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The discrete fracture model (DFM) has been widely used in the simulation of fluid 
flow in fractured porous media. Traditional DFM uses the so-called hybrid-dimensional 
approach to treat fractures explicitly as low-dimensional entries (e.g. line entries in 2D 
media and face entries in 3D media) on the interfaces of matrix cells and then couple 
the matrix and fracture flow systems together based on the principle of superposition 
with the fracture thickness used as the dimensional homogeneity factor. Because of this 
methodology, DFM is considered to be limited on conforming meshes and thus may 
raise difficulties in generating high quality unstructured meshes due to the complexity 
of fracture’s geometrical morphology. In this paper, we clarify that the DFM actually can 
be extended to non-conforming meshes without any essential changes. To show it clearly, 
we provide another perspective for DFM based on hybrid-dimensional representation of 
permeability tensor to describe fractures as one-dimensional line Dirac delta functions 
contained in permeability tensor. A finite element DFM scheme for single-phase flow 
on non-conforming meshes is then derived by applying Galerkin finite element method 
to it. Analytical analysis and numerical experiments show that our DFM automatically 
degenerates to the classical finite element DFM when the mesh is conforming with 
fractures. Moreover, the accuracy and efficiency of the model on non-conforming meshes 
are demonstrated by testing several benchmark problems. This model is also applicable to 
curved fracture with variable thickness.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

As an important model problem arising from a variety of applications including enhanced oil recovery in naturally 
fractured reservoirs, contaminant transport in fractured rocks, and radioactive waste repository in subsurface, the study on 
fluid flow in fractured porous media is of high interest and has engaged a large number of researchers in the past half-
century. Moreover, due to the recent prevalence of hydraulic fracturing techniques developed for unconventional reservoirs, 
efficient and accurate simulators for flow and transport in fractured media are increasingly desired.
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The fractured porous media is composed of the highly conductive narrow fractures and the surrounding low-permeability 
rock matrix. Essentially, the fractured porous media is a special porous media with extreme heterogeneity contributed by 
the fractured regions.

Though with tiny thickness, the fractures have non-negligible effect on the flow in fractured media because of its high 
conductivity. Therefore, to efficiently and accurately build in the effect of fractures on the flow in fractured media is crucial 
to the simulation but remains to be challenging due to the extreme contrast of scale and permeability between porous 
matrix and fracture, as well as the complexity of the fracture network.

There are various remarkable models developed for the simulation of flow in fractured porous media in the past decades, 
among which the most widely used methods are dual-porosity model, single-porosity model, discrete fracture model (DFM), 
and embedded discrete fracture model (EDFM), etc. Moreover, the XFEM-class methods, mortar-type approaches, Lagrange 
multiplier methods and interface models are also developed in recent years. These approaches can be roughly divided into 
two categories: the continuum model and discrete fracture-matrix model.

The dual-porosity model, see e.g. [1–6], is a widely practiced continuum model in fractured reservoir simulations. In 
dual-porosity model, the matrix and fracture network are both treated as continuum systems governed by Darcy’s law 
with different permeability. The mass transfer between two systems is given by the matrix–fracture mass transfer function, 
which is determined by the pressure difference between matrix and fractures systems and the characteristic properties of 
rock and fluid. By simplifying the fracture network to continuum media, the dual-porosity model gained great advantage 
in efficiency and becomes a major approach used in the field-scale simulation of naturally fractured reservoirs. However, 
as a typical continuum model, the dual porosity model has severe limitations in accuracy when simulating disconnected 
fractured media, especially when the porous media contains several large discrete fractures that dominates the flow. In order 
to accurately account for the effect of individual fractures, a number of discrete fracture-matrix models was developed.

The single-porosity model, see e.g. [7], came with the idea that fractured media is a particular case of heterogeneous 
media. It precisely capture and describe the fractures by means of local grid refinement in fractured region, see Fig. 1 (a). 
However, though providing enough accuracy, the single-porosity model is not practical in real reservoir simulations because 
of the computational cost resulted from the enormous number of grids due to the scale difference between matrix and 
fracture thickness. Therefore, the single-porosity model is only employed to give a reference solution to compare with other 
algorithms in most of literature, in which it also called equi-dimensional model sometimes.

To accurately account for the effect of individual fractures without loss of efficiency, the DFM was proposed which 
treats fractures explicitly as low dimensional entries on the interfaces of high dimensional matrix cells. The DFM uses the 
so-called hybrid-dimensional approach to process the flow in 1D fractures and 2D matrix respectively and then couple 
them together based on the principle of superposition with the fracture system multiplied by the fracture thickness as the 
dimensional homogeneity factor. By doing so, the DFM avoid the grid refinement in fractured regions to save the efficiency 
but keeps the accuracy meanwhile. In 1982, Noorishad and Mehran [8] proposed the first DFM approach in a convection-
diffusion problem for single-phase flow. In their work, the conforming mesh was aligned with fractures, in which matrix was 
discretized by quadrilateral bilinear isoparametric elements and fractures were discretized by one-dimensional line elements 
as the edge of quadrilateral elements. An upstream weighted residual finite element method was adopted to discretize 
the transport equations on matrix and fractures, respectively, and then the two equation systems were coupled together 
using the aforementioned technique. Later, Baca et al. [9] considered the heat and solute transport in fractured media on 
conforming meshes where the matrix was discretized by isoparametric elements and the fractures were discretized by 
line elements along the sides of isoparametric elements, and used the principle of superposition to couple the governing 
equations for each element type together. Since then, the DFM has been rapidly developed. Kim and Deo [10,11] employed 
the Galerkin finite element method to discretize the multi-phase flow in matrix on triangular meshes and fractures on its 
interfaces respectively, and superposed the fracture stiffness matrices on rock stiffness matrices. Then the authors applied 
an inexact Newton’s method for solving the resulting fully-implicit scheme. Karimi-Fard and Firoozabadi [12] also used 
Galerkin method in DFM to solve the two-phase flow problem on a conforming triangular mesh with implicit pressure–
explicit saturation (IMPES) time discretization coupled with adaptive time step. The results have shown great agreement 
with the reference solution of single-porosity model on fine meshes. It is worthy mentioning that the authors explained 
the methodology of DFM as a decomposition of integration regions for matrix and fracture based on conforming mesh, i.e. ∫
�

F EQ d� =
∫

�m

F EQ d�m + ε

∫
� f

F E Q d� f , where ε is the fracture thickness, F EQ is the flow equation, and �m, � f are 

the regions of 2D matrix and 1D fractures, i.e. � = �m + ε� f . More DFM based on finite element methods can be find in 
[13,14], etc. In addition to finite element methods, researchers also adopted the idea of DFM on finite volume methods for 
the purpose of local mass conservative. Based on conforming Delaunay triangulation where fractures lay on the edges of 
triangles, the vertex-centered finite volume DFM (Box-DFM) [15–20] associates unknowns to each vertex-centered control 
volumes (CV) which are the dual cells of Delaunay mesh formed by connecting the barycenters of neighboring Delaunay 
triangles and midpoints of edge around each vertices. In this method, the flux on each CV faces is composed of the rock 
matrix flux and fracture flux, where the flux on fractures is obtained by multiplying the fracture thickness with the flux 
on 1D fracture entries. Another variation of finite volume DFM is the cell-centered finite volume DFM (CC-DFM) [21–25], 
where the degrees of freedom are assigned to each triangular matrix elements and the line fracture elements on the edge 
of triangles. In this model, the transmissibility of different element-adjacent types are determined by the harmonic average 
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Fig. 1. Different type of meshes on fractured media, triangulated by DistMesh [71].

of transmissibility of different elements. Depends on the anisotropy and heterogeneity of porous matrix, the fluxes can be 
approximated by the information of two points (TPFA) or multiple points (MPFA). In [21], the authors proposed a widely 
recognized simplification for flux exchange in intersecting fractures in CC-DFM to remove the small element caused by the 
intersection. Moreover, Firoozabadi et al. [26–33]. combined the mixed finite element (MFE) and the discontinuous Galerkin 
(DG) methods in discrete fracture model to attain the local-conservativity of mass and high accuracy of spices in flow 
and transports in fractured media. The slope limiter is often cooperated with DG to gained a better stability. There are 
also conforming approaches based on DG methods [34,35] that model the fracture as a low dimensional interface imposed 
with suitable jump conditions of pressure and flux. Besides the above, the mortar-type methods (Mortar-DFM) [36,37] and 
mimetic finite difference methods (MFD-DFM) [38] are also well investigated in recent researches.

However, all the aforementioned DFMs suffer from the limitation of conforming meshes, which is usually composed of 
triangular element for matrix and line entries as the edge of triangles for fractures, see Fig. 1 (b). The resulting difficulty is 
the generation of meshes with high quality, especially when fracture network is complex and the distance or angle between 
fractures is small, see Fig. 2. To overcome this shortcoming, lots of efforts were made on finding alternative methods in 
non-conforming meshes.

The embedded discrete fracture model (EDFM) is a successful alternative model that relieves the constraint on meshes 
but keeps explicit description for individual fractures meanwhile. In 2008, Li and Lee [39] proposed the first EDFM for black 
oil model in fractured media. Later it was adopted by Moinfar et al. in [40] as well as lots of other follow up works [41–45]. 
Borrowing the idea of mass transfer from dual-porosity model, the EDFM computes the flow and transport in 2D matrix 
and 1D fractures network respectively with accounting for matrix-fracture and fracture-fracture mass transfer based on their 
pressure differences and geometric and physical information. A typical grids of EDFM with fracture is shown in Fig. 1 (d), 
where the fractures are cut into small pieces by matrix grids with each matrix cell and fracture pieces associated by one 
degree of freedom. Although EDFM only needs structured grid, this method requires computing the average normal distance 
between matrix grid block and embedded fracture piece to calculate the fluid transport between them and considering the 
mass transfer between intersecting fractures.

Recently, a non-conforming finite element method [46–48] based on Lagrange multipliers is proposed. Originating from 
the fictitious domain method [49], this approach couples the flow in (n − 1)-dimensional fractures with that in the n-
dimensional matrix by means of Lagrange multiplier. The Lagrange multiplier is also used to impose the continuity of 
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Fig. 2. Conforming mesh with poor quality, data from [68].

pressure across fractures in this approach. Since the integration forms of the matrix flow, fracture flow and Lagrange multi-
plier show up in the formulation separately, the meshes for these three terms can be mutually independent.

Other non-conforming methods like extended finite element discrete fracture model (XFEM-DFM) [50–54] based on 
interfaces models [55–61] were also proposed in recent years. However, these methods are not as widely practiced as the 
EDFM in industry because of the difficulty of implementation issue when fracture network is of high geometrical complexity 
[62]. Moreover, the CutFEM [63], which couples the fluid flow in all lower dimensional manifolds, is another alternative non-
conforming method. But this method requires the fractures to cut the domain into completely disjoint subdomains, thus it’s 
not applicable for all fractured media. In addition, some hybrid models were also introduced [64,65].

In this paper, instead of proposing a new non-conforming alternative of DFM, we clarify that the primal finite element 
discrete fracture model indeed is not really restricted on conforming meshes. Actually, we can reinterpret the DFM in a 
different way then the DFM can be applied to nonconforming meshes. The inspiration comes from the comb model [66], 
which uses a diffusion tensor containing Dirac-δ function to describe a special diffusion process that occurs only on x-
axis in X-direction but on whole plane in Y-direction. Drawing from the comb model, we propose a hybrid-dimensional 
representation of permeability tensor of fractured media and obtain the non-conforming DFM scheme by directly applying 
Galerkin method on this model. The derivation is quite simple but helps us get rid of the restriction on conforming meshes. 
Typically applicable meshes for this scheme are shown in Fig. 1 (c), (d).

Though both address the matrix-fracture mesh non-conformity, our model essentially differentiates from the EDFM. The 
EDFM borrows the idea from dual-porosity model and focus on the calculation of the transmissibility factor of different non-
neighboring connections (NNCs) thus the fractures and matrix flows are two different systems, while our model based on 
the idea of representing fractured media as hybrid-dimensional permeability tensor thus the fracture and matrix flows are 
one system. Due to their differences, our model have some advantages compared with EDFM. First, the degrees of freedom 
and complexity of our model won’t increase as the number of intersecting fractures increases, while in EDFM, the system 
will become more complicated if there are more intersecting fractures (resulting in more NNCs), especially when they 
intersect at one point. Second, our model can handle curved fractures naturally, which is shown in later sections. Moreover, 
since we don’t need to compute the transmissibility factor used in EDFM, the costs on geometric computation of the average 
normal distance from matrix to fractures and from fractures to fractures are relieved. We also would like to point out some 
shortcomings and limitations of the method in this paper. Not like some adapted EDFM [42], the model is unable to treat 



Z. Xu, Y. Yang / Journal of Computational Physics 415 (2020) 109523 5
Fig. 3. Fractured media in model problem.

the barriers directly. The pressure jump across the fracture is not representable in the model as well. In addition, due to the 
property of the finite element method, the approach proposed in the paper is not locally mass conservative. However, it is 
possible to apply the idea introduced in [74] to obtain the local mass conservation.

It’s notable that the out look of the formulation of our method is more or less similar to that of Lagrange multiplier 
approach [46–48] but they are in totally different theoretical frameworks. One may refer to that approach if of interest.

The rest of this paper is organized as follows. In Section 2, we introduce the equi-dimensional model problem of 
the steady-state single-phase flow in fractured porous media. In Section 3, we adopt the comb model to give a hybrid-
dimensional representation for permeability tensor of fractured media. In Section 4, we apply the standard Galerkin finite 
element method to the model proposed in Section 3 to attain the DFM scheme on non-conforming meshes. The effective-
ness, accuracy and consistency with traditional finite element DFM on conforming meshes of this scheme are demonstrated 
in Section 5 with plenty of numerical tests. Finally, we end in Section 6 with some concluding remarks.

2. Equi-dimensional model for single-phase flow in fractured media

For the steady-state single-phase flow, the distribution of pressure p in heterogeneous porous media � is governed by 
the Poisson’s equation:

−∇ · (K∇p) = f , x ∈ �, (2.1)

where K is the permeability tensor of porous media and f is the source term. For fractured porous media, K can be 
expressed as follows:

K =
{
Km x ∈ �m

K f x ∈ � f ,
(2.2)

where �m and � f are the regions of porous matrix and fractures respectively, which compose the whole domain �. See 
Fig. 3 as an illustration, where the thickness of fractures is exaggerated for the sake of visibility.

We consider the mixed boundary condition

p = pD , on �D ∈ ∂�, and (K∇p) · n = qN , on �N = ∂� \ �D , (2.3)

where n is the unit outer normal vector of the boundary ∂�.
The model problem (2.1), (2.2) and (2.3) is usually called the equi-dimensional model for single-phase flow in fractured 

media and the expression K in (2.2) is the equi-dimensional representation of the permeability tensor.

3. Hybrid-dimensional representation of permeability tensor K

Drawing from the comb model [66] which used a diffusion tensor containing Dirac-δ function to describe a special 
diffusion process that occurs only on x-axis in X-direction but on whole plane in Y-direction, this section establishes the 
hybrid-dimensional representation of permeability tensor of the fractured media.

We follow the treatment in hybrid-dimensional discrete fracture model to reduce the fractures from two-dimensional 
narrow strips in Fig. 3 to one-dimensional line segments l, see Fig. 4. Moreover, we establish the global coordinates system 
xO y and local coordinates system ξ Oη associated with the fracture. We denote by ν and σ the tangential and normal unit 
vector of fracture l, respectively. See Fig. 4 as an illustration. For all P ∈ �, the transformation between local coordinates 
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Fig. 4. Fractured media and the corresponding coordinates systems.

(ξP , ηP ) and global coordinates (xP , yP ) is given as[
ξP
ηP

]
=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

][
xP
yP

]
, (3.1)

where θ is the angle of the fracture.
According to the principle of superposition, the permeability tensor of the whole domain is composed of the permeability 

tensors of matrix and fracture, i.e. K = Km + K f . Due to the geometry of the fracture, the permeability tensor K f must be 
symmetric with its two characteristic directions being the tangential and normal directions of the fracture, namely ν and 
σ , respectively. Therefor, K f = K f ,tννT + K f ,nσσ T by the spectral decomposition theorem.

Suppose the original thickness of the fracture strip in Fig. 3 is ε and the tangential permeability is k f , and note that the 

gradient of pressure can be decomposed into ∇p = ∂p

∂ν
ν + ∂p

∂σ
σ .

First, we consider the tangential component of the gradient of pressure 
∂p

∂ν
ν . The resulting flow in the original fracture 

strip is εk f
∂p

∂ν
by Darcy’s law, from which we can see εk f measures the conductivity of the fracture. In our model, the 

conductivity of the fracture is concentrated on this line segment and a line Dirac-δ function will be the choice to represent 
the permeability. Moreover, we should take the location of the fracture into account. Hence we have

K f ,t = εk f δ(η − η0)1(ξ1 ≤ ξ ≤ ξ2), (3.2)

where 1(·) is the indicator function defined as 1(expr) equals 1 if expr is true while equals 0 otherwise. By the coordinates 
transformation (3.1), the expression of K f ,t under global coordinates (x, y) is

K f ,t = εk f δ(− sin(θ)x + cos(θ)y − η0)1(ξ1 ≤ cos(θ)x+ sin(θ)y ≤ ξ2). (3.3)

Second, we consider the normal component of the gradient of pressure 
∂p

∂σ
σ . The effect of fracture on flow in this 

direction is negligible since its thickness ε is so tiny.
Therefore, instead of (2.2), we have the following hybrid-dimensional expression for permeability tensor in single frac-

tured porous media

K = Km + εk f δ(·)1(·)ννT , (3.4)

where δ(·)1(·) is the shorthand of its full expression in (3.2) and (3.3) under the local and global coordinates systems, 
respectively. Note that εk f measures the conductivity of the fracture, δ(·)1(·) contains the information of position of the 
fracture and ν indicates the direction of the fracture.

The expression above is only for fractured media with single fracture but can be extended to a fracture network as

K = Km +
L∑

i=1

εik f iδi(·)1i(·)ν iν
T
i , (3.5)

where L is the number of fractures.
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We call the expression K in (3.4) the hybrid-dimensional representation of permeability tensor because the matrix part 
Km in (3.4) is of rank 2 and has a 2D support while the fracture part εk f δ(·)1(·)ννT is of rank 1 and has a 1D support. 
Analogous to Section 2, we call the model problem (2.1), (3.4) and (2.3) the hybrid-dimensional model for single-phase flow 
in fractured media.

4. Finite element DFM scheme on non-conforming meshes

This section explores the non-conforming DFM and analyze its relationship with traditional finite element DFM [10]. We 
first establish the variational form of the hybrid-dimensional model in Section 4.1. Then, in Section 4.2, we construct the 
non-conforming DFM scheme by using linear Lagrange basis functions as finite element space in the variational form.

4.1. Variational form of the hybrid-dimensional model

We define the variational space

H1
D := {v ∈ H1(�) : v|�D = pD},

and

H1
0 := {v ∈ H1(�) : v|�D = 0}.

Then the variational form [67] of (2.1), (2.3) is to find a p ∈ H1
D , such that the following variational equation holds for 

all v ∈ H1
0,∫

�

(K∇p) · ∇v dxdy =
∫
�

f v dxdy +
∫
�N

qN v ds. (4.1)

Using the hybrid-dimensional representation of K established in (3.4), we have (K∇p) · ∇v = (Km∇p) · ∇v +
εk f δ(·)1(·)(ννT∇p) · ∇v . The second term of right hand side can be further simplified as εk f δ(·)1(·)(ννT∇p) · ∇v =
εk f δ(·)1(·) ∂p

∂ν
ν · ∇v = εk f δ(·)1(·) ∂p

∂ν

∂v

∂ν
.

Therefore, one can get the equivalent variational form as follows,∫
�

(Km∇p) · ∇v dxdy +
∫
�

εk f δ(·)1(·) ∂p
∂ν

∂v

∂ν
dxdy =

∫
�

f v dxdy +
∫
�N

qN v ds. (4.2)

The following lemma helps us to rewrite the integration of the fracture term as a line integral on fracture.

Lemma 4.1. Let δ(·)1(·) be the shorthand of its full expression in (3.3). For any continuous function g on �, we have∫
�

δ(·)1(·)g(x, y) dxdy =
∫
l

g(x, y) ds, (4.3)

where the line segment l is the support of δ(·)1(·) as shown in Fig. 4.

Proof. ∫
�

δ(·)1(·)g(x, y) dxdy

:=
∫
�

δ(− sin(θ)x+ cos(θ)y − η0)1(ξ1 ≤ cos(θ)x + sin(θ)y ≤ ξ2)g(x, y) dxdy

=
∫
x

⎛
⎝∫

y

δ(− sin(θ)x+ cos(θ)y − η0)1(ξ1 ≤ cos(θ)x + sin(θ)y ≤ ξ2)g(x, y) dy

⎞
⎠dx

Let t = cos(θ)y :

=
∫ ⎛

⎝sec(θ)

∫
δ(t − sin(θ)x− η0)1(ξ1 ≤ cos(θ)x+ tan(θ)t ≤ ξ2)g(x, sec(θ)t) dt

⎞
⎠dx
x t
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=
∫
x

sec(θ)1(ξ1 ≤ cos(θ)x+ tan(θ)(sin(θ)x + η0) ≤ ξ2)g(x, tan(θ)x + sec(θ)η0) dx

=
∫
x

sec(θ)1(cos(θ)ξ1 − sin(θ)η0 ≤ x ≤ cos(θ)ξ2 − sin(θ)η0)g(x, tan(θ)x + sec(θ)η0) dx

=
cos(θ)ξ2−sin(θ)η0∫

cos(θ)ξ1−sin(θ)η0

sec(θ)g(x, tan(θ)x+ sec(θ)η0) dx

Let ξ = sec(θ) (x+ sin(θ)η0) :

=
ξ2∫

ξ1

g(cos(θ)ξ − sin(θ)η0, sin(θ)ξ + cos(θ)η0) dξ

=
∫
l

g(x, y) ds (By using (3.1) and the definition of line integral of first type )

We assume θ ∈ (−π
2 , π2 ) in the above and the case θ = π

2 can be proved by a limit process. �
Based on Lemma 4.1, we can obtain the final version of the equivalent variational form of hybrid-dimensional model 

(2.1), (3.4) and (2.3) of fractured porous media:∫
�

(Km∇p) · ∇v dxdy +
∫
l

εk f
∂p

∂ν

∂v

∂ν
ds =

∫
�

f v dxdy +
∫
�N

qN v ds. (4.4)

Remark 4.1. In (4.4), the shape of fracture l actually can be a curve and the thickness ε and tangential permeability k f of 
the fracture can be a scalar function defined along l. In the case of fracture network, we just add all fracture terms together 
in (4.4), i.e.∫

�

(Km∇p) · ∇v dxdy +
L∑

i=1

∫
li

εik f i
∂p

∂νi

∂v

∂νi
ds =

∫
�

f v dxdy +
∫
�N

qN v ds, (4.5)

where L is the number of fractures. Moreover, we would like to note that the left-hand side of (4.4) presents in a beautiful 
adjoint form. The second term of the left-hand side can be viewed as an oriented one-dimensional contribution to the 
bilinear form.

4.2. Numerical scheme of non-conforming DFM

Without loss of generality, we demonstrate the discretization of the variational form (4.4) on unstructured triangular 
meshes using linear finite element spaces. One can extend the scheme to rectangular meshes without difficulty.

We adopt the linear finite element space

Vh = span{
1,
2, . . . ,
M ,
M+1, . . . ,
N},

where 
i ’s are the Lagrange linear basis with Lagrange property, i.e. 
i(x j) =
{
1, i = j

0, i �= j
, in which x j ’s are vertices of the 

triangulation, M is the number of non-Dirichlet vertices (degrees of freedom) and N is the total number of vertices in the 
triangulation.

The aim is to find p = (p j) such that the linear system (4.6) holds.

N∑
j=1

⎧⎨
⎩

∫
�

(Km∇
i) · ∇
 j dxdy +
∫
l

εk f
∂
i

∂ν

∂
 j

∂ν
ds

⎫⎬
⎭ p j =

∫
�

f 
i dxdy +
∫
�N

qN
i ds, i = 1,2, . . . ,M. (4.6)

Note that the Dirichlet boundary condition gives us p j = p(x j) for x j ∈ �D , j = M + 1, . . . , N .
Denote by

aij =
∫

(Km∇
i) · ∇
 j dxdy +
∫

εk f
∂
i

∂ν

∂
 j

∂ν
ds, A = (aij),
� l



Z. Xu, Y. Yang / Journal of Computational Physics 415 (2020) 109523 9
Fig. 5. Locality of gridcells.

and

bi =
∫
�

f 
i dxdy +
∫
�N

qN
i ds, b = (bi),

then the linear system can be written as Ap = b.
Like the traditional finite element methods, the global stiffness matrix A is obtained by assembling local stiffness matri-

ces element-wisely. We illustrate this procedure in the following, and show the consistency of the non-conforming discrete 
fracture model (NDFM) with the traditional DFM [10] based on that. As for the assembly of b, one can refer to [70].

Consider two possible cases in a triangulation of fractured media. A fracture may be conforming with the gridcells locally, 
see Fig. 5(a). The other possibility is the case of non-conforming gridcells, as is shown in Fig. 5(b). The global stiffness matrix 
A in this zone is assembled by three local stiffness matrices parts in both cases: elements parts T1 , T2, and the fracture 
part l.

The local stiffness matrix contributed by triangular elements T1 and T2 are given as follows,

T1 :

⎡
⎢⎢⎣
aT111 aT112 aT113 0
aT121 aT122 aT123 0
aT131 aT132 aT133 0
0 0 0 0

⎤
⎥⎥⎦ , T2 :

⎡
⎢⎢⎣
0 0 0 0
0 aT222 aT223 aT224
0 aT232 aT233 aT234
0 aT242 aT243 aT244,

⎤
⎥⎥⎦

where

aTni, j =
∫
Tn

(Km∇
i) · ∇
 j dxdy, n = 1,2; i, j = 1,2,3,4

The local stiffness matrices contributed by the fracture l in Case (a) and Case (b) are shown as follows,

l (Case a) :

⎡
⎢⎢⎣
0 0 0 0
0 al22 al23 0
0 al32 al33 0
0 0 0 0

⎤
⎥⎥⎦ , l (Case b) :

⎡
⎢⎢⎣
al11 al12 al13 al14
al21 al22 al23 al24
al31 al32 al33 al34
al41 al42 al43 al44

⎤
⎥⎥⎦

where

ali, j =
∫
l

εk f
∂
i

∂ν

∂
 j

∂ν
ds, i, j = 1,2,3,4.

Note that in Case (a), where the grid is conforming with fracture, the only non-zero entries in local stiffness matrix of 
fracture are al22, a

l
23, a

l
32, a

l
33, because 
1 = 
4 = 0 along l. On the other hand, Case (b) shows the complete form of local 

stiffness matrix resulted from the fracture l. Finally, the matrix A in this local zone is assembled in the following manners:



10 Z. Xu, Y. Yang / Journal of Computational Physics 415 (2020) 109523
Case (a):⎡
⎢⎢⎢⎢⎣
aT111 aT112 aT113 0

aT121 aT122 + aT222 + al22 aT123 + aT223 + al23 aT224
aT131 aT132 + aT232 + al32 aT133 + aT233 + al33 aT234
0 aT242 aT243 aT244

⎤
⎥⎥⎥⎥⎦ (4.7)

Case (b):⎡
⎢⎢⎢⎢⎣
aT111 + al11 aT112 + al12 aT113 + al13 al14
aT121 + al21 aT122 + aT222 + al22 aT123 + aT223 + al23 aT224 + al24
aT131 + al31 aT132 + aT232 + al32 aT133 + aT233 + al33 aT234 + al34

al41 aT242 + al42 aT243 + al43 aT244 + al44

⎤
⎥⎥⎥⎥⎦ (4.8)

We obtain the global stiffness matrix A after the loop of all triangles and fractures.

Remark 4.2. Just like the conforming mesh can be viewed as a special case of non-conforming mesh, the stiffness matrix 
(4.7) is also a special case of the general form (4.8) when cell interfaces matching the fractures. Moreover, we note that 
(4.7) is exactly the same local stiffness matrix built in the traditional Galerkin finite element DFM [11], in which the 
aforementioned coupling procedure for stiffness matrix was explained as superposition principle based on conforming mesh. 
Therefore we can conclude that, theoretically, when the fracture is conforming with gridcells, our scheme degenerates to 
classical finite element DFM. The numerical verification of this conclusion will be demonstrated in Section 5.

Remark 4.3. We demonstrate how to implement the quadrature for the integration on fractures, especially for curved 
fractures. We describe the fracture l as a parametric equation x = x(t), y = y(t), α ≤ t ≤ β , where the equation is 

non-degenerate, i.e. ẋ2 + ẏ2 > 0, ∀t ∈ [α, β]. The line integral 
∫
l

εk f
∂
i

∂ν

∂
 j

∂ν
ds can be written as a definite integral 

∑
K∈P

tKb∫
tKa

εk f
[∇
i · (ẋ, ẏ)][∇
 j · (ẋ, ẏ)]√

ẋ2 + ẏ2
dt , where P is the collection of elements on the path of the fracture and tKa , tKb are 

the parameters at which the fracture intersects with the element K . The intersections between the fractures and the ele-
ments have to be found to compute the parameters tKa , tKb on each element. To evaluate this definite integration in practice, 
we can choose Gauss or Gauss-Lobatto quadrature rule to generate the quadrature points between tKa , tKb . Note that if the 
fracture is a straight line and ε, k f are constant, the midpoint rule is enough.

5. Numerical tests

In this section, we provide eight numerical tests, roughly in an increasing order of the geometrical complexity, to show 
the performance of the NDFM. Part of the numerical examples are either chosen from common fracture settings [42,44] or 
well known benchmarks [62,61,6,52,69,46] so that one can refer to these articles for more details about reliable reference 
solutions. Some others are given to shown either the consistency with traditional finite element DFM on conforming meshes, 
or the rate of convergence by comparing with an analytical solution. The last two experiments are for curved fractures and 
3D cases. All source codes are available at https://github .com /ziyaoxu /Nonconforming -DFM .git. Special thanks go to the 
authors of [62] for sharing the data of grids and results [68] computed by a number of DFM algorithms. These works enable 
us to compare and evaluate our model with the existing ones. We declare that all the data and figures used in Example 5.4, 
5.5 and 5.6 for the reference, comparison, and evaluation of our numerical results come from them.

For the sake of simplicity, the flow in these tests is driven by boundary conditions instead of source term, i.e. f =
0. In all the examples, we use linear Lagrange shape functions to construct the finite element space. Both unstructured 
triangular meshes and uniform rectangular meshes are employed to discretize the computational domain �h . A typical 
uniform rectangular mesh is shown in Fig. 6. The uniform rectangular meshes won’t be exhibited later since they are all 
similar with this one, but the unstructured triangular discretizations will be shown in each individual examples if necessary.

Example 5.1. Cross-shaped fractures In this example, we test a fractured media with simple cross-shaped fractures and 
compare the numerical results on different uniform rectangular meshes with a reference solution on fully resolved mesh. 
The computational domain is [0, 1] × [0, 1] with cross-shaped fractures [0.25, 0.75] × [0.4995, 0.5005] ⋃[0.4995, 0.5005] ×
[0.25, 0.75] laying on it. The permeability of porous matrix and fractures regions are 1 and 108, respectively. Moreover, the 
Dirichlet boundary conditions pD = 1 and pD = 0 are imposed on the left and right boundaries respectively, and the top 

https://github.com/ziyaoxu/Nonconforming-DFM.git
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Fig. 6. A uniform rectangular mesh (Nx = 8,Ny = 9).

Fig. 7. Fracture setting and reference solution of Example 5.1.

and bottom boundaries are set to be impervious, i.e. qN = 0. See Fig. 7(a) for an illustration of the domain and boundary 
conditions. This test case is the same as the one given in [42] so one can refer to their result for more detailed comparison.

We employ the standard Galerkin finite element method on a fully resolved rectangular mesh (Nx = Ny = 1001) to 
give the reference solution, with the fractured media treated as a heterogeneous media, i.e. the equi-dimensional model 
presented in Section 2. The surface and contour of the reference pressure are given in the Fig. 7(b), and the results of the 
non-conforming DFM algorithm on different rectangular meshes are shown in Fig. 8. Moreover, a comparison of pressure 
profiles sliced along y = 0.5, x = 0.3 and x = 0.4 are shown in Fig. 9. By comparing these results with the reference solution, 
we can see that they match well, especially when the number of grids increase.

One may also notice that when the number of grids are odd (the cases shown in the right column), the pressure is 
flat along some gridcells passed through by fractures, which seems not as good as that with even number grids (the cases 
shown in the left column). This phenomenon is reasonable since when fractures go through the center of gridcells under 
such a symmetric domain and boundary condition setting, the flat pressure is the best that an linear approximation can do.

Example 5.2. Consistency test In this example, we demonstrate the consistency between the NDFM and traditional DFM un-
der conforming meshes. The most straightforward way to shown this property is to construct a sequence of non-conforming 
meshes that converges to a conforming mesh. Then we can numerically prove the consistency if the numerical results of 
NDFM converge to that of DFM during this process. However, to avoid the interpolation used in the comparison of solu-
tions among different meshes, we choose the following equivalent way. We first construct a fractured porous media with 
a conforming triangulation on it. Then, instead of changing the mesh, we keep the same triangulation but set a sequence 
of different fracture networks which is non-conforming on this mesh to converge to the aforementioned fracture network. 
Finally, we compute the numerical solutions on those fractured media. If the solutions of non-conforming fracture networks 
converge to the solution of the conforming one, the consistency is verified.

We set the porous matrix to be the unite circle � = {(x, y)|x2 + y2 ≤ 1} with permeability 1. The conforming fracture 
network consist of three fractures centered at the origin with length 1, thickness 10−4, angles θ = 0, π/3, −π/3 and per-
meability k f = 104, 2 × 104, 3 × 104, respectively. See Fig. 10(a) for an illustration. The sequence of non-conforming fracture 
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Fig. 8. Solutions on different meshes of Example 5.1.

networks are generated by adding smaller and smaller rotation �θ and shift (�x, �y) on the original fracture network. The 
boundary conditions of the fractured media is Dirichlet boundary with pD = 1 − x.

The numerical solution of the fractured media in which the fractures and triangulation are conforming is shown in 
Fig. 10(b). We only draw the solutions of first three non-conforming fracture networks in Fig. 11 because the others are 
not visually distinguishable with the conforming one. The maximum norm of the differences between the solutions of non-
conforming and conforming networks as well as the scales of their shift and rotation are summarized in Table 1. From the 
table we can see the solutions of NDFM converge to that of DFM as the fracture networks converge to the conforming one, 
which proves the consistency of NDFM.
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Fig. 9. Pressure profiles along different lines of Example 5.1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Example 5.3. Convergence test In this example, we test the convergence of our algorithm by the following problem:

−∇ · (K∇p) = 0, x ∈ �,

where K = I + 2δ(− sin(θ)x + cos(θ)y) 
[

cos2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) sin2(θ)

]
, θ is an arbitrary fixed number and � = [−π, π ] ×

[−π, π ].
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Fig. 10. Triangulation, fracture networks and numerical result of DFM in 5.2.

Table 1
Differences between the solutions of NDFM and DFM in Example 5.2.

Number �x �y �θ ||pDFM − pNDFM||∞
1 1E-01 1E-01 1E-01 1.46E-01
2 5E-02 5E-02 5E-02 1.03E-01
3 2E-02 2E-02 2E-02 8.13E-02
4 1E-02 1E-02 1E-02 5.53E-02
5 1E-03 1E-03 1E-03 8.73E-03
6 1E-04 1E-04 1E-04 9.79E-04
7 1E-06 1E-06 1E-06 9.92E-06
8 1E-08 1E-08 1E-08 9.92E-08

Table 2
Convergence test for Example 5.3.

Nx × Ny ||err||L1(�) order ||err||L2(�) order ||err||L∞(�) order

θ = 0 20× 20 1.48E-00 – 3.15E-01 – 2.32E-01 –
40× 40 3.70E-01 2.00 7.88E-02 2.00 5.82E-02 1.99
80× 80 9.24E-02 2.00 1.97E-02 2.00 1.45E-02 2.00
160 × 160 2.31E-02 2.00 4.93E-03 2.00 3.63E-03 2.00
320 × 320 5.77E-03 2.00 1.23E-03 2.00 9.07E-04 2.00
640 × 640 1.44E-03 2.00 3.08E-04 2.00 2.27E-04 2.00

θ = 0 21× 21 1.92E-00 – 3.72E-01 – 2.12E-01 –
41× 41 6.43E-01 1.63 1.24E-01 1.64 5.55E-02 2.00
81× 81 2.35E-01 1.48 4.67E-02 1.43 2.19E-02 1.37
161 × 161 9.46E-02 1.32 2.00E-02 1.24 1.04E-02 1.09
321 × 321 4.16E-02 1.19 9.24E-03 1.12 5.05E-03 1.05
641 × 641 1.94E-02 1.10 4.45E-03 1.06 2.29E-03 1.02

θ = 5.3 20× 20 1.67E-00 – 4.02E-01 – 4.18E-01 –
40× 40 5.15E-01 1.70 1.11E-01 1.86 1.04E-01 2.01
80× 80 1.99E-01 1.37 4.10E-02 1.43 2.80E-02 1.89
160 × 160 9.08E-02 1.13 2.02E-02 1.02 1.63E-02 0.78
320 × 320 4.81E-02 0.92 1.13E-02 0.83 9.15E-03 0.83
640 × 640 2.35E-02 1.04 5.72E-03 0.99 5.16E-03 0.83

One can verify that

p(x, y) = sin(cos(θ)x+ sin(θ)y)e|−sin(θ)x+cos(θ)y|

is the analytic solution of the above equation under corresponding Dirichlet boundary conditions for any fixed θ . This 
problem can be interpreted as a single fracture whose angle is θ with the product of thickness and permeability εk f = 2
going through the square domain with permeability km = 1 of porous matrix. By choosing different θ ’s and meshes, one can 
test the convergence of the algorithm comprehensively.

We implemented three tests with different settings of θ ’s and rectangular meshes, in which an θ = 5.3 is randomly 
chosen to make the fracture intersecting with gridcells obliquely. See Fig. 12 for details of settings of fracture. The numerical 
results are gathered in the Table 2. From the results we can conclude that the NDFM algorithm is convergent, and it is 
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Fig. 11. Triangulation, fracture networks and corresponding numerical results of NDFM in 5.2.

confirmed by previous and subsequent numerical tests. Moreover, we find the rate of convergence is optimal under the 
conforming meshes and suboptimal under non-conforming meshes. These results suggest we choose conforming meshes 
if triangulation allows, but the choice of non-conforming meshes are always safe. What’s more, based on the consistency 
of the algorithm shown in the Example 5.2, it’s reasonable to use a pseudo-conforming mesh, i.e. a non-conforming mesh 
which is relatively close to conforming meshes, to improve the accuracy of simulation, in the case that a conforming mesh 
is really hard to generate.

Example 5.4. Hydrocoin This example is originally a benchmark for heterogeneous groundwater flow presented in the 
international Hydrocoin project [69]. The governing equation is
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Fig. 12. Fracture settings with different θ of Example 5.3.

Fig. 13. Domain and boundary conditions of Example 5.4.

Table 3
Coordinates of the numbers labeled in Fig. 13.
point x (m) z (m) point x (m) z (m)

1 0 150 6 1600 -1000
2 400 100 7 1500 -1000
3 800 150 8 1000 -1000
4 1200 100 9 0 -1000
5 1600 150 – – –

−∇ · (K∇H) = 0, x ∈ �,

where H is the target variable hydraulic head, and K is the hydraulic conductivity.
A slight modification for geometrical parameters are made in [62] and we will follow their settings and compare the 

results from NDFM with their benchmark reference solution. One can refer to [69,52] for the numerical results based on 
the original geometry. The domain and boundary conditions used in this test are shown in Fig. 13 with detailed coordinates 
listed in Table 3. There are two fractures crossing through porous matrix, with central axis 2-7, 4-8 and thickness ε1 =
5
√
2, ε2 = 33

√
5/5, respectively. The hydraulic conductivity K is 10−8 m/s in porous matrix and 10−6 m/s in fractured 

region. Moreover, as shown in Fig. 13, the left, right and bottom boundaries are impervious, i.e. qN = 0, while the top one 
is a Dirichlet boundary with H = height, i.e. the z coordinate.

To demonstrate the performance of the NDFM more comprehensively, we employ this method on two triangular meshes 
with different grid sizes. The coarse mesh contains 2612 triangular elements while the fine mesh contains 4511 triangular 
elements. The meshes and contour plots of numerical results under different triangulation are presented in Fig. 14.

To evaluate our method, we need to compare its results with the reference solution, as well as solutions from other 
methods. A description of the participants in this test is given as follows. The reference solution is provided by mimetic 
finite difference (MFD) method for equi-dimensional model problem (2.1), (2.2), (2.3) on a very fine mesh containing 424921 
matrix elements and 19287 fracture elements, with total degrees of freedom (d.o.f) 889233. Other models and methods 
participate in this example for comparison and evaluation are vertex-centered control volume discrete fracture model (Box-
DFM), cell-centered two point flux approximation control volume discrete fracture model (CC-DFM), embedded discrete 
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Fig. 14. Triangulation and numerical results of Example 5.4.

Fig. 15. Comparison of slices of hydraulic head along a horizontal line z = −200 m of Example 5.4.

fracture model (EDFM), mortar-flux discrete fracture model (Mortar-DFM), primal extended finite element method (P-XFEM), 
and dual extended finite element method (D-XFEM). Some of them are restricted on conforming meshes while the others 
can be employed on non-conforming meshes. For more introductions of above methods, see [62].

We slice profiles of hydraulic head along the horizontal line z = −200 m on the coarse and fine meshes and plot them 
in Fig. 15 (a) and (b), respectively, together with the slices of reference solution and solutions of other methods. From the 
plots we can see the profile on coarse mesh has a little derivation from the reference solution but the profile from fine 
mesh match it well.
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Table 4
Evaluation data of different algorithms in Example 5.4.

method d.o.f mesh errm err f sparsity || · ||2-cond
Box-DFM 1496 conforming 9.3E-03 3.3E-03 4.5‰ 5.4E03
CC-DFM 1459 conforming 1.1E-02 1.1E-02 2.7‰ 3.5E04
EDFM 1044 non-conforming 1.5E-02 8.3E-03 4.7‰ 3.9E04
Mortar-DFM 3647 conforming 1.0E-02 7.2E-03 1.5‰ 9.0E12
P-XFEM 1667 non-conforming 1.2E-02 3.2E-03 6.5‰ 2.7E09
D-XFEM 3514 non-conforming 1.2E-02 6.9E-03 1.7‰ 6.2E12
NDFM 1337 non-conforming 1.1E-02 1.2E-02 5.1‰ 7.0E04
NDFM 2296 non-conforming 8.8E-03 6.1E-03 3.0‰ 1.3E05

Fig. 16. Domain and boundary conditions of Example 5.5.

In addition to the comparison of the slices along specific line, another way to evaluate the accuracy of a method is to 
compute the relative error of numerical solutions based on the reference solution of MFD on fine mesh. Following [62], the 
relative L2 errors of solutions on matrix and fractures are computed using the formulas given below.

err2m = 1

|�|(�pref)
2

∑
i, j

|T i
ref ∩ T j

m|
(
pref|T i

ref
− pm|

T j
m

)2
, (5.1)

err2f = 1

|�|(�pref)
2

∑
i,l

|T i
ref ∩ T l

f|
(
pref|T i

ref
− pf|T l

f

)2
, (5.2)

where � and � are the matrix and fracture region, respectively, | · | means 2-D measure in (5.1) and 1-D measure in (5.2), 
�pref = max pref −min pref is the range of reference solution, T i

ref, i = 1, 2, . . . , I , are the fine elements used in the reference 
solution, T j

m, j = 1, 2, . . . , J , and T l
f, l = 1, 2, . . . , L, are the matrix elements and fracture elements in the methods to be 

evaluated, respectively.
A summary of errors of different methods on matrix and fractures are listed in Table 4, together with some other 

important aspects of the methods, such as the requirement for meshes, degrees of freedom (d.o.f), sparsity and conditional 
number (|| · ||2-cond) of the resulting system of linear equations.

Example 5.5. Regular Fracture Network This test case is originally from [6] and modified by [62], which simulates a regular 
fracture network in a square porous media. The domain � = [0, 1] × [0, 1]. The central axis of fractures are y = 0.5, x = 0.5, 
x = 0.75, y = 0.75, x = 0.625, y = 0.625, respectively, and all fractures have a uniform thickness ε = 10−4. See Fig. 16 as 
an illustration. The permeability is 1 in porous matrix and 104 in fractured region. Moreover, the left boundary is an inflow 
boundary with qN = 1, the right boundary is a Dirichlet boundary with pressure pD = 1, and the top and bottom boundaries 
are impervious, i.e. qN = 0.

We employ the NDFM on two rectangular meshes of different grid sizes. The coarse mesh contains 25 ×25 subrectangles 
while the fine mesh has 35 × 35 ones. The contour plots of the numerical results are presented in Fig. 17. What’s more, 
we slice the profiles of pressure along the horizontal line y = 0.7 and vertical line x = 0.5 on the coarse and fine meshes, 
respectively, and plot them in Fig. 18 together with the slices of reference solution and solutions of other methods. The 
reference solution is provided by MFD method for equi-dimensional model on a very fine nonuniform grid containing 
1136456 matrix elements and 38600 fracture elements, with total d.o.f 2352280. As we can see from the figures, the 
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Fig. 17. Numerical results of Example 5.5 on different meshes.

Fig. 18. Comparison of slices of pressure along lines y = 0.7 and x = 0.5 of Example 5.5 on different meshes.

profiles match the reference solution perfectly. In addition to the slices, we summarize the relative errors on matrix and 
fractures, as well as other important aspects of different methods in Table 5. As we can see, the NDFM methods successfully 
gain very accurate solution though the meshes used are coarse.

Example 5.6. a Realistic Case This example is a benchmark problem in [62] modified from a real set of fractures from 
an interpreted outcrop in the Sotra island. One can also refer to the simulation results in [61] for reference. The test 
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Table 5
Evaluation data of different algorithms in Example 5.5.

method d.o.f mesh errm err f sparsity || · ||2-cond
Box-DFM 1422 conforming 6.7E-03 1.1E-03 4.7‰ 7.9E03
CC-DFM 1481 conforming 1.1E-02 5.0E-03 2.7‰ 5.6E04
EDFM 1501 non-conforming 6.5E-03 4.0E-03 3.3‰ 5.6E04
Mortar-DFM 3366 conforming 1.0E-02 7.4E-03 1.8‰ 2.4E06
P-XFEM 1632 non-conforming 1.7E-02 6.0E-03 7.8‰ 6.8E09
D-XFEM 4474 non-conforming 9.6E-03 8.9E-03 1.3‰ 1.2E06
NDFM 650 non-conforming 1.3E-02 8.9E-03 13.1‰ 1.8E04
NDFM 1260 non-conforming 8.8E-03 6.4E-03 6.9‰ 6.4E04

Fig. 19. Domain and boundary conditions of Example 5.6.

Fig. 20. Numerical results of Example 5.6 on different meshes.

case is a complex fracture network containing 63 fractures with different lengths and connectivity. The domain is set to 
be � = [0, 700 m] × [0, 600 m] with permeability 10−14 m2. The fractures on it are shown in Fig. 19 (a), with uniform 
permeability 10−8 m2 and thickness ε = 10−2 m. The detailed geometric data of fractures is attached in appendix. The top 
and bottom boundary are impervious, i.e. qN = 0 while the left and right boundary are Dirichlet boundary with pressure 
pD = 1013250 Pa and pD = 0, respectively.

We implement the NDFM on a coarse mesh containing 105 × 90 rectangular elements and a fine mesh containing 
175 × 150 rectangular elements. The contour plots of numerical results are presented in Fig. 20.

We give a comparison of profiles of pressure of different methods as we did previously, but unfortunately the reference 
solution is not available in [68] because of the demand of tremendous gridcells in this test. For a similar reason, the XFEM-
class method, although can be employed in principle, is too inconvenient to be practically implemented here. Therefore, 
there are only four participants in the comparison. We slice the solution of NDFM along the horizontal line y = 500 m and 
vertical line x = 625 m on the coarse and fine meshes, respectively, and plot them with the profiles of Box-DFM, CC-DFM, 
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Fig. 21. Comparison of slices of pressure along lines y = 500 m and x = 625 m of Example 5.6.

Table 6
Evaluation data of different algorithms in Example 5.6.

method d.o.f mesh sparsity || · ||2-cond
Box-DFM 5563 conforming 1.2‰ 9.3E05
CC-DFM 8481 conforming 0.5‰ 5.3E06
EDFM 3599 non-conforming 1.4‰ 4.7E06
Mortar-DFM 25258 conforming 0.2‰ 2.2E17
NDFM 9464 non-conforming 0.9‰ 3.3E06
NDFM 26274 non-conforming 0.3‰ 1.5E07

EDFM, and Mortar-DFM in Fig. 21. The degrees of freedom, sparsity and conditional number of linear systems in different 
methods are gathered in Table 6.

Example 5.7. Curved Fractures In this example, we show the validity of the NDFM for curved fractures. Two types of curves 
are tested. The first one is a circle (closed) and the second one is a combination of semicircles (non-closed), see Fig. 22. The 
computational domain is [0, 1] × [0, 1]. The parametric equations of the curves are

x1(t) = 1

2
+ 1

4
cos(t), y1(t) = 1

2
+ 1

4
sin(t), 0 ≤ t ≤ 2π,

and
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Fig. 22. Fracture settings and reference solutions of Example 5.7.

x2(t) =
{ 3

8 − 1
8 cos(t), 0 ≤ t ≤ π

5
8 + 1

8 cos(t), π ≤ t ≤ 2π,
y2(t) = 1

2
+ 1

8
sin(t), 0 ≤ t ≤ 2π,

respectively. The thickness of fractures is set to be 0.005, and the permeability of porous matrix and fractures regions are 
1 and 107, respectively. Moreover, the Dirichlet boundary conditions pD = 1 and pD = 0 are imposed on the left and right 
boundaries, respectively, and the top and bottom boundaries are impervious. See Fig. 22 for an illustration of the domain, 
fractures and boundary conditions setting.

We employ the standard Galerkin finite element method for the equi-dimensional model on a fine mesh (Nx = Ny =
1000) to give the reference solution. The surface and contour of the reference pressure are given in the Fig. 22, and the 
results of NDFM on different rectangular meshes are shown in Fig. 23. Moreover, a comparison of pressure profiles sliced 
along y = 0.5, x = 0.3 and x = 0.4 are shown in Fig. 24, from which we can see that they match well.

Example 5.8. 3D cases In this last example, we give a brief demonstration on how to extend the NDFM to 3D cases and 
show the performance of the 3D algorithm qualitatively by presenting several 2D slices from the 3D space.

The extension of the model to 3D is almost trivial. By analogy, the hybrid-dimensional representation of the permeability 
tensor is

K = Km +
L∑

εik f iδi(·)1i(·)
(
I− σ iσ

T
i

)
, (5.3)
i=1
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Fig. 23. Solutions on different meshes of Example 5.7.

where I is the identity tensor and σ i is the unit normal vector of the ith fracture. The expressions abbreviated by (·) in the 
functions δi and 1i are even more complicated but the geometric meaning is still concise: the geometric information that 
determines a fracture. The corresponding variational formulation is

∫
�

(Km∇p) · ∇v dxdydz +
L∑

i=1

∫
S i

εik f i

(
∇p · ∇v − ∂p

∂σi

∂v

∂σi

)
dS =

∫
�

f v dxdydz +
∫
�N

qN v dS, (5.4)

where S i denotes the ith fracture surface.
Unfortunately, due to the restriction of the memory of the computer and the computational cost, we are not able to give 

a fully resolved reference solution for the 3D problems, thus no quantitative measurement for the error is available here.
Two types of fractures are simulated. The first one is a single planar fracture and the second one is an “A-”shaped 

planar fractures network, see Fig. 25. The single fracture is a rectangle with four vertices ( 14 , 15 , 110 ), ( 14 , 710 , 710 ), ( 34 , 710 , 710 ), 
( 34 , 15 , 110 ). The fractures network is composed of 3 rectangles, whose vertices are ( 12 , 13 , 45 ), ( 15 , 13 , 15 ), ( 15 , 23 , 15 ), ( 12 , 23 , 45 )

and ( 12 , 13 , 45 ), ( 45 , 13 , 15 ), ( 45 , 23 , 15 ), ( 12 , 23 , 45 ), and ( 7
20 , 13 , 12 ), ( 1320 , 13 , 12 ), ( 1320 , 23 , 12 ), ( 7

20 , 23 , 12 ), respectively. The thickness of 
fractures is 10−3 and the permeability is 108. The domain � = [0, 1] × [0, 1] × [0, 1] and the permeability of porous matrix 
is 1. We impose the Dirichlet boundary condition pD = 1 and pD = 0 on the left and right boundary of �. The other 
boundaries are impervious.

We present the slice planes of the pressure along x direction x = 0.2, 0.45, 0.7, y direction y = 0.2, 0.45, 0.7, and z
direction z = 0.2, 0.45, 0.7 in Fig. 26. From the figures we can see that the highly conductive zone indicated by the slices 
coincide with the position of the fracture.



24 Z. Xu, Y. Yang / Journal of Computational Physics 415 (2020) 109523
Fig. 24. Pressure profiles along different lines of Example 5.7.

6. Concluding remarks

In this paper, we explored the hybrid-dimensional representation of permeability tensor of fractured media and con-
structed the Galerkin finite element discrete fracture model on non-conforming meshes based on it. Analytical analysis and 
numerical tests showed its consistency with the traditional discrete fracture model on conforming meshes and its accuracy 
and efficiency on non-conforming meshes.



Z. Xu, Y. Yang / Journal of Computational Physics 415 (2020) 109523 25
Fig. 25. Fracture settings in 3D space of Example 5.8, visualization algorithm from [72].

There are some major limitations of the approach for further improvement. First, the model is established based on the 
assumption that the fracture has very tiny thickness and high permeability. Only under this condition can we reduce the 
fracture to a 1D object and use Dirac-δ function to represent its permeability. If the thickness of the fracture is not small 
enough, the model will not be very suitable since the pressure jump across the fracture is not representable in the model 
but it’s non-negligible in this case. Second, the model only works for conductive fracture. For the other type of fracture, 
the barrier element, the model is not applicable. Third, due to the property of finite element method, the scheme in the 
paper is not locally mass conservative. This shortcoming is not problematic in the steady-state single-phase flow problem, 
but might be more obvious when it is applied to two-phase or multi-phase fluid flow simulations.

Several possible improvements can be made regarding these limitations. For the barrier elements, the suitable adaptation 
for the model is our ongoing work. As for the mass conservation, some locally mass conservative methods, like the discon-
tinuous Galerkin method [73] or modified conservative Galerkin methods [74] could be employed to the hybrid-dimensional 
model problem (2.1), (3.4) and (2.3) instead of the traditional Galerkin methods.
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Appendix A. Geometric data of fracture network in Example 5.6

NUMBER,START_X(m),START_Y(m),END_X(m),END_Y(m)
1,269.611206,152.05243,356.9240112,310.14123
2,249.5117187,514.990780001,272.218872,470.97082
3,258.3590698,515.574580001,271.9851684,490.9682
4,270.6622924,524.702640001,269.1347046,147.78143
5,355.8302002,348.479800001,337.5810733205,600
6,366.9730835,338.132990001,426.9185141723,600
7,198.237915,222.724420001,175.1561889,597.603030001
8,151.2785034,261.724610001,154.4623059774,600
9,29.5026855,300.724610001,96.3599853,514.82739
10,386.0808105,33.3621800002,440.585083,275.191830001
11,459.6350708,40.2413900001,461.751709,204.812620001
12,297.180603,237.62103,468.1018066,40.2413900001
13,312.5264892,272.01678,417.3016967,140.7832
14,330.5181884,298.47522,439.5266723,156.6582
15,340.5723877,320.70019,367.5598755,286.304380001
16,492.9725952,312.762820001,576.5811157,419.6546
17,505.6726684,309.05859,576.0520019,405.367190001
18,537.4227905,297.94598,623.3187866,376.68463
19,322.5338745,380.76941,521.8778076,593.552180001
20,344.9320678,481.56122,409.8867798,503.959410001
21,371.8098755,468.12219,510.6787109,383.009210001
22,432.2849731,510.678830001,642.8280029,374.04999
23,527.528634971,600,700,473.015615092
24,0,333.73321,441.2443847,0
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Fig. 26. Slice planes of the pressure in 3D space of Example 5.8.

25,13.4389038,342.692380001,347.171875,595.791990001
26,22.3981933,450.203790001,311.3347778,291.176630001
27,26.8778076,506.199220001,199.343811,400.92779
28,44.7963867,528.597410001,365.0905151,342.692380001
29,378.5294189,309.095210001,512.918518,116.470640001
30,461.4027099,253.099610001,530.8370971,134.38922
31,347.171875,374.04999,640.5881958,253.099610001
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32,490.5203857,268.77844,564.4343872,145.58844
33,47.0361938,181.425410001,53.7556152,306.85541
34,382.4152832,424.151000001,447.8997192,371.76343
35,587.9967651,394.78222,549.1029663,362.635190001
36,589.9812011,393.59161,527.6716919,313.8194
37,597.125,378.90722,533.6248169,295.960200001
38,533.6248169,448.75738,453.8527832,326.91638
39,511.7966919,461.85419,489.5715942,395.17901
40,565.3748779,425.34161,483.6184692,315.40698
41,534.4185791,407.482240001,467.3466186,315.803830001
42,627.2874756,527.3388,574.8999023,498.763610001
43,644.3532104,519.00439,586.4093017,490.03241
44,655.8626098,502.335630001,602.6812133,476.53863
45,415.355896,585.679380001,391.9401855,561.47003
46,417.3402099,578.535580001,397.8933105,554.326230001
47,403.0526733,592.029420001,382.0183105,561.86682
48,495.1278686,505.113580001,468.1403198,481.30121
49,533.6248169,254.84381,420.9121093,159.196590001
50,508.6217041,221.10943,441.152771,159.59363
51,418.5308838,229.04681,312.961914,93.3154300004
52,362.5714111,174.6748,322.883789,120.69983
53,357.8088989,216.3468,295.102478,114.74658
54,402.2589111,283.41882,366.1433105,226.66559
55,337.5681762,253.256220001,374.4776001,211.18744
56,386.7808838,264.765620001,509.8123169,101.25281
57,473.2996826,278.65643,561.0092163,144.909240001
58,471.7122192,253.653200001,554.6593017,129.034240001
59,559.0249023,219.125,567.3593139,153.64044
60,567.7561035,214.759400001,573.7092895,162.37182
61,574.8999023,215.553040001,579.6624145,173.88104
62,557.0404663,285.006410001,600.6968994,325.48761
63,565.3748779,283.022030001,607.0468139,323.503230001
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