
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 0, MONTH 0000 1

Real-time Detection and Localization of
Distributed DoS Attacks in NoC based SoCs

Subodha Charles, Member, IEEE, Yangdi Lyu, Member, IEEE, and Prabhat Mishra, Senior Member, IEEE

Abstract—Network-on-Chip (NoC) is widely employed by
multi-core System-on-Chip (SoC) architectures to cater to their
communication requirements. Increasing NoC complexity cou-
pled with its widespread usage has made it a focal point of
potential security attacks. Distributed Denial-of-Service (DDoS)
is one such attack that is caused by malicious intellectual property
(IP) cores flooding the network with unnecessary packets causing
significant performance degradation through NoC congestion.
In this paper, we propose an efficient framework for real-
time detection and localization of DDoS attacks. This paper
makes three important contributions. We propose a real-time and
lightweight DDoS attack detection technique for NoC-based SoCs
by monitoring packets to detect any violations. Once a potential
attack has been flagged, our approach is also capable of localizing
the malicious IPs using the latency data in the NoC routers.
The applications are statically profiled during design time to
determine communication patterns. These patterns are then
used for real-time detection and localization of DDoS attacks.
We have evaluated the effectiveness of our approach against
different NoC topologies and architecture models using both real
benchmarks and synthetic traffic patterns. Our experimental
results demonstrate that our proposed approach is capable of
real-time detection and localization of DDoS attacks originating
from multiple malicious IPs in NoC-based SoCs.

Index Terms—Network-on-chip, Denial-of-service

I. INTRODUCTION

SYSTEM-ON-CHIP (SoC) design using third-party intel-
lectual property (IP) blocks is a common practice today

due to both design cost and time-to-market constraints. These
third-party IPs, gathered from different companies around the
globe, may not be trustworthy. Integrating these untrusted
IPs can lead to security threats. A full system diagnosis for
potential security breaches may not be possible due to lack
of design details shared by the vendors. Even if they do,
any malicious modifications (e.g., hardware Trojans) can still
go undetected since it is not feasible to exhaustively explore
millions of gates and their combinations that can trigger a
certain hardware Trojan [1]. The problem gets aggravated due
to the presence of Network-on-Chip (NoC) in today’s complex
and heterogeneous SoCs. Figure 1 shows a typical NoC-based
many-core architecture with heterogeneous IPs. As NoC has
direct access to all the components in an SoC, malicious third
party IPs can leverage the resources provided by the NoC to
attack other legitimate components. It can slow down traffic
causing performance degradation, steal information, corrupt
data, or inject power viruses to physically damage the chip.
The problem of NoC security has been explored in two
directions: (i) trusted NoC is used to secure the SoC from
other untrusted IPs [2], [3], and (ii) NoC is untrustworthy and

S. Charles, Y. Lyu and P. Mishra are with the Department of Computer &
Information Science & Engineering, University of Florida, Gainesville, FL,
32611 USA. e-mail: {subodha96, lvyangdi, prabhat}@ufl.edu.

Fig. 1: NoC based many-core architecture connecting hetero-
geneous IPs on a single SoC. Each IP connects to a router
via a network interface. Depending on the selected topology,
routers will be arranged across the NoC.

security countermeasures are required to secure the SoC [4],
[5]. Our work is focused on the first scenario where NoC is
trustworthy.

Denial-of-Service (DoS) in a network is an attack preventing
legitimate users from accessing services and information. In an
NoC setup, DoS attacks can happen from malicious 3rd party
IPs (M3PIP) manipulating the availability of on-chip resources
by flooding the NoC with packets. The performance of an
SoC can heavily depend on few components. For example,
a memory intensive application will send many requests to
memory controllers, and as a result, routers connected to
them will experience heavy traffic [6]. If an M3PIP targets
the same node, the SoC performance will suffer significant
degradation [4]. Distributed DoS (DDoS) is a type of DoS
attack where multiple compromised IPs are used to target one
or more components in the SoC causing a DoS attack.

Unlike microcontroller based designs in the past, even
resource constrained embedded and IoT (Internet-of-Things)
devices nowadays incorporate one or more NoC-based SoCs.
Many embedded and IoT systems have to deal with real-time
requirements with soft or hard deadlines, where variations
in applications as well as usage scenarios (inputs) are either
well defined or predictable. In other words, if the applications
are not predictable, it is impossible to provide any real-
time guarantees. As expected, the communication patterns are
known at design time for such systems, which we utilize in this
paper. In fact, these assumptions are observed in a wide variety
of prior research efforts involving soft [7], [8] as well as hard
real-time systems [9], [10]. These embedded and IoT devices
can be one of the main targets of DDoS attacks due to their
real-time requirements with task deadlines. Early detection of
DDoS attacks in such systems is crucial as increased latencies
in packet transmission can lead to deadline violations.

Importance of NoC security has led to many prior efforts to
mitigate DoS attacks in an NoC such as traffic monitoring [4],
[11] and formal verification-based methods [12]. Other real-
time traffic monitoring mechanisms have also been discussed



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 0, MONTH 0000 2

in non-NoC domains [9]. However, none of the existing
techniques explored a lightweight and real-time mechanism to
detect potential DoS attacks as well as localize the malicious
source(s) in an NoC setup. As outlined in Section III-A, it
is a major challenge to detect and localize a malicious IP in
real-time. The problem is more challenging in the presence
of multiple malicious IPs, and it gets further aggravated when
multiple attackers help each other to mount the DDoS attack.
In this paper, we propose an efficient method that focuses on
detecting changes in the communication behavior in real-time
to identify DDoS attacks. It is a common practice to encrypt
critical data in an NoC packet and leave only few fields as
plain text [13]1. This motivated our approach to monitor com-
munication patterns without analyzing the encrypted contents
of the packets. To the best of our knowledge, this is the first
attempt to detect and localize DDoS attacks originating from
multiple malicious IPs in NoC-based SoCs.

Our major contributions can be summarized as follows;
1) We propose a real-time and lightweight DDoS attack de-

tection technique for NoC-based SoCs. The routers store
statically profiled traffic behavior and monitor packets in
the NoC to detect any violations in real-time.

2) We have developed a lightweight approach to localize the
M3PIP(s) in real-time once an attack is detected.

3) We have evaluated the effectiveness of our approach
against different NoC topologies using both real bench-
marks and synthetic traffic patterns considering DoS
attacks originating from a single malicious IP as well
as from multiple malicious IPs.

4) To further evaluate the applicability of our approach, we
use an architecture model similar to one of the commer-
cially available SoCs - Intel’s KNL architecture [14].

The remainder of the paper is organized as follows. Section
II describes related work. Section III discusses the threat model
and communication model used in our framework. Section
IV describes our real-time attack detection and localization
methodology. Section V presents the experimental results.
Section VI presents the case study using KNL. Section VII
discusses the applicability and limitations of our proposed
approach. Finally, Section VIII concludes the paper.

II. RELATED WORK

Countermeasures for DoS attacks both in terms of band-
width and connectivity have been studied in an NoC context.
One such method tries to stop the hardware Trojan which
causes the DoS attack from triggering by obfuscating flits
through shuffling, inverting and scrambling [12]. If the Trojan
gets triggered, there should be a threat detection mechanism.
Previous studies explored latency monitoring [4], centralized
traffic analysis [11], security verification techniques [12] and
design guidelines to reduce performance impacts caused by
DoS attacks [15]. In [11], probes attached to the network
interface gather NoC traffic data and send it to a central
unit for analysis. Such a centralized method can lead to

1On-chip encryption schemes introduce the notion of authenticated encryp-
tion with associated data in which the data is encrypted and associated data
(initialization vectors, routing details etc.) are sent as plain-text [13].

bottlenecks and a single point of failure. Furthermore, the
attack can be launched on this central unit itself to impair the
security mechanism. In contrast, the method in [4] relies on
injecting additional packets to the network and observing their
latencies. However, when multiple IPs are communicating with
each other, these additional packets can cause congestion and
degrade performance as well as introduce overhead.

DoS attacks have been extensively studied in computer
networks as well as mobile ad-hoc networks. In the computer
network field, DoS attacks can be categorized as brute force
attacks and semantic attacks. Brute force attacks overwhelm
the system or the targeted resource with a flood of requests
similar to our threat model. This can be achieved by techniques
such as the attacker sending a large number of ICMP packets
to the broadcast address of a network or by launching a DNS
amplification attack [16]. It is common to use botnets rather
than few sources to maximize the impact of the attacks. Se-
mantic attacks on the other hand exploit some artificial limit of
the system to deny services. Two popular examples are Ping-
of-Death [17] and TCP SYN flooding [18]. Techniques such as
botnet fluxing [19], back propagation neural networks [20] and
TCP blocking [21] have been used to mitigate these attacks.
However, using these techniques in SoC domain is not feasible
due to the resource constrained nature and the architectural
differences. There are methods to secure IoT devices such as
lightweight encryption [22] and authentication [23]. However,
these solutions does not address DoS attacks.

Waszecki et al. [9] discussed network traffic monitoring in
an automotive architecture by monitoring message streams
between electronic control units (ECU) via the controller
area network (CAN) bus. Since multiple ECUs are connected
on the same bus, it is difficult to localize the origin of
attack, and therefore, the authors present the solution only
as a detection mechanism. Moreover, this architecture is bus-
based and fundamentally different from an NoC. In this paper,
we propose a lightweight and real-time mechanism to detect
DDoS attacks in an NoC-based SoC. Our proposed approach
has the ability to localize any number of malicious IPs.
Moreover, the proposed work is applicable on a wide variety
of NoC architectures supporting diverse deterministic routing
protocols. To the best of our knowledge, this is the first attempt
to detect and localize DDoS attacks originating from multiple
malicious IPs in NoC-based SoCs.

III. SYSTEM AND THREAT MODELS

A. Threat Model

Previous works have explored two main types of DDoS
attacks on NoCs [24] - (i) M3PIPs flooding the network
with useless packets frequently to waste bandwidth and cause
a higher communication latency causing saturation, and (ii)
draining attack which makes the system execute high-power
tasks and causes fast draining of battery. An illustrative exam-
ple is shown in Figure 2 to demonstrate the first type of DDoS
attack. As a result of the injected traffic from the malicious
IPs to the victim IP (this can be a critical NoC component
such as a memory controller), routers in that area of the NoC
get congested and responses experience severe delays.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 0, MONTH 0000 3

A practical example of a draining attack was shown in [25].
A malware known as a worm spread through Bluetooth
and multimedia messaging services (MMS) and infected the
recipient’s mobile phone. The code is crafted in such a way
that it sends continuous requests to the Bluetooth module for
paging and to scan for devices. Power consumption in the
infected phone was increased up to 500% compared to the
idle state causing significant degradation of battery lifetime.
There are instances of draining attacks where even though
the computation overhead increases, the communication traffic
does not increase. Such attacks cannot be detected using a
security mechanism implemented at the NoC, and therefore,
are beyond the scope of this paper.

Fig. 2: Example DDoS attack from malicious IPs to a victim
IP in a Mesh NoC setup. The thermal map shows high
traffic near the victim IP (MEM). P-processor, DSP-digital
signal processor, VPU-vector processing unit, GPU-graphics
processing unit, ENC-encoder, MEM-memory controller.

Our threat model is generic, it does not make any as-
sumption about the placement or the number of malicious
IPs or victim IPs. Figure 3 shows four illustrative examples
of malicious/victim IP placements that can lead to different
communication patterns. Figure 3(a) shows a scenario involv-
ing one malicious IP and one victim IP. The other three
examples represent scenarios where the packets injected from
the malicious IPs to victim IPs are routed through paths that
(b) partially overlap, (c) completely overlap and (d) form a
loop. Our proposed approach is capable of both detecting and
localizing all the malicious IPs in all these scenarios.

Fig. 3: Different scenarios of malicious and victim IP place-
ment. Packet routing paths from malicious to victim IPs shown
in blue. (a) only one attacker is present, (b) paths partially
overlap, (c) paths completely overlap, (d) paths form a loop.

B. Communication Model

Since each packet injected in the NoC goes through at least
one router, we identify it to be an ideal NoC component
for traffic monitoring. The router also has visibility to the

packet header information related to routing. Packet arrivals
at a router can be viewed as events and captured using arrival
curves [26]. We denote the set of all packets passing through
router r during a program execution as a packet stream Pr.
Figure 4 shows two packet streams within a specific time
interval [1, 17]. The stream Pr (blue) shows packet arrivals
in normal operation and P̃r (red) depicts a compromised
stream with more arrivals within the same time interval. The
packet count Npr [ta, tb) gives the number of packets arriving
at router r within the half-closed interval [ta, tb). Equation 1
formally defines this using Npr (ta) and Npr (tb) - maximum
number of packet arrivals up to time ta and tb, respectively.
∀ta, tb ∈ R+, ta < tb, n ∈ N :

Npr [ta, tb) = Npr (tb)−Npr (ta) (1)

Unlike [9] that monitors message streams at ECUs in a
bus-based automotive architecture, our model is designed to
monitor packets at routers of NoC-based SoC architectures.

Fig. 4: Example of two event traces. Six blue event arrivals
represent an excerpt of a regular packet stream Pr and nine
red event arrivals represent a compromised packet stream P̃r.

IV. REAL-TIME ATTACK DETECTION AND LOCALIZATION

Figure 5 shows the overview of our proposed security
framework to detect and localize DoS attacks originating from
one or more M3PIPs. The first stage (upper part of the figure)
illustrates the DDoS attack detection phase while the second
stage (lower part of the figure) represents the localization of
M3PIPs. During the detection phase, the network traffic is
statically analyzed and communication patterns are param-
eterized during design time to obtain the upper bound of
packet arrival curves (PAC) at each router and destination
packet latency curves (DLC) at each IP. The PACs are then
used to detect violations of communication bounds in real-
time. Once a router flags a violation, the IP attached to that
router (local IP) takes responsibility of diagnosis. It looks at
its corresponding DLC and identifies packets with abnormal
latencies. Using the source addresses of those delayed packets,
the local IP communicates with routers along that routing path
to get their congestion information to localize the M3PIPs.
The remainder of this section is organized as follows. The
first two sections describe parameterization of PAC and DLC.
Section IV-C elaborates the real-time DDoS attack detection
mechanism implemented at each router. Section IV-D de-
scribes the localization of M3PIPs.

A. Determination of Arrival Curve Bounds

To determine the PAC bounds, we statically profile the
packet arrivals and build the upper PAC bound (λupr (∆)) at
each router. For this purpose, we need to find the maximum
number of packets arriving at a router within an arbitrary time
interval ∆(= tb − ta). This is done by sliding a window of



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 0, MONTH 0000 4

Fig. 5: Overview of our proposed framework: the system
specification is analyzed to obtain the necessary packet arrival
curves and detection parameters. These are used to design the
real-time attack detection and localization framework.

length ∆ across the packet stream Pr and recording the max-
imum number of packets as formally defined in Equation 2.

λupr (∆) = max
t≥0
{NPr

(t+ ∆)−NPr
(t)} (2)

Repeating this for several fixed ∆, constructs the upper
PAC bound. These bounds are represented as step functions.
A lower PAC bound can also be constructed by recording
the minimum number of packets within the sliding window.
However, we exclude it from our discussion since in a DoS
attack, we are only concerned about violating the upper bound.
An example PAC bound and two PACs corresponding to the
packet streams in Figure 4 are shown in Figure 6. During
normal execution, the PACs should fall within the shaded area.

Fig. 6: Graph showing upper (λupr (∆)) bound of PACs (green
line with “ ” markers) and the normal operational area shaded
in green. The blue and red step functions show PACs corre-
sponding to Pr and P̃r, respectively.

While NoCs in general-purpose SoCs may exhibit dynamic
and unpredictable packet transmissions, for vast majority of
embedded and IoT systems, the variations in applications as
well as usage scenarios (inputs) are either well-defined or
predictable. Therefore, the network traffic is expected to follow
a specific trend for a given SoC. SoCs in such systems allow
the reliable construction of PAC bounds during design time.
To get a more accurate model, it is necessary to consider
delays that can occur due to NoC congestion, task preemption,
changes of execution times and other delays. To capture this,
we consider the packet streams to be periodic with jitter.
The jitter corresponds to the variations of delays. Equation 3
represents the upper PAC bound for a packet stream Pr with
maximum possible jitter jPr and period τPr [27].

∀τPr
, jPr

∈ R+,∆ > 0 : λupr (∆) =

⌈
∆ + jPr

τPr

⌉
(3)

(a) Normal operation (b) Attack scenario

Fig. 7: Destination packet latency curves at an IP. The large
variation in latency at hop count 4 in Figure 7(b) compared
to Figure 7(a), contributes to identifying the malicious IP.

The equation captures the shift of the upper PAC bound
because of the maximum possible jitter jPr

relative to a
nominal period τPr . This method of modeling upper PAC
bounds is validated by the studies in modular performance
analysis (MPA) that uses real-time calculus (RTC) as the
mathematical basis. MPA is widely used to analyze the best
and worst case behavior of real-time systems. Capturing packet
arrivals as event streams allows the packet arrivals to be
abstracted from the time domain and represented in the interval
domain (Figure 6) with almost negligible loss in accuracy [27].
The same model is used in the MATLAB RTC toolbox [28].

B. Determination of Destination Latency Curves
Similar to the PACs recorded at each router, each destination

IP records a DLC. An example DLC in normal operation is
shown in Figure 7(a). The graph shows the latency against
hop count for each packet arriving at a destination IP Di.
The distribution of latencies for each hop count is stored as
a normal distribution, which can be represented by its mean
and variance. Mean and variance of latency distribution at
destination Di for hop count k are denoted by µi,k and σi,k,
respectively. In our example (Figure 7(a)), µi,4 is 31 cycles
and σi,4 is 2. During the static profiling stage, upon reception
of a packet, the recipient IP extracts the timestamp and hop
count from the packet header, and plots the travel time (from
the source to the recipient IP) against the number of hops. The
mean and variance are derived after all the packets have been
received. The illustrative example considered one malicious
IP four hops away from the victim IP launching the DoS
attack. No other IP is communicating with the victim IP in
a path that overlaps with the congested path. Therefore, the
increased delay is observed only at hop count 4. In general,
when multiple IPs send packets with destination Di, and the
paths overlap with the congested path, the increased delay
will be reflected in several hop counts in the DLC. We did
not show this scenario for the ease of illustration. However,
such overlapping paths are considered in our experiments.

C. Real-time Detection of DoS Attacks
Detecting an attack in a real-time system requires moni-

toring of each message stream continuously in order to react
to malicious activity as soon as possible. For example, each
router should observe the packet arrivals and check whether
the pre-defined PAC bound is violated. The attack scenario
can be formalized as follows;

∃t ∈ R+ : λupr (∆) < max
t≥0
{N

P̃r
(t+ ∆)−N

P̃r
(t)} (4)



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 0, MONTH 0000 5

An obvious way to detect violations with the upper bound
would be to construct the PAC and check if it violates the
bound as shown in Figure 6. However, to construct the PAC,
the entire packet stream should be observed. In other words,
all packet arrivals at a router during the application execution
should be recorded to construct the PAC. While it is feasible
during upper PAC bound construction at design time, it doesn’t
lead to a real-time solution. Therefore, we need an efficient
method to detect PAC bound violations during runtime.

To facilitate runtime detection of PAC bound violations,
we use the leaky bucket algorithm, which considers packet
arrivals and the history of packet streams and gives a real-time
solution [29]. Once λupr (∆) is parameterized, the algorithm
checks the number of packet arrivals within all time intervals
for violations. Algorithm 1 outlines the leaky bucket approach
where θr,s denotes the minimum time interval between con-
secutive packets in a staircase function s at router r, and ωr,s
represents the burst capacity or maximum number of packets
within interval length zero. λupr (∆), which is modeled as a
staircase function can be represented by n tuples - (θr,s, ωr,s),
s ∈ {1, n} sorted in ascending order with respect to ωr,s. This
assumes that each PAC can be approximated by a minimum
on a set of periodic staircase functions [30].

Algorithm 1: Detecting compromised packet streams
/* Input: (θr,s,ωr,s) tuples containing parameterized PAC

bound at router r. */

1 for s ∈ {1, n} do
2 TIMERr,s = θr,s
3 COUNTERr,s = ωr,s

4 end
5 if packetReceived = TRUE then
6 for s ∈ {1, n} do
7 if COUNTERr,s = ωr,s then
8 TIMERr,s = θr,s
9 end

10 COUNTERr,s = COUNTERr,s − 1
11 if COUNTERr,s < 0 then
12 attacked(r) = TRUE
13 end
14 end
15 end
16 for s ∈ {1, n} do
17 if timeoutOccured(TIMERr,s) = TRUE then
18 COUNTERr,s = min(COUNTERr,s + 1, ωr,s)
19 TIMERr,s = θr,s
20 end
21 end

Lines 1-4 initializes the timers (TIMERr,s) to θr,s and
packet counters at time zero (COUNTERr,s) to correspond-
ing initial packet numbers ωr,s, for each staircase function
and packet stream Pr. The DDoS attack detection process
(lines 5-15) basically checks whether the initial packet limits
(COUNTERr,s) have been violated. Upon reception of a
packet (line 5), the counters are decremented (line 10), and if
it falls below zero, a potential attack is flagged (line 12). If the
received packet is the first within that time interval (line 7), the
corresponding timer is restarted (line 8). This is done to ensure
that the violation of PAC upper bound can be captured and
visualized by aligning the first packet arrival to the beginning
of the PAC bound. When the timer expires, values are changed
to match the next time interval (lines 17-20). As demonstrated
in Section V, the algorithm allows real-time detection of DDoS
attacks under our threat model. Another important observation
described in Section V-D1 drastically reduces the complexity

of the algorithm allowing a lightweight implementation. The
leaky bucket algorithm is originally proposed to check the
runtime conformity of event arrivals in the context of network
calculus. Its correctness is proven by [31].

D. Real-time Localization of Malicious IPs

Figure 7(b) shows an example DLC during an attack sce-
nario, where all IPs are injecting packets exactly the same way
as shown in Figure 7(a) except for one M3PIP, which injects
a lot of packets to a node attached to a memory controller.
Those two nodes are 4-hops apart in the Mesh topology. This
makes the latency for 4-hop packets drastically higher than
usual. For every hop count, we maintain the traffic distribution
as a normal distribution using µi,k and σi,k. Once a potential
threat is detected at a router, it sends a signal to the local IP.
The local IP then looks at its DLC and checks if any of the
curves have packets that took more than µi,k + 1.96σi,k time
(95% confidence level). One simple solution is to examine
source addresses of those packets and conclude that the source
with most number of packets violating the threshold is the
M3PIP. However, this simple solution may lead to many false
positives. As each IP is distributed and examines the latency
curve independently, the IP found using this method may or
may not be a real M3PIP (attacker). Therefore, we call it a
candidate M3PIP.

To illustrate the difference between an attacker and a
candidate M3PIP, we first examine four scenarios with only
one attacker as shown in Figure 8. In these scenarios, the
attacker A is sending heavy traffic to a victim IP V , and as
a result, local IP D is experiencing large latency for packets
from source S. The first three examples in Figure 8 show
examples where candidate M3PIP S is not the real attacker A.
Since a large anomalous latency is triggered by the congestion
in the network, the only conclusion obtained by the local IP
from its DLC is that at least part of the path from candidate
M3PIP to local IP is congested. We call the path from attacker
A to victim V as the congested path.

Fig. 8: Four scenarios of the relative positions of local IP (D),
attacker IP (A), victim IP (V ), and the candidate M3PIP (S)
as found by D. The red line represents the congested path.

In Figure 8(a) and Figure 8(c), the false positives of the
candidate M3PIP S can be removed with global information
of congested paths, by checking the congestion status of path
from S to its first hop. It is certain that S is not the attacker
when this path is not congested. However, we cannot tell
whether S is the attacker when the path of S is congested.
For example, the routers of Figures 8(b) and 8(d) are both
congested, but S is not the attacker in 8(b).

Things get much worse when multiple attackers are present.
If we look at the example in Figure 9, the path from candidate
M3PIP S to local IP D is part of all paths along which three



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 0, MONTH 0000 6

different attackers are sending packets to different victims. We
define the congested graph as the set of all congested paths
and all the routers in the paths. Since each hop connecting
two routers consists of two separate uni-directional links, a
congested graph is a bi-directional graph as shown in Figure 9.
In order to detect attackers and avoid false positives, one
simple solution would be building the entire congested graph
by exchanging information from all the other routers and
analyzing the graph to detect the actual M3PIPs. However,
it would add a lot of burden on the already congested paths.

Fig. 9: Congested graph of three attackers.

To overcome the bottlenecks, we propose a distributed and
lightweight protocol implemented on the routers to detect
the attackers. The event handler for each router for M3PIP
localization is shown in Algorithm 2. The description of the
steps of our complete protocol are shown below:

1) The router R detects an ongoing attack and sends a signal
to the local IP (line 4). In Figure 8, both D and V will
send a signal to their local IPs.

2) The local IP D looks at its DLC and responds to its
router with a diagnostic message < S,D > indicating
the address of the candidate M3PIP S and destination D.
The local router then forwards the packet towards S.

3) Each port in each router maintains a three-state flag to
identify the attacker. The flag is 0, 1 and 2 to denote
the attacker is undefined, local IP or others, respectively.
When a diagnostic message < S,D > comes in, R
checks if the candidate M3PIP S is the local IP. If yes
and its flag is not set yet, it will set the flag to be 1 (line
9). If S is not the local IP, it first finds out its neighbor
N which sits in the path from S to R. If the one-hop
path from N to R is congested, it sends the message
to N (line 19) and sets the flag to 2, to indicate other
IP as a potential attacker (line 20). Except for these two
scenarios, the received message is a false positive and no
action is taken (line 12 and 23), which will be explained
in our examples. Note that the flag cannot decrease except
for the reset signal which sets it to undefined (line 2).
Therefore, if a diagnostic message already mentioned that
other IPs may be the potential attackers, a new diagnostic
message from the same port claiming that the local IP is
the attacker will be ignored.

4) Each router maintains a timer. The timer starts as soon as
any one of the router ports receive a diagnostic message.
A pre-defined timeout period is used by each router. If
the flag of any port is 1 after timeout, it broadcasts a
message alerting that its local IP (line 28) is the attacker.
Finally, a reset signal is triggered (line 29).

First, we will show that our approach works when a DoS
attack is originating from only one M3PIP in the NoC. Later,

we will describe how the proposed approach works in the
presence of multiple M3PIPs mounting a DDoS attack.

1) DoS Attack by a Single M3PIP: We use Figure 8(b) to
illustrate how our approach will localize the attacker when
a DoS is caused by a single M3PIP. The router of S will
receive two messages, one from the router of D saying that its
local IP is a candidate M3PIP, and the other from the router
of V saying that A is a candidate M3PIP, i.e., < S,D >
and < A, V >. Depending on the arrival time of these two
messages, there are two scenarios. (a) < S,D > comes first.
It will change the flag of the corresponding port to 1 to denote
that the local IP is the potential attacker. Then, S will receive
< A, V > through the same port. In this example, A is also the
neighbor N . As the one-hop path from A to S is congested,
the flag will be set to 2, denoting that the attacker is some
other IP. (b) < A, V > comes first. It will change the flag
of the corresponding port to 2 to denote that the other IP is
the potential attacker. Then, S will receive < S,D > through
the same port. As the flag is already set to 2, the received
message is a false positive (line 12). When timeout occurs,
nothing happens at the router of S. However, the router of A
receives only the message from V indicating that its local IP
is the potential attacker and its flag remains 1 when timeout
occurs. A broadcast is sent indicating that A is the attacker.

Algorithm 2: Event handler for router R

1 upon event RESET:
2 R.flag[pi] = 0 for all ports pi

3 upon event attacked == TRUE:
4 send a signal to local IP

5 upon receiving a diagnostic message < S,D > from port pi:
6 start TIMEOUT if all R.flag == 0
7 if S is local IP then
8 if flag[pi] == 0 then
9 flag[pi] = 1 // local IP is the M3PIP

10 end
11 if flag[pi] == 2 then
12 // false positive, do nothing
13 end
14 end
15 else
16 //S is not local IP
17 Let N be the neighbor of R that sits in the path from S to R
18 if path from N to R is congested then
19 sends a diagnostic message < S,D > to N indicating that S is a

candidate attacker
20 flag[pi] = 2 // other IP is the M3PIP
21 end
22 else
23 // false positive, do nothing
24 end
25 end

26 upon event TIMEOUT:
27 if any flag in R.flag is 1 then
28 broadcasting that its local IP is the attacker
29 RESET
30 end

For the case in Figure 8(a), A will receive a message from
D indicating that S is a candidate M3PIP. However, when A
checks the congestion status of the one-hop path from S to A,
it will find out that the path is not congested. Therefore, the
message is a false positive (line 23), and A will not change
its flag. In other words, the flag of A will be set to 1 after
receiving the message from V , and will not be changed by the
message from D to S. After timeout, A will be identified as
the attacker.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 0, MONTH 0000 7

2) DDoS Attack by Multiple M3PIPs: Before giving an
illustrative example of how our approach will localize attacks
by multiple malicious IPs, we formally prove the correctness
of our approach by proving the following theorem.

Theorem 1. If the congested graph contains no loops, Algo-
rithm 2 can localize at least one attacker.
Proof. We merge multiple diagnostic messages with the same
destination as one message and ignore all false positive mes-
sages detected in line 12 and line 23 of Algorithm 2. We
define message ϕi as a diagnostic message which points out
that Ai is a candidate M3PIP. Consider the port of any attacker
Ai that receives message ϕi. Such a port always exists in a
DDoS attack scenario due to the fact that victim Vi will send
a message ϕi to Ai saying that Ai is a candidate M3PIP. If
ϕi is the only message received from this port, our algorithm
can declare Ai as an attacker.

Our algorithm fails only when all routers connected to the
attackers have flags set to either 0 or 2 in each of their
ports as illustrated in Algorithm 2. This can only happen
when each port that receives a diagnostic message, receives
another diagnostic message which causes the flag to be set
to 2. Assume that a port in router of Ai receives messages
MSi = {ϕi, ϕj , ...}. It will digest the message ϕi and send
out the remaining ones. We will construct a diagnostic message
path in the following way. First, we add Ai to the path.
Then, we select any message from MSi other than ϕi, e.g.,
ϕj . Next, we follow the diagnostic message path from Ai to
Aj , and add all routers to the path. By the same process,
we select one message other than ϕj from MSj , e.g., ϕk.
Next, we follow the path from Aj to Ak. We can do this
one by one since for every message set MSu at attacker Au,
there is at least one message other than ϕu to select from.
Therefore, the constructed diagnostic message path contains
an infinite number of attackers, as shown in Figure 10. The
infinite number of attackers implies that this path contains
repeated attackers. Without loss of generality, we can assume
that Ak = Ai. Since Ai cannot be sending out diagnostic
messages MSi through the same port that receives MSi,
the diagnostic path must form a loop. It is easy to see that
diagnostic paths are the reverse of congested paths. As a result,
there exists a loop in the congested graph, which contradicts
the assumption made. Hence, Theorem 1 is proven.

Fig. 10: An example of a diagnostic message path constructed
by following the flow of a diagnostic message in each attacker.

Thus, there always exists a port of the router connected to
attacker Ai which receives only one diagnostic message ϕi
given that there are no loops. This is a sufficient condition to
detect Ai using Algorithm 2. Using our approach for localizing
multiple malicious IPs gives rise to three cases that behave
differently depending on how the M3PIPs are placed.
Case 1: If the congested paths do not overlap, all M3PIPs

will be localized in one iteration using the process outlined
above. This is the best case scenario for our approach and
localizes M3PIPs in minimum time.

Case 2: If at least two paths overlap, it will need more than
one iteration to localize all M3PIPs. To explain this scenario,
an illustrative example is shown in Figure 11. Figure 11(a)
shows the placement of the four M3PIPs (A1, A2, A3, A4)
attacking the victim IP (V ). Once the attack is detected,
in the first iteration, A1, A3 and A4 are detected as shown
in Figure 11(b). Due to the nature of our approach, A2 is
not marked as an attacker. This is caused by two diagnostic
messages going in the paths V → A2 and V → A3. The
router of A2 will receive a message from the router of V
saying that its local IP is a candidate M3PIP. It will change
the flag of the corresponding port to 1 to denote that A2 is
the potential attacker. A2 will receive another message from
the router of V through the same port saying that A3 is a
candidate M3PIP. In this example, A3 is also the neighbor of
A2. As the one-hop path from A3 to A2 is congested, the flag
will be set to 2, denoting that the attacker is some other IP.
When timeout occurs, nothing happens at the router of A2.
However, the router of A3 receives only the message from
V indicating that its local IP is the potential attacker and its
flag remains 1 when timeout occurs. Therefore, A3 is detected
as an attacker whereas A2 is not. In the case of A1 and A4,
there is no overlap of congested paths and the two attackers are
detected without any false negatives. Once the system resumes
with only A2 being malicious, the attacker will be detected
and localized in the second iteration (Figure 11(c)). This case
consumes more time since an additional detection phase is
required to localize all M3PIPs. The number of iterations will
depend on how many overlapped paths can be resolved at each
iteration. In the worst case (where all congested paths can
overlap and each iteration will resolve one path), the number
of iterations will equal to the number of M3PIPs. However,
our approach is guaranteed to localize all M3PIPs.

Fig. 11: Illustrative example to show how our detection and
localization framework works. (a) Placement of attackers and
victim that causes an overlap of congested paths of attackers
A2 and A3. (b) Attacker(s) detected from first iteration. (c)
Attacker(s) detected from second iteration.

Case 3: The proof of Theorem 1 had the assumption that
the congested graph contains no loops. Therefore, using our
approach as it is, will not lead to localizing all M3PIPs if the
congested graph forms a loop as shown in Figure 12. One
solution is that any router in the congested loop can randomly
“stop working” and resume after a short while. By breaking
the loop, our approach will detect attackers with the new
congested graph. The router “stopping work” can be triggered
by the system observing that a DDoS attack is going on (during
the detection phase), but no M3PIPs being localized.

In summary, our approach will detect one or more M3PIPs
at each iteration depending on whether congested paths over-



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 0, MONTH 0000 8

Fig. 12: (a) Three attackers cooperate and construct a loop
in the congested graph. Algorithm 2 will fail to detect any
attacker in the loop. (b) When a router randomly “stops
working”, an attacker A2 is revealed after breaking the loop.

lap. After detecting attackers(s) in the congested graph, their
local router(s) can remove the attacker by dropping all its pack-
ets. Then, the process will be repeated with a new congested
graph if more attackers exist. Our approach continues to find
more attackers until either all attackers have been found, or
the congested graph forms a loop, which can be handled using
the method outlined above (Case 3).

It is easy to see that the extra work for the router is minimal
in our protocol because all computations are localized. It
only needs to check the congestion status of connected paths
(one hop away), and compute the flag which has two bits
for each port. Our protocol relies on the victim to pinpoint
the correct attackers and the other routers to remove false
positives. The timeout should be large enough for the victim
to send messages to all the routers in the path of the attack.
In practice, it can be the maximum communication latency
between any two routers. The total time from detection to
localization is the latency for packet traversal from the victim
to attackers plus the timeout. Therefore, the time complexity
for localization is linear in the worst case with respect to the
number of IPs. It is important to note that most of the time,
the diagnostic message path is the reverse of the congested
path, and therefore, it is not congested.

V. EXPERIMENTS

We have explored DoS attacks caused by a single M3PIP
as well as multiple M3PIPs using the architecture shown
in Figure 13. In Section VI, we evaluate the efficiency of
our approach in an architecture model similar to one of the
commercially available SoCs [14].

A. Experimental Setup

Our approach was evaluated by modeling an NoC-
based SoC using the cycle-accurate full-system simulator -
gem5 [32]. The interconnection network (NoC) was built
on top of the “GARNET2.0” model that is integrated with
gem5 [33]. The default gem5 source was modified to include
the detection and localization algorithms. We experimented
using several synthetic traffic patterns (uniform random,
tornado, bit complement, bit reverse, bit rotation, neighbor,
shuffle, transpose), topologies (Point2Point (16 IPs), Ring
(8 IPs), Mesh4×4, Mesh8×8) and XY routing protocol to
illustrate the efficiency of our approach across different NoC
parameters. A total of 40 traffic traces were collected using the
simulator by varying the traffic pattern and topology. Synthetic

traffic patterns were only tested using one M3PIP in the SoC
launching the DoS attack and an application instance running
in 50% of the available IPs. These traffic traces act as test
cases for our algorithms. The placement of the M3PIP, victim
IP and IP(s) running the traffic pattern were chosen at random
for the 40 test cases.

Our approach was also evaluated using real traffic patterns
based on 5 benchmarks (FFT, RADIX, OCEAN, LU, FMM)
from the SPLASH-2 benchmark suite [34] in Mesh 4×4
topology. Traffic traces from real traffic patterns were used to
test both single-source DoS attacks as well as multiple-source
DDoS attacks. The attack was launched at a node connected
to a memory controller. Relative placements of the M3PIP
and victim IP used to test the single-source DoS attack were
the same as for the synthetic traces running on Mesh 4×4
topology (test case IDs 1 through 5 in Figure 15). For the
DDoS attack involving multiple M3PIPs, we ran tests using
the same set of benchmarks and topology with the victim
and M3PIP placements as shown in Figure 13. The placement
captures both Case 1 and Case 2 discussed in Section IV-D2.
Each node with a non-malicious IP ran an instance of the
benchmark while the four nodes in the four corners were
connected to memory controllers. The jitter for all applications
was calculated using the method proposed in [35].

Fig. 13: M3PIP and victim IP placement when running tests
with real benchmarks on a 4x4 Mesh NoC.

B. Efficiency of Real-time DoS Attack Detection
Before showing results of our experimental evaluation, we

will first give an illustrative example to show how the parame-
ters associated with the leaky bucket algorithm (Algorithm 1)
is calculated and used in attack detection.

An important observation allows us to reduce the number
of parameters required to model the PACs, and as a result,
implement a lightweight scheme with much less overhead. The
model in Equation 3 is derived using the fact that the packet
streams are periodic with jitter. As proposed in [9] and [36],
for message streams with such arrival characteristics, the PACs
can be parameterized by using only worst case jitter jPr ,
period τPr

and an additional parameter εr which denotes the
packet counter decrement amount. The relationship between
these parameters are derived in [30] as shown in Equation 5.

θr = greatest common divisor(τPr
, τPr

− jPr
) (5a)

ωr = 2× εr −
τPr
− jPr

θr
(5b)

εr =
τPr

θr
(5c)

To use these parameters, the only changes to Algorithm 1
are at line 10 (COUNTERr,s = COUNTERr,s − εr) and one
tuple per packet stream instead of n tuples (s ∈ {1}). The
illustrative example is based on this observation.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 0, MONTH 0000 9

Illustrative Example: Consider the example packet
streams shown in Figure 4. Assume that the packet steam
Pr has a period τPr = 3µs and jitter jPr = 1.5µs. During
an attack scenario, this stream is changed to stream P̃r with
τ
P̃r

= 2µs and no jitter. Using these values in Equation 5 will
give θr = 1.5µs, ωr = 3 and εr = 2, which are the parameters
used in the leaky bucket algorithm. Therefore, COUNTERr,s
is initialized with 3 (line 3, line 18) and decremented by 2
at each message arrival (line 10). TIMERr,s is initialized
to 1.5µs (line 2, line 19). Using these values and running
the detection algorithm during the attack scenario will lead
to a detection time of 4µs. Figure 14 shows the values of
the parameters changing with each packet arrival and timeout
leading to the detection of the attack at t = 4µs.

Fig. 14: Illustrative example of parameter changes in the leaky
bucket algorithm with packet arrivals and timeouts.

The experimental evaluation follows the same process as
the illustrative example using the experimental setup described
in Section V-A. Figure 15 shows the detection time across
different topologies for synthetic traffic traces in the presence
of one M3PIP. The 40 test cases are divided into different
topologies, 10 each. The packet stream periods are selected at
random to be between 2 and 6 microseconds. Attack periods
are set to a random value between 10% and 80% of the packet
stream period. The detection time is approximately twice the
attack period in all topologies. This is expected according to
Algorithm 1 and consistent with the observations in [9].

In addition to the time taken by the leaky bucket approach,
the detection time also depends on the topology. For example,
attack detection in Point2Point topology (Figure 15(a)), where
every node is one hop away, requires less time to detect
compared to Mesh8×8 (Figure 15(d)) where some nodes can
be multiple hops away. The topology mainly affects attack
localization time due to the number of hops from detector
to attacker. But for detection, topology plays a relatively
minor role since the routers are connected to each IP and
detection mechanism neither takes into account the source nor
the destination of packets. The routers only look at how many
packets arrived in a given time interval. It is also important to
note that any router in the congested path can detect the attack,
not only the router connected to the victim IP. A combination
of these reasons have led to the topology playing a relatively
minor role in attack detection time. These results confirm that
the proposed approach can detect DoS attacks in real-time.

Results for DDoS attack detection in the presence of multi-
ple attacking M3PIPs are shown in Figure 16 and Figure 17.
For all of these experiments, packet stream period is fixed
at 2.5µs and attack period is set to 1.5µs. Figure 16 shows
detection time variation in the presence of different number
of IPs across benchmarks. The time to detect an ongoing

(a) Point2Point

(b) Ring

(c) Mesh 4× 4

(d) Mesh 8× 8

Fig. 15: Attack detection time for different topologies when
running synthetic traffic patterns with the presence of one
M3PIP. Each graph shows time in microseconds (y-axis)
against test case ID (x-axis).

attack in the multiple M3PIP scenario is typically less than
the single M3PIP scenario. When more IPs are malicious,
the detection time shows a decreasing trend. This is expected
since multiple attackers flood the NoC faster and cause PAC
bound violations quicker. To compare detection time with
packet stream period and attack period, we have shown the
detection time variation in the presence of four M3PIPs across
benchmarks in Figure 17.

C. Efficiency of Real-time DoS Attack Localization

We measured the efficiency of attack localization by mea-
suring the time it takes from detecting the attack to localizing
the malicious IPs. According to our protocol, this is mainly
dominated by the latency for packet traversal from victim to
attacker (V2AL) as well as the timeout (TOUT) described
in Section IV-D. Figure 18 shows these statistics using the
same set of synthetic traffic patterns for the single M3PIP
scenario. The experimental setup for the localization results
corresponds to the experimental results for the detection results
in Figure 15. Unlike the detection phase, since the localization
time depends heavily on the time it takes for the diagnostic
packets to traverse from the IPs connected to the routers
that flagged the attack to the potentially malicious IPs, the
localization time varies for each topology. For example, in a



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 0, MONTH 0000 10

Fig. 16: Attack detection time when running real benchmarks
with the presence of different number of M3PIPs.

Fig. 17: Attack detection time when running real benchmarks
with the presence of four M3PIPs.

Point2Point topology, localization needs diagnostic message
to travel only one hop, whereas a Mesh8x8 topology may
require multiple hops. Therefore, localization is faster in
Point2Point compared to Mesh8x8 as shown in Figure 18. The
localization time is less compared to detection time because
the localization process completes once the small number
of diagnostic packets reach all the potentially malicious IPs,
whereas detection requires many packets before violating a
PAC bound during runtime.

Fig. 18: Attack localization time for synthetic traffic patterns in
the presence of one M3PIP. Figure shows time in microseconds
(y-axis) against test case ID (x-axis) across different topolo-
gies. Test cases correspond to the test cases in Figure 15.

Results for DDoS attack localization in the presence of
multiple M3PIPs when running real benchmarks is shown in
Figure 19. Similar to the experiments done for DDoS attack
detection efficiency, localization results are shown for one,
two, three and four M3PIPs attacking the victim IP at the
same time. The time is measured as the time it takes since
launching the attack, until the localization of all M3PIPs. Once
the first iteration of localization and detection is complete, the
attack has to be detected again before starting the localization
procedure. Therefore, the y-axis shows detection as well as
localization time. For clarity of the graph, unlike in Figure 18,
we have shown total localization time for each iteration rather
than dividing the localization time as V2AL and TOUT. For
both one and two M3PIP scenarios, only one iteration of
detection and localization is required. When the third M3PIP is

added, the two congested paths from victim to second M3PIP
and from victim third M3PIP overlap. Therefore, only the first
and third M3PIPs are localized during the first iteration leaving
the second M3PIP to be detected during the second iteration.
Similarly, in the four M3PIP scenario, first, third and fourth
M3PIPs are localized during the first iteration and the second
M3PIP, during the second iteration. This is consistent with our
discussion presented in Section IV-D2. The results show that
both detection and localization can be achieved in real-time.
If a system requires only detection, the architecture of our
framework allows easy decoupling of the two steps.

Fig. 19: Attack localization time when running real bench-
marks with the presence of different number of M3PIPs.

D. Overhead Analysis

The overhead is caused by the additional hardware that is
required to implement the DoS attack detection and local-
ization processes. The detection process requires additional
hardware components and memory implemented at each router
to monitor packet arrivals as well as store the parameterized
curves. The localization process uses DLCs stored at IPs
and the communication protocol implemented at the routers.
Figure 20 shows an overview of how our security components
are integrated into the NoC components. The observation made
in Section V-A allows us to reduce the number of parameters
required to model the PACs, and as a result, reduces the
additional memory requirement and improves performance.
The following sections evaluate the power, performance and
area overhead of the optimized algorithms.

Fig. 20: Block diagram of NoC architecture showing additional
hardware required to implement our security protocol in red.

1) Performance overhead: In our work, we used the 5-stage
router pipeline (buffer write, virtual channel allocation, switch
allocation, switch traversal and link traversal) implemented in
gem5. The computations related to the leaky bucket algorithm
can be carried out in parallel to these pipeline stages once
separate hardware is implemented. Therefore, no additional
performance penalty for DDoS attack detection.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 0, MONTH 0000 11

During the localization phase, the diagnostic messages do
not lead to additional congestion for two reasons. (1) As shown
in Algorithm 2, the diagnostic message is transmitted along the
reverse direction of the congested path. Since routers utilize
two separate uni-directional links, the diagnostic messages are
not sent along the congested path. (2) While it is unlikely, it
is possible for multiple M3PIPs to carefully select multiple
victims to construct a congested path in both directions.
Even in this scenario, the number of diagnostic messages
is negligible. This is because when an attack is flagged by
the detection mechanism, diagnostic messages are sent to the
source IPs which have violated the DLC threshold. Since the
number of such source IPs can be at most the number of
IPs communicating with the node that detected the attack, the
performance impact by diagnostic messages is negligible.

2) Hardware overhead: We consider overhead due to mod-
ifications in the router, packet header as well as local IPs, as
outlined below.

Router: The proposed leaky bucket algorithm is lightweight
and can be efficiently implemented with just three parameters
per PAC bound as discussed above. The localization protocol
requires two-bit flags at each port resulting in 10 bits of
memory per router in Mesh topology. To evaluate the area and
power overhead of adding the distributed DoS attack detection
and localization mechanism at each router, we modified the
RTL of an open-source NoC Router [37]. The design is
synthesized with the 180nm GSCLib Library from Cadence
using the Synopsys Design Compiler. It gave us area and
power overhead of 6% and 4%, respectively, compared to the
default router.

Packet Header: In a typical packet header, the header flit
contains basic fields such as source, destination addresses
and the physical address of the (memory) request. Some
cache coherence protocols include special fields such as flags
and timestamps in the header. If the header carries only the
basic fields, the space required by these fields are much
less compared to the wide bit widths of a typical NoC
link. Therefore, most of the available flit header space goes
unused [38]. We used some of these bits to carry the timestamp
to calculate latency. This eliminates the overhead of additional
flits, making better utilization of bits that were being wasted. If
the available header bit space is not sufficient, adding an extra
“monitor tail flit” is an easily implementable alternative [38].
In most NoC protocols, the packet header has a hop count or
time-to-live field. Otherwise, it can be derived from the source,
destination addresses and routing protocol details.

Local IP: The DLPs are stored and processed by IPs
connected to each node of an NoC. Since the IPs have much
more resources than any other NoC component, the proposed
lightweight approach has negligible power and performance
overhead. We store µi,k+1.96σi,k as a 4-byte integer for each
hop count. Therefore, the entire DLP at each IP can be stored
using 1×m parameters where m is the maximum number of
hops between any two IPs in the NoC. It gives a total memory
space of just 1×m× 4 bytes.

Our evaluations demonstrate that the area, power and per-
formance overhead introduced by our approach is negligible.

VI. CASE STUDY WITH INTEL KNL ARCHITECTURE

In the previous section, we have applied our approach
using a regular 4x4 Mesh architecture (Figure 13). In order
to demonstrate the applicability of our approach across NoC
architectures, in this section, we evaluate the efficiency of
our approach in an architecture model similar to one of
the commercially available SoCs - Intel’s KNL architecture.
Knights Landing (KNL) is the codename for the second
generation Xeon-Phi processor introduced by Intel [14]. We
model the architecture on gem5 according to a validated
simulator model [39] and show results for both DDoS attack
detection and localization.

Fig. 21: Overview of the KNL architecture together with an
example of MCDRAM miss in cache memory mode and all-
to-all cluster mode: (1) L2 cache miss. Memory request sent
to check the tag directory, (2) request forwarded to MCDRAM
which acts as a cache after miss in tag directory, (3) request
forwarded to memory after miss in MCDRAM, (4) data read
from memory and sent to the requester [14].

TABLE I: System configuration parameters used when
modelling KNL on gem5 simulator.

Processor Configuration
Number of cores 32
Core frequency 1.4 GHz
Instruction set architecture x86

Memory System Configuration
L1 cache private, separate instruction and data

cache. Each 16kB in size.
Cache coherence distributed directory-based protocol
Memory size 4GB DDR
MCDRAM shared, direct mapped cache
Access latency 300 cycles

Interconnection Network Configuration
Topology 4x8 Mesh
Routing scheme X-Y deterministic
Router 4 port, 4 input buffer router with 5 cycle

pipeline delay
Link latency 1 cycle

The KNL architecture, which is designed for highly par-
allel workloads, provide 36 tiles interconnected on a Mesh
NoC. An overview of the KNL architecture is shown in
Figure 21. It implements a directory-based cache coherence



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 0, MONTH 0000 12

protocol and supports two types of memory (i) multi-channel
DRAM (MCDRAM) and (ii) double data rate (DDR) memory.
The architecture gives the option of configuring these two
memories in several configurations which are called memory
modes. Furthermore, the affinity between cores, directories and
memory controllers can be configured in three modes which
are known as cluster modes. The memory and cluster modes
allow configuration of the architecture depending on the ap-
plication characteristics to achieve optimum performance and
energy efficiency. Each combination of memory and cluster
modes cause different traffic patterns in the NoC [40]. Our goal
is to simulate the NoC traffic behavior in a realistic architecture
and evaluate how our security framework performs in it.

We model a similar architecture on gem5 to evaluate how
our DDoS attack detection and localization framework will
perform in a realistic setup. The gem5 model is adopted from
our previous work in [39] which validated the gem5 simulator
statistics with the actual hardware behavior of a Xeon Phi 7210
platform [41]. In this model, 32 tiles connect on a Mesh NoC.
Each tile is composed of a core that runs at 1.4 GHz, private L1
cache, tag directory and a router. Each cache is split into data
and instruction caches with 16kB capacity each. The complete
set of simulation parameters are summarized in Table I. The
memory controllers are placed to match the architecture shown
in Figure 21. We made few modeling choices that deviates
from the actual KNL hardware due to the following reasons;

• 32 tiles are used instead of the 36 in KNL since the
number of cores in gem5 must be a power of 2. This can
be considered as a use-case where the KNL hardware has
switched off cores in four of its tiles.

• The cache sizes we used are less compared to the actual
KNL hardware numbers. This was done to get 95% hit
rate in L1 cache, which is usually the hit rate when
running embedded applications for the benchmarks we
used. If we used a larger cache size, the L1 hit rate
would be 100%, and NoC optimization will not affect
cache performance.

• KNL runs AVX512 instructions whereas the gem5 model
runs X86. gem5 is yet to support AVX512 instructions.

• Each tile in KNL consists of two cores. Our detection
mechanism is capable of detecting DDoS attacks irrespec-
tive of whether one or both cores in a tile are active. How-
ever, the localization method can only pinpoint which
tile is malicious. Since detection as well as localization
happens at the router level, it is not possible to pinpoint
the malicious core in a tile if both cores are active.
Therefore, in our experimental setup, we assumed that
one core per tile is active simulating 50% utilization.

Therefore, our gem5 model is a simplified version of the
real KNL hardware. However, our previous work has validated
the model and related performance and energy results to show
that it accurately captures relative advantages/disadvantages of
using different memory and cluster modes [39]. To evaluate
our security framework, out of the memory and cluster modes,
we model the cache memory mode and all-to-all cluster mode.

• Cache memory mode: In the cache mode, MCDRAM
acts as a last level cache which is placed in between the

DDR memory and the private cache. All memory requests
first go to the MCDRAM for a cache memory lookup, if
there is a cache miss, they are sent to the DDR memory.

• All-to-all cluster mode: In this mode, there is no affinity
between the core, memory controller and directory. That
is, a memory request can go from any directory to any
memory controller.

The traffic flow when applications are running is defined by
these modes. Figure 21 shows an example traffic flow.

We ran the same real traffic patterns (benchmarks) we
used in Section V-A. To mimic the highly parallel workloads
executable by the KNL architecture, we utilized 50% of
the total available cores when running each application by
running an instance of the benchmarks in each active core. The
DDR address space was used uniformly for each benchmark.
Attackers were modeled and placed randomly in 25% of the
tiles that doesn’t have an application instance. The DDoS
attack was launched at the memory controller that experienced
highest traffic during normal operation. Given that our model
has 32 cores, 16 of them ran instances of the benchmark and 4
of the non-active cores injected packets directed at the memory
controller to simulate the behavior of malicious IPs launching
a DDoS attack. The packet stream period and attack period
were selected as explained in Section V-B. Figure 22 shows the
placement of the four M3PIPs, cores running the benchmarks
(active cores) and the victim IP when running the RADIX
benchmark. The victim IP depends on the benchmark since
it is the IP connected to the memory controller experiencing
highest traffic during normal operation.

Fig. 22: 4 × 8 Mesh NoC architecture used to simulate DoS
attacks in an architecture similar to KNL.

Similar to the experimental results presented in Section V-A,
the DDoS attack detection results are shown in Figure 23 and
Figure 24. Figure 23 shows detection time variation across
benchmarks and number of M3PIPs. A zoomed-in version
of the four M3PIP scenario is shown in Figure 24. Attack
localization results are shown in Figure 25. Until the fourth
M3PIP is added, there are no overlapping congested paths.
Therefore, the M3PIPs are localized using only one iteration.
Once the fourth M3PIP is added, the first, third and fourth
M3PIPs are localized during the first iteration and a second
iteration is required to localize the second M3PIP. This is
reflected in localization time in Figure 25. From these as
well as the previous results we notice that our detection and
localization framework gives real-time results across different
topologies and architectures.

VII. DISCUSSION

Our proposed approach is designed for DDoS attack de-
tection and localization, and therefore, it is not suitable to



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 0, MONTH 0000 13

Fig. 23: Attack detection time when running real benchmarks
on an architecture similar to KNL with the presence of
different number of M3PIPs.

Fig. 24: Attack detection time when running real benchmarks
on an architecture similar to KNL with four M3PIPs.

capture other forms of security violations such as eavesdrop-
ping, snooping and buffer overflow. Specific security attacks
would require other security countermeasures which are not
covered in this paper. Due to the low implementation cost,
our approach can be easily coupled with other security coun-
termeasures. For example, [42] discussed a snooping attack in
which the header of the packet is modified before injecting
into the NoC. This will alter the source address of the packet.
While our detection mechanism does not depend on any of the
header information of the packet, since our localization method
uses the source address to localize the M3PIPs, an address
validation mechanism needs to be implemented at each router
to accommodate header modification. The address validation
can be implemented as follows. Before a router injects each
packet that comes from the local IP into the NoC, the router
can check the source address and if it not the address of the
local IP attached to that router, the router can drop it without
injecting in to the NoC.

Our proposed work is targeted for embedded systems with
real-time constraints. Such systems allow only a specific set
of scenarios in order to provide real-time guarantees. Features
commonly observed in general purpose computing such as
task mapping, runtime task-migration, adaptive routing and
introduction of new applications during runtime are beyond the
scope of this work. In order to apply our proposed approach
in general purpose systems, we need to store PACs and DLCs
corresponding to each scenario and select the respective curves
during runtime. As discussed in Section V-D, the hardware
overhead to store the parameterized curves for each scenario
is minimal, which consists of two major parts (i) overhead
for storing the curves (1 × m × 4 bytes), and (ii) overhead
for runtime monitoring (6% of NoC area). For example, if
we consider an 8x8 Mesh, the memory overhead to store
the curves would be 56 bytes (m = 14). If N scenarios are

Fig. 25: Attack localization time when running real bench-
marks on an architecture similar to KNL with the presence of
different number of M3PIPs.

considered, the overhead would be 6% + N×56. Therefore, it
may be feasible to consider a small number of scenarios (e.g.,
N < 10) without violating area overhead constraints.

VIII. CONCLUSIONS

This paper presented a real-time and lightweight DDoS
attack detection and localization mechanism for IoT and
embedded systems. It relies on real-time network traffic mon-
itoring to detect unusual traffic behavior. This paper made
two major contributions. It proposed a real-time and efficient
technique for detection of DDoS attacks originating from
multiple malicious IPs in NoC-based SoCs. Once an attack is
detected, our approach is also capable of real-time localization
of the malicious IPs using the latency data in the NoC routers.
We demonstrated the effectiveness of our approach using
several NoC topologies and traffic patterns. In our experiments,
all the attack scenarios were detected and localized in a timely
manner without causing any false positives or false negatives.
Overhead calculations have revealed that the area overhead
is less than 6% to implement the proposed framework on a
realistic NoC model. This framework can be easily integrated
with existing security mechanisms that address other types of
attacks such as eavesdropping, snooping and buffer overflow.

ACKNOWLEDGMENT

This work was partially supported by the National Science
Foundation (NSF) grant SaTC-1936040.

REFERENCES

[1] F. Farahmandi, Y. Huang, and P. Mishra, “Trojan localization using sym-
bolic algebra,” in Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 2017, pp. 591–597.

[2] “Alteris FlexNoC Resilience Package,” http://www.arteris.com/flexnoc-
resilience-package-functional-safety, [Online].

[3] A. Saeed, A. Ahmadinia, M. Just, and C. Bobda, “An id and address pro-
tection unit for noc based communication architectures,” in International
Conf. on Security of Information and Networks, 2014, pp. 288–294.

[4] R. JS, D. M. Ancajas, K. Chakraborty, and S. Roy, “Runtime detec-
tion of a bandwidth denial attack from a rogue network-on-chip,” in
International Symposium on Networks-on-Chip, 2015, pp. 1–8.

[5] S. Charles, M. Logan, and P. Mishra, “Lightweight Anonymous Routing
in NoC based SoCs,” in Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE). IEEE, 2020.

[6] S. Charles, Y. Lyu, and P. Mishra, “Real-time detection and localization
of dos attacks in noc based socs,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2019, pp. 1160–1165.

[7] W. Wang, P. Mishra, and A. Gordon-Ross, “Dynamic cache reconfig-
uration for soft real-time systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 11, no. 2, pp. 1–31, 2012.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 0, MONTH 0000 14

[8] S. Charles, H. Hajimiri, and P. Mishra, “Proactive thermal management
using memory-based computing in multicore architectures,” in Interna-
tional Green and Sustainable Computing Conference (IGSC). IEEE,
2018, pp. 1–8.

[9] P. Waszecki, P. Mundhenk, S. Steinhorst, M. Lukasiewycz et al.,
“Automotive electrical and electronic architecture security via distributed
in-vehicle traffic monitoring,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 36, no. 11, pp. 1790–1803, 2017.

[10] J. Xie and M. Xie, “Delay bound analysis in real-time networks with
priority scheduling using network calculus,” in International Conference
on Communications (ICC). IEEE, 2013, pp. 2469–2474.

[11] L. Fiorin, G. Palermo, and C. Silvano, “A security monitoring ser-
vice for nocs,” in IEEE/ACM/IFIP international conference on Hard-
ware/Software codesign and system synthesis, 2008, pp. 197–202.

[12] T. Boraten, D. DiTomaso, and A. K. Kodi, “Secure model checkers
for network-on-chip (noc) architectures,” in International Great Lakes
Symposium on VLSI (GLSVLSI). IEEE, 2016, pp. 45–50.

[13] “Using TinyCrypt Library, Intel Developer Zone, Intel, 2016.”
https://software.intel.com/en-us/node/734330, [Online].

[14] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim et al., “Knights landing:
Second-generation intel xeon phi product,” Ieee micro, vol. 36, no. 2,
pp. 34–46, 2016.

[15] D. Fang, H. Li, J. Han, and X. Zeng, “Robustness analysis of mesh-based
network-on-chip architecture under flooding-based denial of service
attacks,” in International Conference on Networking, Architecture and
Storage. IEEE, 2013, pp. 178–186.

[16] S. Kumar, “Smurf-based distributed denial of service (ddos) attack
amplification in internet,” in International Conference on Internet Mon-
itoring and Protection (ICIMP). IEEE, 2007, pp. 25–25.

[17] K. M. Elleithy, D. Blagovic, W. K. Cheng, and P. Sideleau, “Denial of
service attack techniques: Analysis, implementation and comparison,”
2005.

[18] W. Eddy et al., “Tcp syn flooding attacks and common mitigations,”
RFC 4987, August, Tech. Rep., 2007.

[19] L. Zhang, S. Yu, D. Wu, and P. Watters, “A survey on latest botnet
attack and defense,” in International Conference on Trust, Security and
Privacy in Computing and Communications. IEEE, 2011, pp. 53–60.

[20] J. Li, Y. Liu, and L. Gu, “Ddos attack detection based on neural
network,” in International Symposium on Aware Computing. IEEE,
2010, pp. 196–199.

[21] Z. Chao-yang, “Dos attack analysis and study of new measures to
prevent,” in International Conference on Intelligence Science and In-
formation Engineering (ISIE). IEEE, 2011, pp. 426–429.

[22] F. De Santis, A. Schauer, and G. Sigl, “Chacha20-poly1305 authenti-
cated encryption for high-speed embedded iot applications,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017.
IEEE, 2017, pp. 692–697.

[23] G. Alpár, L. Batina, L. Batten, V. Moonsamy et al., “New directions in
iot privacy using attribute-based authentication,” in ACM International
Conference on Computing Frontiers, 2016, pp. 461–466.

[24] L. Fiorin, C. Silvano, and M. Sami, “Security aspects in networks-on-
chips: Overview and proposals for secure implementations,” in Euromi-
cro Conference on Digital System Design Architectures, Methods and
Tools (DSD 2007). IEEE, 2007, pp. 539–542.

[25] J. Niemela, “F-Secure Virus Descriptions,” F-Secure, December 2007.
[26] S. Chakraborty, S. Künzli, and L. Thiele, “A general framework for

analysing system properties in platform-based embedded system de-
signs.” in Date, vol. 3. Citeseer, 2003, p. 10190.

[27] U. Suppiger, S. Perathoner, K. Lampka, and L. Thiele, “A simple approx-
imation method for reducing the complexity of modular performance
analysis,” Tech. Rep. 329, 2010.

[28] E. Wandeler and L. Thiele, “Real-Time Calculus (RTC) Toolbox,”
http://www.mpa.ethz.ch/Rtctoolbox, 2006, [Online].

[29] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determin-
istic queuing systems for the internet. Springer, 2001, vol. 2050.

[30] K. Lampka, S. Perathoner, and L. Thiele, “Analytic real-time analysis
and timed automata: a hybrid method for analyzing embedded real-time
systems,” in ACM int. conf. on Embedded software, 2009, pp. 107–116.

[31] K. Huang, C. Buckl, G. Chen, and A. Knoll, “Conforming the runtime
inputs for hard real-time embedded systems,” in Design Automation
Conference (DAC). IEEE, 2012, pp. 430–436.

[32] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[33] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Garnet: A detailed
on-chip network model inside a full-system simulator,” in International

symposium on performance analysis of systems and software. IEEE,
2009, pp. 33–42.

[34] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-
2 programs: Characterization and methodological considerations,” ACM
SIGARCH computer architecture news, vol. 23, no. 2, pp. 24–36, 1995.

[35] M. Lukasiewycz, S. Steinhorst, and S. Chakraborty, “Priority assign-
ment for event-triggered systems using mathematical programming,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2013, pp. 982–987.

[36] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari, “Scheduling periodic
task systems to minimize output jitter,” in International Conf. on Real-
Time Computing Systems and Applications. IEEE, 1999, pp. 62–69.

[37] A. Monemi, J. W. Tang, M. Palesi, and M. N. Marsono, “Pronoc: A low
latency network-on-chip based many-core system-on-chip prototyping
platform,” Microprocessors and Microsystems, vol. 54, pp. 60–74, 2017.

[38] M. Ramakrishna, V. K. Kodati, P. V. Gratz, and A. Sprintson, “Gca:
Global congestion awareness for load balance in networks-on-chip,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 7,
pp. 2022–2035, 2015.

[39] S. Charles, C. A. Patil, U. Y. Ogras, and P. Mishra, “Exploration of
memory and cluster modes in directory-based many-core cmps,” in
IEEE/ACM Int. Symposium on Networks-on-Chip, 2018, pp. 1–8.

[40] S. Charles, A. Ahmed, U. Y. Ogras, and P. Mishra, “Efficient cache
reconfiguration using machine learning in noc-based many-core cmps,”
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 24, no. 6, pp. 1–23, 2019.

[41] “Intel Xeon Phi Processor 7210.”
http://ark.intel.com/products/94033/Intel-Xeon-Phi-Processor-7210-
16GB-1 30-GHz-64-core, [Online].

[42] V. Y. Raparti and S. Pasricha, “Lightweight mitigation of hardware
trojan attacks in noc-based manycore computing,” in ACM/IEEE Design
Automation Conference (DAC). IEEE, 2019, pp. 1–6.

Subodha Charles is a Ph.D candidate at the de-
partment of Computer and Information Sciences
and Engineering at the University of Florida. He
received his B.Sc from the department of Electronics
and Telecommunications Engineering, University of
Moratuwa, Sri Lanka in 2015. His current research
interests include energy-aware computing, recon-
figurable architectures and machine learning. He
serves as Vice Chair - Education & Awards of IEEE
Entrepreneurship steering committee.

Yangdi Lyu received his B.E. degree in Department
of Hydraulic Engineering from Tsinghua University,
Beijing, China in 2011. He is currently pursuing
the Ph.D. degree with the Department of Computer
and Information Sciences and Engineering at the
University of Florida. His research interests include
the development of test generation techniques for
hardware trust, the security validation of system-on-
chip, and microarchitectural side-channel analysis.

Prabhat Mishra (SM’08) is a Professor in the
Department of Computer and Information Science
and Engineering at the University of Florida. His re-
search interests include hardware security and trust,
energy-aware computing, and system-on-chip vali-
dation. Prof. Mishra currently serves as an Associate
Editor of ACM Transactions on Design Automation
of Electronic Systems and IEEE Transactions on
VLSI Systems. He is an ACM Distinguished Sci-
entist and a Senior Member of IEEE.


