K−4 + 4K

]
r2
max

(72)

where the first and the last inequality is the result of ‖
∑n
i=1 xi‖2 ≤ n

∑n
i=1 ‖xi‖2 for any x

and n; and the second is obtained by plugging in (69). Hence, upon taking expectation of both
sides of (72) conditioning on F(k), we arrive at

α2E
[∥∥∥∥ 1

M

k+K−1∑
j=k

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1 +G>(Θ(k), ξj)1

]∥∥∥∥2∣∣∣F(k)

]
≤
[
32α4K6(1 + 2α)2K−4 + 32Kα2

](
‖θ̄(k)− θ∗‖2 + ‖θ∗‖2

)
+ α2

[
α2K4(1 + 2α)2K−4 + 4K

]
r2
max.

(73)

We have successfully bounded each of the four terms in (62). Putting now together the bounds in
(63), (70), (71), and (73) into (62), we finally arrive at

E
[∥∥θ̄(k +K)− θ∗

∥∥2∣∣F(k)
]
≤
[
1 + 2αTλH̄max + αΓ1(α,K)

]∥∥θ̄(k)− θ∗
∥∥2

+ αΓ2(α,K) (74)

where

Γ1(α,K) = 32α3K4(1 + 2α)2K−4 + 32Kα+ 8αK2(1 + 2α)K−2 + 4Kσ(K) (75)

Γ2(α,K) =
[
32α3K4(1 + 2α)2K−4 + 32Kα+ αK2(1 + 2α)K−2

]
‖θ∗‖2

+
[
4α3K4(1 + 2α)2K−4 +

1

2
αK2(1 + 2α)K−2 + 4αK

]
r2
max +

1

2
Kσ(K) (76)

From the definition of our multi-step Lyapunov function, we obtain that

E
[
V(k + 1)− V(k)

∣∣F(k)
]

= E
[∥∥θ̄(k +K)− θ∗

∥∥2∣∣F(k)
]
−
∥∥θ̄(k)− θ∗

∥∥2

≤ α[2KλH̄max + Γ1(α,K)]
∥∥θ̄(k)− θ∗

∥∥2
+ αΓ2(α,K)

≤ α[2KGλ
H̄
max + Γ1(αmax,KG)]

∥∥θ̄(k)− θ∗
∥∥2

+ αΓ2(αmax,KG) (77)

where the last inequality is due to the fact that functions Γ1(α,KG) and Γ2(α,KG) are monotonically
increasing in α. This concludes the proof.

G Proof of Lemma 4

Proof. It is straightforward to check that∥∥θ̄(k + i)− θ∗
∥∥2

=
∥∥∥θ̄(k + i− 1)− θ∗ +

α

M
G>(Θ(k + i− 1), ξk+i−1)1

− α

M
G>(1(θ∗)>, ξk+i−1)1 +

α

M
G>(1(θ∗)>, ξk+i−1)1

∥∥∥2

≤ ‖θ̄(k + i− 1)− θ∗‖2] + 3α2‖H(k)(θ̄(k + i− 1)− θ∗)‖2

+ 3α2
∥∥∥H(k)θ∗ +

1

M
φ(s(k))r>(k)1

∥∥∥2
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≤ (3 + 12α2)‖θ̄(k + i− 1)− θ∗‖2 + 6α2
[
4‖θ∗‖2 + r2

max

]
≤ (3 + 12α2)i‖θ̄(k)− θ∗‖2 + 6α2

[
4‖θ∗‖2 + r2

max

] i−1∑
j=0

(3 + 12α2)j . (78)

As as result, V(k) can be bounded as

V(k) =

KG−1∑
i=0

‖θ̄(k + i)− θ∗‖2

≤
KG−1∑
i=0

(3 + 12α2)i‖θ̄(k)− θ∗‖2 + 6α2(4‖θ∗‖2 + rmax)

KG−1∑
i=1

i−1∑
j=0

(3 + 12α2)j

=
(3 + 12α2)KG − 1

2 + 12α2
‖θ̄(k)− θ∗‖2

+ α2 6(3 + 12α2)
[
(3 + 12α2)KG−1 − 1

]
− 6KG + 6

(2 + 12α2)2

[
4‖θ∗‖2 + r2

max

]
(79)

With c5 :=
(3+12α2

max)KG−1
2+3α2

max
and c6 :=

6(3+12α2
max)

[
(3+12α2

max)KG−1−1
]
−6KG+6

2+12α2
max

(4‖θ∗‖2 + r2
max

)
, we

conclude that
V(k) ≤ c5‖θ̄(k)− θ∗‖2 + α2c6. (80)

H Proof of Theorem 3

Proof. The convergence of E
[∥∥θ̄(k)− θ∗

∥∥2
]

is separately addressed in two phases:

1) The time instant k < kα, with kα = max{k|ρk ≥ α}, namely, it holds that ασ(K) ≤ σk(K) ≤
σ(K) for any k < kα;
2) The time instant k ≥ kα, i.e., it holds that σk(K) ≤ ασ(K) for any k ≥ kα.

Convergence of the first phase
From Lemma 4, we have

− ‖θ̄(k)− θ∗‖2 ≤ − 1

c5
V(k) +

α2c6
c5

. (81)

Substituting (81) into (77), and rearanging the terms give the recursion of Lyapunov function as
follows

E
[
V(k + 1)

∣∣F(k)
]
≤
{

1 +
1

c5

[
2αKGλ

H̄
max + αΓ1(αmax,KG)

]}
E
[
V(k)

∣∣F(k)
]

+ α
{

Γ2(α,KG)− α2c6
c5

[
2KGλ

H̄
max + Γ1(αmax,KG)

]}
≤ c7E

[
V(k)

∣∣F(k)
]

+ αc8 (82)

where c7 := 1 + 1
2c5
αmaxKGλ

H̄
max ∈ (0, 1); constant c8 := Γ2(αmax,KG) − α2

maxc6
c5

KGλ
H̄
max > 0, and

the last inequality holds true because of (42).
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Deducing from (82), we obtain that

E[V(k)] ≤ ck7V(0) + αc8
1− ck7
1− c7

= c5c
k
7‖θ̄(0)− θ∗‖2 + α2c6c

k
7 + αc8

1− ck7
1− c7

≤ c5ck7‖θ̄(0)− θ∗‖2 + α2c6 +
αc8

1− c7
(83)

= c5c
k
7‖θ̄(0)− θ∗‖2 + α2c6 −

2c5c8

KGλH̄max

(84)

Recalling the definition of Lyapunov function, it is obvious that

E
[
‖θ̄(k)− θ∗‖2

]
≤ E[V(k)] ≤ c5ck7‖θ̄(0)− θ∗‖2 + α2c6 −

2c5c8

KGλH̄max

(85)

which finishes the proof of the first phase.
Convergence of the second phase

Without repeating similar derivation, we directly have that the following holds for σk(K) ≤ ασ(K):

Γ1(α,K) := 32α3K4(1 + 2α)2K−4 + 32Kα+ 8αK2(1 + 2α)K−2 + 4Kασ(K) (86)

Γ2(α,K) :=
[
32α3K4(1 + 2α)2K−4 + 32Kα+ αK2(1 + 2α)K−2

]
‖θ∗‖2

+
[
4α3K4(1 + 2α)2K−4 +

1

2
αK2(1 + 2α)K−2 + 4αK

]
r2
max +

1

2
Kασ(K). (87)

Subsequently, we have the following recursion of V(k) that is similar to but slightly different from
(82).

E
[
V(k + 1)

∣∣F(k)
]
≤ c7E

[
V(k)

∣∣F(k)
]

+ α2c′8, ∀k ≥ kα (88)

where c′8 :=
[
16α2

maxK
6
G(1 + 2αmax)2KG−4 + 32KG + 2K3

G(1 + 2αmax)KG−2
]
‖θ∗‖2 + 4KGr

2
max −

1
8KGλ

H̄
max − αmaxc6

c5
KGλ

H̄
max. It is easy to check that c′8 ≥ c8 due to the fact that αmax < 1 in our

case.
Repeatedly applying the above recursion from k = kα to any k > kα yields

E[V(k)] ≤ ck−kα7 E [V(kα)] + α2c′8
1− ck−kα7

1− c7

≤ ck−kα7

(
c5c

kα
7 ‖θ̄(0)− θ∗‖2 + α2c6 −

2c5c8

KGλH̄max

)
− α 2c5c

′
8

KGλH̄max

≤ c5ck7‖θ̄(0)− θ∗‖2 + ck−kα7 α2c6 − (ck−kα7 + α)
2c5c

′
8

KGλH̄max

(89)

where we have used c8 ≤ c′8 for simplicity.
Again, using the definition of the Lyapunov function and (89), it follows that

E
[
‖θ̄(k)− θ∗‖2

]
≤ c5ck7‖θ̄(0)− θ∗‖2 + ck−kα7 α2c6 − (ck−kα7 + α)

2c5c
′
8

KGλH̄max

, ∀k ≥ kα (90)
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Combining the results in the above two phases, we conclude that the following bound holds for
any k ∈ N+

E
[
‖θ̄(k)− θ∗‖2

]
≤ c5ck7‖θ̄(0)− θ∗‖2 − 2c5c

′
8

KGλH̄max

α+ min{1, ck−kα7 } ×
(
α2c6 −

2c5c
′
8

KGλH̄max

)
. (91)
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