Title:

Biased gene retention in the face of introgression obscures species relationships

Authors:

Evan S. Forsythe!'*, Andrew D. L. Nelson?, Mark A. Beilstein!*

Affiliations:

ISchool of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.

ZBoyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.

Corresponding Authors:

Evan S. Forsythe; 1140 E. South Campus Dr.; Forbes 303; Tucson, AZ 85721; (320) 761-7172;
esforsythe@email.arizona.edu

Mark A. Beilstein; 1140 E. South Campus Dr.; Forbes 303; Tucson, AZ 85721; (520) 626-1562;

mbeilstein@email.arizona.edu
Keywords:

Introgression | Arabidopsis | Phylogenomics | Cytonuclear interactions

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

020z 1snbny g0 uo 1sanb Agq 0£5Z/85/617LEBAS/206/€601 0 | /10p/3101E-80UBApE/agh/WO02°dno-olWwapede//:sdiy woly papeojumoq



Abstract:

Phylogenomic analyses are recovering previously hidden histories of hybridization, revealing the
genomic consequences of these events on the architecture of extant genomes. We applied
phylogenomic techniques and several complementary statistical tests to show that introgressive
hybridization appears to have occurred between close relatives of Arabidopsis, resulting in
cytonuclear discordance and impacting our understanding of species relationships in the group.
The composition of introgressed and retained genes indicates that selection against incompatible
cytonuclear and nuclear-nuclear interactions likely acted during introgression, while linkage also
contributed to genome composition through the retention of ancient haplotype blocks. We also
applied divergence-based tests to determine the species branching order and distinguish donor
from recipient lineages. Surprisingly, these analyses suggest that cytonuclear discordance arose
via extensive nuclear, rather than cytoplasmic, introgression. If true, this would mean that most
of the nuclear genome was displaced during introgression, while only a small proportion of

native alleles were retained.

Significance Statement

The Brassicaceae (mustard family) is an agriculturally and scientifically important group of
plants, yet phylogenetic relationships and major evolutionary events in the group have not been
fully resolved. We show that hybridization and introgression occurred, impacting the genomes of
plants in this group. Our findings will inform future molecular biology and evolutionary analyses

that utilize Brassicaceae species

Introduction:

Hybridization is a driving force in plant evolution (Stebbins 1968), occurring naturally in
~10% of all plants, including 22 of the world’s 25 most important crops (Yakimowski and
Rieseberg 2014). Botanists have long realized that through backcrossing to parents, hybrids can
serve as bridges for the transfer of genes between species, a process known as introgression. As
more genome sequences become available, comparative analyses have revealed the watermarks
of historical introgression events in plant and animal genomes (Rieseberg et al. 1996; Green et
al. 2010; Dasmahapatra et al. 2012; Novikova et al. 2016). Cytonuclear discordance is a hallmark

of many introgression events, occurring, in part, because nuclear and cytoplasmic DNA differ in
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their mode of inheritance. In plants, this discord is often referred to as “chloroplast capture,”
which has been observed in cases where introgression of the chloroplast genome occurs in the
near absence of nuclear introgression or via nuclear introgression to a maternal recipient
(Rieseberg and Soltis 1991). Moreover, discordant nuclear and cytoplasmic introgression creates
an opportunity for independently evolved nuclear and cytoplasmic alleles to interact, either of
which may have accumulated mutations that result in incompatibilities with deleterious effects
when they are united in hybrids. Such incompatibilities could exert a selective pressure that
influences which hybrid genotypes are permissible thereby favoring the co-introgression or co-
retention of alleles for interacting genes (Sloan et al. 2017).

Disentangling introgression from speciation is particularly important because
introgression may facilitate the transfer of adaptive traits. Robust statistical techniques (Huson et
al. 2005; Than et al. 2008; Joly et al. 2009; Green et al. 2010; Durand et al. 2011; Stolzer et al.
2012; Hufford et al. 2013; Pease and Hahn 2015; Stenz et al. 2015; Rosenzweig et al. 2016) have
been developed to detect the signatures of historical introgression in extant and extinct genomes.
While existing techniques are able to identify the taxa that exchanged genes during introgression
using a four-taxon system, most methods do not explicitly distinguish which taxon served as
donor and which as recipient during introgression (i.e. polarization of introgression
directionality), an important distinction considering that introgression impacts the evolution of
the recipient lineage (Rieseberg and Soltis 1991; Dasmahapatra et al. 2012). Most methods that
polarize introgression generally do so only when a fifth taxon is available. Moreover, this species
needs to have diverged from its sister taxon involved in introgression prior to the proposed
introgression event (Eaton and Ree 2013; Eaton et al. 2015; Pease and Hahn 2015). Recently,
however, divergence-based four-taxon tests have been developed to permit polarization in cases
where a fifth taxon cannot be sampled (Forsythe et al. 2020; Hibbins and Hahn 2019).

The wealth of genomic and functional data in Arabidopsis (Lamesch et al. 2012),
combined with publicly available genome sequence for 26 species make the plant family
Brassicaceae an ideal group for comparative genomics. Phylogeny of the group has been the
focus of numerous studies (Bailey et al. 2006; Beilstein et al. 2006; Beilstein et al. 2008; Oyama
et al. 2008; Beilstein et al. 2010; Couvreur et al. 2010; Huang et al. 2015; Nikolov et al. 2019),
providing a robust estimate of its evolutionary history. While the genus Arabidopsis is well

circumscribed (Al-Shehbaz and O’Kane 2002; Beilstein et al. 2010), the identity of its closest
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relatives remains an open question. Phylogenetic studies to date recover three monophyletic
groups: clade A, including the sequenced genomes of 4. thaliana (The Arabidopsis Genome
Initiative 2000) and A. /yrata (Hu et al. 2011); clade B, including the Boechera stricta genome
(Lee et al. 2017); and clade C, including the genomes of Capsella rubella, C. grandiflora (Slotte
et al. 2013), and Camelina sativa (Kagale et al. 2014) (Table S1). Analyses using nuclear
markers strongly support the topology A(BC), which is most often cited as the species tree
(Bailey et al. 2006; Beilstein et al. 2008; Oyama et al. 2008; Couvreur et al. 2010; Huang et al.
2015). Organellar markers strongly support the topology B(AC) (Koch et al. 2001; Beilstein et
al. 2006; Beilstein et al. 2008; Franzke et al. 2009) (Fig. 1a-b and Table S1). The processes
underlying this incongruence remain unclear.

Here, we exploit a suite of genomic resources to build on previous single-gene
phylogenetic analyses suggesting a putative chloroplast capture event involving Arabidopsis and
its closest relatives. We infer gene trees for markers in all three cellular genomes from six
available whole genome sequences. We document cytonuclear discordance and ask if it arose
through introgression of organelles or nuclear genes. Further, using a divergence-based approach
(Forsythe et al. 2020), we ask: which lineage was the recipient of introgressed alleles? Finally,
we explore the extent to which physical linkage as well as selection against incompatible alleles

at interacting loci, shaped the recipient genome.

Methods:

Experimental design:

Our approach employs publicly available whole genome sequences to infer historical processes
that affect the composition and architecture of extant plant genomes. The focus is on Arabidopsis
and its closest relatives because there is preliminary evidence of cytonuclear discordance (Koch et
al. 2001; Bailey et al. 2006; Beilstein et al. 2006; Beilstein et al. 2008; Oyama et al. 2008; Franzke
et al. 2009; Couvreur et al. 2010; Huang et al. 2015). The objectives of the study were to: 1)
identify ortholog groups for protein coding genes from the nuclear and organellar genomes of eight
species in Brassicaceae; 2) determine the extent to which these genes have incongruent histories;
3) evaluate evolutionary scenarios that could have produced incongruent histories by determining
the relative timing of branching events for different histories; and 4) to explore the relative roles

of selection and linkage in governing which genes exhibit incongruent histories.
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We adopted a phylogenomic approach to identify genes with incongruent histories both
from within and among nuclear and organellar genomes in representative species from each of
the three monophyletic clades described. In addition, we included Cardamine hirsuta (Gan et al.
2016) and Eutrema salsugineum (Yang et al. 2013) as outgroup genomes. In order to analyze
markers spanning nuclear, chloroplast, and mitochondria genomes, we developed a
phylogenomic pipeline (Fig. S1a), using CyVerse Atmosphere (Merchant et al. 2016)
cyberinfrastructure. The inputs to the pipeline were coding sequences (CDS) from whole
proteomes from each of the eight species used in the study. The workflow of the pipeline is: 1)
gene family clustering, 2) single-copy gene family filtering, 3) multiple sequence alignment of
CDS, 4) inference of maximum likelihood gene trees, 5) sorting of gene tree topologies 6)
statistical analyses of topology results. Custom perl, shell, and R scripts used to parse and format
files, implement software in high-throughput, and perform downstream analyses are available at:

https://github.com/EvanForsythe/Brassicaceae phylogenomics.

Phylogenomic pipeline

Clustering of putative orthologs. Coding sequences (CDS) for Arabidopsis thaliana,
Arabidopsis lyrata, Capsella rubella, Capsella grandiflora, Boechera stricta, and Eutrema
salsugineum were obtained from Phytozome (Hu et al. 2011; Goodstein et al. 2012; Lamesch et
al. 2012; Slotte et al. 2013; Yang et al. 2013; Lee et al. 2017); Camelina sativa and Cardamine
hirsuta were obtained from NCBI (Kagale et al. 2014; Gan et al. 2016). We filtered CDS datasets
to contain only the longest gene model when multiple splice-variants were annotated per locus.
CDS were translated into amino acid (AA) sequences using the standard codon table. The
resulting whole proteome AA sequences for the eight species were used as input to cluster
orthologs via Orthofinder (version 1.1.4) (Emms and Kelly 2015) under default parameters (Fig.
Sla). Two different filtering strategies with varying stringency were applied to the resulting
clusters to yield two dataset partitions referred to as ‘full single-copy dataset’ and

‘conservatively single-copy dataset’. Both filtering strategies are described below.
Full single-copy dataset filtering. The full single-copy dataset was identified by sorting

Orthofinder results to include only clusters that contained exactly one sequence per species,

except in the case of C. sativa, as it is a hexaploid of relatively recent origin. Thus, clusters with
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up to three C. sativa paralogs (i.e. homeologs) were retained, and we expected these homeologs
to form a clade under phylogenetic analysis (Fig. S1b) . Gene clusters that yielded trees deviating
from this expectation were omitted from further analysis. The full single-copy dataset also
contains groups classified as retained duplicates (Fig. S1c). Retained duplicate clusters contain
exactly two sequences per species (three to six in C. sativa). The A. thaliana retained duplicate
sequences in each cluster represent known homeologs from the o whole genome duplication that
occurred at the base of Brassicaceae (Bowers et al. 2003), and thus is shared by all sampled
species in this study. We retained only those gene clusters that produced trees in which the

paralogs formed reciprocally monophyletic clades (Fig. S1c).

Conservative single-copy dataset filtering. We also used a more stringent set of criteria to
develop a conservatively single-copy dataset. For this dataset, we compared the results obtained
from Orthofinder with results from previously published assessments of plant single-copy or low
copy gene families (Duarte et al. 2010; De Smet et al. 2013). The criteria and taxon sampling of
our Orthofinder filtering and the filtering strategies of the two previous analyses differed,
meaning each analysis provides its own level of stringency. Moreover, both previous analyses
included A. thaliana, allowing for direct comparison with our results. We filtered our clusters to
include only those genes recovered by both Orthofinder and by at least one published analysis.
We refer to these as conservatively single-copy. Conservatively single-copy genes plus the
retained duplicates described above constitute the conservatively single-copy dataset.
Chloroplast and mitochondrial gene datasets were filtered using the same criteria used to filter

the full single-copy dataset.

Multiple sequence alignment and gene tree inference of nuclear genes. For single-copy
genes, we generated AA-guided multiple sequence alignment of CDS using the MAFFT
algorithm (version 6.850) (Katoh and Standley 2013), implemented using ParaAT (version 1.0)
(Zhang et al. 2012), under the default settings for both. A multiple sequence alignment of CDS
for each gene cluster was used to infer a maximum likelihood (ML) gene tree using RAxML
(version 8) (Stamatakis 2014) under the general time reversible model with gamma distributed
rate heterogeneity. Support values for nodes were calculated from 100 bootstrap replicates using

rapid bootstrapping.
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Assembly and annotation of mitochondria and chloroplast genomes. Whole genome
sequence reads for 4. lyrata, B. stricta, C. rubella, C. grandiflora, and C. sativa were acquired
from NCBI’s Sequence Read Archive (SRA). The run IDs of SRA files used to assemble
organelle genomes for each species were: A. [yrata (DRR013373, DRR013372); B. stricta
(SRR3926938, SRR3926939); C. rubella (SRR065739, SRR065740); C. grandiflora
(ERR1769954, ERR1769955); C. sativa (SRR1171872, SRR1171873). Both SRAs for each
species were independently aligned to the Arabidopsis thaliana mitochondrial genome (Ensembl
19) using RMTA (Peri et al. 2020) with default settings for paired-end reads within CyVerse’s
Discovery Environment (Merchant et al. 2016). 15-30X coverage was recovered for each
alignment. Mapped read alignment files were converted from BAM to SAM using SAMtools (Li
et al. 2009). Mitochondrial consensus sequences were generated (base pair call agreement with
75% of all reads) from each alignment within Geneious (version 7.0; Biomatters) (Kearse et al.
2012). Each mitochondrial consensus sequence was annotated based on the A. thaliana
mitochondrial genome annotation (Ensembl 19). CDSs were then extracted using gffread from
the Cufflinks package (Trapnell et al. 2010). The same method was used to assemble the B.

stricta chloroplast genome. All other chloroplast genome sequences were publicly available.

Multiple sequence alignment and tree inference from chloroplast and mitochondria
markers. Single-copy chloroplast and mitochondrial genes were identified, aligned, and used to
infer phylogeny as described previously for nuclear genes. It should be noted that mitochondrial
reads were not available for E. salsugineum, leading us to use C. hirsuta as the sole outgroup for
the mitochondria analysis. Summary of individual gene tree results are presented in Fig. S2d-e.
We also generated concatenated alignments for both the chloroplast and mitochondrial genes
using SequenceMatrix (Vaidya et al. 2011). We inferred trees (Fig. 1a-b) from both concatenated

alignments using RAxML with the same parameters described above.

Downstream analyses
Gene tree topology analysis. Tree sorting was performed in batch using the R packages, Ape
(Paradis et al. 2004), Phangorn (Schliep 2011), and Phytools (Revell 2012). Gene trees from the

retained duplicates were midpoint rooted and split at the root into two subtrees, each of which
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contained a sequence from all eight analyzed species. Subtrees were analyzed as individual trees
alongside all other single-copy gene families as described below. First, each gene tree was rooted
at E. salsugineum. Next trees were sorted by considering the topological arrangement of the A,
B, and C lineages. For example, a tree was categorized A(BC) if B. stricta, C. rubella, C.
grandiflora, and C. sativa formed a monophyletic clade. Thus, the branch in the tree leading to
the monophyletic clade (the branch uniting B. stricta, C. rubella, C. grandiflora, and C. sativa in
the above example) was considered the topology-defining branch. Statistical support for any
given tree was summarized as the bootstrap value along the topology-defining branch.

Since the focus of our analysis was on topological incongruence of A, B, and C clades,
our topology assessment was not designed to detect topological arrangements within A, B, and C
clades or in other parts of the trees. If a gene cluster failed to form either a monophyletic A or C
clade following phylogenetic analysis, it was marked as ‘other topology’ and removed from
further downstream analysis. Exact topologies of all trees, including those recorded as ‘other

topology’, are provided in Table S2.

Applying D, F, and D¢y statistics to assess the effects of incomplete lineage sorting and
introgression. To determine whether the observed gene tree incongruences could have been
caused primarily by incomplete lineage sorting (ILS), we calculated Patterson’s D-statistic (D)
(also known as the ABBA-BABA or 4-taxon test) (Green et al. 2010; Durand et al. 2011). D is
typically applied to whole genome alignments of three in-group taxa and one out-group taxon. It
is calculated by scanning the alignment to identify site patterns consistent with two possible
resolutions of ILS (ABBA and BABA). Due to the relatively deep divergence and numerous
chromosomal rearrangements between genomes used here, it was not feasible to construct
accurate whole genome alignments. Instead, we identified ABBA and BABA site patterns within
single-gene multiple sequence alignments used to infer gene trees. We calculated D and F using
the total number ABBA and BABA sites from all nuclear gene alignments (or subsets of nuclear
genes corresponding to individual chromosomes or conservatively single-copy genes). We
excluded C. sativa sequences from this analysis due to the presence of multiple C. sativa
paralogs in some trees. We considered only biallelic sites in which the two outgroups, E.
salsugineum and C. hirsuta, have the same allele. We also required individual species within

each clade to have the same allele. For example, an ABBA site would be one in which E.
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salsugineum, C. hirsuta, A. thaliana, A. lyrata, C. rubella, C. grandiflora, and B. stricta display
T, T, G, G, G, G, and T, respectively. Note that all members of clade A and C share the derived
allele. An example of a BABA site would be T, T, G, G, T, T, and G, respectively. In this case,
members of clades A and B share the derived allele. We also tallied AABB sites, (e.g. T, T, T, T,
G, G, and G, respectively), in which clades B and C share the derived allele, although AABB
sites are not a component of D or F. In addition, we calculated D and F using the methodology
above but without the requirement for the two outgroups, E. salsugineum and C. hirsuta, to share
an allele. We calculated D and F according to the equations from (Zheng and Janke 2018). All
site counts and statistics are shown in Table S3.

We also applied the rationale of D to gene tree topology counts by calculating a related
statistic, Dgr. We used gene tree topologies as proxies for site patterns. Since B(AC) and C(AB)
trees were closest in frequency in the nuclear genome, we asked whether their frequencies were
statistically significantly different using Ds7. B(AC) trees and C(AB) trees were treated as
ABBA and BABA sites, respectively, while A(BC) was treated as AABB. D¢y was then

calculated as follows:

Dsr = (2(B(AC) trees) - 2 (C(AB) trees)) / (X(B(AC) trees) + 2 (C(AB)

trees))

We calculated D7 for the set of all nuclear genes as well as for subsets of genes present
on each of C. rubella’s nuclear chromosomes, as C. rubella serves as an estimate of the ancestral
karyotype for the included species (Schranz et al. 2007). Results from all Dg7 calculations are

given in Table S4.

Phylogenetic network reconstruction and introgression analysis. To evaluate the likelihood
that the observed incongruence was caused by introgression, we also reconstructed maximum
likelihood phylogenetic networks using InferNetwork ML in PhyloNet (version 3.6.1) (Than et
al. 2008). We input all nuclear gene trees (Fig. S1d, Full single-copy genes dataset) and
implemented InferNetwork ML using the command ‘InferNetwork_ML (all) h -n 100
-di -o -pl 8;’, where 4 is the number of reticulations allowed in a given network. The

method ignores gene tree branch lengths, utilizing gene tree topologies alone to infer reticulation
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events. We performed separate analyses using # =0 (a tree), # =1, and 4 = 2, outputting the 100
most likely trees/networks (designated with —n) from each analysis. We followed the analysis
strategies of(Wen et al. 2016a), manually inspecting networks to identify those with edges
consistent with both the major nuclear topology [A(BC)] as well as the major chloroplast and
mitochondrial topology [B(A,C)] (Fig. S21-0). Additionally, we reported the most likely
tree/network from each analysis (Fig. S2k, p-q). As an additional means of asking whether ILS
alone adequately explains incongruence, we performed Tree Incongruence Checking in R
(TICR) (Stenz et al. 2015). We used a population tree inferred from PhyloNet (h = 0) (Fig. S2j)
with a table of concordance factors for all quartets. We performed the TICR test as implemented
in the R package, phylo/m (Tung Ho and Ané 2014), according to the methods outlined in:
https://github.com/crsl4/PhyloNetworks.jl/wiki/TICR-test:-tree-versus-network%3F.

Identification of introgressed topology and species branching order. In order to identify the
topology most likely to represent introgression, we measured node depths on trees displaying
either A(BC) or B(AC). As above, C. sativa sequences were not considered in order to avoid
complications associated with paralogous sequences. For each nuclear gene tree, we calculated
pairwise synonymous divergence (dS) between taxa on the tree using PAML (version 4.8) (Yang
2007). To infer the pairwise distance between two clades on the tree, we took the average dS
score between each combination of taxa present in the two clades. For example, the depth of the
node uniting clades A and C on B(AC) trees would be the average of dS(A. thaliana, C. rubella),
dS(A. lyrata, C. rubella), dS(A. thaliana, C. grandiflora), and dS(A. lyrata, C. grandiflora). To
calculate normalized dS, each dS node depth (as described above) was divided by the average
pairwise dS of each ingroup species versus the outgroup, C. hirsuta.

We also calculated node depths from ultrametric gene trees. Before measuring node
depths, gene trees were smoothed to ultrametric trees using semiparametric penalized likelihood
rate smoothing (Sanderson 2002). We implemented the rate smoothing algorithm designated by
the chronopl function in the Ape package. We tested six values of the smoothing parameter (1),
which controls the tradeoff between parametric and non-parametric formulation of rate
smoothing, to assess the sensitivity of node depths to different values of . We calculated node-

depth on ultrametric trees for nodes representing 7, and 7, on each given topology (Fig. S3a).

http://mc.manuscriptcentral.com/gbe 10

020z 1snbny g0 uo 1sanb Agq 0£5Z/85/617LEBAS/206/€601 0 | /10p/3101E-80UBApE/agh/WO02°dno-olWwapede//:sdiy woly papeojumoq



We plotted the frequency distributions of node depths (Fig, S3b) as well as descriptive statistics
(Fig. S3c-t).

In order to account for intragenic recombination, we split each gene alignment into 200nt
alignments, the goal being to reduce the probability of recombination occurring in the middle of
our alignment. For each window, we calculated a distance matrix and inferred a neighbor joining
“window tree” using Ape in R (Paradis et al. 2004). We calculated the depth of the 7; node for
each window displaying either A(BC) or B(AC) from the distance matrix by averaging the
pairwise distance values similar to our treatment of dS node depths above. We documented the
number of discordant windows in alignments for A(BC) (Fig. S4a) and B(AC) (Fig. S4b) trees
and used boxplots to compare distributions of A(BC) and B(AC) node depths (Fig. 2g and Fig.
S4c).

Polarization of introgression directionality with DIP. To search for evidence of asymmetry in
introgression directionality, we applied Divergence-based Introgression Polarization (DIP)
(Forsythe et al. 2020) to the full single-copy dataset. Scripts and more information on running
DIP are available at: https://github.com/EvanForsythe/DIP. Following the nomenclature of
Forsythe et al. 2020 (a), we used A. lyrata, C. rubella, B. stricta, and E. salsugineum as P1, P2,
P3, and O, respectively. We treated gene alignments as separate windows, pruning the
alignments down to just the representative species described above. We performed all three
versions of DIP described by (Forsythe et al. 2020). With the above taxon sampling scheme, a

1 xDIP profile of non-zero AK23, non-zero AK12, and AK13 equal to zero would indicate
introgression from clade B to clade C. A profile of non-zero 4K23, AK12 equal to zero, and non-
zero AK13 would indicate introgression from clade C to clade B. For 2x and 3xDIP, positive
AAK and 444K values would indicate clade B to clade C introgression while negative values

would indicate introgression in the opposite direction.

Cytonuclear function enrichment analysis. We used the Cytonuclear Molecular Interaction
Reference for Arabidopsis (CyMIRA) dataset (Forsythe et al. 2019) to identify nuclear-encoded
genes in our dataset that are both organelle localized and involved in interactions with organelle-

encoded genes/gene products. The dataset is available at: http://cymira.colostate.edu/. We

performed this analysis on our full single-copy data set. For each category, the percentage of
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https://github.com/EvanForsythe/DIP
http://cymira.colostate.edu/

B(AC) trees annotated with that category was compared to the percentage of A(BC) trees with
the category. Comparisons were quantified with an enrichment score (£). For example, we used
the following equation to ask if B(AC) or A(BC) topology genes are enriched for chloroplast

interaction:

E = ((% B(AC) trees that are CP interacting) -
(% A(BC) trees that are CP interacting)) /
(% B(AC) + A(BC) topology genes that are CP interacting)

Positive E indicates enrichment for a category among B(AC) trees, while negative E indicates

enrichment among A(BC) trees (Table S6).

Network analysis of protein-protein interactions. Experimentally curated protein-protein
interaction data for Arabidopsis were downloaded from Arabidopsis thaliana Protein Interaction
Network (AtPIN) (version 2.6.70) (Brandao et al. 2009). Interaction data were filtered to contain
only genes included in the full single-copy data set. An undirected interaction network was
visualized and analyzed using the igraph package (http://igraph.org) in R. Each node in the graph
represents a single-copy nuclear gene family while each edge in the graph indicates a physical
interaction in Arabidopsis. Nodes were colored by gene tree topology and diameter of nodes are
proportional to bootstrap support values for the gene tree (see Fig. S2a-c).

We asked if genes displaying the same topology are clustered with each other in the
network by calculating nominal assortativity (Newman 2003). Assortative mixing/clustering of
gene tree topology results across the network was quantified by the assortativity coefficient (4)
of the network. Positive 4 indicates clustering of genes with the same topology, while negative 4
indicates over-dispersal. We calculated the observed 4 for our network as well as a null
distribution of 4 generated by randomly assigning a topology to nodes in 10,000 replicates of our

network.

Mapping of gene coordinates to the C. rubella nuclear genome. Topology results were

mapped to the nuclear genome of C. rubella using the gene coordinates from the GFF file
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associated with the genome assembly. Genome maps were visualized using the R package, Sushi
(Phanstiel et al. 2014), made available through Bioconductor (Gentleman et al. 2004). Colored
horizontal lines indicate genes displaying each topology. The length of each line represents the

bootstrap support value found at the topology-defining branch in the gene tree (see Fig. S2a-c).

Detection of linkage disequilibrium. Topology results mapped to the C. rubella genome were
used to ask if genes displaying the same topology are clustered together linearly along
chromosomes. We assessed the physical clustering of A(BC), B(AC), and C(AB) genes with two
measures: 1) number of instances in which genes with the same topology are located within 10kb
of each other (Fig. S6a), and 2) number of instances in which neighboring genes share topology,
regardless of distance (Fig. S6b). We established a null distribution for both measurements by
generating 10,000 maps of the C. rubella genome in which observed location of single-copy
genes and the overall gene tree frequencies were maintained, but the assignment of topologies to
genes was randomized across chromosomes. Measure 1 and measure 2 were calculated for each

of the 10,000 replicates to obtain null distributions.

Statistical Analyses

Statistical tests were performed in R (version 3.4). Below, we describe methods used to
assess the significance of our results. Our general strategy was to provide sufficient information
to enable readers to make their own interpretations of the data; toward that goal, we have
included Bonferroni corrected and uncorrected (raw) p-values for each experiment where

corrections could be applied (Tables S4-6 or within supplemental text).

D, F, and Dgr-statistics. We calculated D, F, and D7 for both the full single-copy and
conservatively single-copy data sets. Confidence intervals were obtained by resampling either
dataset to generate 10,000 bootstrap replicates, recalculating D/F/D¢r for each replicate. The
resulting distributions were compared using the Z-test. To account for potential autocorrelation
bias caused by non-independence of linked genes, D/F/Dgr were also calculated using block
bootstrapping. For D and F, block bootstrapping was achieved by simply bootstrap resampling
from the available gene alignments and recalculating D/F with each replicate. For Dgr block

bootstrapping was accomplished by splitting the dataset into 100 equal size blocks of
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neighboring genes based on position along C. rubella chromosomes. Blocks were then bootstrap
resampled 10,000 times and Dy was recalculated with each replicate to obtain a distribution. P-
values from analyses of the whole genome were Bonferroni adjusted for four comparisons for

Dg¢r. Raw p-values are reported in the main body and adjusted p-values are shown in Table S4.

Phylogenetic network reconstruction and introgression analysis. PhyloNet models were
statistically compared by calculating AIC and BIC scores for each tree/network with the following

expressions:

AIC = 2k - 2(log L)

BIC = (log(n) * R) - 2(log L)

where £ is the number of free parameters in the model, # is the number of input gene trees, and L
is the maximum likelihood value of the model. We compared hypotheses by calculated
difference in AIC and BIC scores for each given tree/network relative to the most likely network

(AAIC and ABIC).

Node depth based test of species branching order. Frequency distributions of node depths
were plotted. Two-tailed 7-tests and Wilcoxon rank sum tests were performed to assess
differences in distribution means and medians, respectively. P-values were Bonferroni corrected
for six comparisons. Raw p-values are reported in the main body and adjusted p-values are

shown in Table S5.

Divergence based test of introgression directionality. Statistics were calculated for /x, 2x and

3xDIP as described by (Forsythe et al. 2020).

Functional category enrichment. Enrichment of functional categories was assessed by
comparing categories of A(BC) genes versus B(AC) genes. For each category, two-by-two
contingency tables were constructed and used to perform two-tailed Fisher’s exact tests.

Reported p-values were Bonferroni corrected for 5 comparisons.
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Protein-protein interaction network. Clustering in the interaction network was quantified with
an assortativity coefficient (4) (Newman 2003). To assess significance of the observed 4, we
randomly assigned one of the three topologies (keeping the frequency of each topology the same
as in the original data set) to genes in 10,000 copies of the network. We computed 4 for each of
the 10,000 networks to obtain a null distribution of 4 and used the null distribution to perform a

two-tailed Z-test.

Haplotype block linear clustering. We quantified linear clustering of topologies by counting
the number of occurrences of proximal and neighboring genes in the observed data. We assessed
the significance of the observed values by generating null distributions from 10,000 datasets in
which the topologies were randomized. We used the null distributions to perform two-tailed Z-

tests. P-values were Bonferroni corrected for six comparisons.

Results:
Summary of previous studies of the species branching order. Considerable efforts have been
made to develop Brassicaceae as a comparative genetic and genomic system. Despite alternative
estimates of the branching order for Arabidopsis and its relatives, all trees from these studies
share three distinct clades. The genus Arabidopsis as outlined by (Al-Shehbaz and O’Kane 2002)
is monophyletic and comprises nine species. We refer to this group as clade A, represented by
the genomes of Arabidopsis (Lamesch et al. 2012) and 4. /yrata (Hu et al. 2011). Boechereae is a
diverse tribe containing eight genera, including Boechera, which comprises more than 70 species
(Alexander et al. 2010). Boechereae is sister to Halimolobeae, which contains five genera and 39
species (Bailey et al. 2017). We refer to species in Boechereae and Halimolobeae as clade B,
represented by the recently sequenced genome of Boechera stricta (Lee et al. 2017). A third
monophyletic clade, is composed of 15 species in Capsella, Camelina, and Catolobus (Slotte et
al. 2006; Galasso et al. 2015). Genome sequence in this group includes Capsella rubella,
Capsella grandiflora (Slotte et al. 2013), and the paleohexaploid oil-seed crop, Camelina sativa
(Kagale et al. 2014).

While clades A, B, and C are well resolved in the literature, their relationship to one

another differs by marker. To understand incongruence implied by previous analyses, we
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reviewed eight phylogenetic studies, paying particular attention to the relative relationships of
species from clade A, B, and C (Table S1). We find that phylogenies inferred from organellar
markers (Koch et al. 2001; Beilstein et al. 2006; Beilstein et al. 2008; Franzke et al. 2009) are
incongruent with those inferred from nuclear markers, or concatenation of nuclear and organellar
markers (Bailey et al. 2006; Beilstein et al. 2008; Oyama et al. 2008; Couvreur et al. 2010;
Huang et al. 2015). We find that all studies of individual chloroplast and mitochondria markers
yield B(AC). On the other hand, all studies that include nuclear markers yield A(BC). The
statistical support for both of these topologies varies by study but each topology is well-
supported in at least some of the studies, indicating the phylogenetic incongruence is not likely to
be caused by a lack of phylogenetic resolution or error in phylogenetic reconstruction. The

observation of phylogenetic incongruence motivated our current phylogenomic analysis.

Gene tree incongruence within and between organelle and nuclear genomes. We searched
for incongruent histories present within and among nuclear and organellar genomes in
representative species from each clade. We included Cardamine hirsuta (Gan et al. 2016) and
Eutrema salsugineum (Yang et al. 2013) as outgroups. We considered three biological processes
capable of producing incongruent genealogical histories: gene duplication and loss, incomplete
lineage sorting (ILS), and introgression. In addition, we assessed the possible contribution of
phylogenetic error or ‘noise’.

Chloroplast assemblies and annotations were available for all analyzed species except for
B. stricta. We assembled the Chloroplast genome from B. stricta from whole genome sequencing
reads. We annotated the genome and extracted CDS from 85 protein-coding genes. Ortholog
clustering revealed 77 orthologous gene clusters, 32 of which passed our filters as single-copy.
We performed multiple sequence alignment for the 32 single-copy families and concatenated the
alignments into an alignment with a total length of 30,645nt that produced B(AC) as a well-
supported most likely tree. This result is consistent with the trees previously inferred from
chloroplast markers (see Table S1). We also analyzed each gene separately. Of the 32 genes, 13
were B(AC), zero were A(BC), and one was C(AB). Eighteen of the gene trees lacked
statistically supported resolution. The chloroplast gene trees displaying B(AC) show variable
bootstrap support but seven of 13 are supported by at least 70% bootstrap support at the
topology-defining branch (Fig. S2f; green bars). The one chloroplast gene tree indicating the
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C(AB) topology lacked bootstrap support (<50%) at its topology-defining branch (Fig. S2f;
purple bar). Regardless of whether chloroplast genes are analyzed individually or are
concatenated they strongly support B(AC) as the chloroplast branching order.

Mitochondria assemblies and annotations were unavailable for 4. lyrata, B. stricta, C.
rubella, C. grandiflora, C. sativa, and E. salsugineum. We assembled mitochondrial genomes for
these five species from raw sequencing reads. We were unable to assemble the E. salsugineum
mitochondrial genome so we included only C. hirsuta as an outgroup for mitochondrial analyses.
We annotated the genomes and extracted CDS from 85 protein-coding genes. Ortholog
clustering revealed 24 orthologous gene clusters, 21 of which passed our filter as single-copy.
We performed multiple sequence alignment for the 21 single-copy families and concatenated the
alignments into an alignment with a total length of 7,014 nts that yielded a well-supported
B(AC). Of the 21 individual mitochondrial gene trees, four displayed B(AC), zero displayed
A(BC), and one displayed C(AB). Sixteen of the gene trees lacked statistically supported
resolution. Three of the four B(AC) gene trees have at least 70% bootstrap support at the
topology-defining branch (Fig. S2g; green bars). The one C(AB) tree lacked bootstrap support at
its topology-defining branch (Fig. S2g; purple bar). In sum, regardless of whether mitochondrial
genes are analyzed individually or are concatenated, they support B(AC) as the mitochondrial
topology.

Given the well-known history of whole genome duplication of the nuclear genome in
Brassicaceae, we took extensive measures to minimize the possibility that duplication and loss
biased our inferences. We identified single-copy nuclear genes as well as genes that were
retained in all species post-duplication (see Discussion). We identified 10,193 single-copy
nuclear genes using Orthofinder (Emms and Kelly 2015) (denoted as ‘full single-copy dataset’)
(Fig. Sla-c). The full single-copy dataset comprises 37.17% and 35.83% of the Arabidopsis and
C. rubella genomes, respectively. These genes were indicated as single-copy by Orthofinder
because they form clusters that include exactly one locus from each species (with the exception
of the polyploid C. sativa, see Methods). These single-copy genes span the eight chromosomes
of C. rubella (Fig. S1d), whose karyotype serves as an estimate of the ancestral karyotype for
these species (Schranz et al. 2007). ML analyses yielded 8,490 (87.6%) A(BC), 774 (8.0%)
B(AC), and 429 (4.4%) C(AB) nuclear gene trees (Fig. 1c-f). A complete list of the gene tree

topologies resulting from phylogenetic analyses of these markers is included in Table S2.
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The most parsimonious explanation for our single-copy genes is that they were either not
duplicated in our focal species or, if duplicated, were returned to single-copy before a speciation
occurred, and thus behave as unduplicated in a phylogenetic context, meaning that any observed
incongruent topologies resulted from a process other than duplication. However, while not
parsimonious, it is important to consider the possibility that ancestral duplication, paralog
retention through two speciation events, and lineage specific loss events led to hidden out-
paralogs in our dataset. To further reduce the probability that this series of events contributed to
incongruent gene trees, we performed a reanalysis after further filtering our dataset to include
only genes that were previously indicated as reliable single-copy markers in angiosperms (Duarte
et al. 2010; De Smet et al. 2013). This filter reduced our single-copy dataset to 2,098 genes (Fig.
Sle-f). We combined this dataset with genes that were duplicated during whole genome
duplication (Bowers et al. 2003) but did not undergo loss in focal species to yield a dataset of
2,747 genes, which we denote as ‘conservatively single-copy’, so named because they are the
genes that are least likely to contain hidden out-paralogs. The conservatively single-copy dataset
comprises 10.02% and 9.66% of the Arabidopsis and C. rubella genomes, respectively. ML
analyses of these genes yielded 2,236 (86.5%) A(BC), 236 (9.1%) B(AC), and 114 (4.4%)
C(AB) trees (Fig. 1b-f), consistent with our results from the full single-copy dataset.

To ask whether phylogenetic noise contributed to incongruent nuclear gene tree
topologies, we also filtered our single-copy nuclear gene tree results to contain only trees in
which the observed topology was supported by at least 70% bootstrap support (BS) at the
topology-defining branch (see Fig 2Sa-c) and found that B(AC) and C(AB) trees were still
present (Fig. 1f). Together, these analyses consistently support the incongruent histories present
in the organellar and nuclear genomes and indicate that incongruence cannot be fully explained

by gene duplication and loss or by phylogenetic noise.

Contribution of introgression to incongruent gene trees. A number of approaches have been
developed to determine the relative contributions of ILS and introgression to gene tree
incongruence. Site-based comparative approaches such as the D-statistic (Green et al. 2010;
Durand et al. 2011) are typically applied to whole genome alignments and calculated by
determining the frequency of site patterns. Given the relatively deep divergence of our study

taxa, it was not feasible to construct accurate whole genome alignments among them, and thus
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we used multiple sequence alignments from single-copy genes to calculate D- and F-statistics.
We applied D- and F-statistics to compare the frequencies of the two site patterns consistent with
the B(AC) and C(AB) gene tree topologies, which have the closest frequency to each other in our
phylogenetic analyses above. The deep scale of divergence among our taxa raised concerns of
homoplastic mutations obscuring site patterns. The outgroup typically indicates the ancestral
character state in site-based comparative introgression analyses (Green et al. 2010; Durand et al.
2011). Our inclusion of two graded outgroups allowed us to filter for sites in which the two
outgroups share an allele, thus reducing the number of potential homoplastic sites in the data.
Applying this approach, we found significantly positive D and F across the whole nuclear
genome for all datasets and resampling techniques (Table S3), thereby rejecting the null
hypothesis that ILS alone was responsible for the observed incongruence of markers across the
nuclear genome. This result is consistent with B(AC) occurring in a larger proportion of nuclear
gene trees than C(AB).

We also calculated D and F'using E. salsugineum as the sole outgroup. Interestingly,
these analyses returned significantly negative D and F across the whole nuclear genome for all
datasets and resampling techniques (Table S3), contradicting results calculated from sites in
which both outgroup species share an allele. In sum, D and F'values calculated with E.
salsugineum as outgroup indicate that introgression occurred, but the introgression event is
inferred to occur between different taxa than those inferred when both outgroup species share an
allele (see Discussion). To explore this contradictory result, we partitioned the dataset by gene
tree topology and recalculated D and F. Regardless of outgroup, we observe extremely high
(positive) D and F' for genes that display the B(AC) topology and extremely low (negative) D
and F for genes that display the C(AB) topology, indicating that B(AC) topology genes are
highly enriched for ABBA sites while C(AB) topology genes are highly enriched for BABA
sites. This result informs our rationale for treating B(AC) trees and C(AB) trees as proxies for
ABBA and BABA sites, respectively, in performing Dgr analyses below. In sum, our site-based
introgression analyses consistently indicate that introgression occurred; however, these statistics
differ in their inference of the species involved in introgression depending on whether sites are
filtered to avoid putative homoplastic sites. The potential impact of homoplasy on these site-
based statistics, which largely rely on parsimony logic, lead us to employ additional analyses that

make use of maximum likelihood trees.
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Given that calculated D and F appear to be strongly correlated with gene tree topology,
we used gene tree topologies as proxies for site patterns to calculate a related statistic, referred to
here as Dgr (Huson et al. 2005). We found positive Dgr across all chromosomes, however for
chromosomes two, four, and seven the significance of Dsr depended on the dataset and whether
we resampled the data by bootstrap or block-bootstrap. When a significant D7 was detected, it
was reflected both by raw and Bonferroni adjusted p-values. Loss of power is expected with this
method because it involves condensing multiple ABBA/BABA sites into a single gene tree, thus
the sample size is much smaller. These results indicate a significant excess of B(AC) genes in
comparison to C(AB) genes in the nuclear genome, consistent with our observed gene trees
frequencies (Fig. 1f). Dgrresults are consistent with positive D and F results calculated using the
outgroup filter but contradicts the negative D and F results obtained using E. salsugineum as sole
outgroup, meaning we cannot fully resolve the species involved in introgression using the above
methods, leading us to explore additional analytical frameworks in an effort to arrive at a

consensus signal.

Phylogenetic network reconstruction and coalescent-based introgression analyses.
Coalescent-based approaches (Than et al. 2008; Stenz et al. 2015) use gene trees to distinguish
between organismal histories that are tree-like (incongruencies among trees arise from ILS) and
network-like (incongruencies result from ILS + introgression). Phylogenetic networks are
emerging as natural means of capturing reticulate evolutionary histories in the presence of ILS
(Wen et al. 2016a; Copetti et al. 2017). We used PhyloNet to reconstruct the most likely species
tree (0 reticulations) and networks (1 or 2 reticulations) from nuclear gene trees. We show the
first and second most likely species trees, which are consistent with the A(BC) and B(AC),
respectively (Fig. S2j-k). We also present the most likely networks containing edges that
incorporate A(BC) and B(AC) (Fig. S21-0). Finally, we show the unconstrained most likely
networks (Fig. S2p-q). For each reticulation inferred by PhyloNet, two reticulation edges are
inferred (Fig. S21-q, blue branches). Inheritance probabilities (i.e., the proportion of gene trees
displaying an edge) are shown next to each edge. The analysis is agnostic to which of the two
edges represents introgression and which represents speciation (Wen et al. 2016a).

All network models shown are substantially more likely than models that yield

bifurcating trees (Fig. S2j-q; AAIC > 87.80 and ABIC > 73.50), providing an additional line of
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evidence that introgression played a role in generating incongruent gene trees, consistent with
our D, F, and Dgr-statistic results. We find that the overall most likely reticulation events
involve introgression from clade A to C. hirsuta (Fig. S2p and q), which was initially included as
an outgroup. This was unexpected, as the major nuclear, chloroplast, and mitochondria
topologies do not show evidence of clade A and C. hirsuta forming a clade. Given that the goal
of this study is to investigate processes leading to cytonuclear discordance, we focus on
reticulation events involving clades A, B and C.

Among the set of networks that address potential introgression between clades A, B, and
C, the networks shown in Fig. S2m and n indicate that clade C was the recipient of introgressed
alleles from either clade B or clade A. The networks shown in Fig. S21 and Fig. S20 indicate an
alternative scenario, in which clade B was either the recipient of introgressed alleles from clade
C or from a more distantly related ‘ghost lineage’ that is either not sampled or extinct. The
highest likelihood network in this set displays an alternative history in which clade A was the
recipient of introgressed alleles from either clade C or a more distant ghost lineage (Fig. S2q).
While several alternative introgression scenarios are represented among the most likely
networks, none of these indicate intogression between clade A and B, thus phylogenetic network
analyses are consistent with positive D, F, and Dgr.

To test the robustness of the network-based analyses above, we also performed a quartet-
based analysis, Tree Incongruence Checking in R (TICR) (Stenz et al. 2015), using the
population tree from PhyloNet, which displays A(BC) with branch lengths in coalescence units
(Fig. S2r-u). The TICR test indicates that the population tree does not fit the quartet concordance
factors adequately (p = 0.00058; #°). These results suggest that the observed pattern does not
have a simple evolutionary explanation, thereby indicating a complex evolutionary history in the
group. In sum, both comparative genomic and coalescent based approaches support an
evolutionary history that includes introgression. Inconsistency across different analytical
methods prevents the confident resolution of a specific introgression event; however, only one
approach indicated that C(AB) trees resulted from introgression, while the remaining analyses
indicated that either A(BC) or B(AC) trees resulted from introgression. Based on this weight of
evidence, we proceed under the working hypothesis that A(BC) and B(AC) trees are indicative
of speciation/introgression histories while C(AB) trees are largely the result of ILS, although the
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uncertainty in this model should be weighed as it pertains to downstream analyses (see

Discussion).

Recovery of the species branching order and introgression events. To uncover which
lineages were affected by introgression, we determined the relative timing of the B(AC) and
A(BC) branching events by calculating node depths (Fig. 2) (Fontaine et al. 2015). Introgression
nodes are expected to be younger than speciation nodes (Fontaine et al. 2015; Rosenzweig et al.
2016; Lee-Yaw et al. 2018) because introgression produces incongruent trees when it occurs
between non-sister species subsequent to speciation (Green et al. 2010; Durand et al. 2011;
Dasmahapatra et al. 2012) (illustrated by Fig. 2a). Therefore, we calculated the depth of the node
uniting clade A with clade C in nuclear B(AC) trees and compared it with the depth of the node
uniting the B and C clades in nuclear A(BC) trees (Fig. 2a-c, N.D.). We calculated node depths
using four separate measures to account for potential biases (Fig. 2d-g). To account for selection
on amino acids, we used synonymous divergence (dS) (Fig. 2d and Fig. S5). To account for
potential differing rates of evolution across the genome, we normalized dS using the divergence
between the clade of interest and an outgroup (i.e. ‘relative node depth’) (Rosenzweig et al.
2016) (Fig. 2e). To account for potential differences in rates of evolution between lineages, we
also calculated node depths from ultrametric trees in which the rates of evolution had been
smoothed across the tree using a penalized likelihood approach (Sanderson 2002) (Fig. 2f, Fig.
S3, and Table. S5). Since our ultrametric approach required the user-defined A parameter, we
explored the effect of different A values on the calculation of node depths and found that node
depths on A(BC) trees were consistently significantly shallower than node depths on B(AC)
trees. Additionally, we accounted for potential intragene discordance due to recombination
within a gene, by divided each gene alignment into 200-bp windows, inferred a neighbor joining
tree for each window, and only calculated node depth from windows that were concordant with
the ML tree for the gene, thus minimizing the probability of recombination within the loci from
which node depth is calculated (Fig. 2g, Fig S4). For all four node depth measures, the node
depth for A(BC) was significantly shallower than for B(AC) (Fig. 2d-g, Fig. S3, Fig S4 and
Table S6; p<2.2e-16, Wilcoxon).

Recognizing that there are likely deep coalescing genes within our A(BC) and B(AC)
bins, we removed the genes with the deepest nodes in both A(BC) and B(AC) bins and still
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found the same significant pattern (Fig. S30-t; p<2.2e-16, Wilcoxon). Hence, node depth data are
most consistent with a scenario in which A and C diverged from each other prior to the exchange
of genes between clade B and C via introgression. This surprising result stands in opposition to
previously published trees inferred from single or concatenated nuclear genes, which strongly
favor A(BC) (Al-Shehbaz and O’Kane 2002; Oyama et al. 2008; Beilstein et al. 2010; Huang et
al. 2015). However, it bolsters the argument that B(AC) best represents the species branching
order despite the low frequency of these genes in the nucleus (similar to Fontaine et al. 2015) and
further suggests that the vast majority of nuclear genes in either B or C arrived there via
introgression. We discuss the implications of this finding on the concept of the species branching
order (see Discussion). It should be noted that our downstream analyses of selection and linkage
(Fig. 4, Fig. S6, and Table S6) are framed in the context of nuclear introgression but would

remain equally valid if cytonuclear discordance arose via organellar introgression.

Identification of introgression donor and recipient linages. We next asked whether transfer of
genetic material during introgression was directionally asymmetric and, if so, which of the two
clade ancestors was the donor and which was the recipient of introgressed alleles. We applied
Divergence-based Introgression Polarization (DIP) (Forsythe et al. 2020), which is calculated
from pairwise sequence divergence between taxa involved in introgression and a sister taxon by
comparing divergence values obtained from introgressed loci versus non-introgressed loci (see
Methods) (Fig. 3a). We applied three variations of DIP, I x, 2x and 3xDIP, designed to increase
sensitivity to bidirectional introgression and minimize bias. / xDIP yielded a positive 4K;
(p<2.2e-16), positive 4K, (p<2.2e-16) and 4K ;3 not significantly different from zero (p=0.66)
(Fig. 3b). This pattern matches our expectations for asymmetric introgression from clade B to
clade C. Likewise, 2x and 3 xDIP yielded positive 4K (p<2.2e-16) and 44K (p=0.002),
respectively, also indicative of introgression from clade B to clade C. Taken together, DIP

analyses indicate predominant introgression from clade B to clade C.

The role of cytonuclear interactions during introgression. According to our leading model,
the introgression that occurred during the evolution of clade C resulted in a genome in which the
majority of nuclear alleles were displaced by alleles from clade B, while native organellar

genomes were maintained. We asked whether we could detect patterns within the set of nuclear
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genes that were also maintained alongside organelles during introgression. We hypothesized that
during the period of exchange, selection would favor the retention of alleles that maintain
cytonuclear interactions, especially when replacement with the paternal allele is deleterious
(Sloan et al. 2017). Using CyMIRA, a curated set of Arabidopsis genes involved in cytonuclear
interactions (Forsythe et al. 2019), we asked if B(AC) nuclear genes were significantly enriched
for interactions in the chloroplast and mitochondria, indicating that these genes are more likely to
be retained than are other nuclear genes. We calculated enrichment (E) for each category by
comparing the percentage of B(AC) nuclear genes in a given category to the percentage of
A(BC) genes in that category (see Methods). Positive E indicates enrichment among B(AC)
genes; negative E indicates enrichment among A(BC) genes (Fig. 4a and Table S6). B(AC)
nuclear genes are significantly enriched for organellar localized genes (p=1.00e-3, Fisher’s) as
well as genes that are both organelle-localized and known to be involved in cytonuclear
interactions (p=1.23e-3). Enrichment was also detected for the chloroplast and mitochondria
individually (p=3.12e-2 and 2.07e-2, respectively). We saw a general trend of enrichment in the
same direction at the level of organellar functional categories but did not perform statistical tests
on these due to their small number. We observed the opposite enrichment pattern for genes
targeted to other parts of the cell (p=1.17¢-3) (Fig. 4a and Table S6). In sum, these results

suggest a role for selection in shaping which genes were displaced during introgression.

The role of nuclear-nuclear interactions during introgression. We also asked if interactions
between/among nuclear genes influenced the likelihood of replacement by foreign alleles. Using
Arabidopsis protein-protein interaction data (Brandao et al. 2009), we constructed an interaction
network of the full set of single-copy nuclear genes (Fig. 4b, left). To assess whether genes with
shared history are clustered in the network, we calculated its assortativity coefficient (4). We
assessed significance by generating a null distribution for 4 using 10,000 networks of the same
size and shape with randomized topology assignments. In our empirical network, 4 was
significantly positive (4=0.0885, p=0.00189, Z-test), and hence topologies are non-randomly
clustered (Fig. 4b, right), indicating that selection acted against genotypes containing interactions

between introgressed and non-introgressed alleles.
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The role of physical linkage during introgression. While it appears gene function exerted
influence on nuclear introgression, we also asked whether blocks of genes with similar histories
were physically clustered on chromosomes. We looked for evidence of haplotype blocks using
the C. rubella genome map (Fig. 5). Previous studies in this group estimate linkage
disequilibrium to decay within 10kb (Kim et al. 2007; Song et al. 2009), creating blocks of
paternal or maternal genes around that size. We assessed the physical clustering of genes with
shared history by two measures: 1) number of instances in which genes with the same topology
are located within 10kb of each other (Fig. S6a), and 2) number of instances in which
neighboring genes share topology, regardless of distance (Fig. S6b). The second measure
provides a simple measure of clustering without requiring an estimate of ancestral linkage. We
compared both measures to a null distribution generated from 10,000 replicated chromosome
maps in which the topology assignments were randomized across the marker genes. By both
measures, we found significant clustering of A(BC) (measure 1: p=3.022¢-8; measure 2:
p=1.41364e-10, Z-test) and B(AC) (measure 1: p=0.003645; measure 2: p=1.7169e-11) genes
(Fig. S6c-h). The observed clustering indicates that haplotype blocks of co-transferred and non-
transferred genes are detectable in extant genomes, pointing to physical linkage as a factor

influencing whether genes are transferred or retained.

Discussion:

Phylogenomic studies in plants face unique challenges. The prevalence of gene and
genome duplication complicates the detection of orthologs, and thus choosing markers that
minimize duplication is extremely important when applying tests of introgression originally
developed for animals (Green et al. 2010). Since duplication history cannot be definitively
known, we can never be sure that cryptic duplication has not introduced phylogenetic
incongruence into our dataset; this is a risk in any phylogenetic study, especially in plants. We
acknowledge that all nuclear genes have undergone duplication at some point in Brassicaceae
(Bowers et al. 2003) and address this challenge by specifically targeting genes least likely to
have undergone duplication during the speciation and introgression events we detected. If
duplication was biasing the results we obtained from our full single-copy dataset, we expected
that the proportion of B(AC) trees would have decreased in our conservatively single-copy

dataset. However, the proportions we observed were not substantially impacted by our
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conservative single-copy filter. In fact, the proportion of B(AC) genes was slightly higher in the
conservatively single-copy genes, the opposite of what we would expect if duplication was
creating incongruent trees. Moreover, results of the D-, F-, and Dg7-statistics from both datasets
significantly favored introgression (Table S3, and Table S4), another indication that biases
associated with cryptic duplication and loss are not driving our conclusions of introgression.

We applied several methods to distinguish between introgression and ILS. Like all
applications of D and related statistics, it is important to acknowledge that ancestral population
structure may produce signatures that mimic introgression (Eriksson and Manica 2012).
However, when this possibility was thoroughly explored in the case of Neanderthals,
introgression remained the favored hypothesis (Lohse and Frantz 2014). Advanced simulation
beyond the scope of this study would be required to definitively rule out ancestral population
structure in our Brassicaceae system. It is worth noting that, regardless of the measure or
approach employed, our results (Fig. S2, Table S3, and Table S4), were consistent with an
explanation of introgression rather than ILS or duplication and loss.

On the other hand, our analyses were not consistent in their indication of the taxa
involved in introgression. D and F were sensitive to the methodology used in filtering the sites
included in ABBA/BABA site counts. The more conservative filter, which requires sites to be
monoallelic in the two outgroups, leads to fewer total sites being tallied. When only a single
outgroup taxon is used to root the tree, more sites meet the necessary criterion to be included in
the calculation of D and F. These additional sites appear to be heavily biased toward BABA,
causing D and F to shift from positive to negative when these sites are included. It should be
noted that application of this filter is non-standard in D and F analyses and the effects of such a
filter have not been thoroughly explored. Inconsistency in D and F analyses led us to explore
numerous analytical methods. While each method significantly supported histories that include
introgression, results were not cohesive enough to confidently indicate a single clear
introgression scenario. Future studies that employ whole-genomes from additional taxa will
likely add resolution to this question. Given the genomes and analytical techniques currently at
our disposal, our best interpretation is that C(AB) trees resulted largely from ILS. This
interpretation is based on the fact that, while B(AC) is the organelle topology and A(BC) is the
major topology in the nucleus, C(AB) is not well supported by the organelles or the nucleus,

making it unlikely to represent the signature of the cytonuclear discordance we set out to study.
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We rely on this interpretation to perform downstream analyses of divergence and functional
enrichment but acknowledge that further work is needed to confidently sort out the full series of
evolutionary events underlying phylogenetic incongruence in the group. Future analysis of
genome-scale data that include denser sampling of representative taxa (Nikolov et al. 2019) may
hold the key to resolving some of the questions about complex evolution raised by this study.

One of the major implications of cytonuclear discordance is the potential for cytonuclear
incompatibility to arise. We searched for evidence of such incompatibility by using a curated
cytonuclear dataset (Forsythe et al. 2019) to ask if cytonuclear genes shared the evolutionary
history of the organelles more than expected by chance, which would be expected if selection
acted to maintain co-adapted nuclear and cytoplasmic alleles. We found that nuclear genes
encoding organelle-localized and organelle-interacting proteins were enriched for B(AC), the
organelle topology (Fig. 4a and Table S6). This non-random distribution of cytonuclear functions
in genes displaying B(AC) versus A(BC) suggests that selection against cytonuclear
incompatibility acted. The genes displaying this pattern may constitute a core set whose
replacement by introgressed alleles is deleterious. We also find evidence that selection acted to
maintain nuclear-nuclear interactions (Fig. 4b). In general, our results suggest that epistatic
interactions between genes exerted selective pressure that influenced which genes were displaced
and which were retained.

We document the presence of statistically detectable genomic blocks of co-
introgressed/co-retained genes (Fig. 5 and Fig. S6). Given observations of non-random gene
order in eukaryotes (Hurst et al. 2004; Niitzmann et al. 2016), it is difficult to fully disentangle
functional versus physical linkage, meaning it is possible that chromosomal proximity of
interacting genes may contribute to the shared history we documented among interacting genes.
However, the dearth of proven functional clusters in plant genomes (Wisecaver et al. 2017)
suggests this phenomenon, alone, is unlikely to explain the signatures of selection we describe
above. It is also possible that selection drove the displacement or retention of entire haplotype
blocks via hitchhiking. Disentangling the interplay of physical linkage versus selection during
introgression remains an area of future work.

Our initial interpretation of the observed phylogenetic incongruence was that A(BC)
resulted from simple speciation events and B(AC) resulted from introgression between clades A

and C, a pattern we referred to as cytoplasmic introgression. However, in light of recent findings
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from mosquitos (Fontaine et al. 2015; Wen et al. 2016b), we thought it important to consider
alternative hypotheses. Using the same approach that revealed introgression in mosquitos, we
calculated the mean node depth for each of the alternative topologies we recovered for nuclear
genes. In addition, we employed several strategies to account for the effects of selection (Fig.
2d), effective population size variation across the genome (Fig. 2¢), lineage-specific effects (Fig.
21), intragenic recombination (Fig. 2g), and mixed distributions caused by the presence of ILS
loci in B(AC) and A(BC) trees (Fig. S30-t) on our node depth calculations. In all cases, our node
depth comparisons rejected the hypothesis that the node uniting clades A and C on B(AC) trees
resulted from an introgression event, and instead indicated that the node uniting clades B and C
on A(BC) trees resulted from an introgression between clades B and C. Thus, given currently
available genomic data, our results suggest that the ‘true’ species branching order is B(AC),
despite this topology being found for only a small minority of nuclear genes.

There is growing debate about the efficacy of bifurcating phylogenies in describing
organismal evolution, prompting the development of powerful network frameworks that
highlight reticulation in species relationships (Than et al. 2008; Nakhleh 2013; Hahn and
Nakhleh 2015). While our analysis reinforces the importance of considering reticulation, we also
show that bifurcating trees should not be entirely abandoned in the face of reticulation. The
presence of reticulation does not preclude the occurrence of simple bifurcating speciation events,
it simply means some bifurcations result from speciation while others result from introgression.
Therefore, some gene trees will have nodes representing speciation events while other genes
trees will have a node or nodes that represent introgression. We define the species branching
order as the topology of the gene tree in which all nodes represent speciation events, even if this
history does not represent the majority of the genome. Our finding of massive nuclear
introgression leads to a dilemma regarding which branching order should be used in future
comparative studies in this group. For many (if not most) practical purposes, it is reasonable to
continue to use A(BC) because it represents the history of most of the genome. However, we
would argue that studies using this topology should bear in mind that the true history is more
complicated than simple speciation and consider the potential implications. Integrating all
available information into a useful model for studying trait evolution represents a future goal in

systematics.
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In summary, our comparative genomic analyses suggest that the original observation of
“chloroplast capture” is the result of introgression among the ancestors of the extant genera
Arabidopsis, Boechera, and Capsella. Moreover, selection and linkage influenced the genes that
were ultimately introgressed and retained. To our surprise, we found evidence that the species
branching order in this group is more accurately reflected by B(AC), and thus similar to the
findings of (Fontaine et al. 2015), it appears that nuclear introgression obscured speciation such
that the latter was only recoverable from extensive genomic data. What makes introgression here
particularly interesting is that its impact on the genome is evident despite the fact that it must
have occurred prior to the radiation of clade A 13 — 9 million years ago (Beilstein et al. 2010;
Huang et al. 2015). Hence, it is likely that, as additional high-quality genomes become available,
comparative analyses will reveal histories that include nuclear introgression, even when the
genomes considered are more distantly related. In short, our findings explore the genomic battle
underlying chloroplast capture to reveal an onslaught of alleles via directional introgression. A
core set of nuclear genes resisted displacement by exogenous alleles; purifying selection
removed genotypes with chimeric epistatic combinations that were deleterious, just as Bateson-
Dobzhansky-Muller first described (Orr 1996; Sloan et al. 2017). Will other introgression events
reveal similar selective constraints as those we detail? If so, it could point us toward key
interactions between cytoplasmic and nuclear genomes that lead to successful introgression,
thereby refining our understanding of the factors governing the movement of genes among

species.
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Figure Legends:

Figure 1 | Incongruent gene tree topologies are observed within and between nuclear and
organellar genomes. a. Chloroplast and b. mitochondria ML trees with branch support from 100
bootstrap replicates. Scale bars represent mean substitutions/site. ¢-f. ML gene tree topologies
inferred from nuclear single-copy genes rooted by E. salsugineum. ¢. A(BC), d. B(AC) and e.
C(AB) topologies. f. Numbers and frequencies of gene trees displaying A(BC) (orange), B(AC)
(green), and C(AB) (purple). Single-copy genes are shown categorized by dataset and by level of
bootstrap support.

Figure 2 | Node depths indicate extensive introgression led to transfer of nuclear genes.

a. Model depicting expected node depths (N.D.) for genes undergoing introgression (left) or
speciation (right). Speciation history is represented by thick grey bars. Individual gene histories
are represented by black branches. Blunt ended branches represent a native allele that was
replaced by an introgression allele. Vertical arrow indicates expected difference in node depth.
b-¢. The informative node depths on A(BC) (b) and B(AC) (¢) trees. d-f. Boxplots depicting
observed median and quartile node depths measured from dS (d), normalized dS (e), ultrametric

gene trees (f), and concordant windows within gene alignments (g).
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Figure 3 | Asymmetric introgression led to transfer of nuclear genes from clade B to clade
C. a. Model depicting the taxon-sampling and design of DIP analyses. b-d Results from /xDIP
(b), 2xDIP (c) and 3xDIP (d) analyses. Distributions represent bootstrap resampling replicates.
See (Forsythe et al. 2020) for detailed explanation of DIP.

Figure 4 | Selection for cytonuclear and nuclear-nuclear interactions influenced
introgression
a. Enrichment (£) for GO terms = (% B(AC) genes — % A(BC) genes) / (% B(AC) + A(BC)

genes). b. (Left) Protein-protein interaction network for Arabidopsis protein complexes. Node

fill, gene tree topology; node diameters proportional to bootstrap support (Fig. S2a-c). ¢. (Right)

Assortativity coefficient (4) of the network. Null distribution of 4 (grey curve); dotted line,

observed A4. Significance levels (**p<0.01, *p<0.05) are based on Bonferroni corrected p-values.

Figure 5 | Introgressed and retained haplotype blocks are detectable.
Nuclear genes mapped to C. rubella. Vertical lines, genes (colored by topology). Line heights
proportional to bootstrap support (Fig. S2a-c).
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Fig. 3
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