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A B S T R A C T

One popular approach to assess the geometric differences between a part produced by additive manufacturing
(AM) and its intended design is the use of a 3D scanner to produce a point cloud. This digital scan is then aligned
against the part’s intended design, allowing for quantification of print accuracy. One of the most common
methods for achieving this alignment is the Iterative Closest Point (ICP) algorithm. This paper evaluates several
potential pitfalls that can be encountered when applying ICP for assessment of dimensional accuracy of AM
parts. These challenges are then illustrated using simulated data, allowing for quantification of their impact on
the accuracy of deviation measurements. Each of these registration errors was shown to be significant enough to
noticeably affect the measured deviations. An efficient and practical method to address several of these errors
based on engineering informed assumptions is then presented. Both the proposed method and traditional un-
constrained ICP are used to produce alignments of real and simulated measurement data. A real designed ex-
periment was conducted to compare the results obtained by the two registration methods using a linear mixed
effects modeling approach. The proposed method is shown to produce alignments that were less sensitive to
variation sources, and to generate deviation measurements that will not underestimate the true shape deviations
as the unconstrained ICP algorithm commonly does.

1. Introduction

One major challenge in the field of additive manufacturing (AM) is
to ensure the accuracy of produced parts, which can often deviate
significantly from the intended design. Substantial work has been done
in the literature to provide strategies to control these deviations. These
efforts fall into a number of broad categories, including process para-
meter optimization [1–7], product design adjustment [8–12], and on-
line monitoring [13–18]. One unifying task that must be completed as a
prerequisite for performing or assessing the efficacy of each of these
approaches is the assessment of part accuracy.

1.1. Accuracy assessment using scanned point clouds

There are many ways to measure the accuracy of a manufactured
part. These can range in complexity and cost from measurement of
predefined dimensions using calipers to the use of a CT scanner for
whole surface measurement [19–22]. To fully assess and control quality
of parts produced by AM, it is necessary to know the magnitude and
direction of deviation across the entire surface of a part. One method
that is growing in popularity is the use of a 3D scanner to generate a

digital cloud of points that replicate the object being scanned. These 3D
scanners utilize a range of technologies for surface reconstruction, in-
cluding structured light scanning, laser triangulation, and photo-
grammetry [23–27]. Once a point cloud of the manufactured object is
generated, it must be aligned (or registered) against a reference com-
puter aided design (CAD) or other 3D model representing the object’s
ideal shape and size [28]. After this is completed, deviations between
the two surfaces can be calculated.

This alignment can be produced using a number of algorithms that
have been developed in the past few decades. Several of the most
common algorithms are described in detail below, though the list is
certainly not exhaustive. A more comprehensive discussion of the topic
of registration can be found in Tam et al. [29].

1.2. Background and literature review

One simple and commonly utilized alignment method is point pairs
picking [30]. With this method, a user is first asked to pick several pairs
of corresponding points on both the scanned point cloud, and the shape
that it will be aligned to. These should be located across the surface of
the object. Then, the transformation (translation/rotation) of the scan
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point cloud that minimizes the sum of the distances between these pairs
of points is calculated and applied. In the case of rigid registration
(where both shapes are identical), this transformation can be perfectly
determined with just three point pairs [31]. In situations where de-
viation between the two shapes is to be measured, such as AM accuracy
assessment, more points are needed to achieve a quality alignment.
Smith, et al. [32], for example, utilized eight landmark points across the
surface to perform alignment of scan point clouds of 3D printed parts
produced on an FDM printer with their corresponding CAD file.

Another common method for achieving alignment is the 4PCS
Algorithm [31]. This algorithm is designed to produce alignment in
cases where point sets include outliers and noise. Further, the algorithm
can be successfully applied without any prefiltering or initial alignment
[31]. It functions by finding coplanar 4-points bases in the first point
cloud that also correspond to 4-points bases in the second point cloud.
A base is set of points that have good candidate correspondences be-
tween the two point clouds. Using these corresponding bases, the op-
timal transformation to align the two point clouds is determined [33]. A
number of variants and modifications to this algorithm can be found in
the literature [34,35].

Finally, one of the most frequently used tools for alignment is the
iterative closest point (ICP) algorithm developed by Besl and McKay
[36]. This algorithm is capable of aligning geometric representations
including point sets, line segment sets, implicit curves, parametric
curves, triangle sets, implicit surfaces, and parametric surfaces [36].
For the two point clouds to be aligned, the first point cloud is called the
“data” shape, which is produced using a 3D scanner in this application.
The second is the “model” shape, which represents the ideal for shape
and position. The ICP algorithm consists of the following set of steps:

1 For each point on the data shape, determine the closest corre-
sponding point on the model shape.

2 Find the transformation (translation/rotation) of the data shape that
minimizes the mean of the squares of distances between these point
pairs.

3 Apply the transformation to the data shape.
4 Calculate the mean square distance for the point pairs. If the dif-
ference between this mean square distance and the previous one is
below a preset threshold, stop. Otherwise, repeat from Step 1.

The final alignment of the data shape is then outputted as the re-
sulting transformation.

A large number of works have utilized ICP to align scan point clouds
of manufactured parts against their CAD designs for the purpose of
deviation calculation. In the AM literature, Klar, et al. [37] measured
the dimensional accuracy of 3D printed rectangular prisms of high
consistency nanocellulose. They began by fitting planes to each face of a
prism’s scan point cloud. The mean distance between each of these
planes was then used to generate a new ‘ideal’ rectangular prism. This
new rectangular prism was first aligned to the scan point cloud by eye,
and then secondly aligned to the point cloud using the ICP algorithm
implemented in CloudCompare, an open source program for working
with point clouds and triangular meshes [38]. Following this alignment,
the distances to the new prism shape were calculated for each point on
the scan point cloud.

Alharbi, et al. [39] studied the dimensional accuracy of 3D printed
dental restorations produced using stereolithography. Scans of their
printed parts were aligned to the STL file that they were printed from,
which represents the ideal shape of the printed part. The first alignment
step was done by eye, followed by ICP. Finally, the distances between
the STL file and printed parts were calculated.

Because the shape of a 3D printed part being evaluated will differ
slightly from the design it is being registered against, this is an instance
of nonrigid registration. Unfortunately, nonrigid registration tends to be
a more difficult challenge than rigid registration [29]. Further, align-
ments that are produced by the ICP algorithm can differ as a result of

factors such as scan density, completeness of the scan, differing initial
alignments, and convergence to differing local minimums. In order to
meet these challenges, a number of improvements to the ICP algorithm
have been proposed.

ICP variants using resampling have been proposed as a means of
avoiding convergence to poor alignments. Gelfand, et al. [40] proposed
modifications to the ICP algorithm that sampled points on regions of the
aligned shapes that had geometries considered to be more ‘stable’.
These geometries are complex, and only allow translation or rotation
with changes in the algorithm’s error metric. Kwok and Tang [41] used
stability analysis to improve upon normal space sampling, resulting in a
more efficient and robust registration algorithm. Yu, et al. [42] pro-
posed a method that resamples and removes noise from points on the
point clouds to be aligned, increasing accuracy when the algorithm is
applied to 3D face verification.

Chetverikov et al. [43,44] proposed the addition of trimming to the
ICP algorithm to allow ICP to accurately converge in the presence of
substantial differences between the data and model shapes. In this
formulation, Least Trimmed Squares is used as the error metric to be
minimized in Step 2 of the ICP algorithm. As a result of this, the pre-
sence of outliers and deviations in the shapes to be aligned has less of an
impact on the final alignment, as the largest point to point distances are
ignored. Dong et al. [45] built on this approach by adding Lie group
representations to determine geometric transformations when aniso-
tropic scaling is also desired.

Minguez, et al. [46] and Armesto et al. [47] proposed the Metric-
Based ICP Technique as a means of improving the algorithm’s robust-
ness and precision. This method replaces Euclidean distance with a new
distance measure that takes into account both translation and rotation,
both of which are relevant to proper alignment.

Kapoutsis, et al. [48,49] proposed the Morphological ICP algorithm,
which reduces the computational complexity of ICP’s closest corre-
sponding point operator. This method starts by building a Voronoi
diagram of model points using the morphological Voronoi tessellation
method. Then closest corresponding points can be determined using the
diagram. This reduces the computational cost of the operation from O
(NpNx) to O(Np) where Np and Nx are the number of points in the data
shape and model shape respectively.

Finally, because convergence to a global minimum is highly desir-
able for ensuring that the ICP algorithm doesn’t converge to an un-
reasonable local minimum, Yang, et al. [50] proposed Go-ICP, which
uses the branch and bound method to search SE(3) space for a trans-
formation that reduces the distance objective function value. ICP is then
performed with this initialized position, and the result is set as the
upper bound for the next branch and bound search. This process is
repeated until convergence to a desired accuracy.

While each of these proposed methods offers strong gains over the
conventional ICP algorithm, their use for applications in AM faces a
significant challenge. Namely, the alignment that minimizes deviations
between two surfaces isn’t necessarily the most reasonable alignment
for applications that seek to model and correct deviations of printed
parts. Instead, it is desirable that the algorithm for aligning surfaces
takes into account pre-existing knowledge of the manufacturing process
and produces alignments that make sense in light of this information.
This point will be elaborated on in Section 2.2. As a result, a registration
methodology that addresses the challenges posed by ICP while also
incorporating manufacturing process knowledge is needed.

1.3. Scope and contributions

The first contribution of this paper is to identify some of the chal-
lenges posed by ICP when applied to assessing the accuracy of AM built
parts. This discussion is necessary because ICP is one of the most fre-
quently used tools for 3D scan point cloud alignment in the AM lit-
erature. It is important to note here that while ICP wasn’t proposed with
manufacturing quality assessment in mind, it has become popular in
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this context. A number of these potential pitfalls will be discussed in
depth in Section 2 and quantitatively evaluated using simulated data in
Section 4. Other discussions of these pitfalls are available in the lit-
erature, however, this study seeks to uniquely make the issue evident in
the context of AM. While other algorithms differ in how alignment is
achieved, many of the points that will be covered in this paper will
potentially apply to them to a varying extent.

Second, a systematic approach to registration of point clouds spe-
cifically for AM quality assessment will be presented in Section 3. This
approach is designed to minimize variability and inaccuracies from ICP
alignment, while keeping deviations from a part’s design as close to
where they originated as possible. This is done through the use of
geometric constraints on the ICP algorithm’s alignment based on
manufacturing process knowledge. The methodology utilizes the ICP
algorithm, but does not fundamentally alter it. Finally, a quantitative
case study will be conducted in order to assess the potential magnitude
of deviations in ICP point cloud alignments before and after the ap-
plication of the proposed registration methodology. This will also be
described in Section 4.

2. Types of registration errors

Because of the potential biases introduced by the ICP algorithm, as
well as the inherent challenges of non-rigid registration, the deviation
measurements produced after registration of scan point clouds are not
always indicative of a 3D printed part’s error. This section will examine
a number of potential pitfalls. These alignment errors can be due to a
number of factors including selective scanning, error minimization bias,
and convergence to a local minimum that is far from the global
minimum.

2.1. Non-uniform sampling/scanning

The first category of errors that will be illustrated here is selective
scanning induced errors. Many factors, such as a surface’s reflectivity or
angle with respect to a scanner can impact the density of a scan point
cloud. Further, someone manually scanning a part using a laser scanner,
for instance, might conduct multiple passes of a certain region but only
one of another region. This would result in a point cloud of varying
density. It is also possible that certain surfaces on the shape might be
inaccessible to the scanner, meaning that they remain unscanned. One
example of this would be a deep recess in a part. Finally, when a part is
scanned while resting on a worktop or other surface, the bottom of the
part will often remain unscanned, since this region of the scan will be
inaccessible to the 3D scanner unless multiple scans are performed. This
results in a point cloud of just the top surfaces of a shape. This incon-
sistency in the density of a scan point cloud can greatly impact the
alignment produced by the ICP algorithm.

Because the ICP algorithm seeks to minimize the mean of the
squares of distances between the closest point pairs, registration will be
biased towards alignments that minimize deviation in regions with
greater point cloud density [36]. As a consequence, regions with lower
point cloud density will be aligned with greater deviation. This effect is
illustrated in 2D in Fig. 1. The top diagram shows how a scanned part
with uniform lateral shrinkage would intuitively be registered against
its CAD design. The bottom diagram roughly illustrates the effect of the
differing point cloud density on final alignment.

2.2. Deviation minimization bias due to unconstrained registration

A similar issue occurs when a scan only contains points from the top
surface of an object. This is often done out of necessity, since it is dif-
ficult to position a part in order to allow its entire surface to be scanned.
In this instance, the ICP algorithm will work to minimize the deviation
found on the top surface of the part, without the bottom surface acting
as a constraint on the alignment. Consequently, the top surface will be

pulled into near alignment with the reference part, irrespective of
where the bottom of the scanned part would naturally be found. This
can result in a substantial underestimation of dimensional inaccuracy.
This situation is illustrated in Fig. 2. The top diagram shows a natural
alignment of a part with inadequate height against its CAD design. It
should be noted here that what constitutes a natural alignment between
a deformed part and its CAD design depends on the assumptions that
are made. In this case, it will be assumed that the bottom surface of a
printed part is manufactured with perfect accuracy. This assumption
will be explained further in Section 3. It can be seen that under this
alignment, there is substantial geometric deviation between the two
shapes.

The difference in alignments produced for shapes with and without
bottom points is illustrated in the middle and bottom diagrams.
Interestingly, even with bottom points, ICP aligns the point cloud in the
center of the intended design. These two examples highlight a sig-
nificant tendency of the ICP algorithm: to spread overall shape devia-
tion. In the context of aligning two similar shapes, this makes sense,
however in the context of finding dimensional deviations in 3D printed
parts, this is problematic. The alignment that minimizes the mean of the
squares of distances between closest point pairs might not adequately
represent a printer’s build errors. If a printed part only deviates from its
design in a specific area, for instance, this error can be spread across the
whole shape. This can make there appear to be less error than there
actually is, and remove deviations from the region in which they were
produced. In the bottom diagram of Fig. 2, for instance, while the

Fig. 1. (Top) CAD design and point cloud of part with lateral shrinkage
(Bottom) Alignment of point cloud with inconsistent density after ICP.

Fig. 2. (Top) CAD design and point cloud of part with vertical shrinkage
(Middle) Alignment of point cloud without bottom points after ICP (Bottom)
Alignment of point cloud with bottom points after ICP.
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bottom surface of the dome was printed without any deviation, it will
show deviation. Conversely, the top surface will show less deviation
from its design than is actually present.

These pitfalls occur because the ICP algorithm isn’t constrained by
the realities of the manufacturing process that was used to produce the
part being evaluated. Engineering informed assumptions derived from
how the part was created help a user to determine what alignments
make sense in light of prior knowledge. Unconstrained ICP doesn’t
benefit from this knowledge.

2.3. Local minimum errors

The ICP algorithm has been proven to always converge mono-
tonically to a local minimum solution as defined by the mean-square
distance function [36]. One issue with this is that the most logical
alignment of a point cloud may not be the local minimum that the ICP
algorithm converges to. In the context of scanned point clouds of 3D
printed parts, the globally optimal solution may not be the most logical
alignment either, as was discussed in the previous section. An extreme
example of this issue is illustrated in Fig. 3. Here, the algorithm gets
trapped in a local minimum that is clearly not a reasonable alignment of
the two point clouds. Subtle versions of this can prove to be more
problematic.

3. Error reduction strategy

In order to address some of these potential pitfalls, a methodology
for producing repeatable and reasonable alignments in the context of
additive manufacturing quality control using the ICP algorithm is pre-
sented here. To address issues due to non-uniform scan density, uniform
resampling of a scan point cloud is performed. The method also uses
engineering-informed assumptions about the 3D printing process to
constrain the ICP algorithm and limit deviation minimization bias.
Finally, a strong initial alignment is produced before ICP is utilized,
increasing the likelihood ICP converges to a reasonable minimum. We
have briefly presented an earlier version of this methodology in [51].
Improvements in this version include the ability to account for non-
uniform scanning/sampling, as well as guidance for mitigating issues
caused by convergence to unreasonable local minima. An overview of
the method is given by the flowchart in Fig. 4.

3.1. Initial positioning of scan point cloud

It is necessary to first align the scanned point cloud by eye as closely
with the reference CAD surface as possible. This helps to prevent the
more egregious variety of local minimum errors discussed in Section
2.3. Methods such as the one presented in [30] might be utilized to
simplify this process.

3.2. Scan point cloud segmentation

It will be assumed that the part was resting on a flat worktop during
scanning. The second step in this procedure is separating the scan point
cloud into two sets: table points Qtable and shape points Qshape. Table
points are generated when the scanner scans the surface the object is
resting on. This is illustrated in Fig. 5. This separation can be achieved
using an automated algorithm, such as the one presented in [52] and
implemented in CloudCompare.

3.3. Reorientation of scan point cloud

Once the scanned point cloud is segmented, it is necessary to per-
form an initial alignment with respect to the ideal reference shape. This
is done using an engineering informed assumption. For many extrusion,
vat-polymerization, selective sintering, and directed energy deposition-
based 3D printing processes, material is applied to a roughly perfectly
flat build plate to form the bottom of an additively manufactured part.
In this case, it becomes reasonable to assume that the bottom of a 3D
printed part is produced with perfect accuracy. For some AM processes,
this assumption might not be reasonable. One example of this is a part
built in the middle of a powder bed fusion build chamber. It should also
be noted that in the presence of warping, this assumption would no
longer be valid. While this requirement is a strong one, it should be
noted that with care, it can be applied to many situations. This is be-
cause the aforementioned compatible AM methods make up the vast
majority of the AM market share. If this assumption is reasonable, then
the print errors on the object can be attributed to the rest of the object’s
surface. This implies that the planes representing the bottom of the
scanned point cloud and the bottom of the reference CAD shape should
be parallel and intersecting.

This can be implemented according to the following procedure. If a
plane f(x,y,z) = β1 x + β2 y+ β3 z + β0 = 0 is fit to the table points
Qtable, then the vector = ∇ =N f [β β β ]Scan

T
1 2 3 , points in the direc-

tion normal to the bottom surface of the scanned point cloud. NScan
should be made equal to NCAD, which in most cases will be:

−[0 0 1]T . This is illustrated in Fig. 6.
Once the bottom of the scan point cloud is made parallel to the

bottom of the CAD reference shape, it is necessary to remove any dis-
tance between the two parallel planes. In the case that the bottom of
CAD reference shape falls on the x-y plane, β0 of plane f should be set to
zero, leading in a translation along the z-axis. Once this final alignment
is achieved, the table points can be disregarded. Translation and rota-
tion of the scan point cloud can be achieved using affine transformation
matrices. One computationally inexpensive algorithm for aligning two
vectors is presented by Möller and Hughes [53], and can be utilized for
this purpose.

3.4. Point cloud resampling with SPSR to achieve uniform point cloud
density

In the event that the scan point cloud is unevenly dense, sparse, or
contains many unreasonable outliers, it is possible to generate a more
consistent point cloud using Screened Poisson Surface Reconstruction
(SPSR). This algorithm is explained in [54] and implemented in many
open source applications. The first step of this process is to generate a
mesh from the point cloud using SPSR. Then a large number of points
can be randomly sampled from this mesh, resulting in a more uniform
scan point cloud. One tradeoff of this approach is the potential
smoothing of fine features. It is important to monitor this, and adjust
parameters accordingly. SPSR is illustrated in Fig. 7 and 8 .

3.5. ICP implementation

At this point, fine-resolution registration can be obtained using the

Fig. 3. (Top) CAD design and point cloud of part with no errors. (Bottom)
Alignment of point cloud after ICP.
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ICP algorithm. In order to ensure that the assumptions applied in
Section 3.3 remain in effect, it is necessary to constrain the ICP algo-
rithm to only perform translation along the x and y-axes, and rotation
about the z-axis. In this way, the bottom planes of each shape will re-
main parallel and intersecting. As a result, the ICP algorithm will go
from six degrees of freedom to three.

3.6. Deviation calculation

Once this registration is performed, deviations can be calculated as
the distances from vertices on the CAD reference mesh to vertices on the
scan point cloud. Results should be checked to ensure that they make
intuitive sense.

4. Validation experiment

In this section, several of the registration issues discussed in Section
2 will be demonstrated quantitatively using simulated data. This will be

Fig. 4. Flowchart of the proposed procedure.

Fig. 5. Table points (red) and shape points (green). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article).

Fig. 6. Alignment of bottom plane of scan point cloud to CAD reference.

Fig. 7 and 8. Scan point cloud (top) and scan point cloud after screened Poisson
surface reconstruction (bottom).
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used to illustrate the potential magnitude of registration errors. Second,
real data will be registered using unconstrained ICP, and the metho-
dology presented in Section 2. The results produced by each of these
techniques will be compared and discussed. All experiments were car-
ried out using CloudCompare [38], open source software for manip-
ulating and performing computations on point clouds and meshes, as
well as MATLAB.

4.1. Demonstration of registration errors

The first set of experiments here seeks to demonstrate quantitatively
the effects of the previously discussed errors using simulated data. Open
source software An STL file of an egg-shaped part (80 mm x 40 mm x 20
mm) is first duplicated in order to create a reference design STL model,
as well as a part into which error will be introduced. The second part is
then modified in order to introduce a specific error. The initial align-
ment of these parts is considered ground truth, since their relative po-
sitions and orientations were not changed during the introduction of
the dimensional errors. Intuitively, then, inspection of the differences
between the two shapes would show precisely the errors that were in-
troduced. After this, a point cloud is generated based on the modified
STL. Finally, deviations are determined by measuring the distance from
each vertex on the top surface of the design STL file to the point cloud,
which simulates the result of a laser scan. Deviations are first calculated
using the initial ground truth alignment. Then, registration of the scan
point cloud to the mesh is performed using 50,000 sample points, and
deviations are measured again. This allows the alignment errors in-
troduced by the registration process to be evaluated.

The first error to be simulated is uneven point cloud density.
Dimensional inaccuracy was introduced into the part by shrinking it
along the x-axis by a factor of 5%. This results in the dimensional de-
viations shown on the left side of Fig. 9. In the following figures, sur-
faces that are blue correspond to dimensions that are too small, while
red corresponds with dimensions that are too large. The top surface of
each part is shown in the figures. The green axis in the bottom left
corner of each figure corresponds to the positive y-axis, while the red
corresponds to the positive x-axis. The positive z-axis comes out of the
page. The right half of the part’s corresponding point cloud was gen-
erated using 300,000 points, while the left half was generated using
100,000 points. After applying unconstrained ICP registration, the
scanned point cloud is shifted 0.318 mm along the x-axis. Thus, while

the average magnitude of deviations remains similar, their location
changes. The deviations measured using each alignment as well as the
extent of the introduced alignment error are given in Table 1. The affine
transformation matrix describing the change in alignment produced by
ICP registration is (mm):

=
⎡

⎣

⎢
⎢
⎢

−
−

⎤

⎦

⎥
⎥
⎥

T

1 0
0 1

0.003 0.318
0 0.006

0.003 0
0 0

1 0.116
0 1

The second error to be simulated is improper calibration along the z-
axis, meaning that the height of the part is 5% too small. While the
bottom layers of the part print with reasonable accuracy, each sub-
sequent layer increases the absolute dimensional accuracy of the layer
above it. In the first case, illustrated in Fig. 10, the scanned point cloud
of this part has no bottom. In the second case, illustrated in Fig. 11, the
scan includes the bottom of the hypothetical measured part. After ap-
plying unconstrained ICP registration for the first case, the scanned
point cloud is shifted 0.690 mm along the z-axis. For the second case,
the scanned point cloud is shifted 0.288 mm along the z-axis.

It can be seen that in both cases, registration moves the part up-
wards, reducing the magnitude of the deviations detected across the
surface of the part. In the case where the point cloud includes bottom
points, the magnitude of this shift is substantially smaller. One note-
worthy observation is that in the first case, registration moves the scan
point cloud so far upwards that negative deviations are turned into
positive deviations around the bottom edges. This magnitude shift can
present an especially difficult challenge for efforts to predict and model
dimensional accuracy (Tables 2 and 3).

4.2. Evaluation of proposed registration methodology

A second experiment was then carried out to evaluate the impact of
the changes to ICP introduced by the proposed registration metho-
dology. The objective was to determine whether the proposed metho-
dology generates deviation values that differ from those produced by
ICP in statistically significant sense. In this experiment, four different
shapes were printed on a fifth generation MakerBot Replicator FDM 3D
printer. These shapes are shown in Fig. 12. Each shape was scanned
three times using a Romer Arm 73 Series 7325 manufactured by
Hexagon Manufacturing Systems with an accuracy of± 80 μm. For

Fig. 9. Point cloud with uneven density: deformed part deviations before registration (left) and after registration (right).
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Table 1
Comparison of measured deviations before and after registration.

Before Registration After Registration

Average Magnitude of Deviation for Vertices on STL (mm) 0.380 0.363
Average Deviation for Vertices on STL (mm) 0.378 0.308
RMSE from Registration (mm) 0.226

Fig. 10. Point cloud without bottom: deformed part deviations before registration (left) and after registration (right).

Fig. 11. Complete point cloud: deformed part deviations before registration (left) and after registration (right).

Table 2
Comparison of measured deviations before and after registration.

Before Registration After Registration

Average Magnitude of Deviation for Vertices on STL (mm) 0.401 0.141
Average Deviation for Vertices on STL (mm) 0.401 −0.036
RMSE from Registration (mm) 0.471
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each scan, three different users produced alignments using both un-
constrained ICP and the proposed method.

Because the parts are printed with randomly generated errors from
the manufacturing process, there are no ground truth deviation values
to compare registration outcomes against. Instead, the RMS magnitude
of deviations measured at each vertex on a given part’s STL file will be
determined and treated as the response variable. The method used is
treated as a fixed effect with two levels: ICP and the proposed proce-
dure. The shape of the object being evaluated is considered a random
effect because of the infinite shape variety in practice. Four different
shapes were chosen to incorporate a variety of common features, in-
cluding both smooth geometries and sharp edges. It is important to
evaluate the effect due to shape since this can strongly impact how
different methods perform. Nested under the shapes is the scan factor, a
random effect representing the scan-to-scan variation. Different scans
may affect the relative density of the point cloud, as well as the or-
ientation the part begins in before initial alignment. These effects were
discussed in Section 2. Finally, the user producing alignment is also
treated as a random effect. This accounts for patterns as well as varying
quality in initial alignments. It is desirable for a registration method to
be invariant to user, as this would mean that the method produces re-
peatable results. In this experiment, a given shape is considered to be a
unit. This experimental design is illustrated in Fig. 13. A linear mixed
effects model with nested random effects will be used to evaluate
whether unconstrained ICP and the proposed method produce mea-
surements of global error that differ in a significant way when tested on
real manufacturing data. The proposed model is given as:

= + + + + + + + +η τ α β γ (τγ) (τα) (αγ) εi j k e(k) il(k) ij jl(k) ijkly

where τi is the treatment effect from the method used, αj is the random
effect from user, βk is the random effect due to shape, and γe(k) is the
random effect from scan, which is nested under the effect due to shape.
Three potential interaction effects are also included in the model:
τγ τα αγ( ) , ( ) , and ( )il(k) ij jl(k) . The interaction between method and scan
is included as different scans of the same object will likely interact
differently with the ICP method, and potentially the proposed method.
The interaction between method and user is included due to potential
impact from the user’s initial alignments on final results. Such an im-
pact is undesirable. Finally, interactions between user and scan are
accounted for in the model.

Before the proposed model is evaluated, it is helpful to look at one
instance of alignments in depth for a single part and scan. It can be seen

in Fig. 14 that unconstrained registration pulls the scan point cloud
farther upwards than the proposed registration method. The scanned
point cloud is shifted -0.046 mm along the x-axis, -0.019 mm along the
y-axis and 0.128 mm along the z-axis. This results in a reduction in
average magnitude of deviations by more than 10 %. Further, sections
of the top surface of the part are considered too large as a result of this
shift. This conforms well with the prediction that ICP will under-
estimate deviations that was presented in Section 2.2. A comparison of
the measured deviations produced by the two different methods is
given in Table 4. The affine transformation matrix describing the
change in alignment produced by ICP registration is (mm):

=
⎡

⎣

⎢
⎢
⎢

−
−
−

− −

⎤

⎦

⎥
⎥
⎥

T

1 0.002
0.002 1

0.001 0.046
0.001 0.019

0.001 0.001
0 0

1 0.128
0 1

The linear mixed-effects model was fit using the lme4 package in R
via restricted maximum likelihood estimation (REML) [55]. REML is a
popular form of maximum likelihood estimation for fitting linear
mixed-effects models [56]. One advantage of this method over max-
imum likelihood estimation is that it produces unbiased estimates of
variance parameters. After the proposed model was fit, terms re-
presenting statistically insignificant effects were systematically re-
moved using backwards elimination until only statistically significant
effects remained. This resulted in the following simplified model:

= + + + +η τ β τγ ε( )i k il(k) ijkly

Which yields the analysis given in Tables 5 and 6. The random effects
due to both user and scan were not found to be significant. As a result,
the proposed method was not shown to be sensitive to operator
changes. This is a necessary condition for a registration methodology,
as it must produce repeatable results between operators. Interestingly,
while the effect of scan variation itself wasn’t shown to be significant in
this model, the interaction between the method used and scans did
prove to be significant. This makes intuitive sense in light of Section
2.1.

It can be seen in the fixed effect table that there is a statistically
significant difference between the RMS of deviations produced by each
of the methods. The proposed method tends to generate deviations of a
greater magnitude. This is consistent with the tendency of un-
constrained ICP to minimize deviations, which was demonstrated in
Section 4.1. As a result, the experiment provides positive support for the
hypothesis that the proposed method is less likely to underestimate
geometric deviations.

5. Conclusion

In conclusion, several potential challenges for obtaining quality
alignments of scan point clouds using ICP registration were discussed.
These challenges were then illustrated using simulated data, which al-
lowed for quantification of their impact on the accuracy of deviation
measurements. The impact of each of these registration issues was
shown to be significant enough to noticeably impact the measured
deviations using simulated data.

A method to address some of these challenges based on engineering
informed assumptions was presented. This method was used on real
scan point cloud data, and compared to unconstrained ICP registration

Table 3
Comparison of measured deviations before and after registration.

Before Registration After Registration

Average Magnitude of Deviation for Vertices on STL (mm) 0.402 0.240
Average Deviation for Vertices on STL (mm) 0.401 0.219
RMSE from Registration (mm) 0.197

Fig. 12. CAD models of the parts used in the experiment.
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via a design of experiments approach. Differences between the magni-
tude of deviations produced by the alignments from each method were
shown to be significant, while operator effects were not shown to be
significant.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Fig. 13. Illustration of the experimental design.
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