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1 Introduction

The prediction of primordial scalar perturbations [1] in single-scalar inflation
described by the Lagrangian,

L =
R
√−g
16πG

− 1

2
∂µϕ∂νϕg

µν
√−g − V (ϕ)

√−g . (1)

represents the first (and so far only) observed quantum gravitational phe-
nomena [2–4]. It is frustrating that we do not know the scalar potential
V (ϕ), or even if single-scalar inflation is correct. It is also frustrating that
so little guidance for fundamental theory is provided by observation. The
approximately 107 pixels of data from the primordial spectrum [5] seem to
be well described by just two numbers,

∆2
R(k) ≃ As

( k
k∗

)ns−1

, As = (2.105± 0.030)× 10−9 , ns = 0.9665± 0.0038 ,

(2)
where the pivot is k∗ = 0.05 Mpc−1.

If relation (2) is correct then we can reconstruct the inflationary geometry
in terms of As, ns and the still unknown tensor-to-scalar ratio r∗ < 0.07 [6].
Expressing the first slow roll parameter ǫ(n) and the Hubble parameter H(n)
in terms of the number of e-foldings ∆n ≡ n − n∗ since the pivot mode
experienced horizon crossing, the lowest order slow roll approximation gives,

ǫ(n) ≃ r∗
16
e(1−ns)∆n , H(n) ≃ H∗ exp

[
− r∗
16(1−ns)

(
e(1−ns)∆n − 1

)]
, (3)

where 8πGH2
∗ ≡ r∗Asπ

2/2. Using the standard procedure for reconstructing
the inflaton and its potential [7–12] we find,

√
8πG

(
ϕ(n)− ϕ∗

)
≡ ∆ψ ≃ − 1

1−ns

√
r∗
2

[
e

1

2
(1−ns)∆n − 1

]
, (4)

(8πG)2V (ϕ) ≃ 3

2
π2r∗As exp

[√
r∗
8
∆ψ −

(1−ns

4

)
∆ψ2

]
. (5)

Nature is under no compulsion to comply with human aesthetic preju-
dices, so the featureless, gently sloping potential (5) may be all there is to
primordial inflation. However, it raises severe issues with the fine-tuning
of initial conditions needed to make inflation start, and with the tendency
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for small fluctuations to produce dramatically different conditions in distant
portions of the universe [13]. What to make of this has provoked controversy
even among some of the pioneers of inflation [14–16].

The power spectrum data [17] actually provides marginal evidence for
more structure in the form of “features”. These are transient fluctuations
away from the best fit — usually a depression of power followed by an excess
at smaller angular scales — which are visible in the Planck residuals for
20 <∼ ℓ <∼ 1500 [18]. These were first noticed in WMAP data [19–21] and
have persisted [22, 23]. None of the observed features reaches the 5σ level
of a detection, but it is conceivable that this threshold might be reached by
correlating them with other data sets [24]. We have suggested the possibility
of doing this (in the far future) with data from the tensor power spectrum
[25, 26]. Here we study the prospects for exploiting non-Gaussianity.

Maldacena’s analysis [27] established that single-scalar inflation (1) can-
not produce a detectable level of non-Gaussianity if the potential is smooth
like (5). The effect from a smooth potential is widely distributed over the an-
gular bi-spectrum so the standard estimators average over all possible 3-point
correlators in order to maximize the signal [28, 29]. Planck has not seen a
statistically significant indication of non-Gaussianity using any of these stan-
dard estimators [30]. On the other hand, it has long been recognized that
much stronger transient effects can come from features [31–33]. Because these
effects are concentrated at certain angular scales the standard estimators do
not resolve them well. An approximate computation of the effect from the
first feature indicated that its non-Gaussian signal is not detectable [31]. We
will re-examine this problem using some recently developed improvements in
approximating the scalar mode functions [26,34], which unfortunately do not
alter the previous conclusion.

This paper consists of five sections, of which this Introduction is the first.
Section 2 is devoted to notation and conventions. The various contributions
to non-Gaussianity are listed there, and the one associated with features
is identified. In section 3 we apply our approximation for the scalar mode
function to derive an analytic expression for the bi-spectrum as a functional
of the inflationary geometry. Section 4 optimizes the parameters for a simple
model of the first feature in which the bi-spectrum can be computed exactly.
Our conclusions comprise section 5.
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2 Notation and Conventions

Our purpose is to elucidate how quantities depend functionally on the ge-
ometry of inflation. We employ the Hubble representation [35] using Hubble
parameter H and first slow roll parameter ǫ of the homogeneous, isotropic
and spatially flat background geometry of inflation,

ds2 = −dt2 + a2(t)d~x·d~x =⇒ H ≡ ȧ

a
> 0 , ǫ ≡ − Ḣ

H2
< 1 . (6)

It is convenient to regard our time variable as n ≡ ln[a(t)/ai], the number of
e-foldings from the beginning of inflation. If inflation ends after ne e-foldings
then the more familiar number of e-foldings until the end of inflation is N ≡
ne− n. With this time variable ǫ(n) provides the simplest representation for
the geometry of inflation with the Hubble parameter evolved from its initial
value Hi,

H(n) = Hi exp
[
−
∫ n

0

dm ǫ(m)
]
. (7)

We use a prime to denote differentiation with respect to n, as in ǫ = −H ′/H .
The key unknown in computing both the scalar power spectrum and the

bi-spectrum is the scalar mode function v(n, k). In our notation its equation,
Wronskian normalization and asymptotically early time form are [36, 37],

v′′ +
(
3− ǫ+ ǫ′

ǫ

)
v′ +

k2v

H2a2
= 0 , vv′∗− v′v∗ = i

ǫHa3
, v −→ exp[−ik

∫ n

0
dm
Ha

]√
2kǫa2

.

(8)
Let nk stand for the e-folding of first horizon crossing, when modes of wave
number k obey k ≡ H(nk)a(nk). One can see from (8) that the mode function
rapidly approaches a constant after this time. The scalar power spectrum is
computed by evolving v(n, k) from its early time form to this constant,

∆2
R(k) = 4πG× k3

2π2
×
∣∣∣v(n, k)

∣∣∣
2

n≫nk

. (9)

Maldacena’s expression for the bi-spectrum [27] can be expressed as the
sum of seven contributions, of which three pairs are usually combined [33].
In our notation the I = 1, ...7 contributions each take the form,

BI(k1, k2, k3) = (4πG)2Re

[
v(ne, k1)v(ne, k2)v(ne, k3)

×i
∫ ne

0

dn ǫ(n)H(n)a3(n)×B∗
I (n, k1, k2, k3)

]
. (10)
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The four unconjugated BI(n, k1, k2, k3) combinations are,

B1+3 = ǫ

[
K4

123

k22k
2
3

v1v
′
2v

′
3 +

K4
231

k23k
2
1

v′1v2v
′
3 +

K4
312

k21k
2
2

v′1v
′
2v3

]
, (11)

B2 = ǫ

[(k21+k22+k23
H2a2

)
v1v2v3

]
, (12)

B5+6 = ǫ2
[
K4

k22k
2
3

v1v
′
2v

′
3 +

K4

k23k
2
1

v′1v2v
′
3 +

K4

k21k
2
2

v′1v
′
2v3

]
, (13)

B4+7 =
ǫ′

ǫ

[(k21+k22+k23
H2a2

)
v1v2v3 − v1v′2v′3 − v′1v2v′3 − v′1v′2v3

]
, (14)

where the 4th order momentum factors in (11) and (13) are,

K4
123 ≡ k21(k

2
2+k

2
3) + 2k22k

2
3 − (k22−k23)2 , (15)

K4 ≡ k41 + k42 + k43 − 2k21k
2
2 − 2k22k

2
3 − 2k23k

2
1 . (16)

Two things are apparent from the initial factors of ǫ in expressions (11-
14). First, non-Gaussianity is small for smooth potentials like (5) because ǫ is
small and varies slowly. From (3) we see that ǫ ∼ 1

16
r∗ < 0.0044, and even the

factor of ǫ′/ǫ in (14) is 1− ns ∼ 0.034. Second, much larger non-Gaussianity
can arise from B4+7 in models with features. In that case ǫ remains small,
but ǫ′/ǫ can reach order one over a small range of n.

The mode-dependent factors inside the square brackets of (11-14) are also
informative when combined with three insights from the mode equation (8):

1. The mode function v(n, k) is oscillatory and falling off like 1/a until it
freezes in to a constant V (k) (which might be complex) around n ≈ nk;

2. The approach to V (k) has real part Re[v(n, k)/V (k)] ∼ (k/Ha)2; and

3. The approach has Im[v(n, k)/V (k)] ∼ −1/2ǫHa3|V (k)|2.

Together with the general form (10), these facts imply that the n-integrand
for each of the four contributions is oscillatory before the largest of the three
wave numbers has experienced horizon crossing and falls off like 1/a2 there-
after. This has important consequences for designing estimators to detect
non-Gaussianity. When the potential is smooth both ǫ(n) and ∂n ln[ǫ] are
nearly constant, so all wave numbers will show nearly the same effect and
the best strategy is to combine them as the standard estimators do. However,
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when a feature is present the factor of ∂n ln[ǫ(n)] in (14) becomes significant
in small range of n, and the non-Gaussian signal will be much larger for
modes which experience horizon crossing around that time. Averaging over
all observable wave numbers runs the risk of drowning a real signal in noise.

Because conventions differ we close by reviewing how the fundamental
fields relate to ∆2

R(k) and B(k1, k2, k3). We use the gauge of Salopek, Bond
and Bardeen [38] in which time is fixed by setting the inflaton to its back-
ground value and the graviton field is transverse. In this gauge the metric
components g00 and g0i are constrained and the dynamical variables ζ(n, ~x)
and hij(n, ~x) reside in the spatial components,

gij(n, ~x) = a2e2ζ(n,~x)×
[
eh(n,~x)

]
ij

, hii(n, ~x) = 0 . (17)

Scalar perturbations derive from ζ(n, ~x) whose free field expansion is,

ζ̃(n,~k) ≡
∫
d3x e−i~k·~xζ(n, ~x) =

√
4πG

[
v(n, k)α(~k) + v∗(n, k)α†(−~k)

]
, (18)

where α† and α are creation and annihilation operators,
[
α(~k), α†(~p)

]
= (2π)3δ3(~k−~p) , α(~k)

∣∣∣Ω
〉
= 0 . (19)

Assuming the wave numbers experience horizon crossing before the end of
inflation ne, our power spectrum and bi-spectrum are,

〈
Ω
∣∣∣ζ̃(ne, ~k)ζ̃(ne, ~p)

∣∣∣Ω
〉
=

2π2

k3
×∆2

R(k)×(2π)3δ3(~k+~p ) , (20)
〈
Ω
∣∣∣ζ̃(ne, ~k1)ζ̃(ne, ~k2)ζ̃(ne, ~k3)

∣∣∣Ω
〉
= B(k1, k2, k3)×(2π)3δ3(~k1+~k2+~k3) . (21)

Note that while the power spectrum is dimensionless, the bi-spectrum has
the dimension of k6.

3 Analytic Approximation for the Bi-Spectrum

In this section we first convert the key contribution (14) from the mode
function v(n, k) to its norm-square N(n, k). Then we introduce an approx-
imation [26, 34] which should be very accurate for the physically relevant
case of small ǫ(n) but significant ∂n ln[ǫ(n)]. Finally, we study a model of
the first feature to compare our result for B4+7(k1, k2, k3) with the simpler
approximation of Adshead, Dvorkin, Hu and Peiris [31].
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3.1 Approximating the mode functions

Even considered as a purely numerical problem, it is better to convert the
equations (8) for v(n, k) into relations for N(n, k) ≡ |v(n, k)|2 [39]. Avoiding
the need to keep track of the phase makes about a quadratic improvement
in convergence. Further, nothing is lost because the phase can be recovered
by a simple integration [26],

v(n, k) =
√
N(n, k) exp

[
−i

∫ n

0

dm

2ǫHa3N

]
≡

√
N(n, k) eiθ(n,k) . (22)

It is best to begin with the outer factors of v(ne, k) in expression (10).
Assuming the various wave numbers have experienced horizon crossing these
outer mode functions can be expressed in terms of the power spectrum (9),

v(ne, k) =

√
π

2Gk3
∆R(k)e

iθ(ne,k) . (23)

We next combine each outer phase with the appropriate inner phase,

v̂(n, k) ≡ v(n, k)e−iθ(ne,k) =⇒ θ(n, k)− θ(ne, k) =

∫ ne

n

dm

ǫHa3N
≡ φ(n, k) .

(24)
Note that φ(n, k) approaches zero like 1/a3 for large n. At this stage one can
recognize the real part of the undifferentiated terms,

Re
[
i v̂∗1 v̂

∗
2 v̂

∗
3

]
=

√
N1N2N3 sin(φ1+φ2+φ3) . (25)

The differentiated terms are more complicated,

v̂′(n, k) = v̂(n, k)
[N ′(n, k)

2N(n, k)
+ iφ′(n, k)

]
. (26)

Hence we have,

Re
[
i v̂∗1 v̂

′∗
2 v̂

′∗
3

]
=

√
N1N2N3

{
sin(φ1+φ2+φ3)

[ N ′
2

2N2

N ′
3

2N3

− φ′
2φ

′
3

]

+cos(φ1+φ2+φ3)
[ N ′

2

2N2
φ′
3 +

N ′
3

2N3
φ′
2

]}
. (27)
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There are three terms such as (27), so putting everything together gives,

B4+7(k1, k2, k3) =
4π4∆R(k1)∆R(k2)∆R(k3)

k21 k
2
2 k

2
3

×
√

2Gk1k2k3
π

∫ ne

0

dn ǫ′Ha3

×
√
N1N2N3

{
sin(φ1+φ2+φ3)

[(k21+k22+k23
H2a2

)
− N ′

2

2N2

N ′
3

2N3
+φ′

2φ
′
3 − . . .

]

− cos(φ1+φ2+φ3)
[ N ′

1

2N1
(φ′

2+φ
′
3) +

N ′
2

2N2
(φ′

3+φ
′
1) +

N ′
3

2N3
(φ′

1+φ
′
2)
]}
. (28)

To develop a useful approximation for (28) we first factor N(n, k) into
the instantaneously constant ǫ solution N0(n, k) times the exponential of a
residual g(n, k) which is sourced by derivatives of ln[ǫ(n)] [26, 34],

N(n, k) = N0(n, k)× exp
[
−1
2
g(n, k)

]
. (29)

Of course the derivatives of ln[ǫ(n)] which source g(n, k) are of great concern
in the study of features, as is the potentially large factor of 1/ǫ in N0(n, k).
Taking all the other factors of ǫ to zero causes a negligible loss of accuracy.
The resulting approximation involves three functions g̃(n, nk), γ̃

′(n, nk) and

φ̃(n, nk) which must be tabulated over a narrow range of n and nk,

B̃4+7(k1, k2, k3) =
4π4∆R(k1)∆R(k2)∆R(k3)

k21 k
2
2 k

2
3

×−
∫ ne

0

dn ∂n

√
GH2(n)

πǫ(n)

×
√

(1+e2∆n1)(1+e2∆n2)(1+e2∆n3) e−
1

2
(g̃1+g̃2+g̃3)

{
sin(φ̃1+φ̃2+φ̃3)

×
[
e−2∆n1−

( 1

1+e2∆n2

+
1

4
γ̃′2

)( 1

1+e2∆n3

+
1

4
γ̃′3

)
+φ̃′

2φ̃
′
3 + (231) + (312)

]

− cos(φ̃1+φ̃2+φ̃3)

[( 1

1+e2∆n1

+
1

4
γ̃′1

)
(φ̃′

2+φ̃
′
3) + (231) + (312)

]}
. (30)

Here and henceforth ∆ni ≡ n − ni, where ni is the e-folding at which wave
number ki experiences horizon crossing.

The tabulated function g̃(n, nk) represents an approximation of the am-
plitude residual g(n, k) in (29). It is expressed as a Green’s function integral
over sources before and after horizon crossing,

Sb(m) = ∂2m ln[ǫ(m)] +
1

2

(
∂m ln[ǫ(m)]

)2

+ 3∂m ln[ǫ(m)] , (31)
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Sa(m,nk) =
2∂m ln[ǫ(m)]

1+e2∆m
+

(
2e−∆m ǫ(nk)

ǫ(m)

1+e2∆m

)2

, (32)

where ∆m ≡ m− nk. The integral expression for G̃(n, nk) is,

g̃(n, nk) = −2θ(−∆n)
∫ n

0

dmG(∆m,∆n)Sb(m) + 2θ(∆n)

{
G(0,∆n)

ǫ′(nk)

ǫ(nk)

−
∫ nk

0

dmG(∆m,∆n)Sb(m)−
∫ n

nk

dmG(∆m,∆n)Sa(m,nk)

}
, (33)

where the Green’s function is,

G(∆m,∆n) =
1

2

(
e∆m+e3∆m

)

× sin

[
2e−∆m − 2 tan−1

(
e−∆m

)
− 2e−∆n + 2 tan−1

(
e−∆n

)]
. (34)

Differentiating the Green’s function with respect to n gives,

∂nG(∆m,∆n) =

(
e∆m+e3∆m

e∆n+e3∆n

)

× cos

[
2e−∆m − 2 tan−1

(
e−∆m

)
− 2e−∆n + 2 tan−1

(
e−∆n

)]
. (35)

It occurs in the second of the tabulated functions,

γ̃′(n, nk) = 2θ(−∆n)∂n ln[ǫ(n)] + ∂ng̃(n, nk) . (36)

The final tabulated function is our approximation of the angle φ(n, k),

φ̃(n, nk) =

∫ ne

n

dm
e−∆m+ 1

2
g̃(m,nk)

1+e2∆m
. (37)

Note that its derivative does not require separate tabulation,

φ̃′(n, nk) = −
e−∆n+ 1

2
g̃(n,nk)

1+e2∆n
. (38)

Adshead, Dvorkin, Hu and Peiris [31] introduced a much simpler approx-
imation which, in our language, corresponds to setting g̃(n, nk) and γ̃

′(n, k)
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to zero in expression (30). Note that this reduces the angle and its derivative
to be functions of just the single variable ∆n = n− nk,

φ̃(n, nk)
∣∣∣
g̃=0

= e−∆n − tan−1
(
e−∆n

)
, φ̃′(n, nk)

∣∣∣
g̃=0

= − e−∆n

1+e2∆n
. (39)

This approximation is certainly simpler to implement, but it completely ig-
nores how the inner mode functions change in response to the feature.

3.2 The Step Model

The model we shall study belongs to a class introduced in 2001 by Adams,
Cresswell and Easther [40],

V (ϕ) =
1

2
m2ϕ2 ×

[
1 + c tanh

(ϕ−b
d

)]
. (40)

A fit to the first feature (20 <∼ ℓ <∼ 40) using WMAP data gave [41],

b =
14.668√
8πG

, c = 1.505×10−3 , d =
0.02705√

8πG
, m =

7.126×10−6

√
8πG

. (41)

171 172 173 174

n

0.002

0.004

0.006

0.008

0.010

0.012

0.014

ϵ(n)

171 172 173 174

n

-0.5

0.5

1.0

1.5

ϵ′

ϵ

Figure 1: The left hand graph gives ǫ(n) for the Step Model (40-41). The right hand
graph shows ∂n ln[ǫ(n)] for this model. Note that the logarithmic derivative is only signif-
icant in the narrow range 170.8 <∼ n <∼ 172.8.

Figure 1 shows the first slow roll parameter and its logarithmic derivative
for this model. Two obvious points are:

1. The first slow roll parameter is always very small;1 and

1It is actually a little too large for the improved bounds on the tensor-to-scalar ratio [6]
since the time of WMAP. However, the model serves well enough for the purposes of
illustration.
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2. The crucial factor of ∂n ln[ǫ(n)] which sources non-Gaussianity is only
significant for the two e-foldings 170.8 <∼ n <∼ 172.8.

Inflation ends for this model at ne ≃ 225.6 so the feature peaks about 54
e-foldings before the end of inflation.

Let us first establish that our approximations for the amplitude correction
(33) and for the phase (37) are valid. Figure 2 displays the exact results (in
blue) versus our approximations (in yellow) for the case of nk = 172.5 where
the amplitude correction is close to it maximum. The agreement is good,
except for an offset at late times which is due to g(n, k) having become large
enough around n ≈ 172 that nonlinear corrections matter [34]. For most
values of nk this is not an issue and, even for nk = 172.5, the rightmost
graph of Fig. 1 shows that the offset has little effect on non-Gaussianity.

Figure 2: Comparison between exact results (in blue) and our approximations (in yellow)
for the amplitude correction (33) and the phase (37). The left hand graph shows g(n, k)

and the right hand graph shows sin[φ̃(n, k)].

In view of point (2) above, we only require the tabulated functions g̃(n, nk),

γ̃′(n, nk) and φ̃(n, nk) for the two e-foldings from n = 170.8 to n = 172.8.
Figure 3 shows contour plots of these functions for modes which experience
horizon crossing in the range 170 < nk < 173.5.
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Figure 3: Various correction factors for the Step Model. The left hand graph gives our
approximation (33) for (−4 times the logarithm of) the amplitude correction g(n, nk) in
the Step Model. The middle graph shows the derivative factor (36). And the right hand
graph shows how much our approximation (37) differs from the de Sitter result (39).

It is important to bear in mind that the source ∂n ln[ǫ(n)] on Fig. 1
modulates how the corrections of Fig. 3 affect non-Gaussianity. So although
the graph of g̃(n, nk) shows a strong amplitude enhancement for nk ≃ 171.5,
and an equally strong suppression for nk ≃ 172.5, the latter effect is much
less significant because it peaks for n >∼ 172.1, by which point ∂n ln[ǫ(n)] is
small. Because of this modulation, the biggest correction comes from the
large positive phase shift at nk ≃ 172.6, which peaks at n ≃ 171.7.

170.5 171.0 171.5 ����� ����� ����� �����

nk

-50
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n
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Figure 4: The left hand graph shows the “inner” part of expression (30), starting from
−
∫
ne

0
dn . . ., for the equilateral triangle case of k1 = k2 = k3. The blue curve shows

our approximation while the yellow curve shows the simpler approximation of Adshead,
Dvorkin, Hu and Peiris [31]. The right hand graph shows the integral of the square of our
approximation (in blue) versus the product of our approximation times theirs (in yellow).
The ratio of the areas under the yellow to the blue curves is about 0.637 at the end.

Figure 4 gives some idea of the significance of the various corrections
we have introduced to the approximation of Adshead, Dvorkin, Hu and
Peiris [31], but it is limited by the assumption that k1 = k2 = k3. The
correlators Hung, Fergusson and Shellard [42] provide a more detailed com-
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parison between any two bi-spectra Bi(k1, k2, k3) and Bj(k1, k2, k3) which
possess the same power spectrum ∆2

R(k). They are formed from ratios of
“inner products” defined as,

[Bi, Bj] ≡ Constant×
∫

VB

dk1dk2dk3(k1k2k3)
4Bi(k1, k2, k3)Bj(k1, k2, k3)

∆2
R(k1)∆

2
R(k2)∆

3
R(k3)

, (42)

where VB indicates the range of the wave numbers that obey the triangle
condition (|k1−k2| < k3 < k1+k2), plus whatever other restrictions we wish
to impose, and the multiplicative constant is irrelevant. Hung, Fergusson and
Shellard use these inner products to form, respectively, shape, amplitude and
total correlators,

S(Bi, Bj) ≡
[Bi, Bj ]√

[Bi, Bi][Bj , Bj]
, A(Bi, Bj) ≡

√
[Bi, Bi]

[Bj , Bj]
, (43)

T (Bi, Bj) ≡ 1−
√

[Bj−Bi, Bj−Bi]

[Bj, Bj ]
. (44)

We evaluated all three correlators to compare our approximation (as Bi) with
the simpler approximation (as Bj) of Adshead, Dvorkin, Hu and Peiris [31]
over the narrow range 170.8 < ni < 173 of the greatest response. The results
are,

S ≃ 0.9578 , A ≃ 1.3436 , T ≃ 0.5189 . (45)

Even though the equilateral triangle case shown by Figure 4 seems to roughly
agree we can see there is quite a large mismatch in the amplitudes that leads
to a substantial degradation of the total correlator.

4 The Square Well Model

In 1992 Starobinsky proposed a simple model in which the first slow roll
parameter makes an instantaneous jump from one value to another, which
permits the mode functions to be solved exactly [43]. Because the fundamen-
tal source of non-Gaussianity ∂n ln[ǫ(n)] is a delta function for this case, one
can exactly compute B4+7(k1, k2, k3) and derive excellent approximations for
the remaining contributions [44–46]. We shall make a slight modification of
this model in which ǫ(n) returns to its original value after a short number of

12



e-foldings ∆n,

ǫ(n) = ǫ1θ(n0−n) + ǫ2θ(n−n0)θ(n0+∆n−n) + ǫ1θ(n−n0−∆n) . (46)

We first solve exactly for the mode functions. Next a determination is made
of the parameter values for n0, ∆n, ǫ1 and ǫ2 to cause the scalar power spec-
trum of this model to agree with a numerical determination of the Step Model
power spectrum of section 3.2 over the crucial range 170.8 < nk < 172.8. Af-
ter that B4+7(k1, k2, k3) is computed exactly, and then in the approximation
of setting all small factors of ǫ to zero. We close by using the correlators
(43-44) of Hung, Fergusson and Shellard [42] to compare this exactly solv-
able model with our approximation, and with the simpler approximation of
Adshead, Dvorkin, Hu and Peiris [31].

For ǫ(n) = ǫi for all time then the exact mode function is,

vi(n, k) =

√
π

4ǫi(1−ǫi)Ha3
H(1)

νi

(
k

(1−ǫi)Ha

)
, νi =

1

2

(3−ǫi
1−ǫi

)
. (47)

For the actual parameter (46) the mode function takes the form,

v(n, k) = v1(n, k)θ(n0−n)
+vB(n, k)θ(n−n0)θ(n0+∆n−n) + vC(n, k)θ(n−n0−∆n) , (48)

where vB(n, k) and vC(n, k) are,

vB(n, k) = αv2(n, k) + βv∗2(n, k) , (49)

vC(n, k) = α
[
γv1(n, k)+δv

∗
1(n, k)

]
+ β

[
γv1(n, k)+δv

∗
1(n, k)

]∗
. (50)

The appropriate matching conditions at n = n0 and n = n0 + ∆n are the
continuity of v(n, k) and of the product ǫ(n)×v′(n, k). The coefficients α and
β involve the mode functions (47) and their derivatives evaluated at n = n0,

α = −iHa3
[
ǫ2v1v

∗
2
′−ǫ1v′1v∗2

]
, β = iHa3

[
ǫ2v1v

′
2−ǫ1v′1v2

]
. (51)

The coefficients γ and δ involve the mode functions (47) and their derivatives
evaluated at n = n0 +∆n,

γ = −iHa3
[
ǫ1v2v

∗
1
′−ǫ2v′2v∗1

]
, δ = iHa3

[
ǫ1v2v

′
1−ǫ2v′2v1

]
. (52)
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Figure 5: Both graphs show the ∆2

R
(k) as a function of e-folding of horizon crossing,

for the Step Model (in blue) and for the best fit Square Well Model (in yellow). The

approximate conversion to wave number is k ≃ aimen
√
150− 2

3
n, where ai is the scale

factor at the beginning of inflation and m = 7.126× 10−6
√
8πG.

From expression (50) and the small argument form of the Hankel function
we infer the late time limit of the mode function,

lim
n≫nk

vC(n, k) = −
iH(nk)√
2ǫ1k3

×Γ(ν1)[2(1−ǫ1)]
1

1−ǫ1

√
π

×
[
α(γ−δ)−β(γ∗−δ∗)

]
. (53)

Substituting this in expression (9) gives the Square Well model’s prediction
for the scalar power spectrum,

∆2
R(k) =

GH2(nk)

πǫ1
×Γ2(ν1)[2(1−ǫ1)]

2

1−ǫ1

π
×
∣∣∣α(γ−δ)−β(γ∗−δ∗)

∣∣∣
2

. (54)

Figure 5 compares (54) with a numerical determination of ∆2
R(k) for the Step

Model. There is no way to make the two results agree for all values of nk,
however, very good concurrence over the key range of 170.8 < nk < 172.8
results from the following choices for the Square Well parameters,

n0 = 171.3 , ∆n = 0.7 , ǫ1 = 0.0093 , ǫ2 = 0.0137 . (55)

The infinite sequence of oscillations (“ringing”) evident in Fig. 5 is the result
of the sharp transitions in ǫ(n) for the Square Well Model (46). For smooth
transitions, such as those of the Step Model, the oscillations decay rapidly.
Of course no one understands what caused features (if they are present) so it
may be that the transition really is instantaneous, in which case ringing is a
prominent signature that persists long after the transition. This possibility
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was pursued in a fascinating study by Adshead, Dvorkin, Hu and Lim [32].
However, we shall here take the view that ringing is an artifact of modelling
smooth transitions as instantaneous, and we shall accordingly focus narrowly
on the two e-foldings 170.8 < nk < 172.8 over which the Square Well model
is in reasonable agreement with the Step Model.

The great advantage of the Square Well Model is that the key modulation
factor of ǫ′/ǫ in expression (14) is a delta function,

ǫ′(n)

ǫ(n)
= ln

(ǫ2
ǫ1

)[
δ(n−n0)− δ(n−n1)

]
, (56)

where n1 ≡ n0 + ∆n. We must also understand how to evaluate certain
discontinuous factors at the jumps,

ǫ(n0)−→
(ǫ1+ǫ2

2

)
←− ǫ(n1) , (57)

ǫ(n0)v
′(n0, kα)v

′(n0, kβ)−→
(ǫ1+ǫ2

2

)ǫ1
ǫ2
v′1(n0, kα)v

′
1(n0, kβ) , (58)

ǫ(n1)v
′(n1, kα)v

′(n1, kβ)−→
(ǫ1+ǫ2

2

)ǫ2
ǫ1
v′B(n1, kα)v

′
B(n1, kβ) . (59)

Substituting relations (56) and (57-59) into expressions (10) and (14) gives,

B4+7(k1, k2, k3) = (4πG)2
(ǫ1+ǫ2

2

)
ln
(ǫ2
ǫ1

)
Re

[
ivC(ne, k1)vC(ne, k2)vC(ne, k3)

×
[
H(n0)a

3(n0)F
∗(n0, k1, k2, k3)−H(n1)a

3(n1)G
∗(n1, k1, k2, k3)

]]
, (60)

where the upper and lower factors are,

F (n, k1, k2, k3) ≡
(k21+k

2
2+k

2
3)

H2(n)a2(n)
v1(n, k1)v1(n, k2)v1(n, k3)

−ǫ1
ǫ2
v1(n, k1)v

′
1(n, k2)v

′
1(n, k3)−

ǫ1
ǫ2
v′1(n, k1)v1(n, k2)v

′
1(n, k3)

−ǫ1
ǫ2
v′1(n, k1)v

′
1(n, k2)v1(n, k3) , (61)

G(n, k1, k2, k3) ≡
(k21+k

2
2+k

2
3)

H2(n)a2(n)
vB(n, k1)vB(n, k2)vB(n, k3)

−ǫ2
ǫ1
vB(n, k1)v

′
B(n, k2)v

′
B(n, k3)−

ǫ2
ǫ1
v′B(n, k1)vB(n, k2)v

′
B(n, k3)

−ǫ2
ǫ1
v′B(n, k1)v

′
B(n, k2)vB(n, k3) , (62)
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Expressions (60-62) are exact, but somewhat opaque because they conceal
certain large factors of 1/ǫ, and because they are obscured by many other
negligibly small positive powers of ǫ. There is no appreciable loss of accuracy,
and a considerable simplification, by extracting the large factors of 1/ǫ and
setting the other factors of ǫ to zero. Note that this makes the Hubble
parameter constant. Two ratios which involve the momenta are,

κi ≡
ki

H(n0)a(n0)
−→ enki

−n0 , λi ≡
ki

H(n1)a(n1)
−→ enki

−n1 = κie
−∆n .

(63)
Applying these approximations to the mode functions (at n0 and n1) and
their first derivatives gives,

vi(n0, k) −→ −
iH(1−iκ)eiκ√

2ǫik3
, v′i(n0, k) −→

iHκ2eiκ√
2ǫ1k3

, (64)

vi(n1, k) −→ −
iH(1−iλ)eiλ√

2ǫik3
, v′i(n1, k) −→

iHλ2eiλ√
2ǫik3

. (65)

These approximations carry the first set of combination coefficients (51) to,

αi −→
i

2κi

[
(1−iκi)

√
ǫ2
ǫ1
− (1+iκi)

√
ǫ1
ǫ2

]
, (66)

βi −→
i

2κi
(1−iκi)

[√
ǫ2
ǫ1
−
√
ǫ1
ǫ2

]
e2iκi . (67)

Only the difference of the second set (52) matters, and it becomes,

γi − δi −→
eiλi

λi

[
(1−iλi) sin(λi)

√
ǫ1
ǫ2
−

[
sin(λi)−λi cos(λi)

]√ǫ2
ǫ1

]
. (68)

With these approximations expression (14) assumes the form,

B4+7(k1, k2, k3) −→
(πGH2)2

k21k
2
2k

2
3

(ǫ1+ǫ2
ǫ31

)
ln
(ǫ2
ǫ1

)
Re

[
iA1A2A3

κ1κ2κ3

×
[
F∗e−i(κ1+κ2+κ3) −

(ǫ1
ǫ2

) 3

2G∗e−i(λ1+λ2+λ3)
]]
, (69)

where Ai ≡ αi(γi − δi)− βi(γ∗i − δ∗i ) and the approximated factors are,

F = (κ21+κ
2
2+κ

2
3)(1−iκ1)(1−iκ2)(1−iκ3)
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−ǫ1
ǫ2
κ21κ

2
2(1−iκ3)−

ǫ1
ǫ2
κ21κ

2
3(1−iκ2)−

ǫ1
ǫ2
κ22κ

2
3(1−iκ1) , (70)

G = e∆n(κ21+κ
2
2+κ

2
3)

3∏

i=1

[
αi(1−iλi)− βi(1+iλi)e−2iλi

]

−e−∆n ǫ2
ǫ1

3∑

i=1

[∏

j 6=i

κ2j (αj−βje−2iλj )
][
αi(1−iλi)−βi(1+iλi)e−2iλi

]
. (71)

One can see from Figure 5 that the power spectra of the Square Well
Model and the step Model agree almost perfectly over the region 170.8 < n <
173. This might seem to indicate that they would produce the nearly the
same non-Gaussian signal, at least when restricted to the same narrow range.
However, the results are disappointing when the two models are compared
using the shape, amplitude and total correlators (43-44) of Hung, Fergusson
and Shellard [42],

S ≃ 0.7976 , A ≃ 1.1050 , T ≃ 0.3230 , (72)

where Bi was the Square Well Model and Bj was the Step Model. The ampli-
tudes of the two models are in much better agreement than for the comparison
(45) of the Step Model with the approximation of Adshead, Dvorkin, Hu and
Peiris [31]. However, the shapes disagree, which results in an even lower total
correlator. Note that the problem in this case did not arise from inaccurately
modeling the non-Gaussian response to a given history ǫ(n), but rather from
the fact that different histories produce different bi-spectra, even when the
power spectra are very similar.

We also compared the Square Well Model (as Bi) with the approximation
of Adshead, Dvorkin, Hu and Peiris [31] (as Bj),

S ≃ 0.8946 , A ≃ 1.4847 , T ≃ 0.2598 . (73)

Both the shape correlator and the amplitude correlator are worse than for
the comparison (45) of our approximation with that of Adshead, Dvorkin,
Hu and Peiris, resulting in a much smaller total correlator.

5 Epilogue

We have examined the non-Gaussianity associated with conjectured sharp
variations in the first slow roll parameter ǫ(n) known as “features”. In sec-
tion 2 we identified the crucial contribution, equation (14), which becomes
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significant for features. Section 3 applied an approximation for how the scalar
mode functions depend analytically on ǫ(n) [26, 34] to develop an approxi-
mation (30) for this term. Our result involves three tabulated functions of
the instantaneous e-folding n and the e-folding of horizon crossing nk:

1. g̃(n, nk) given in expression (33);

2. γ̃′(n, nk) given in expression (36); and

3. φ̃(n, nk) given in expression (37).

Although generating these functions is numerically challenging, it only needs
to be done over the narrow range of n and nk associated with the feature.
This is illustrated in Figure 3 which identifies the small ranges of n and nk

over which significant corrections would occur for a model of the first feature.
Our technique is more time-consuming, but also more accurate, than

the approximation of Adshead, Dvorkin, Hu and Peiris [31]. When the two
approximations were compared using the total correlator (44) of Hung, Fer-
gusson and Shellard [42] the result (45) was nearly a 50% degradation of the
signal, even when the comparison was restricted to a narrow range around
the feature. Accurate modeling is crucial when studying features because
they produce an oscillating signal, so that even small errors in the phase
can significantly degrade the signal. This is especially relevant because the
response to a feature is delayed to later crossing wave numbers. Unless the
late time phase information is accurately modeled, trying to boost the signal
by including the delayed response will actually reduce the measured signal.

In section 4 we presented a slight elaboration of a model due to Starobin-
sky [43] for which the crucial contribution (14) can be computed exactly,
without any approximation [44–46]. In our model ǫ(n) jumps from ǫ1 to ǫ2
and then falls backs down after an interval ∆n, hence the name “Square
Well Model”. Expression (60) gives the exact result for the bi-spectrum of
the Square Well Model. However, taking the inessential factors of ǫ to zero
produces a simpler and more transparent result (69) which is almost as accu-
rate. A consequence of the sharp transitions is the persistence of oscillations
for wave numbers which experience horizon crossing long after the transition.
We regarded this as an artifact of the square well approximation, and trun-
cated the late oscillations. For a different point of view we recommend the
study of Adshead, Dvorkin, Hu and Lim [32].

18



Figure 4 shows that the power spectra of the Square Well Model agree
with that of the Step Model over the narrow range of 170.8 < n < 173.
However, the bi-spectra they produce are very different. We found a total
shape correlator (72) of only about one third! This underlines the importance
of knowing the history ǫ(n) in addition to accurately modeling the response
to it.

Our study is somewhat different from the recent Planck analysis of the-
oretically motivated models for features [47] in that we employed no overar-
ching model. What we did instead is to develop an analytic approximation
(30) for the bi-spectrum that can be applied whenever ǫ(n) is known.
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