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In this paper, we develop high-order bound-preserving (BP) finite difference (FD) methods 
for the coupled system of compressible miscible displacements. We consider the problem 
with multi-component fluid mixture and the (volumetric) concentration of the jth 
component, c j , should be between 0 and 1. It is well known that c j does not satisfy a 
maximum-principle. Hence most of the existing BP techniques cannot be applied directly. 
The main idea in this paper is to construct the positivity-preserving techniques to all c′

j s

and enforce 
∑

j c j = 1 simultaneously to obtain physically relevant approximations. By 
doing so, we have to treat the time derivative of the pressure dp/dt as a source in the 
concentration equation and choose suitable “consistent” numerical fluxes in the pressure 
and concentration equations. Recently, the high-order BP discontinuous Galerkin (DG) 
methods for miscible displacements were introduced in [4]. However, the BP technique for 
DG methods is not straightforward extendable to high-order FD schemes. There are two 
main difficulties. Firstly, it is not easy to determine the time step size in the BP technique. 
In finite difference schemes, we need to choose suitable time step size first and then apply 
the flux limiter to the numerical fluxes. Subsequently, we can compute the source term in 
the concentration equation, leading to a new time step constraint that may not be satisfied 
by the time step size applied in the flux limiter. Therefore, it would be very difficult to 
determine how large the time step is. Secondly, the general treatment for the diffusion 
term, e.g. centered difference, in miscible displacements may require a stencil whose size 
is larger than that for the convection term. It would be better to construct a new spatial 
discretization for the diffusion term such that a smaller stencil can be used. In this paper, 
we will solve both problems. We first construct a special discretization of the convection 
term, which yields the desired approximations of the source. Then we can find out the 
time step size that suitable for the BP technique and apply the flux limiters. Moreover, we 
will also construct a special algorithm for the diffusion term whose stencil is the same as 
that used for the convection term. Numerical experiments will be given to demonstrate 
the high-order accuracy and good performance of the numerical technique.
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1. Introduction

In this paper, we are interested in constructing high-order bound-preserving (BP) finite difference (FD) schemes for 
compressible miscible displacements in porous media. We consider the fluid mixture with N components and the governing 
equations over the computational domain � = [0, 1] × [0, 1] read

d(c)
∂p

∂t
+ ∇ · u = d(c)

∂p

∂t
− ∇ ·

(
κ(x, y)

μ(c)
∇p

)
= q, (x, y) ∈ �, 0 < t ≤ T , (1.1)

φ
∂c j

∂t
+ ∇ · (uc j) − ∇ · (D∇c j) = c̃ jq − φc j z j pt, (x, y) ∈ �, 0 < t ≤ T , j = 1, · · · ,N − 1. (1.2)

Here the dependent variables are the pressure in fluid mixture denoted by p, the Darcy velocity of the mixture (volume 
flowing across a unit across-section per unit time) denoted by u = (u, v)T and the concentration of interested species 
measured in amount of species per unit volume denoted by c = (c1, · · · , cN)T , with c j being the concentration of the jth 
component. φ and κ are the porosity and permeability of the rock, respectively. μ refers to the concentration-dependent 
viscosity. q is the external volumetric flow rate, and c̃ j is the concentration of the fluid in the external flow. c̃ j must be 
specified at points where injection (q > 0) takes place, and is assumed to be equal to c j at production points (q < 0). The 
diffusion coefficient D is symmetric and arises from two aspects: molecular diffusion and dispersion. Its form is

D = φ(x, y)(dmolI+ dlong|u|E+ dtran|u|E⊥), (1.3)

where E, a 2 × 2 matrix, represents the orthogonal projection along the velocity vector given as

E = (eij(u)) =
(
uiu j

|u|2
)

, u = (u1,u2),

and E⊥ = I− E is the orthogonal complement. The diffusion coefficient dlong measures the dispersion in the direction of the 
flow and dtran shows that transverse to the flow. To ensure the stability of the scheme, D is assumed to be strictly positive 
definite in almost all of the previous works. If the flow vectors are essentially parallel to the x-axis then the dispersion term 
∇(D∇c) could be replaced by the sum [20,10]

dlongcxx + dtrancyy .

Further, if we consider molecular diffusion only then D = φ(x, y)dmolI [33,9]. In this paper, we consider the above two 
simplified cases and assume D to be a diagonal matrix. Moreover, the pressure is uniquely determined up to a constant, 
thus we assume 

∫
�
p dxdy = 0 at t = 0. However, this assumption is not essential. Other coefficients can be stated as 

follows:

cN = 1−
N−1∑
j=1

c j, d(c) = φ

N∑
j=1

z jc j,

where z j is the compressibility factor of the jth component of the fluid mixture. With the identity given above, we can 
sum (1.2) over j and subtract which from (1.1) to obtain a ghost equation satisfied by cN as

φ
∂cN
∂t

+ ∇ · (ucN) − ∇ · (D∇cN) = c̃Nq − φcN zN pt, (x, y) ∈ �, 0 < t ≤ T . (1.4)

We can see that cN satisfies the same equation as those for c′
j s, 1 ≤ j ≤ N −1. Therefore, the positivity-preserving technique 

for (1.2) should also work for (1.4). In this paper, we consider periodic boundary condition for simplicity. Moreover, the 
initial solutions are given as

c j(x, y,0) = c j0(x, y), p(x, y,0) = p0(x, y), (x, y) ∈ �.

The miscible displacements in porous media were first presented in [7,8], where mixed finite element methods were 
applied. Later, the compressible problem was studied in [9] and the optimal order estimates in L2-norm and almost op-
timal order estimates in L∞-norm were given in [3]. Subsequently, many new numerical methods were introduced, such 
as the finite difference method [34–36], characteristic finite element method [19], splitting positive definite mixed element 
method [29] and H1-Galerkin mixed method [2]. Besides the above, in [25], an accurate and efficient simulator was devel-
oped for problems with wells. Later, the authors introduced an Eulerian-Lagrangian localized adjoint method to solve the 
transport equation for concentration, while a mixed finite element method to solve the pressure equation [24]. Moreover, 
the discontinuous Galerkin (DG) methods were also introduced in [5,6,30,31,14,32,33]. However, none of the works given 
above discussed the BP techniques. In many numerical simulations, the approximations of c j can be placed out of the in-
terval [0, 1]. Especially for problems with large gradients, the value of d(c) might be negative, leading to ill-posedness of 
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the problem, and the numerical approximations will blow up. Therefore, the BP technique is crucial in constructing reliable 
numerical approximations.

Recently, two of the authors in this paper applied DG methods for compressible miscible displacements in porous media 
and constructed the second-order BP technique in [13] and the extension to high-order schemes was also discussed in [4]. 
The ideas introduced in [13,4] are not straightforward extendable to FD schemes. Before we demonstrate the difficulties, we 
would like to review the BP technique for the DG methods. For simplicity, we only consider Euler forward time discretiza-
tion. Given the numerical approximations at time level n, say cn and pn , we need to construct physically relevant numerical 
approximations at time level n + 1, namely cn+1 and pn+1. The algorithm can be demonstrated as follows:

1. Solve pt from (1.1) and use which as the source in (1.2).
2. Discretize (1.1) and (1.2) with Euler forward time discretization. Sum up the scheme for (1.2) over j then subtract which 

from that for (1.1) to obtain the numerical scheme for (1.4). We want the scheme for (1.4) to be basically the same as 
that for (1.2).

3. Choose the “consistent” numerical fluxes (see Definition 2.1) to the convection term and write

ûc = ûĉ − α[c], (1.5)

where α is the penalty parameter to be chosen by the BP technique, and [c] is the jump of c across the cell interfaces.
4. Investigate the time step requirements in the BP technique [37,40,38,39] for the convection term and source term.
5. Extend the second-order BP technique [41] to the diffusion part.
6. Apply the flux limiters [15,27,28] to the numerical fluxes in the convection and diffusion terms. High and low-order nu-

merical approximations of c shall be used in the flux limiter while only high-order approximations of u are considered.

The flow chart of the algorithm can be summarized as follows

{cnH , pn} → u, pt → �t

cnH → cnL

}
→ {cn+1

H , pn+1},

where the subscripts H and L represent the high-order and low-order numerical approximations in the flux limiters, respec-
tively. Now, we are ready to demonstrate why the algorithm given above does not work for FD methods. The main reason 
is that for FD method it is very difficult to construct high-order numerical approximations if we write the numerical fluxes 
for the convection term as (1.5). Actually, ûc is obtained via the reconstruction procedure based on the numerical approxi-
mations of uc at the grid points in the stencil. Though, we can construct û in (1.1), it is not useful for ûc if we have applied 
the WENO algorithm which requires nonlinear weights in the reconstruction procedure. Secondly, in the flux limiters, we 
need high-order and low-order numerical fluxes, which are based on stencils with different sizes. Hence, the numerical 
fluxes may not be “consistent” with û. Though, we can modify the numerical fluxes û to make it to be “consistent” with 
ûc, the modification may yield a new numerical approximations of pt , leading to a new time step constraint which may not 
be satisfied by the time step chosen in the flux limiter used for the convection terms. The paradox can be summarized as 
follows:

{cnH , pn} → u, pt → �t

cnH → cnL

}
→ ûc → û → unew , pnewt → �tnew

Numerical experiments demonstrated that �t can be greater than �tnew . Therefore, it is very difficult to estimate the time 
step �t in the flux limiters. The second minor issue (compared with the time step paradox) is the discretization of the 
diffusion term. Most of the previous BP techniques based on FD methods work for the diffusion term in the form of �A(c), 
see e.g. [17]. However, with centered difference, the stencil for the diffusion term in miscible displacements could be larger 
than that for the convection term. To solve these two problems, we would like to introduced the following algorithms:

1. Use the same stencil to reconstruct both the high-order and low-order numerical fluxes for the convection term. To 
construct the high-order numerical fluxes for the convection term, we first choose a stencil I . Then apply the (WENO) 
reconstruction procedure to compute ûcH based on the numerical approximations of uc within the stencil, see [22,23,
16,18,1] for more details about the reconstruction procedure. To compute the low-order numerical fluxes ûcL , we would 
like to use the same stencil I , but change the values of c to be the first order approximations. Then we can calculate 
û based on ûc such that they are consistent, no matter whether we use high-order or low-order numerical fluxes. 
Therefore, high-order and low-order numerical schemes will yield the same û, leading to the same approximation of 
pt . The algorithm can be summarized as follows:

{pn, cn} → u → ûcH →
{

ûcL

û → pt

}
→ �t → {pn+1, cn+1}.
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2. Apply the algorithm based on Taylor’s expansion introduced in [23] to construct the numerical fluxes for the diffusion 
term. The most commonly used spatial discretization of the diffusion term is the centered difference. However, the sten-
cil can be larger than that for the convection term. With the idea of Taylor’s expansion [23], the stencil size is the same 
as that for the convection term, and the algorithm keeps the high-order accuracy. Different from the reconstruction 
procedure for the convection term, we do not need to use the same stencil for the high-order and low-order numerical 
fluxes, since the diffusion term in the concentration equation does not appear in the pressure equation.

The rest of the paper is organized as follows: we first discuss the FD scheme in two space dimensions in Section 2. In 
Section 3, we demonstrate the high-order BP technique in one space dimension. The extension to two space dimensions will 
be given in section 4. In Section 5, some numerical experiments will be provided. We will end in Section 6 with concluding 
remarks. The reconstruction procedure will be given in Appendix A.

2. The finite difference scheme

In this section, we will construct the FD scheme for compressible miscible displacements in porous media. We consider 
rectangular meshes and define the grid points as

0 = x 1
2

< x 3
2

< · · · < xNx− 1
2

< xNx+ 1
2

= 1, (2.1)

0 = y 1
2

< y 3
2

< · · · < yNy− 1
2

< yNy+ 1
2

= 1. (2.2)

Moreover, we denote

Ii,k = [xi− 1
2
, xi+ 1

2
] × [yk− 1

2
, yk+ 1

2
], (2.3)

as the rectangular cells. The grid centers and grid size are given as

xi = 1

2
(xi− 1

2
+ xi+ 1

2
), �xi = xi+ 1

2
− xi− 1

2
, i = 1, · · · ,Nx, (2.4)

yk = 1

2
(yk− 1

2
+ yk+ 1

2
), �yk = yk+ 1

2
− yk− 1

2
, k = 1, · · · ,Ny . (2.5)

In this paper, we consider uniform partition only, and denote �x = �xi and �y = �yk . This assumption is essential in the 
reconstruction procedure [22] of the high-order numerical fluxes.

To construct the FD scheme, we first rewrite the system (1.1)-(1.2) into the following form

d(c)pt + ∇ · u = q, (2.6)

a(c)u = −∇p, (2.7)

(φc j)t + ∇ · (uc j) − ∇ · (D(u)∇c j) = c̃ jq − φc j z j pt, j = 1,2, · · · ,N − 1, (2.8)

where a(c) = μ(c)

κ
.

For simplicity, we denote (·)i,k as the numerical approximation at (xi, yk). Then the semi-discretized FD scheme can be 
written as

d(ci,k)
d

dt
pi,k = − 1

�x
(ûi+ 1

2 ,k − ûi− 1
2 ,k) − 1

�y
(v̂ i,k+ 1

2
− v̂ i,k− 1

2
) + qi,k, (2.9)

a(ci,k)ui,k = − 1

�x
(p̂i+ 1

2 ,k − p̂i− 1
2 ,k), (2.10)

a(ci,k)vi,k = − 1

�y
(p̂i,k+ 1

2
− p̂i,k− 1

2
), (2.11)

d

dt
(r j)i,k = − 1

�x
(ûc j i+ 1

2 ,k − ûc j i− 1
2 ,k) − 1

�y
(v̂c j i,k+ 1

2
− v̂c j i,k− 1

2
)

+ 1

�x
(Ĥi+ 1

2 ,k − Ĥi− 1
2 ,k) + 1

�y
(Ĝ i,k+ 1

2
− Ĝ i,k− 1

2
) + (c̃ j)i,kqi,k − (r j)i,kz j

d

dt
pi,k, (2.12)

where r j = φc j . Here, ûi− 1
2 ,k is the numerical fluxes at (xi− 1

2
, yk) and is used for the spatial derivative along x-axis. Likewise 

for the other numerical fluxes.
Next, we proceed to demonstrate the reconstruction procedure for the numerical flux ûc j . We choose a stencil I =

{xi−r, · · · , xi+1+s}, where r + s + 1 =m is the order of accuracy of the scheme. In general, we want r = s. We apply the flux 
splitting [22] to the scheme and write
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ûc j i+ 1
2 ,k = 1

2

(
ûc j

+
i+ 1

2 ,k
+ ûc j

−
i+ 1

2 ,k

)
, (2.13)

where

ûc j
+
i+ 1

2 ,k
= f +((uc j)i−r,k + α(c j)i−r,k, · · · , (uc j)i+s,k + α(c j)i+s,k),

and

ûc j
−
i+ 1

2 ,k
= f −((uc j)i+1−r,k − α(c j)i+1−r,k, · · · , (uc j)i+1+s,k − α(c j)i+1+s,k),

with parameter α being determined by the bound-preserving technique. The reconstruction function f ± has been well-
developed in [22]. We will demonstrate the reconstruction procedure in Appendix A and only demonstrate the following 
useful property:

f +(a−r, · · · ,as) =
s∑

�=−r

ω+
� a�, (2.14)

f −(a1−r, · · · ,a1+s) =
s+1∑

�=1−r

ω−
� a�, (2.15)

where the weights ω±
� can be obtained by the reconstruction procedure introduced in [22]. We can use either linear weights 

or nonlinear weights with WENO reconstruction. Moreover, it is easy to verify that

s∑
�=−r

ω+
� =

s+1∑
�=1−r

ω−
� = 1. (2.16)

For the diffusion part, we drop the subindex j for simplicity and consider the construction of Ĥi+ 1
2 ,k only. The numerical 

flux Ĝ i,k+ 1
2

can be obtained with some minor changes. We assume D = (Dij), i, j = 1, 2 and apply the Taylor’s expansion 
introduced in [23] to write

Ĥi+ 1
2 ,k = D11cx|x

i+ 1
2
,yk − �x2

24

∂2

∂x2
(D11cx)|x

i+ 1
2
,yk + 7�x4

5760

∂4

∂x4
(D11cx)|x

i+ 1
2
,yk . (2.17)

To evaluate Ĥ , we would like to use the point values of c j and u within the stencil I . We construct the polynomials 
interpolation of D11 and c j , denoted as p11 and pc , respectively. Then px = p11(pc)x is a high-order approximation of 
D11cx . We can read the point value of px as well as its derivatives to obtain the approximations of D11cx and its derivatives. 
For example, consider a fifth-order scheme (m = 5), we need pc to be a 6th order approximation of c j , then a stencil with 
6 points should be used.

Before we construct the numerical fluxes û and v̂ , we would like to demonstrate the following definition.

Definition 2.1. We say the flux ûc j is consistent with û if ûc j = û by taking c j = 1 in �.

Following the analysis in [13,4], we want the numerical fluxes ûc j and û to be consistent, likewise for v̂c j and v̂ . 
Therefore, we take ûi+ 1

2 ,k and v̂ i,k+ 1
2
to be

ûi+ 1
2 ,k = û1i+ 1

2 ,k, v̂ i,k+ 1
2

= v̂1i,k+ 1
2
.

Finally, we can discuss the numerical flux p̂i− 1
2 ,k . We can simply follow the algorithm in computing ûi− 1

2 ,k but the 
weights are symmetric about the axis x = xi+ 1

2
. The construction of p̂i,k− 1

2
is similar.

Remark 2.1. The “consistent” numerical flux is used to guarantee 
∑N

j=1 c j = 1 at each time step (See Theorem 3.6). Thanks 
to the positivity-preserving techniques, we have c j ≥ 0 j = 1, · · · , N , which further yields 0 ≤ c j ≤ 1.

Remark 2.2. Another way to discretize the diffusion term is to rewrite the diffusion part ∇(D(u)∇c) into a system

∇ · (D(u)∇c) = ∇ · s,
D(u)q = s,

∇c = q.
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We compare the sizes of the stencils used in the two algorithms and take m = 5 as an example. In (2.17), to obtain 
fifth-order accuracy, we use six points, and the stencil is exactly the same as that in the reconstruction procedure for the 
convection term. The method in this remark requires more than six points. Although the approximations of the diffusion 
term obtained by these two methods can be both fifth order accurate, numerical experiments demonstrate that (2.17) is 
better.

Before constructing the BP FD scheme, we would like to demonstrate the following key points that are quite different 
from most of the previous works.

1. Treat pt in (2.8) as a source and apply the positivity-preserving techniques.
2. Apply flux limiters to the high-order scheme by combining the first-order and high-order fluxes. The stencils used for 

the two numerical fluxes are the same.
3. Choose a special “consistent” flux pair for (2.6) and (2.8). In Section 3.1, we will suitably choose the numerical fluxes 

and prove c j < 1.
4. Apply Taylor’s expansion to construct the numerical fluxes for the diffusion term.

3. BP technique for problems in one space dimension

In this section, we proceed to study the BP technique. We discuss the problems in one space dimension first, and the 
extension to the two dimensional problems will be given in the next section.

Though the FD scheme provides an approximation with high-order accuracy, the numerical solution may not be within 
the physical bounds when solving (2.8). To construct the BP technique, we consider the one-dimensional version of 
(2.9)-(2.12):

d(ci)
d

dt
pi = − 1

�x
(ûi+ 1

2
− ûi− 1

2
) + qi, (3.1)

a(ci)ui = − 1

�x
(p̂i+ 1

2
− p̂i− 1

2
), (3.2)

d

dt
(r j)i = − 1

�x
(ûc j i+ 1

2
− ûc j i− 1

2
) + 1

�x
(Ĥi+ 1

2
− Ĥi− 1

2
) + (c̃ j)iqi − (r j)i z j

d

dt
pi, (3.3)

where i = 1, · · · , M with M being the total number of gridpoints. We use a parameterized positivity-preserving (PP) flux 
limiter to modify the high-order fluxes ûc j and Ĥ in (3.3) towards a first-order fluxes, denoted as ûc j

L and ĥ, by taking a 
linear combination of them. We will prove that the first-order scheme preserves the positivity of the numerical approxima-
tions. Following the analysis in [13,4], by using the consistent numerical flux pair, the numerical solution c j can be bounded 
between 0 and 1.

3.1. First-order scheme

In this subsection, we apply Euler forward time discretization and construct first-order BP technique. We use on to 
represent the numerical approximation of o at time level n. The first-order fully-discretized scheme of (3.3) can be written 
as

(c j)
n+1
i = F c

i + Fd
i + F s

i , (3.4)

where

F c
i = 1

3
(c j)

n
i − λ

φi
(ûc j i+ 1

2
− ûc j i− 1

2
), (3.5)

Fd
i = 1

3
(c j)

n
i + λ

φi
(ĥi+ 1

2
− ĥi− 1

2
), (3.6)

F s
i = 1

3
(c j)

n
i + �t(

(c̃ j)
n
i q

n
i

φi
− (c j)

n
i z j pt

n
i ), (3.7)

with λ = �t
�x being the ratio of the time and space mesh sizes. For simplicity, if we consider the numerical approximations at 

time level n, the superscript n will be dropped in the rest of this section. The following lemma is useful in the construction 
of first-order numerical fluxes for the convection term.

Lemma 3.1. Let f̂ ± be given in (2.14) and (2.15), then we have

f +(ui−rc + αc, · · · ,ui+sc + αc) = f +(ui−r, · · · ,ui+s)c + αc,
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and

f −(ui+1−rc − αc, · · · ,ui+1+sc − αc) = f −(ui+1−r, · · · ,ui+1+s)c − αc.

Proof. We only proof for f + and the case for f − is similar. From (2.14), we have,

f +(ui−rc + αc, · · · ,ui+sc + αc) =
s∑

�=−r

ω+
� (ui+�c + αc)

=
s∑

�=−r

ω+
� ui+�c +

s∑
�=−r

ω+
� αc

=
s∑

�=−r

ω+
� ui+�c + αc

= f +(ui−r,k, · · · ,ui+s,k)c + αc,

where in the third step, we applied (2.16). �
To obtain a consistent flux pair, we need to construct a special low-order numerical flux ûc j

L such that û1L = û. In (3.5), 
we also apply the flux splitting [22] to the numerical fluxes. Following the construction in (2.13) and Lemma 3.1, we choose

ûc j
L
i+ 1

2
= 1

2

(
( f̂ +

i+ 1
2

+ α)c j i + ( f̂ −
i+ 1

2
− α)c j i+1

)
, (3.8)

where

f̂ +
i+ 1

2
= f +(ui−r, · · · ,ui+s), f̂ −

i+ 1
2

= f −(ui−r+1, · · · ,ui+s+1).

In (3.6), the numerical flux of the diffusion term is given as

ĥi+ 1
2

= 1

2
(D(u)i + D(u)i+1)

(c j)i+1 − (c j)i

�x
. (3.9)

We can prove that if �t is sufficiently small, then F c
i , F

d
i and F s

i are all positive, and the results are given in the following 
three lemmas. For simplicity of presentation, if the denominator in a fraction is zero, then the value of the fraction is defined 
as ∞. For simplicity, if not otherwise stated, we will drop the subscript j for the jth component and use c, z, c̃ for c j , z j , 
c̃ j , respectively. We prove F c

i > 0 first.

Lemma 3.2. Suppose ci > 0 for all i, then F c
i > 0 under the conditions

λ ≤ min
i

2φi

3( f̂ +
i+ 1

2
− f̂ −

i− 1
2

+ 2α)
, (3.10)

and

α ≥ max
i

{− f̂ +
i+ 1

2
, f̂ −

i+ 1
2
,0}. (3.11)

Proof. It is easy to check that

F c
i = 1

3
ci − λ

φi
(ûcL

i+ 1
2

− ûcL
i− 1

2
)

= 1

3
ci − λ

2φi

(
( f̂ +

i+ 1
2

+ α)ci + ( f̂ −
i+ 1

2
− α)ci+1 − ( f̂ +

i− 1
2

+ α)ci−1 − ( f̂ −
i− 1

2
− α)ci

)
=

(
1

3
− λ

2φi
( f̂ +

i+ 1
2

− f̂ −
i− 1

2
+ 2α)

)
ci + λ

2φi
(α − f̂ −

i+ 1
2
)ci+1 + λ

2φi
(α + f̂ +

i− 1
2
)ci−1.

Clearly, under the conditions (3.10) and (3.11), all the coefficients are positive. Hence F c
i > 0. �

Now we proceed to prove Fd > 0 and the result is given in the following lemma.
i
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Lemma 3.3. Suppose ci > 0 for all i, then Fd
i > 0 under the conditions

� = �t

�x2
≤ φi

6Dmax
, Dmax = max

i
D(u)i . (3.12)

Proof. Following the same analysis for the convection term, we write

Fd
i = 1

3
ci + λ

φi
(ĥi+ 1

2
− ĥi− 1

2
)

= 1

3
ci + �

φi

(
D(u)i + D(u)i+1

2
(ci+1 − ci) − D(u)i−1 + D(u)i

2
(ci − ci−1)

)
= 1

3
ci − �

2φi
(D(u)i+1 + 2D(u)i + D(u)i−1)ci

+ �

2φi
(D(u)i + D(u)i+1)ci+1 + �

2φi
(D(u)i−1 + D(u)i)ci−1.

Since D(u)i ≥ 0, i = 1, · · · , M , we have Fd
i > 0 under the condition (3.12). �

Next, we proceed to analyze F s
i .

Lemma 3.4. Suppose ci > 0 for all i, then F s
i > 0 under the condition

�t ≤ min{ 1

6zpmax
,

φi

6max(−qi,0)
}, (3.13)

where

pmax = max
i

(pt i,0). (3.14)

Proof. We can write the source term as

F s
i = 1

3
ci + �t

(
c̃iqi
φi

− ci zpt i

)
= S1 + S2,

where

S1 = (
1

6
− �tzpt i)ci, S2 = 1

6
ci + �t

c̃iqi
φi

.

Clearly, we have S1 ≥ 0 if (3.13) is satisfied. Moreover, if qi ≥ 0, then S2 > 0. Hence we only need to consider the case with 
qi < 0. When qi < 0, we have c̃i = ci . Then under the condition (3.13)

S2 = (
1

6
+ �t

qi
φi

)ci > 0.

We finish the proof. �
Base on the above three lemmas, we can state the following theorem.

Theorem 3.5. Consider the FD scheme (3.1)-(3.3) with Euler forward time discretization. Suppose ci > 0 for all i, then cn+1
i > 0 under 

the conditions (3.10), (3.11), (3.12) and (3.13).

Proof. By (3.4), we only need F c
i , F

d
i , and F s

i to be positive, which follows directly from Lemmas 3.2-3.4, respectively. �
Now we have the fact that (c j)

n+1 > 0 for j = 1, · · · , N−1 from Theorem 3.5. However, we still need to show (c j)
n+1 < 1, 

and the result is given below.

Theorem 3.6. Suppose the conditions in Theorem 3.5 are all satisfied. We assume c j ≥ 0, j = 1, · · · , N, with cN = 1 − ∑n−1
j=1 c j and 

the flux of u and the flux of uc j are consistent. Then 0 ≤ cn+1
j ≤ 1, under the condition

�t ≤ 1

6zmaxpmax
, (3.15)

where pmax is given in (3.14) and zmax = max z j .

1≤ j≤N
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Proof. Since the fluxes û and ûc j
L are consistent, then

ûcN +
N−1∑
j=1

ûc j = û1 = û,

where the flux ûc can be either the high-order or the low-order one. Add up the first-order scheme of (3.3) for j =
1, · · · , N − 1 and subtract the result from the first-order scheme of (3.1) to obtain a scheme satisfied by cN

d

dt
(rN)i + 1

�x
(ûcN

L
i+ 1

2
− ûcN

L
i− 1

2
) − 1

�x
(ĥi+ 1

2
− ĥi− 1

2
) = (c̃N)iqi − (rN)i zN

d

dt
pi, (3.16)

where c̃N = 1 − ∑N−1
j=1 c̃ j and rN = cNφ. We can find that (3.16) is exactly (3.3) with c j , c̃ j , and z j replaced by cN , c̃N , and 

zN , respectively. Therefore, following the same analysis in Theorem 3.5, with Euler forward time integration we can obtain 
cn+1
N > 0 under the conditions in this theorem, which further implies cn+1

j < 1. �
3.2. Bound-preserving technique for high-order schemes

In this subsection, we will apply the parameterized PP flux limiter to construct high-order BP technique by taking a 
linear combination of high-order and first-order numerical fluxes. We also consider Euler forward time discretization and 
drop the subscript j if not otherwise stated.

We write (3.3) as

cn+1
i = ci − λ( F̂ i+ 1

2
− F̂ i− 1

2
) + �t Si, (3.17)

where

F̂ i+ 1
2

= 1

φi
(ûci+ 1

2
− Ĥi+ 1

2
), Si = c̃iqi

φi
− ci zpt i .

We apply the flux limiter to obtain positive numerical approximation cn+1
i . To do so, we replace the numerical flux F̂ i+ 1

2
in

(3.17) by the modified one

F̃ i+ 1
2

= θi+ 1
2
( F̂ i+ 1

2
− f̂ i+ 1

2
) + f̂ i+ 1

2
, (3.18)

where f̂ i+ 1
2

= 1
φi

(ûcL
i+ 1

2
− ĥi+ 1

2
) is the first-order flux discussed in Section 3.1. We choose the parameters θi+ 1

2
∈ [0, 1] such 

that

ci − λ( F̃ i+ 1
2

− F̃ i− 1
2
) + �t Si ≥ 0,

which can be rewritten as

λθi− 1
2
( F̂ i− 1

2
− f̂ i− 1

2
) − λθi+ 1

2
( F̂ i+ 1

2
− f̂ i+ 1

2
) − m

i ≥ 0, (3.19)

where

m
i = −ci + λ( f̂ i+ 1

2
− f̂ i− 1

2
) − �t Si . (3.20)

Theorem 3.5 guarantees that m
i ≤ 0. For simplicity, we denote Fi± 1

2
= F̂ i± 1

2
− f̂ i± 1

2
. We consider the ith node and look for 

a locally defined pair of numbers (�m
− 1

2 ,Ii
, �m

+ 1
2 ,Ii

) such that (3.19) is satisfied for

θi− 1
2

∈ [0,�m
− 1

2 ,Ii
], θi+ 1

2
∈ [0,�m

+ 1
2 ,Ii

]. (3.21)

Following [28],

1. If Fi− 1
2

≥ 0 and Fi+ 1
2

≤ 0, let

(�m
− 1

2 ,Ii
,�m

+ 1
2 ,Ii

) = (1,1).

2. If Fi− 1
2

≥ 0 and Fi+ 1
2

> 0, let

(�m
− 1

2 ,Ii
,�m

+ 1
2 ,Ii

) = (1,min(1,
m
i

−λFi+ 1
2

− ε
)).
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3. If Fi− 1
2

< 0 and Fi+ 1
2

≤ 0, let

(�m
− 1

2 ,Ii
,�m

+ 1
2 ,Ii

) = (min(1,
m
i

λFi− 1
2

− ε
),1).

4. If Fi− 1
2

< 0 and Fi+ 1
2

> 0,

(a) When (3.19) holds with (θi− 1
2
, θi+ 1

2
) = (1, 1), let

(�m
− 1

2 ,Ii
,�m

+ 1
2 ,Ii

) = (1,1);
(b) Otherwise, let

(�m
− 1

2 ,Ii
,�m

+ 1
2 ,Ii

) = (
m
i

λFi− 1
2

− λFi+ 1
2

− ε
,

m
i

λFi− 1
2

− λFi+ 1
2

− ε
).

In the algorithm given above, ε is chosen to be a very small positive number to avoid the denominator being 0. For example, 
ε = 10−13. Then the locally defined limiting parameter is given as

θi+ 1
2

= min(�m
+ 1

2 ,Ii
,�m

− 1
2 ,Ii+1

), i = 0, · · · ,M. (3.22)

Finally, for each j = 1, · · · , N , we can find the parameter θ j following the algorithm given above. Since c′
j s satisfy the same 

equation, the parameter θ applied in the scheme (3.18) should be

θ̃i+ 1
2

= min
1≤ j≤N

θ
j

i+ 1
2
.

Remark 3.1. In the algorithm above, we choose θ̃ to be the smallest one among j = 1, · · · , N , then we can obtain positive 
c j for all j = 1, · · · , N . Then the condition 

∑
j

c j = 1 yields 0 ≤ c j ≤ 1.

Remark 3.2. It is not a good idea to use a stencil with 2 points to construct the low-order numerical flux ûc j
L for the BP 

technique, since such a numerical flux cannot be consistent with û . Later, we will apply the flux limiter to the numerical 
flux and take ûc j = θ ûc j

H + (1 − θ)ûc j
L . If ûc j

H and ûc j
L are not consistent with û, we must choose a suitable θ (which 

depends on �t) such that ûc j given above is consistent with û, which further yields the approximation of pt from (2.9), 
leading to a new constraint for the time step �t (see Lemma 3.4). Numerical experiments (See Example 5.2) demonstrate 
that the new time step size requirement can be smaller than that in the flux limiter. We call this to be the time step 
paradox. However, if we choose ûc j

H and ûc j
L to be consistent with û, then after the flux limiter, ûc j is also consistent 

with û, no matter what the time step is. Hence, we can compute pt from (2.9) and construct the time step restriction first, 
and then apply the flux limiter.

3.3. High-order time discretization

All the previous analyses are based on Euler forward time discretization. For high-order ones, we use the third-order 
strong-stability-preserving (SSP) Runge-Kutta time discretization to solve the ODE system ut = L(u):

u(1) =un + �tL(u, tn),

u(2) =3

4
un + 1

4

(
u(1) + �tL(u(1), tn+1)

)
,

un+1 =1

3
un + 2

3

(
u(2) + �tL(u(2), tn + �t

2
)

)
.

Another choice is the third-order SSP multi-step method:

un+1 = 16

27
(un + 3�tL(un, tn)) + 11

27
(un−3 + 12

11
�tL(un−3, tn−3)).

More details can be found in [11,12,21]. Since the SSP time discretization is a convex combination of Euler forward time 
discretization, we can apply the flux limiter designed in Section 3.2 to each stage/step. The numerical solution obtained 
from the full scheme is also physically relevant.

The above idea is to apply the flux limiter to each stage of the Runge-Kutta method. In [26], the authors provided another 
idea and applied the flux limiter in the final stage of the Runge-Kutta method. However, this algorithm will also lead to the 
time step paradox. In fact, to perform the Runge-Kutta method, we need to choose the time step first. After we finish all 
the stages, we can calculate the value of pt , leading to a new time step size constraint in the bound-preserving technique.
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4. The bound-preserving technique in two space dimensions

In this section, we briefly discuss the BP technique for miscible displacements in two space dimensions. The algorithm 
would be basically the same as that discussed in Section 3. Therefore, we only demonstrate the results and skip the proofs. 
For simplicity, we only discuss Euler forward time discretization, and drop the superscript n and the subscript j if possible.

With Euler forward time discretization, (2.12) can be written as

rn+1
i,k = ri,k − λx(ûci+ 1

2 ,k − ûci− 1
2 ,k) − λy(v̂ci,k+ 1

2
− v̂ci,k− 1

2
)

+ λx(Ĥi+ 1
2 ,k − Ĥi− 1

2 ,k) + λy(Ĝ i,k+ 1
2

− Ĝ i,k− 1
2
) + �t(c̃i,kqi,k − ri,kzpt i,k), (4.1)

where λx = �t
�x , λy = �t

�y . The high-order numerical fluxes have been constructed in Section 2. Now, we proceed to construct 
the first-order numerical fluxes. For the convection part, we choose

ûcL
i+ 1

2 ,k
= 1

2

(
( f̂ +

i+ 1
2 ,k

+ αx)ci,k + ( f̂ −
i+ 1

2 ,k
− αx)ci+1,k

)
, (4.2)

v̂cL
i,k+ 1

2
= 1

2

(
( f̂ +

i,k+ 1
2

+ αy)ci,k + ( f̂ −
i,k+ 1

2
− αy)ci,k+1

)
, (4.3)

where

f̂ +
i+ 1

2 ,k
= f +(ui−r,k, · · · ,ui+s,k), f̂ −

i+ 1
2 ,k

= f −(ui−r+1,k, · · · ,ui+s+1,k).

f̂ +
i,k+ 1

2
and f̂ −

i,k+ 1
2
can be defined analogously. The parameters αx and αy are to be chosen by the BP technique.

The fluxes for the diffusion part are

ĥi+ 1
2 ,k = (D̄11

i+ 1
2 ,k

)
ci+1,k − ci,k

�x
, ĝi,k+ 1

2
= (D̄22

i,k+ 1
2
)
ci,k+1 − ci,k

�y
,

where D̄11
i+ 1

2 ,k
= 1

2 (D11(u)i,k + D11(u)i+1,k). Likewise for D̄22
i,k+ 1

2
. Thus we can rewrite (4.1) as

cn+1
i,k = F c

i,k + Fd
i,k + F s

i,k, (4.4)

where

F c
i,k = 1

3
ci,k − λx

φi,k
(ûci+ 1

2 ,k − ûci− 1
2 ,k) − λy

φi,k
(v̂ci,k+ 1

2
− v̂ci,k− 1

2
), (4.5)

Fd
i,k = 1

3
ci,k + λx

φi,k
(ĥi+ 1

2 ,k − ĥi− 1
2 ,k) + λy

φi,k
(ĝi,k+ 1

2
− ĝi,k− 1

2
), (4.6)

F s
i,k = 1

3
ci,k + �t(

c̃i,kqi,k
φi,k

− ci,kzpt i,k). (4.7)

Following the same analyses given in Section 3.1 along x and y directions, we can obtain the following results regarding 
F c
i,k , F

c
i,k and F s

i,k, .

Lemma 4.1. Suppose ci,k > 0 for all i, k, then F c
i,k > 0 under the conditions

λx = �t

�x
≤ φi,k

3( f̂ +
i+ 1

2 ,k
− f̂ −

i− 1
2 ,k

+ 2αx)
, λy = �t

�y
≤ φi,k

3( f̂ +
i,k+ 1

2
− f̂ −

i,k− 1
2

+ 2αy)
, (4.8)

and

αx ≥ max
i,k

{− f̂ +
i+ 1

2 ,k
, f̂ −

i+ 1
2 ,k

,0}, αy ≥ max
i,k

{− f̂ +
i,k+ 1

2
, f̂ −

i,k+ 1
2
,0}. (4.9)

Lemma 4.2. Suppose ci,k > 0 for all i, k, then Fd
i,k > 0 under the conditions

�t

�x2
≤ φi,k

12DM
11

,
�t

�y2
≤ φi,k

12DM
22

, (4.10)

where

DM
�� = max

i,k
(D��(u)i,k), � = 1,2.
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Lemma 4.3. Suppose ci,k > 0 for all i, k, then F s
i,k > 0 under the conditions

�t ≤ 1

6zpmax
, �t ≤ φi,k

6max(−qi,k,0)
, (4.11)

where

pmax = max
i,k

(pt i,k,0). (4.12)

Based on the above three lemmas, we can state the following one.

Theorem 4.4. Suppose ci,k > 0 for all i, k, then cn+1
i,k > 0 under the conditions (4.9), (4.8), (4.10), and (4.11).

Following the proof of Theorem 3.6 with minor changes, we can obtain the following theorem.

Theorem 4.5. Suppose the conditions in Theorem 4.4 are satisfied. We assume c j ≥ 0 for all j = 1, · · · , N and the flux of (û, ̂v) and 
the flux of (ûc j, ̂vc j) are consistent. Then 0 ≤ cn+1

j ≤ 1, under an extra condition

�t ≤ 1

6zmaxpmax
. (4.13)

Now, we have constructed first-order BP technique. To obtain high-order BP property, we need to apply the flux limiter 
and combine the first-order and high-order numerical fluxes. Similar to the BP technique in one space dimension, we are 
looking for the modified numerical fluxes

F̃ x
i+ 1

2 ,k
= θi+ 1

2 ,k( F̂
x
i+ 1

2 ,k
− f̂ x

i+ 1
2 ,k

) + f̂ x
i+ 1

2 ,k
, F̃ y

i,k+ 1
2

= θi,k+ 1
2
( F̂ y

i,k+ 1
2

− f̂ y
i,k+ 1

2
) + f̂ y

i,k+ 1
2
, (4.14)

where

F̂ x
i+ 1

2 ,k
= 1

φi,k
(ûci+ 1

2 ,k − Ĥi+ 1
2 ,k), f̂ x

i+ 1
2 ,k

= 1

φi,k
(ûcL

i+ 1
2 ,k

− ĥi+ 1
2 ,k),

F̂ y

i,k+ 1
2

= 1

φi,k
(v̂ci,k+ 1

2
− Ĝ i,k+ 1

2
), f̂ y

i,k+ 1
2

= 1

φi,k
(v̂cL

i,k+ 1
2

− ĝi,k+ 1
2
). (4.15)

We want to choose θi+ 1
2 ,k and θi,k+ 1

2
such that

ci,k − λx( F̃
x
i+ 1

2 ,k
− F̃ x

i− 1
2 ,k

) − λy( F̃
y

i,k+ 1
2

− F̃ y

i,k− 1
2
) + �t(

c̃i,kqi,k
φi,k

− ci,kzpt i,k) ≥ 0. (4.16)

Following the analysis in Section 3, we can divide (4.16) into two parts

1

2
ci,k − λx( F̃

x
i+ 1

2 ,k
− F̃ x

i− 1
2 ,k

) + 1

2
�t(

c̃i,kqi,k
φi,k

− ci,kzpt i,k) ≥ 0, (4.17)

1

2
ci,k − λy( F̃

y

i,k+ 1
2

− F̃ y

i,k− 1
2
) + 1

2
�t(

c̃i,kqi,k
φi,k

− ci,kzpt i,k) ≥ 0. (4.18)

which can be rewritten as

λxθi− 1
2 ,k( F̂

x
i− 1

2 ,k
− f̂ x

i− 1
2 ,k

) − λxθi+ 1
2 ,k( F̂

x
i+ 1

2 ,k
− f̂ x

i+ 1
2 ,k

) − 
mx
i,k ≥ 0, (4.19)

λyθi,k− 1
2
( F̂ y

i,k− 1
2

− f̂ y
i,k− 1

2
) − λyθi,k+ 1

2
( F̂ y

i,k+ 1
2

− f̂ y
i,k+ 1

2
) − 

my

i,k ≥ 0, (4.20)

where


mx
i,k = −1

2
ci,k + λx( f̂

x
i+ 1

2 ,k
− f̂ x

i− 1
2 ,k

) − 1

2
�t(

c̃i,kqi,k
φi,k

− ci,kzpt i,k) ≤ 0, (4.21)


my

i,k = −1

2
ci,k + λy( f̂

y

i,k+ 1
2

− f̂ y
i,k− 1

2
) − 1

2
�t(

c̃i,kqi,k
φi,k

− ci,kzpt i,k) ≤ 0. (4.22)

For brevity, we define

F x
i± 1

2 ,k
= F̂ x

i± 1
2 ,k

− f̂ x
i± 1

2 ,k
, F y

i,k± 1
2

= F̂ y

i,k± 1
2

− f̂ y
i,k± 1

2
. (4.23)
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Table 1
Example 5.1: Accuracy test for the fifth-order FD scheme with and without BP technique.
M Without limiter With limiter

L∞ error Order Minimum value L∞ error Order Minimum value

40 8.07e−04 – −7.04e−04 9.00e−04 – 4.92e−05
80 2.66e−05 4.92 −2.29e−05 4.23e−05 4.41 1.66e−07
160 8.43e−07 4.98 −7.43e−07 1.51e−06 4.81 1.81e−07
320 2.65e−08 4.99 −1.82e−08 4.93e−08 4.94 4.68e−10
640 8.28e−10 5.00 −5.75e−10 1.67e−09 4.88 6.08e−10

Following the same procedure in Section 3, we consider the node (i, k) and can obtain the locally defined pairs of 
numbers (�m

i− 1
2 ,k

, �m
i+ 1

2 ,k
) and (�m

i,k− 1
2
, �m

i,k+ 1
2
) along the x and y directions, respectively. Then the locally defined limiting 

parameters are given as

θi+ 1
2 ,k = min(�m

i− 1
2 ,k

,�m
i+ 1

2 ,k
), i = 1, · · · ,Nx, (4.24)

θi,k+ 1
2

= min(�m
i,k− 1

2
,�m

i,k+ 1
2
), k = 1, · · · ,Ny. (4.25)

For each j = 1, 2, · · · , N we can find θ j following the algorithm given above. Similar to the BP technique in Section 3, we 
choose

θ̃i+ 1
2 ,k = min

1≤ j≤N
θ
j

i+ 1
2 ,k

, θ̃i,k+ 1
2

= min
1≤ j≤N

θ
j

i,k+ 1
2

to be the parameters used in the flux limiter (4.14).

5. Numerical experiments

In this section, we provide numerical experiments to test the accuracy and stability of the high-order BP FD schemes. 
In all the examples, if not otherwise stated, we consider fluid mixtures with two components and use linear weights in 
the reconstruction procedure. Moreover, we use third-order SSP Runge-Kutta discretization in time and fifth-order finite 
difference scheme (r = s = 2) in space.

5.1. One dimensional case

In this subsection, we solve (1.1)-(1.2) in one space dimension on the computational domain [0, 2π ]. In the first example, 
we test the accuracy of the BP FD scheme.

Example 5.1. We choose the initial condition as

c(x,0) = sin4(x), p(x,0) = −x,

and the source variables are taken as

q = γ , c̃ = 0.

Other parameters are chosen as

φ(x) = μ(c) = k(x) = z1 = z2 = 1, D(u) = 0.

We choose suitable Dirichlet conditions for the pressure equation and periodic boundary condition for the concentration 
equation such that the exact solutions are

c(x, t) = e−γ t(sin4(x − t)), p(x, t) = γ t − x,

where γ = 10−5. In the numerical simulation, we take �t = 0.6�x2 and compute up to T = 1. We calculate the L∞-norm 
of the error between the numerical and exact solutions of c, and the results are given in Table 1. From the table, we can 
observe fifth-order accuracy of the FD scheme with and without the BP limiter. In Addition, negative values emerged in 
the case of without BP limiter, and the parameterized PP flux limiters remedied the negative values in a conservative way. 
Therefore, the BP technique does not degenerate the accuracy while it works.
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Fig. 1. Example 5.2: Numerical approximation of c at t = 1.

Example 5.2. We choose the initial condition as

c(x,0) =
{
1,x < 1,

0,x > 1,
p(x,0) =

{
5,x < 1,

0,x > 1.

Other parameters are taken as

q(x, t) = 0, z1 = 0.1,k(x) = μ(x) = z2 = 1, φ(x) = 1, D(u) = 0.

We compute up to T = 1 with M = 80 and �t = 0.1�x2 to reduce the time error. We solve the problem with the 
BP technique and the numerical approximation of c is given in Fig. 1. We can observe that the numerical approximation 
is between 0 and 1. Moreover, to test the effectiveness of the BP technique, we also solve the problem without the BP 
limiter and the numerical approximation blows up at t ≈ 0.09. We have been demonstrated that the reason for the blow-up 
phenomenon is the ill-posedness of the system in [13]. This example demonstrates the necessity of the BP technique in 
solving compressible miscible displacements in porous media.

To demonstrate the time step paradox we use the two algorithms given in Remark 3.2 and obtain the maximum time 
step for them. When we choose the “consistent” algorithm, the maximum time step is �t = 0.17�x2. Then we apply this 
time step to the “inconsistent” one, the numerical approximations of c will be out of the bound and the BP technique fails 
to work under this time step. Actually, numerical tests show that the maximum time step of the “inconsistent” algorithm is 
�t = 0.12�x2. Thus, the special treatment of the numerical flux in the convection term is useful.

Example 5.3. We choose the initial condition as

c(x,0) = 1, p(x,0) = 1.

and the source variables are taken as

q(x, t) =
{
50,3 < x < 3.2,

0, otherwise,
c̃(x, t) = 0.

Other parameters are chosen as

φ(x) = μ(c) = k(x) = 1, z1 = 0.1, z2 = 1, D(u) = |u|.

We compute up to T = 0.1 with M = 40 and �t = 0.01�x2. We solve the problem with two algorithms for the diffusion 
term and the results are given in Fig. 2. We use blue curve to represent the numerical result obtained by the first algorithm 
(Applying Taylor’s expansion to the diffusion term) and use red curve to represent the numerical result obtained by the 
second algorithm (The algorithm in Remark 2.2). From Fig. 2, we can observe that the numerical approximation obtained 
by the second algorithm is oscillatory, leading to larger pollution region, while the first one does not yield significant 
oscillations.
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Fig. 2. Example 5.3: Numerical approximation of c at t = 0.1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Fig. 3. Example 5.4: Concentrations of c1, c2 and c3.

Example 5.4. In this example, we consider a fluid mixture with three components. We choose the initial condition as

c1(x,0) =
{
0, x < 1,

0.8,x > 1,
c2(x,0) =

{
0, x < 1,

0.2,x > 1,

c3(x,0) =
{
1,x < 1,

0,x > 1,
p(x,0) =

{
5,x < 1,

0,x > 1,

and the source variables are taken as

q = 0, c̃ = 0.

Other parameters are chosen as

φ(x) = μ(c) = k(x) = z1 = z2 = z3 = 1, D(u) = γ .

where γ = 10−5.

We apply the WENO algorithm and compute the numerical approximations up to T = 0.1 with M = 40 and �t =
0.1�x2. Due to the “consistency” requirements of the numerical fluxes, we want the nonlinear weights to be the same 
in the reconstruction procedure for û and ûc j , j = 1, 2, 3. In the numerical simulations, we use uc1, uc2, uc3, and u to 
obtain the nonlinear weights in the WENO reconstruction procedure, respectively. The numerical results are given in Fig. 3. 
We can observe that the BP technique together with the WENO algorithm can suppress oscillations significantly near the 
discontinuity if the weights are based on uc1 and uc2. However, if we use u and uc3 to calculate the nonlinear weights, 
we can still observe slight oscillations near the shocks. To test whether the oscillations are suppressed by WENO or the BP 
technique, we carry out the following four experiments: (1) BP without WENO, (2) WENO without BP, (3) BP and WENO, 
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Fig. 4. Example 5.4: Numerical approximation of c3 at t = 0.1.

(4) neither BP nor WENO. In all the experiments, the nonlinear weights in the WENO reconstruction procedure are based 
on the point values of uc3, and the results are given in Fig. 4. We can observe that the WENO procedure itself cannot 
effectively suppress oscillations. We anticipate the oscillations are due to the discontinuity in the source term pt . To verify 
your anticipation, we choose a continuous p(x, t) as

p(x, t) = e−t sin(x),

and repeat the four experiments given above. The numerical results are given in Fig. 5. We can see that the WENO procedure 
can effectively suppress the oscillations. However, if we use WENO procedure only, the numerical approximations of c can 
be 1.003, which is greater than 1, see Fig. 6. Therefore, though p is continuous, we still need the BP technique to make the 
numerical approximations to be physically relevant.

5.2. Two dimensional case

In this subsection, we solve (1.1)-(1.2) in two space dimensions. The computational domain is set to be � = [0, 2π ] ×
[0, 2π ]. We first construct an analytical solutions and test the accuracy of the BP FD schemes

Example 5.5. We choose the initial condition as

c(x, y,0) = sin4(x + y), p(x, y,0) = −x− y.

and the source variables are taken as

q = γ , c̃ = 0.

Other parameters are chosen to be
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Fig. 5. Example 5.4: Numerical approximation of c3 at t = 0.1.

Fig. 6. Example 5.4: Numerical approximation of c3 at t = 0.1 near the discontinuity.

φ(x, y) = μ(c) = k(x, y) = z1 = z2 = 1, D(u) = 0.

We choose suitable Dirichlet boundary conditions for the pressure equation and periodic boundary condition for the 
concentration equation such that the exact solutions are

c(x, y, t) = e−γ t(sin4(x + y − 2t)), p(x, y, t) = γ t − x− y,
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Table 2
Example 5.5: Accuracy test for the fifth-order FD scheme with and without BP technique.
M Without limiter With limiter

L∞ error Order Minimum value L∞ error Order Minimum value

20 4.30e−03 – −3.50e−03 4.30e−03 – 2.04e−06
40 1.61e−04 4.74 −1.25e−04 1.61e−04 4.74 1.95e−13
80 5.34e−06 4.91 −3.10e−06 7.64e−06 4.40 6.52e−11
160 1.68e−07 4.99 −1.48e−07 2.25e−07 5.09 2.00e−13
320 5.29e−09 4.99 −4.48e−09 8.17e−09 4.78 2.95e−10

where γ = 10−5. In the numerical simulation, we choose �t = 0.1 min{�x2, �y2} and compute up to T = 0.1. We calculate 
the L∞-norm of the error between the numerical and exact solutions of c, and the results are given in Table 2. We can ob-
serve fifth-order accuracy of the FD scheme with and without the BP technique. From the table, negative values emerged in 
the case of without BP limiter, and, again, the parameterized PP flux limiters remedied the negative values in a conservative 
way. Therefore, the BP technique does not kill the accuracy when it works.

Example 5.6. We investigate the displacement of 3-phase porous media flow in the five-spot arrangement of injection and 
production wells. The computational domain is a square region taken as quarter-of-a-five-spot pattern. The three phases are 
light oil c1 (with low viscosity and high compressibility), heavy oil c2 (with high viscosity and low compressibility) and 
water c3 (with medium viscosity and medium compressibility).

The initial concentrations of oil (water) are

c1,0(x, y) =
{

1, x ≤ π

2
, y ≤ π

2
,

0, otherwise,
c2,0(x, y) =

{
0, x ≤ π

2
, y ≤ π

2
,

1, otherwise,
c3,0(x, y) = 0.

Therefore, the lower-left part of the region is light oil enrichment area while the other part is heavy oil enrichment area. 
Moreover, no water exists initially and the initial pressure is taken as 0 in the whole computational domain. To simulate 
the random perturbation of porosity and permeability around their average value, we choose the porosity and permeability 
as

φ(x, y) = 0.5+ 0.05 sin(5x) sin(5y) and k(x, y) = 1.0+ 0.1cos(5x) cos(5y),

respectively. Other parameters are taken as

μ(c1, c2, c3) = 0.4c1 + 2.0c2 + 1.0c3, z1 = 1.2, z2 = 0.8, z3 = 1.0, D = diag(γ ,γ ).

where γ = 0.01.
The injection well is located in lower-left corner with q = 1

�x�y ; and production well is located in upper-right corner 
with q = − 1

�x�y .

This example is used for petroleum production simulations. We compute the components c1 and c2 at time T = 0.2, 0.8
with Nx = Ny = 80 and �t = 0.1 min{�x2, �y2}. The distributions of c1, c2 and c1 + c2 at different time are shown in 
Figs. 7a-7f, respectively. From the figure we can see that c1, c2 and c1 + c2 are all between 0 and 1.

Example 5.7. To show the significance of the bound-preserving technique in real petroleum production simulations, we 
choose the exact parameters in Example 5.6, expect D = 0 in order to avoid any dissipation to the scheme which is resulted 
from the diffusion term.

This example is used for petroleum production simulations when diffusion effect is negligible. We compute the compo-
nents c1 and c2 at time T = 0.2, 0.8 with Nx = Ny = 80 and �t = 0.1 min{�x2, �y2}. The distributions of c1, c2 and c3
with BP technique at different time along diagonal y = x are shown in Figs. 8a-8f, respectively. From the figure we can see 
that c1, c2 and c3 are all between 0 and 1. We also solve the problem without BP technique, the distributions of c1, c2 and 
c3 along diagonal at different time are shown in Figs. 9a-9f, from which we can observe strong oscillations and physically 
irrelevant values. This implies the necessity of the BP technique.

6. Concluding remarks

In this paper, we constructed high-order BP FD methods for compressible miscible displacements in porous media on 
rectangular meshes. We have applied the technique to the problem with multi-component fluid mixtures. Numerical simu-
lations have shown the accuracy and necessity of the BP technique.
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Fig. 7. Example 5.6: Concentrations of c1, c2 and c1 + c2.
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Fig. 8. Example 5.7: Concentrations of c1, c2 and c3.
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Fig. 9. Example 5.7: Concentrations of c1, c2 and c3.
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Appendix A

In Section 2, we used reconstruction function f ± to obtain the numerical flux ûc j . In this appendix, we demonstrate how 
to construct f ± . Let m, an odd integer in general, be the desired accuracy of the scheme, we take � = (m + 1)/2. We only 
demonstrate how to obtain f +(vi−�+1, · · · , vi+�−1) at x = xi+ 1

2
and the case for f − is mirror symmetric with respect to 

xi+ 1
2
. Therefore, in the rest of the appendix, we will skip the superscript +, and use f for f + . To obtain the reconstruction 

function f , we choose � candidate stencils:

Ir = {xi−r, · · · , xi−r+�−1}, r = 0, · · · , � − 1, (A.1)

which produce � different values of f via the reconstruction procedure:

f (r) =
�−1∑
s=0

cr,s vi−r+s, r = 0, · · · , � − 1, (A.2)

where the constants cr,s can be obtained in [22] and satisfy

�−1∑
s=0

cr,s = 1, (A.3)

for all r. For example, in the numerical experiments we took m = 5, then � = 2 and we can choose

f (0) =1

3
vi + 5

6
vi+1 − 1

6
vi+2,

f (1) = − 1

6
vi−1 + 5

6
vi + 1

3
vi+1,

f (2) =1

3
vi−2 + −7

6
vi−1 + 11

6
vi .

The WENO reconstruction would take a convex combination of all f (r) defined in (A.2) as a new approximation:

f =
�−1∑
r=0

ωr f
(r). (A.4)

The weights ωr are the key to the success of WENO. We need

ωr ≥ 0,
�−1∑
r=0

ωr = 1 (A.5)

for stability and consistency.
Before calculating the nonlinear weights ωr , we need linear weights dr , which satisfies the same properties as ωr . In this 

paper, we choose

d0 = 3

10
, d1 = 3

5
, d2 = 1

10
. (A.6)

Then we can calculate the nonlinear weights as

ωr = αr∑�−1
s=0 αs

, r = 0, · · · , � − 1, (A.7)

with

αr = dr
(ε + βr)2

. (A.8)

Here ε is chosen to be a very small positive number to avoid the denominator being 0. In our numerical experiments, we 
take ε = 10−6. βr are the so-called “smoothness indicators” of Ir given by
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β0 =13

12
(vi − 2vi+1 + vi+2)

2 + 1

4
(3vi − 4vi+1 + vi+2)

2,

β1 =13

12
(vi−1 − 2vi + vi+1)

2 + 1

4
(vi−1 − vi+1)

2,

β2 =13

12
(vi−2 − 2vi−1 + vi)

2 + 1

4
(vi−2 − 4vi−1 + 3vi)

2.
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