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Abstract
In this paper, we apply local discontinuous Galerkin methods to the compressible wormhole
propagation.With high velocity, Darcy–Forchheimermodel is used instead of classical Darcy
framework. Optimal error estimates for the pressure, velocity, porosity and concentration in
different norms are established on non-uniform rectanglular grids. To capture the propagation
of the wormhole accurately and save computations, adaptive mesh is applied. Numerical
experiments are presented to verify the theoretical analysis and show the good performance
of the LDG scheme for compressible wormhole propagation.
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1 Introduction

Acid treatment of carbonate reservoirs plays an important role in increasing the permeability
of the damaged zone near the wells. The injected acid can dissolve the material near the well,
hence establishes a channel connecting the reservoir and the well, gaining the production
rate. However, given the amount of acid, the relative increase in permeability is strongly
related to the injection conditions, and the long conductive channels, namely wormholes,
cannot be formed unless suitable flow rates have been reached. With the formation of the
wormholes, the channels can penetrate deep into the material and facilitate the flow of oil.
Thus, for successful stimulation of a well it is required to produce wormholes with optimum
density and penetrating deep into the formation.

The wormhole propagation has been analyzed mathematically by many authors [14,16,
26,33,40,41]. However, quite few works focusing on the numerical simulations. In [58], the
chemical-dissolution front instability were discussed theoretically and numerically. Subse-
quently, the parallel simulation was investigated in [49]. Later, in [23], the authors applied
the mixed finite element method and studied the stability and error estimates for velocity,
pressure, concentration and porosity under different norms. Moreover, in [24] the second-
order block-centered finite difference method has been constructed. Recently, high-order
local discontinuous Galerkin (LDG) methods were also applied to wormhole propagation
[17]. Besides the above, the bound-preserving technique for the incompressible problem was
investigated in [53], following the idea introduced in [6,18]. All the works given above except
[23] considered Darcy flow only. However, it may not yield correct solutions if the velocity of
the fluid is high, especially in the high-porosity area. In [38], The Darcy–Forchheiner model
has been proposed that could yield more reasonable results. Numerical methods for Darcy–
Forchheiner model have been investigated by many authors [27,32,36,37,50,59]. In addition,
in [31], the authors coupled miscible displacements with the Darcy–Forchheiner model. To
the best knowledge, no previous works focusing on discontinuous Galerkin methods for
Darcy–Forchheiner model coupled with wormhole propagation.

The DG method was first introduced in 1973 by Reed and Hill [35] in the framework of
neutron linear transport. Subsequently,Cockburn et al. developedRunge–Kutta discontinuous
Galerkin (RKDG) methods for hyperbolic conservation laws in a series of papers [8–11].
Motivated byBassi andRebay [2], in [12],Cockburn andShufirst introduced theLDGmethod
to solve the convection–diffusion equation. In LDG methods, several auxiliary variables,
approximating the gradient of the solution, have to be introduced to form a first-order system,
representing the original equation with high-order derivatives. Then it is possible to apply the
DG method to each equation in the new system. With suitable numerical fluxes, the stability
andoptimal error estimates canbeobtained [51,52,54,55].Moreover, those auxiliary variables
can be solved locally. Therefore, the LDG methods share the same advantages of the DG
methods, such as good stability, high order accuracy, flexibility on h-p adaptivity and on
complex geometry.

The LDG methods would be suitable for most of the convection–diffusion equations.
However, if the coefficient of the convection term contains other variables or their derivatives,
the error estimates may not be easy to obtain. It is well known that for hyperbolic equations
with discontinuous coefficients, the existence and uniqueness of the solutions may not be
valid [15,21]. After the spatial discretization, due to the inter-element discontinuities of two
independent solution variables, the convection term turns out to be discontinuous across
the cell interfaces. Therefore, it is difficult to obtain the error estimates if we analyze the
convection and diffusion terms separately. Recently, Wang et al. [46–48] applied IMEX
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time integration and obtained optimal error estimates of the LDG methods for convection–
diffusion problems. Subsequently, the idea has been applied to miscible displacements in
porous media [19,20,57], chemotaxis model [25] to obtain optimal rates of convergence. The
basic idea for the new technique is to extract an important relationship between the solution
polynomial for the auxiliary variable of the gradient of the primitive variable and the gradient
of the numerical approximation of the primitive variable, see Lemma 4.4. Due to the usage
of the Darcy–Forchheiner model, we need to introduce more auxiliary variables to take the
advantages of the new technique provided in [46–48]. Moreover, the systems are coupled
together. To obtain the optimal error estimates, we will derive four energy inequalities. In this
paper, we will obtain the estimates in L∞(0, T ; L2) for concentration c, in L2(0, T ; L2) for
s = −∇c, in L∞(0, T ; L2) for porosity φ and in L∞(0, T ; L2) for pressure p. Moreover,
different from most of the previous work [17], we do not assume the effective dispersion
tensor D to be a diagonal matrix.

In order to simulate wormholes propagations and to reduce the computational cost we
consider adaptive meshes. To start the mesh adaptation, we first need a criterion to decide
whether an element in the computational mesh needs to be refined or coarsened. Two main
types of criteria for refinement and coarsening are used in finite volume and finite element
methods: error estimators and heuristic indicators. Error estimators are based on theoretical
results, and they are only available when a posteriori error estimates hold. For example, a
posteriori error estimates can be found for finite volume schemes for scalar and nonlinear
hyperbolic systems of conservation laws [1,22,29,30,43,44]. Heuristic indicators usually
depend on local gradients of thermodynamic variables such as density, pressure, energy and
entropy. Compared with a posteriori error estimates, heuristic indicators are easy to compute,
and are widely used in practical applications [3,4,13,45], but they have a limited theoretical
foundation. Several indicators for adaptive Runge–Kutta discontinuous Galerkin methods
for hyperbolic conservation laws can be found in [34,60,61]. Recently, an h-adaptive LDG
methods are applied for the Navier–Stokes–Korteweg equations using gradient of the density
as an indicator [42]. Since a reliable a posteriori error estimate is currently out of scope for
LDG discretizations of the equations modeling wormhole propagations, a heuristic indicator
is chosen in this article, which is based on the jump of the porosity and concentration.

The paper is organized as follows. In Sect. 2, we demonstrate the governing equations of
the compressible wormhole propagation coupled with Darcy–Forchheiner model. In Sect. 3,
we present some preliminaries, including the basic notations and norms to be used throughout
the paper and the LDG spatial discretization. Section 4 is the main body of the paper where
we present the projections and some essential properties of the finite element spaces, error
equations and the details of the optimal error estimates for compressible wormhole propaga-
tion. We provide mesh adaptation in Sect. 5 to save computational costs in two dimensional
practical simulations. Numerical results are given to demonstrate the accuracy and capability
of the method in Sect. 6. We will end in Sect. 7 with some concluding remarks.

2 Compressible Wormhole Propagation

Consider a rectangle domain � = [0, 1] × [0, 1] in R2. The model of the compressible
wormhole propagation couple with Darcy–Forchheiner flow in two space dimensions are
given by [17,23,24]:
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γ
∂ p

∂t
+ ∂φ

∂t
+ ∇ · u = f , (2.1)

ρ

φ

∂u
∂t

+ μ

κ(φ)
u + ρF√

κ(φ)
|u|u = −∇ p + ρg, (2.2)

∂(φc f )

∂t
+ ∇ · (uc f ) = ∇ · (φD(u)∇c f ) + kcav(cs − c f ) + f pc f + f I cI , (2.3)

∂φ

∂t
= αkcav(c f − cs)

ρs
, (2.4)

(x, y) ∈ �, 0 < t ≤ T , where p is the pressure in the fluid mixture, u is the Darcy velocity
of the mixture, φ is the porosity of the rock, and c f is the cup-mixing concentration of the
acid in the fluid phase. ρ and g are the mass density and the gravity vector, respectively. μ
is the viscosity and γ is a pseudo-compressibility parameter that results in slight change of
the density of the fluid phase in the dissolution process. F = 1.75√

150φ3
is porcheimer number.

f = f I + f p is the external volumetric flow rate with f p and f I being the production and
injection rates, respectively. cI is the injected concentration. The effective dispersion tensor
D(u) is defined as

D(u) = dmI + |u| (αlE(u) + αt (I − E(u))) , (2.5)

where

(E(u))i j = uiu j

|u|2 , 1 ≤ i, j ≤ 2.

In (2.5), dm is the molecular diffusivity that is assumed to be strictly positive; αl and αt are
the longitudinal and the transverse dispersivities, respectively, and both of them are assumed
to be positive. The variable cs is the concentration of the acid at the fluid-solid interface given
as

cs = c f

1 + ks/kc
, (2.6)

where kc is the local mass-transfer coefficient and ks is the surface reaction rate constant.
κ in the second term on the left hand side of (2.2) is the permeability of the rocks. The
permeability has a relationship with the porosity, given by the Carman–Kozeny correlation
[28]

κ

κ0
= φ

φ0

(
φ(1 − φ0)

φ0(1 − φ)

)2

, (2.7)

where φ0 and κ0 are the initial porosity and permeability of the rock, respectively. Then we
consider κ as a function of φ, and the following equation holds

1

κ(φ)
= κ−1(φ) = φ0

φκ0

(
φ0(1 − φ)

φ(1 − φ0)

)2

.

In (2.4), α is the dissolving power of the acid and ρs is the density of the solid phase. av is
the interfacial area available for reaction per unit volume of the medium. Using porosity and
permeability, av is shown as

av

a0
= φ

φ0

√
κ0φ

κφ0
= 1 − φ

1 − φ0
, (2.8)
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where a0 is the initial interfacial area. The initial conditions are given as

c f (x, y, 0) = c0(x, y), p(x, y, 0) = p0(x, y), φ(x, y, 0) = φ0(x, y), u(x, y, 0) = u0(x, y).

For simplicity, we consider periodic boundary condition in this paper. The analysis for homo-
geneous Neumann boundary can be obtained following the same lines with some minor
changes, and we thus omit it.

Finally, we make the following hypotheses (H) for the problem.

1. 0 < φ∗ ≤ φ(x, y) ≤ φ∗ < 1.
2. D(u) is uniformly Lipschtiz continuous, and for any v, w ∈ R2 there exist two positive

constants D∗, D∗ such that vTDv ≥ D∗vT v = D∗‖v‖2 and vTDw ≤ D∗‖v‖‖w‖, where
‖v‖ is the standard Euclidian norm in R2.

3. γ, α, ρs, μ, kc, and ks are all given positive constants, and 0 < φ0∗ ≤ φ0 ≤ φ∗
0 < 1,

0 < a0∗ ≤ a0 ≤ a∗
0 .

4. c f , φ, c f t , φt ,u and s = −∇c f are uniformly bounded in R2 × [0, T ].
It is easy to obtain the following lemma.

Lemma 2.1 Suppose hypotheses 1 and 3 are satisfied, then av(φ), κ−1(φ) and F(φ) are
bounded and Lipschitz continuous, i.e. there exists C such that

av(φ) ≤ C, C∗ ≤ κ−1(φ) ≤ C∗, F(φ) ≤ C,

|av(φ1) − av(φ2)| ≤ C |φ1 − φ2|, |κ−1(φ1) − κ−1(φ2)| ≤ C |φ1 − φ2|,
|F(φ1) − F(φ2)| ≤ C |φ1 − φ2|.

3 Preliminaries

In this section, we will demonstrate some preliminary results that will be used throughout
the paper.

3.1 Basic Notations

We denote by �h a tessellation of � with regular rectangle elements K . We assume the
partition is quasi-uniform, i.e. h = minK∈�h diam(K ), with diam(K ) the longest edge of
element K . The finite element space is chosen as

Wk
h = {z : z|K ∈ Qk(K ),∀K ∈ �h},

where Qk(K ) denotes the space of tensor product polynomials of degrees at most k in K . We
denote 	h to be the set of all element interfaces and 	0 = 	h\∂�. Let E ∈ 	0 be an interior
edge shared by the “left” and “right” elements K
 and Kr if E is vertical, or “bottom” and
“top” if E is horizontal. The normal vectors n
 and nr on E being the outward normals of K


and Kr , respectively. For any z ∈ Wk
h , we define z

− = z|∂K

and z+ = z|∂Kr , respectively.

The jump is given as [z] = z+ − z−. Moreover, for s ∈ Wk
h = Wk

h × Wk
h , we define s

+ and
s− and [s] analogously. For more details about these definitions, we refer the reader to [17].

Throughout this paper, the symbol C is used as a generic constant which may appear
differently at different occurrences. Moreover, the symbol ε is a sufficiently small positive
constant.
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3.2 Norms

In this subsection, we define several norms that will be used throughout the paper.
Denote ‖u‖0,K to be the standard L2-norm of u in cell K . For any natural number 
, we

consider the norm of the Sobolev space H 
(K ), defined by

‖u‖
,K =
⎧⎨
⎩

∑
0≤α+β≤


∥∥∥∥ ∂α+βu

∂xα∂ yβ

∥∥∥∥
2

0,K

⎫⎬
⎭

1
2

.

Moreover, we define the norms on the whole computational domain as

‖u‖
 =
⎛
⎝ ∑

K∈�h

‖u‖2
,K
⎞
⎠

1
2

.

For convenience, if we consider the standard L2-norm, then the corresponding subscript will
be omitted.

Let 	K be the edges of K , and we define

‖u‖2	K
=

∫
∂K

u2ds.

We also define

‖u‖2	h
=

∑
K∈�h

‖u‖2	K
.

Moreover, we define the standard L∞ norm of u in K as ‖u‖∞,K , and define the L∞
norm on the whole computational domain as

‖u‖∞ = max
K∈�h

‖u‖∞,K .

Definitions of the norms for vector u = (u1, u2)T are analogy. More details can be found in
[17].

3.3 LDG Scheme

In this section, we propose an LDG discretization for modelling equations of wormhole
propagation (2.6)–(2.8), which can be rewritten as a first order system,

γ
∂ p

∂t
+ ∂φ

∂t
+ ∇ · u = f , (3.1)

ρ

φ

∂u
∂t

+ μ

κ(φ)
u + ρF√

κ(φ)
|u|u = −∇ p + ρg, (3.2)

∂(φc f )

∂t
+ ∇ · (uc f ) + ∇ · z + Aav(φ)c f = f pc f + f I cI , (3.3)

s = −∇c f , (3.4)

z = φD(u)s, (3.5)
∂φ

∂t
= Bav(φ)c f . (3.6)
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where A = kcks
kc+ks

, B = αkcks
ρs (kc+ks )

and av(φ) = a0(1−φ)
1−φ0

. The LDG discretization for the

wormhole propagation equations (3.1)–(3.6) is now as follows: find ch, ph, φh ∈ Wk
h and

uh, sh, zh ∈ Wk
h , such that for all test functions ζ, v, β ∈ Wk

h , θ ,w,ψ ∈ Wk
h , the following

relations are satisfied(
γ

∂ ph
∂t

, ζ

)
K

+
(

∂φh

∂t
, ζ

)
K

= Ld
K (uh, ζ ) + ( f , ζ )K (3.7)

(
ρ

φh

∂uh
∂t

, θ

)
K

+
(

μ

κ(φh)
uh, θ

)
K

+
(

ρF(φh)√
κ(φh)

|uh |uh, θ
)
K

= DK (ph, θ) + (ρg, θ)K (3.8)

((φhch)t , v)K = Lc
K (uh, ch, v) + Ld

K (zh, v) + ( f pch + f I cI , v)K

− (Aav(φh)ch, v)K (3.9)

(sh,w)K = DK (ch,w) (3.10)

(zh,ψ)K = (φhD(uh)sh,ψ)K (3.11)

(φh t , β)K = (Bav(φh)ch, β)K (3.12)

where

Lc
K (s, c, v) = (sc,∇v)K − 〈ŝc · νK , v〉∂K ,

Ld
K (s, v) = (s,∇v)K − 〈̂s · νK , v〉∂K ,

DK (c,w) = (c,∇ · w)K − 〈̂c,w · νK 〉∂K ,

and (u, v)K = ∫
K uvdxdy, (u, v)K = ∫

K u · vdxdy, 〈u, v〉∂K = ∫
∂K uvds and νK is the

outer unit normal of K . Alternating fluxes are chosen for the diffusion term, given by

ẑh = z−
h , ĉh = c+

h , ûh = u−
h , p̂h = p+

h .

We take Lax–Friedrich flux for the convection term,

ûhch = 1

2
(u+

h c
+
h + u−

h c
−
h − ανe(c

+
h − c−

h )),

where α ≥ 0 can be chosen as any fixed constant independent of h and νe is the unit normal
of e ∈ 	0 such that (1, 1) · νe > 0.

Lemma 3.1 We choose the initial solution as

ch(x, y, 0) = P+c0, φh(x, y, 0) = Pkφ0, ph(x, y, 0) = P+ p0, uh(x, y, 0) = �−u0.
(3.13)

then we have

‖c f (x, y, 0) − ch(x, y, 0)‖ ≤ Chk+1, ‖p(x, y, 0) − ph(x, y, 0)‖ ≤ Chk+1,

‖φ(x, y, 0) − φh(x, y, 0)‖ ≤ Chk+1, ‖u(x, y, 0) − uh(x, y, 0)‖ ≤ Chk+1.

3.4 TheMain Theorem

We will use several special projections in this paper. Firstly, we define P+ intoWk
h which is,

for each cell K
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(P+u − u, v)K = 0, ∀v ∈ Qk−1(K ),∫
J j

(P+u − u)
(
xi− 1

2
, y

)
v(y)dy = 0, ∀v ∈ Pk−1(J j ),

∫
Ii
(P+u − u)

(
x, y j− 1

2

)
v(x)dx = 0, ∀v ∈ Pk−1(Ii ),

(P+u − u)
(
xi− 1

2
, y j− 1

2

)
= 0,

where Pk denotes the polynomials of degree k. Moreover, we also define �−
x and �−

y into

Wk
h which are, for each cell K ,

(�−
x u − u, vx )K = 0, ∀v ∈ Qk(K ),∫

J j
(�−

x u − u)
(
xi+ 1

2
, y

)
v(y)dy = 0, ∀v ∈ Pk(J j ),

(�−
y u − u, vy)K = 0, ∀v ∈ Qk(K ),∫

Ii
(�−

y u − u)
(
x, y j+ 1

2

)
v(x)dx = 0, ∀v ∈ Pk(Ii ),

as well as a vectored-valued projection �− = �−
x ⊗ �−

y . Finally, we also use the L2-

projection Pk into Wk
h which is, for each cell K

(Pku − u, v)K = 0, ∀v ∈ Qk(K ), (3.14)

and its two dimensional version Pk = Pk ⊗ Pk . For the special projections given above, we
will demonstrate the following lemma by the standard approximation theory [7].

We define

(u, v) =
∑
K∈�h

(u, v)K , (u, v) =
∑
K∈�h

(u, v)K ,

and

Lc(s, c, v) =
∑
K∈�h

Lc
K (s, c, v),

Ld(s, v) =
∑
K∈�h

Ld
K (s, v),

D(c,w) =
∑
K∈�h

DK (c,w).

It is easy to check the following identity by integration by parts on each cell.

Lemma 3.2 For any functions v and w,

Ld(w, v) + D(v,w) = 0. (3.15)

Now we state the main theorem.

Theorem 3.1 Let c f ∈ L∞(0, T ; Hk+3), p ∈ L∞(0, T ; Hk+3), s ∈ L∞(0, T ; (Hk+2)2),
u ∈ L∞(0, T ; (Hk+2)2), φ ∈ L∞(0, T ; Hk+3) be the exact solutions of the problem (3.1)–
(3.6), and let ch, ph, sh, uh, φh be the numerical solutions of the semi-discrete LDG scheme
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(3.7)–(3.12) with initial discretization given as (3.13). If the finite element space is the piece-
wise tensor product polynomials of degree at most k and h is sufficiently small, then we have
the error estimate

‖c f − ch‖L∞(0,T ;L2) + ‖u − uh‖L∞(0,T ;L2) + ‖s − sh‖L2(0,T ;L2)

+‖p − ph‖L∞(0,T ;L2) + ‖φ − φh‖L∞(0,T ;L2) ≤ Chk+1, (3.16)

where the constant C is independent of h.

4 The Proof of theMain Theorem

In this section, we demonstrate the proof of Theorem 3.1. We first present some auxiliary
results of the projections. Subsequently, we make an a priori error estimate which provides
the boundedness of the numerical approximations. Then we construct the error equations
which further yield several main energy inequalities and prove (3.16). Finally, the a priori
error estimate are verified at the end of this section.

4.1 Projections and Interpolation Properties

In this section, we will present several useful lemmas of the projections. Let us start with the
classical inverse properties [7].

Lemma 4.1 Assume u ∈ Wk
h , then there exists a positive constant C independent of h and u

such that

h‖u‖∞,K + h1/2‖u‖	K ≤ C‖u‖K .

Lemma 4.2 Suppose w ∈ Hk+1(�), then for any projection Ph, which is either P+, �−
x ,

�−
y or Pk, we have

‖w − Phw‖ + h1/2‖w − Phw‖	h ≤ Chk+1.

Moreover, the projection P+ on the Cartesian meshes has the following superconvergence
property [5].

Lemma 4.3 Suppose w ∈ Hk+2(�), then for any ρ ∈ Wh we have

|D(w − P+w, ρ)| ≤ Chk+1‖w‖k+2‖ρ‖. (4.1)

In this paper, we use e to denote the error between the exact and numerical solutions, i.e.
ec = c f − ch, ep = p − ph, eu = u − uh, es = s − sh, ez = z − zh, eφ = φ − φh . As
the general treatment of the finite element methods, we split the errors into two terms as

ec = ξc − ηc, ηc = P+c f − c f , ξc = P+c f − ch,
ep = ξp − ηp, ηp = P+ p − p, ξp = P+ p − ph,
eu = ξu − ηu, ηu = �−u − u, ξu = �−u − uh,
es = ξ s − ηs, ηs = Pks − s, ξ s = Pks − sh,
ez = ξ z − ηz, ηz = �−z − z, ξ z = �−z − zh,
eφ = ξφ − ηφ, ηφ = Pkφ − φ, ξφ = Pkφ − φh .

Based on the above notations, it is easy to verify that

Ld(ηu, v) = Ld(ηz, v) = 0, ∀v ∈ Qk(K ). (4.2)
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Following [46–48,56] with some minor changes, we have the following lemma

Lemma 4.4 Suppose ξc and ξ s are defined above, we have

‖∇ξc‖ ≤ C(‖ξ s‖ + hk+1), h− 1
2 ‖[ξc]‖	h ≤ C(‖ξ s‖ + hk+1).

Let us finish this section by proving the following lemma whose proof was given in [25].

Lemma 4.5 Let u ∈ Ck+1(�) and �u ∈ Wk
h . Suppose ‖u − �u‖ ≤ Chl for some positive

constant C and l ≤ k + 1. Then

h‖u − �u‖∞ + h1/2‖u − �u‖	h ≤ Chl ,

where the positive constant C does not depend on h.

4.2 A Priori Error Estimate

In this subsection, we would like to make an a priori error estimate assumption that

‖c f − ch‖ + ‖φ − φh‖ + ‖φt − φh t‖ + ‖u − uh‖ ≤ h
3
2 , (4.3)

which further implies

‖c f − ch‖∞ + ‖φ − φh‖∞ + ‖φt − φh t‖∞ + ‖u − uh‖∞ ≤ h
1
2 (4.4)

and
‖ch‖∞ + ‖φh‖∞ + ‖φh t‖∞ + ‖uh‖∞ ≤ C (4.5)

by hypothesis 4 and Lemma 4.5. Moreover, by Hypothesis 1 and Lemma 2.1, we obtain

0 < C∗ ≤ φh ≤ C∗, 0 < C∗ ≤ κ−1(φh) ≤ C∗, F(φh) ≤ C, maxi, j |Di j | ≤ C .

(4.6)

Remark 4.1 The a priori estimate assumption (4.3) holds for small enough h and this choice
is heavily based on how large the constant C is in (3.16). Notice that the constant C is
independent of h, as long as h is sufficiently small, say h < H . Then we can guarantee (4.3)
holds for 0 ≤ t ≤ T . Moreover, we will show that, if h < H , then the equality of (4.3)
cannot happen if t < T . However, we still need this estimate to obtain the boundedness of
the numerical approximations. This assumption, which will be verified in Sect. 4.8, is used
for the estimate of the convection terms.

4.3 Error Equations

In this subsection, we proceed to construct the error equations. From (3.7)–(3.12), we have
the following error equations(

γ
∂ep
∂t

+ ∂eφ

∂t
, ζ

)
= Ld(eu, ζ ), (4.7)

(
μ

κ(φ)
u − μ

κ(φh)
uh, θ

)
+

(
ρ

φ

∂u
∂t

− ρ

φh

∂uh
∂t

, θ

)

+
(

ρF(φ)√
κ(φ)

|u|u − ρF(φh)√
κ(φh)

|uh |uh, θ
)

= D(ep, θ), (4.8)
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((φc f )t − (φhch)t , v) = Lc(u, c f , v) − Lc(uh, ch, v) + Ld(ez, v)

− (
A(av(φ)c f − av(φh)ch), v

) + ( f pec, v), (4.9)

(es,w) = D(ec,w), (4.10)

(ez,ψ) = ((D(u)φs − D(uh)φhsh),ψ), (4.11)

(eφ t , β) = (B(av(φ)c f − av(φh)ch), β), (4.12)

for any ζ, v, β ∈ Wk
h and θ ,w, ψ ∈ Wk

h .

In the following, we choose the same test functions as in [17], and obtain the energy
inequalities. If the details are the same we skip them.

4.4 The First Energy Inequality

We take v = ξc, w = ξ z, ψ = − ξ s in (4.9)–(4.11), respectively, and use Lemma 3.2 and
(4.2), we can obtain

1
2

d
dt

(
φhξ

2
c

) + (D(uh)φhξs, ξs) = R1 + R2 + R3 + R4 + R5 + R6, (4.13)

where

R1 =
(

φh
∂ηc

∂t
, ξc

)
− (c f tξφ, ξc) + (c f tηφ, ξc) − (φtξc, ξc) + (φtηc, ξc)

−(chξφ t , ξc) + (chηφ t , ξc) + 1

2
((φh)tξc, ξc)

R2 = −(D(u)sξφ, ξ s) + (D(u)sηφ, ξ s) + (D(u)φhηs, ξ s),

R3 = (uc f − uhch,∇ξc) +
∑
e∈	e

〈uc f − ûhch · νe, [ξc]〉e

R4 = −D(ηc, ξ z),

R5 = (ηs, ξ z) − (ηz, ξ s) + ( f pec, ξc),

R6 = −(A(av(φ)c f − av(φh)ch), ξc),

where 	e = 	0 ∪ ∂�− and 〈u, v〉e = ∫
e uv ds. Now, we estimate each Ri (i = 1, . . . , 6)

term. Using hypotheses 4 and (4.5), we can get

R1 ≤ C‖ξc‖
(‖ηct‖ + ‖ξφ‖ + ‖ηφ‖ + ‖ξc‖ + ‖ηc‖ + ‖ξφ t‖ + ‖ηφ t‖

)
≤ C

(
‖ξc‖2 + ‖ξφ‖2 + ‖ξφ t‖2 + h2k+2

)
, (4.14)

where the second step requires Lemma 4.2. For R2, by hypotheses h2, h4 and Lemma 4.2
and (4.6)

R2 = − (
D(u)sξφ, ξ s

) + (
D(u)sηφ, ξ s

) − (D(uh)φhηs, ξ s) + ((D(u) − D(uh))φhηs, ξ s)

≤ C‖ξ s‖
(‖ξφ‖ + ‖ηφ‖ + ‖ηs‖

) + C‖u − uh‖‖ξ s‖
≤ C

(
‖ξφ‖2 + ‖ξu‖2 + h2k+2

)
+ ε‖ξ s‖2. (4.15)

The estimate of R3 is the same with [17], here we present the result.

R3 ≤ C
(
hk+1 + ‖ξu‖ + ‖ξc‖

) (
‖ξ s‖ + hk+1

)

≤ C
(
‖ξu‖2 + ‖ξc‖2 + h2k+2

)
+ ε‖ξ s‖2. (4.16)
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We estimate R4 by Lemmas 4.3 and 4.2

R4 ≤ Chk+1‖c f ‖k+2‖ξ z‖ ≤ Ch2k+2 + ε‖ξ z‖2. (4.17)

Use Hypotheses 4 and Lemma 4.2 to obtain

R5 ≤ ‖ηs‖‖ξ z‖ + ‖ηz‖‖ξ s‖ + C‖ec‖‖ξc‖
≤ C

(
‖ξc‖2 + h2k+2

)
+ ε

(‖ξ s‖2 + ‖ξ z‖2
)
. (4.18)

Finally, we estimate R6,

R6 = − (
A(av(φ)(c f − ch), ξc

) − (Ach(av(φ) − av(φh), ξc))

≤ C‖ξc‖‖c f − ch‖ + C‖ξc‖‖φ − φh‖
≤ C

(
‖ξc‖2 + ‖ξφ‖2 + h2k+2

)
, (4.19)

where the second step follows from hypothesis 4, Lemma 2.1 and (4.5), and the last step
requires Lemma 4.2.

Substituting the estimation (4.14)–(4.19) into (4.13) and use hypothesis 2 and (4.6), we
obtain

d‖√φhξc‖2
∂t

+ ‖ξ s‖2 ≤ C
(
‖ξc‖2 + ‖ξφ‖2 + ‖ξφ t‖2 + ‖ξu‖2 + h2k+2

)

+ ε
(‖ξ s‖2 + ‖ξ z‖2

)
. (4.20)

Nowwe proceed to eliminate ‖ξz‖ on the right-hand side of the above equation. Takeψ = ξ z
in (4.11) to obtain

(ξ z, ξ z) = (ηz, ξ z) + (D(u)sφ − D(uh)shφh), ξ z),

= (ηz, ξ z) + (D(u)s(φ − φh), ξ z) + ((D(u)

−D(uh))φhs, ξ z) + (D(uh)φh(s − sh), ξ z),

which further implies

‖ξ z‖2 ≤ ‖ηz‖‖ξ z‖ + C‖φ − φh‖‖ξ z‖ + C‖u − uh‖‖ξ z‖ + C‖s − sh‖‖ξ z‖
≤ C

(
‖ξφ‖2 + ‖ξu‖2 + ‖ξ s‖2 + h2k+2

)
+ ε‖ξ z‖2,

where in the first step we applied hypotheses 3, 4 and (4.6), the second step follows from
Lemma 4.2. Take ε to be small, we have

‖ξ z‖2 ≤ C
(
‖ξφ‖2 + ‖ξu‖2 + ‖ξ s‖2 + h2k+2

)
.

Substituting the above equation into (4.20), then integrating with respect to t and use (4.6),
we have the first energy inequality

‖ξc‖2 +
∫ t

0
‖ξ s‖2 dt ≤ C

∫ t

0

(‖ξc‖2 + ‖ξφ‖2 + ‖ξφ t‖2 + ‖ξu‖2
)
dt + Ch2k+2. (4.21)

Now we derive the energy inequality for p and u by studying equations (4.7), (4.8).
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4.5 The Second Energy Inequality

In this subsection, we will derive the second energy inequality. Taking ζ = ξp, θ = ξu in
(4.7) and (4.8), respectively, and using Lemma 3.2 and (4.2), we can obtain

(
γ

∂ξp

∂t
, ξp

)
+ 1

2

d

dt

(
ρ

φh
ξ2u

)
+

(
μ

κ(φh)
ξu, ξu

)
+

(
ρF(φ)

κ(φ)
(|u|u − |uh |uh), eu

)

= T1 + T2 − T3 − T4 − T5 − T6, (4.22)

where

T1 =
(

γ
∂ηp

∂t
, ξp

)
− (ξφt , ξp) + (ηφt , ξp)

T2 = −
(

μ

(
1

κ(φ)
− 1

κ(φh)

)
u, ξu

)
+

(
μ

κ(φh)
ηu, ξu

)
,

T3 =
(

ρut

(
1

φ
− 1

φh

)
, ξu

)
−

(
ρ

φh

∂ηu

∂t
, ξu

)
− 1

2

(
d

dt

(
1

φh

)
ρξu, ξu

)

T4 =
(

ρF(φ)√
K (φ)

(|u|u − |uh |uh), ηu
)

,

T5 =
((

ρF(φ)√
κ(φ)

− ρF(φh)√
κ(φh)

)
|uh |uh, ξu

)
,

T6 = D(ηp, ξu)

Now, we estimate Ti (i = 1, . . . , 6) term by term. Using Lemma 4.2, we can get

T1 ≤ C‖ξp‖
(‖ηpt‖ + ‖ξφt ‖ + ‖ηφt ‖

) ≤ C
(
‖ξp‖2 + ‖ξφt ‖2 + h2k+2

)
, (4.23)

Use Lemmas 2.1, 4.2, (4.6) and hypotheses 4 to obtain

T2 ≤ C‖ξu‖‖ηu‖ + C‖ξu‖‖φ − φh‖ ≤ C
(
‖ξu‖2 + ‖ξφ‖2 + h2k+2

)
. (4.24)

Using hypothesis 4, (4.5) and (4.6) we estimate T3 by

T3 ≤ C‖ξu‖‖φ − φh‖ + C‖ξu‖‖ηut ‖ + C‖ξu‖2 ≤ C‖ξu‖2 + ‖ξφ‖2 + h2k+2,

(4.25)

where the second step requires Lemma 4.2.
The estimate of T4, T5 also requires hypothesis 4, (4.5) and Lemma 4.2

T4 =
(

ρF(φ)√
κ(φ)

|u|(u − uh), ηu

)
+

(
ρF(φ)√

κ(φ)
uh(|u| − |uh |), ηu

)

≤ C‖u − uh‖‖ηu‖
≤ C

(‖ξu‖ + ‖ηu‖
) ‖ηu‖ ≤ C

(
‖ξu‖2 + h2k+2

)
. (4.26)

T5 =
(

ρ|uh |uh
(

F(φ)√
κ(φ)

− F(φh)√
κ(φh)

)
, ξu

)

=
(

ρ|uh |uh
(

F(φ)√
κ(φ)

− F(φh)√
κ(φ)

+ F(φh)√
κ(φ)

− F(φh)√
κ(φh)

)
, ξu

)
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=
(

ρ|uh |uh F(φ) − F(φh)√
κ(φ)

, ξu

)
+

(
ρ|uh |uh F(φh)

(
1√
κ(φ)

− 1√
κ(φh)

)
, ξu

)

≤ C‖φ − φh‖‖ξu‖ ≤ C
(
‖ξφ‖2 + ‖ξu‖2 + h2k+2

)
. (4.27)

Finally, we estimate T6,

T6 = D(ηp, ξu) ≤ Ch2k+2‖ηp‖k+2‖ξu‖ ≤ C
(
‖ξu‖2 + h2k+2

)
, (4.28)

where the first step follows from Lemma 4.3.
Substituting (4.23)–(4.28) into (4.22), we have

∥∥∥∥∥
μ1/2

κ
1
2 (φh)

ξu

∥∥∥∥∥
2

+ 1

2

d

dt
‖γ 1/2ξp‖2 + 1

2

d

dt

∥∥∥∥∥
ρ1/2

φ
1/2
h

ξu

∥∥∥∥∥
2

+
(

ρF(φ)√
κ(φ)

(|u|u − |uh |uh), eu
)

≤ C
(
‖ξp‖2 + ‖ξφ t‖2 + ‖ξφ‖2 + ‖ξu‖2 + h2k+2

)
.

Thanks to [31] Lemma 3.2,
(

ρF(φ)√
κ(φ)

(|u|u − |uh |uh), eu
)

≥ 0, the above equation results in

d

dt
‖γ 1/2ξp‖2 + d

dt

∥∥∥∥∥
ρ1/2

φ
1/2
h

ξu

∥∥∥∥∥
2

≤ C
(
‖ξp‖2 + ‖ξφ t‖2 + ‖ξφ‖2 + ‖ξu‖2 + h2k+2

)
.

Integrating the above equation with respect to t and using (4.6), we obtain

‖ξp‖2 + ‖ξu‖2 ≤ C
∫ t

0

(
‖ξp‖2 + ‖ξφ t‖2 + ‖ξφ‖2 + ∥∥ξu

∥∥2) dt + Ch2k+2. (4.29)

4.6 The Third Energy Inequality

The third energy inequality will be derived by taking β = ξφ in (4.12)

(ξφ t , ξφ) = (ηφ t , ξφ) + (
Bav(φ)c f − Bav(φh)ch, ξφ

)
= (ηφ t , ξφ) + (

Bav(φ)(c f − ch), ξφ

) + (
Bch(av(φ) − av(φh)), ξφ

)
,

which further yields

1

2

d

dt
‖ξφ‖2 ≤ ‖ηφ t‖‖ξφ‖ + C‖c f − ch‖‖ξφ‖ + C‖φ − φh‖‖ξφ‖

≤ C
(
‖ξφ‖2 + ‖ξc‖2 + h2k+2

)
,

where we have used Lemma 2.1 and (4.5). Integrating the above inequality with respect to t ,
we obtain the third energy inequality

‖ξφ‖2 ≤ C
∫ t

0

(‖ξφ‖2 + ‖ξc‖2
)
dt + Ch2k+2. (4.30)
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4.7 The Fourth Energy Inequality

We take β = ξφ t in (4.12) to obtain the last energy inequality

(ξφ t , ξφ t ) = (ηφ t , ξφ t ) + (
Bav(φ)c f − Bav(φh)ch, ξφ t

)
= (ηφ t , ξφ t ) + (

Bav(φ)(c f − ch), ξφ t

) + (
Bch(av(φ) − av(φh)), ξφ t

)
.

Then we have

‖ξφ t‖2 ≤ ‖ηφ t‖‖ξφ t‖ + C‖c f − ch‖‖ξφ t‖ + C‖φ − φh‖‖ξφ t‖
≤ C

(
‖ξc‖2 + ‖ξφ‖2 + h2k+2

)
+ ε‖ξφ t‖2,

which further yields the last energy inequality

‖ξφ t‖2 ≤ C
(
‖ξc‖2 + ‖ξφ‖2 + h2k+2

)
. (4.31)

4.8 Proof of Theorem 3.1

Nowwe are ready to combine the four energy inequalities and finish the proof of Theorem3.1.
Firstly, from (4.21), (4.29) and (4.30), it is easy to derive the following estimate

‖ξc‖2 + ‖ξp‖2 + ∥∥ξu
∥∥2 + ‖ξφ‖2 +

∫ t

0
‖ξ s‖2 dt

≤ C
∫ t

0

(
‖ξc‖2 + ‖ξp‖2 + ∥∥ξu

∥∥2 + ‖ξφ‖2 + ‖ξφ t‖2
)
dt + Ch2k+2.

Thanks to (4.31), we can eliminate ξφ t in the above inequality to obtain

‖ξc‖2 + ‖ξp‖2 + ∥∥ξu
∥∥2 + ‖ξφ‖2 +

∫ t

0
‖ξ s‖2 dt

≤ C
∫ t

0

(
‖ξc‖2 + ‖ξp‖2 + ∥∥ξu

∥∥2 + ‖ξφ‖2
)
dt + Ch2k+2.

Now, we can employ Gronwall’s inequality to obtain

‖ξc‖2 + ‖ξp‖2 + ‖ξu‖2 + ‖ξφ‖2 +
∫ t

0
‖ξ s‖2 dt ≤ Ch2k+2. (4.32)

For the boundness of φh t ,

‖ξφ t‖ ≤ C
(
‖ξc‖ + ‖ξφ‖ + hk+1

)
≤ Chk+1. (4.33)

Combining (4.33) and Lemma 4.2, we have

‖φt − φh t‖ ≤ ‖ξφ t‖ + ‖ηφ t‖ ≤ Chk+1.

Finally, by using the standard approximation result, we obtain (3.16). To complete the proof,
let us verify the a priori assumption (4.3). For k ≥ 1, we can consider h small enough so

that Chk+1 < 1
2h

3
2 , where C is the constant determined by the final time T . Then define

t∗ = inf{t : ‖c f − ch‖ + ‖φ − φh‖ + ‖φt − φh t‖ + ‖u − uh‖ ≥ h
3
2 }, we should have

‖c f −ch‖+‖φ−φh‖+‖φt −φh t‖+‖u−uh‖ = h
3
2 by continuity in time at t = t∗. However,

if t∗ < T , theorem 3.1 implies that ‖c− ch‖+‖φ −φh‖+‖φt −φh t‖+‖u− uh‖ ≤ Chk+1
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for t ≤ t∗, in particular h 3
2 = ‖(c− ch)(t∗)‖ + ‖(φ − φh)(t∗)‖ + ‖(φt − φh t )(t

∗)‖ + ‖(u−
uh)(t∗)‖ ≤ Chk+1 < 1

2h
3
2 , which is a contradiction. Therefore, there always holds t∗ ≥ T ,

and thus the a priori assumption (4.3) is justified.
Since the LDG spatial discretization allows a mesh with hanging nodes, we employ mesh

adaptation to save computational cost. That is during the simulation, fine mesh is used for
a region while coarse mesh for the rest of the computational domain. We discuss the mesh
adaptation in the following section.

5 Mesh Adaptation

In this section mesh adaptation for the equations modelling wormhole propagations will
be studied. We will first discuss refinement and coarsening of quadrilaterals, subse-
quently we provide a trouble indicator to select candidate elements in the computational
mesh for refinement and coarsening. Finally mesh adaptation procedure will be pre-
sented.

5.1 Refinement and Coarsening of Quadrilaterals

In this section we will discuss the refinement of a single quadrilateral and coarsening of the
children quadrilaterals which are refined from the same quadrilateral. As [42], we assume
that

• the initial computational mesh is composed by uniform rectangular elements which are
labeled as level with zero, namely Level = 0,

• each element in the computational mesh can be refined at most LEV times,
• an element, called parent element, when is refined in necessary is divided into four child

elements with equal size, and

Level of the child elements = Level of the parent element + 1,

• the four child elements which all of them are to be coarsened, obtained from the same
parent element, can be coarsened to the parent element,

• the difference of Level of an element between its direct neighboring elements are at most
1.

The projections between parent element and its four child elements are defined in [42,61].
To start the mesh adaption, we require a trouble indicator for to refine a element or

coarsening the child elements.

5.2 Trouble Indicator for Refinement and Coarsening

In this section, we will provide a trouble indicator to select candidate elements in the compu-
tational mesh for refinement and coarsening. Since the value of the physical variable changes
rapidly in some area, then the elements in this region need to be refined. As the topology of
the flow field changes, elements which were refined from the parent element, have no change
anymore, need to be coarsened.

The trouble indicator ηK for each element K is defined based on the jump of the concen-
tration c f h and porosity φh between K and its direct and indirect neighbor, given by
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ηK = max

{ |φh(K ) − φh(Kn)|
diam(K )

,
|c f h(K ) − c f h(Kn)|

diam(K )

}
,

for all Kn with Kn a neighbor of K of degree at most m. (5.1)

Here φh(K ), ch(K ) represent the porosity and concentration in the center of an element K ,
respectively. And diam(K ) means the longest edge of element K . The definition of neighbor
of degree m of element K j is defined in [13,42]. Use of indirect neighbor of an element is to
guarantee the stability of the numerical scheme on the adaptive mesh.

Based on the trouble indicator for the elements in the computational mesh, we select
candidate elements for refinement and coarsening. For each element K in the computational
mesh,

if ηK > ηupp and the level of K < LEV

then we mark K as a candidate element for refinement,

elseif ηK < ηlow and the level of K > 0

then we mark K as a candidate element for coarsening, (5.2)

with problem dependent parameters ηupp, ηlow and ηupp > ηlow > 0.

5.3 Strategy for Refinement and Coarsening

In this section we will present a refinement and coarsening strategy for the LDG discretiza-
tion, given candidate elements selected through the trouble indicator (5.2). To guarantee the
difference in the refinement levels between two neighboring elements less than two, “refine-
ment must, coarsening can” strategy is used for the candidate elements. This strategy means
that a candidate element K for refinement is definitely refined and refinement of its neighbor
elements depends on the difference in their refinement levels. While coarsening of a candi-
date element K is more complex, it is related with the neighboring elements of K refined
from the same parent element, and the level difference between K and all of its neighbor. If
one of the child element of K ’s parent element is not a candidate coarsening element, then
K should not be coarsened. If the level difference between K and one of its neighbor is one,
K should not be coarsened either. We refer the readers [42] for more details of the strategy
for mesh adaptation.

6 Numerical Example

In this section, we perform several numerical examples to illustrate the accuracy and capabil-
ity of the LDG schemes for the modelling equations of wormhole propagations in Sect. 3.3.
We study the numerical examples of real wormhole propagation scenario in petroleum engi-
neering in Sect. 6.2. A similar wormhole propagation problem was studied in [17] where the
modelling equations (2.1) with γ = 0 and a equation different from (2.2) for the velocity u.
In [17], an explicit time discretization was used with the time step as δt = O(h2), which is
not practical for two-dimensional simulations, especially for fine resolution and long time
simulations.

Suppose the coefficients of the polynomial expansions of numerical variables are collected
in the vector Û(t). The LDG discretization (3.7)–(3.12) results in an ODEs system
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∂Û
∂t

= F(Û, t). (6.1)

Subsequently various time schemes can be applied to solve it. For the accuracy test, the third
order explicit strong-stability-preserving Runge–Kutta method [39] is used, given by

Û(1) = Ûn + �tL(Ûn),

Û(2) = 3

4
Ûn + 1

4

(
Û(1) + �tL(Û(1))

)
,

Ûn+1 = 1

3
Ûn + 2

3

(
Û(2) + �tL(Û(2))

)
,

We take the time step to be sufficiently small as δt = O(h2) such that the error in time is
negligible compared to spatial error. While for the real wormhole propagation problem, we
apply a first-order semi-implicit time discretization to solve (6.1), given by:

(
γ
pn+1 − pn

δtn
, ζ

)
K

+
(

φn+1 − φn

δtn
, ζ

)
K

+ (∇ · un+1, ζ )K = ( f (x, tn), ζ )K ,

(
ρ

φn+1

un+1 − un

δtn
, θ

)
K

+
(

μ

κ(φn+1)
un+1, θ

)
K

+
(

ρF(φn+1
h )√

κ(φn+1)

∣∣un∣∣un+1, θ

)
K

= −(∇ pn+1, θ)K + (ρg, θ)K ,(
(φc f )

n+1 − (φc f )
n

δtn
, v

)
K

+ (∇ · (uncnf + zn+1), v)K

= −(Aav(φ
n+1)cnf , v)K + ( f pc

n
f + f I cI , v)K ,

(sn+1,w)K = −(∇cn+1
f ,w)K ,

(zn+1,ψ)K = (φn+1D(un)sn+1,ψ)K ,(
φn+1 − φn

δtn
, β

)
K

= (Bav(φ
n)c̃nf , β)K .

Here

c̃nf = min{1,max{0, c f }}.
Physically, c f is the volumetric concentration of the acid and it should be between 0 and 1.
To make the numerical solution to be physically relevant, we use the cut-off technique for
c f .

6.1 Accuracy Test

Example 6.1 We solve (2.1)–(2.4) and the parameters are taken as

dm = 10−2, αl = 0.1, αt = 0.1, K0 = 1, T = 0.1,

α = kc = ks = μ = f I = 1, ρ = 1, g = 0,

a0 = 0.5, ρs = 10, γ = 1, (6.2)

where I is the identity matrix.

The exact smooth solutions are given as
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Table 1 Accuracy test for pressure and velocity in Example 6.1

M ||p − ph || Order ||u − uh || Order ||c f − c f h || Order ||φ − φh || Order

P1 10 5.28E−1 – 8.42E−1 – 1.65E−1 – 2.41E−2 –

20 1.91E−1 1.46 2.41E−1 1.80 3.63E−2 2.18 6.10E−3 1.98

40 2.67E−2 2.83 7.75E−2 1.63 7.41E−3 2.29 1.53E−3 2.00

80 5.77E−3 2.21 1.38E−2 2.48 1.68E−3 2.13 3.82E−4 2.00

10 1.94E−1 – 1.79E−1 – 3.64E−2 – 2.43E−3 –

P2 20 2.71E−2 2.84 3.25E−2 2.46 3.11E−3 3.55 3.08E−4 2.98

40 2.97E−3 3.19 4.12E−3 2.98 3.07E−4 3.34 3.86E−5 2.99

80 3.99E−4 2.89 5.08E−4 3.02 2.42E−5 3.66 4.82E−6 3.00

p(x, t) = e−t cos(x) cos(y),

u1(x, t) = 1.5 + e−t sin2(x) cos(2y), u2(x, t) = 1.5 + e−t sin2(x) sin(2y)

φ(x, t) = 0.6 + t sin(x) cos(y), c f (x, t) = 0.5 + 0.4e−t sin(x) sin(y). (6.3)

We can calculate the initial conditions and the right hand sides accordingly. Piecewise linear
and quadratic tensor product polynomials are employed in the LDG scheme. We perform
accuracy verifications on uniform meshes with M × M elements over the computational
domain � = [0, 2π] × [0, 2π ], and compute the numerical approximations at T = 0.1.
Periodic boundary condition is used in this numerical example. The numerical results are
given in Table 1. From the table, we can observe optimal convergence rates, which verifies
the results in Theorem 3.1.

Thenext twoexamples are simulations of realwormhole propagation scenario in petroleum
engineering.

6.2 Wormhole Propagation Problem

The computational domain is � = [0, 0.2m] × [0, 0.2m]. Initial concentration of acid and
initial porosity of rock in this domain are set to be c0 = 0 and φ0 = 0.2, respectively.
The acid flow is injected to the porous media from the left boundary with a velocity of
u = 0.01m/s and drained out of it from the right boundary with the same velocity. Top
and bottom boundary conditions are set to be periodic. The concentration of influx acid
is 10mol/m2. To observe the wormhole propagation, we set two singular areas with high
porosity and permeability on the left boundary with size to be 0.01m×0.01m: one is 0.05m
above the bottom with the porosity of 0.4, and the other 0.1m above the bottom with the
porosity of 0.6. The permeability of the two entries is determined by (2.7) which is about
10−10 m2 and 10−11 m2, respectively. For the real wormhole propagation examples, the time
step is chosen as δt = 0.2 h in the semi-implicit time discretization.

We usemesh adaptation discussed in Sect. 5 to save computational costs in the simulations.
We choose m = 2 in (5.1) the defination of trouble indicator ηK and ηupp = 5, ηlow = 0.05
in (5.2) for candidate elements for refinement and coarsening in the following two examples.
We remark that the values of ηupp, ηlow can vary little bit and give similar numerical results.
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Fig. 1 Example 2: numerical solutions for concentration, porosity and velocity in x direction with time
evolution, the initial adaptive mesh is composed by 20 × 20 elements and two levels of refinement
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(f)cf h at T = 50, adaptive mesh

(g)T = 20, adaptive mesh (h)T = 35, adaptive mesh (i)T = 50, adaptive mesh

Fig. 2 Example 3: numerical concentration of acid with time evolution, the first line are results on a uniform
mesh of 80 × 80 elements, the second line are results on an adaptive mesh, the third line are adaptive meshes
with initial 20 × 20 elements and two levels of refinement

Example 6.2 A real wormhole propagation scenario in petroleum engineering is studied in
this example. The parameters are taken as

dm = 10−8, αl = 0, αt = 0, K0 = 10−9 m2, T = 50 s,

α = 10 kg/mol, kc = 1m/s, ks = 10m/s,

μ = 10−2 Pa s, f I = f p = 0, ρ = 1000, g = 0,

a0 = 2m−1, ρs = 2500 kg/m2, γ = 0.01, (6.4)

The contour plots of concentration of acid, porosity of rock and velocity in x direction on
adaptivemeshwith time evolution are shown in Fig. 1. The adaptivemesheswith two levels of
refinement are used in this simulation, and the initial mesh is composed by 20× 20 elements
with equal size. Wormhole propagation is clearly shown from the figures on the adaptive
mesh.
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Fig. 3 Example 3: numerical porosity with time evolution, the first line are results on a uniform mesh of
80 × 80 elements, the second line are results on an adaptive mesh, the third line are adaptive meshes with
initial 20 × 20 elements and two levels of refinement

Example 6.3 We simulate the real wormhole propagation scenario in Example 6.2 and take
the same parameters except

αl = 10−3, αt = 10−4. (6.5)

The contour plots of concentration of acid, porosity of rock and velocity in x direction with
time evolution are shown in Figs. 2, 3 and 4, respectively. Both a uniform mesh and an
adaptive mesh are considered in the simulations, and the initial adaptive mesh is composed
by 20 × 20 elements with two levels of refinement. From the results of Figs. 2, 3 and 4
we can observe that the numerical solutions are very similar on uniform mesh and on an
adaptive mesh; and the wormhole propagations are shown clearly on both meshes. During
the simulation of this example, the averaged number of elements on the adaptive mesh is
1865, compared with 6400 for the uniform mesh. We used Matlab to code up the example
and ran it on a laptop. The simulation based on adaptive meshes took about 7h, while that for
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Fig. 4 Example 3: numerical velocity in x direction with time evolution, the first line are results on a uniform
mesh of 80 × 80 elements, the second line are results on an adaptive mesh, the third line are adaptive meshes
with initial 20 × 20 elements and two levels of refinement

uniform mesh may take 41h until the final time T = 50 has been reached. We will consider
further optimization and parallel technique in the future.

7 Concluding Remarks

In this paper, we studied the compressible wormhole prorogation, and optimal convergence
rates were derived. Numerical experiments verified the theoretical analysis. Wormhole prop-
agation was shown in the numerical simulations on both uniform and adaptive meshes.
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