Automated Test Generation for Activation of Assertions in RTL Models

Yangdi Lyu

Prabhat Mishra

Department of Computer and Information Science and Engineering
University of Florida
Gainesville, FL. 32611
e-mail: {lvyangdi, prabhat}@ufl.edu

Abstract— A major challenge in assertion-based validation is
how to activate the assertions to ensure that they are valid. While
existing test generation using model checking is promising, it
cannot generate directed tests for large designs due to state space
explosion. We propose an automated and scalable mechanism to
generate directed tests using a combination of symbolic execution
and concrete simulation of RTL models. Experimental results
show that the directed tests are able to activate assertions non-
vacuously.

I. INTRODUCTION

Functional validation is one of the most important steps
in System-on-Chip (SoC) design methodology [1]. Existing
efforts use a combination of simulation-based validation and
formal methods. Assertions are widely used in simulation-
based validation to capture the intent of the specification [2].
One major challenge in assertion-based validation is to ef-
ficiently activate all assertions. Coverage of all assertions is
fundamentally different from code coverage due to the vacuity
problem outlined in Section III.

Directed tests are promising in activating assertions since a
significantly smaller number of directed tests can achieve the
same coverage goal compared to random or pseudo-random
tests [3]-[5]. Simulation-based verification can handle large
designs but cannot guarantee activation of assertions directly
due to exponential input space complexity. In practice, design-
ers need to manually write directed test patterns to cover many
hard-to-activate assertions. As expected, manual test writing
can be time consuming and error prone (requiring numerous
trials and errors) - may not be feasible for large designs. While
formal methods [6]-[23], such as SAT-based bounded model
checking, are effective in automated generation of directed
tests, these approaches expect formal specification and do
not directly support Hardware Description Language (HDL)
models. The extra procedure of conversion from HDL to for-
mal specification may introduce errors. Most importantly, the
complexity of real world designs usually exceeds the capacity
of the model checking tools, leading to state space explosion.
Concolic testing is a promising direction that combines the
advantages of simulation-based validation and formal methods
by effective utilization of symbolic execution and concrete
simulation [24].

Concolic testing has been used extensively in software
domain to cover functional events [24]-[27] as well as asser-
tions [28]. While early work on concolic testing of Register-
Transfer Level (RTL) models is promising, there are no prior
efforts in activating RTL assertions using concolic testing. In
this paper, we propose an automated mechanism to generate

978-1-7281-4123-7/20/$31.00 © 2020 IEEE

Assertion—based Validation

! |

! |

I | Desi Desi ith | Branch -

| |Design - e51gn‘w1t :

i | (RTL model) Assertions | Targets |

I ______ |
Tests

Concolic Testing

Fig. 1: Overview of our proposed methodology. Assertions can
be embedded in the design or defined as separate validation
goals. Our approach converts assertions to branch targets and
activates them non-vacuously using concolic testing.

directed tests using concolic testing to activate assertions. To
the best of our knowledge, our approach is the first attempt
in utilizing concolic testing for activation of RTL assertions.

Our proposed methodology consists of two major steps as
shown in Figure 1. The first step converts these assertions
to branch statements and embed them into the design. Then,
it utilizes concolic testing to generate a compact test set to
efficiently cover (activate) the target branches (assertions).
While formal methods try to explore all possible paths at
the same time (can lead to state space explosion), concolic
testing has the inherent advantage of scalability since it
explores one execution path at a time. Note that the embedded
branch targets are used for test generation purpose only. Once
test generation is completed, these branch targets should be
removed from the design (RTL model) and replaced with the
original assertions. This paper makes two important contribu-
tions:

1) We map the problem of activating assertions non-

vacuously to the problem of concolic testing by convert-
ing assertions to branch targets (Section IV).

2) We propose an efficient test generation method using
concolic testing to cover the generated branch targets.
The generated test vectors are guaranteed to activate the
corresponding assertions (Section V-A).

3) To address the path explosion problem in concolic testing,
we efficiently select the most profitable branches to
quickly reach the target (Section V-B).

The remainder of the paper is organized as follows. We
present the related work in Section II followed by problem
formulation in Section III. Section IV describes the conversion
from assertions to branch targets. Section V presents our test
generation framework using concolic testing to activate the
branch targets (assertions). Section VI presents experimental
results. Finally, Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

This section describes background and existing efforts in
two closely related fields.

A. Concolic Testing

Concolic testing is a directed test generation technique
combining symbolic execution [29] and concrete simulation. It
addresses the state explosion problem in formal methods, such
as bounded model checking [30]. Concolic testing explores
one path at a time by alternating one of the branches from
previous simulation path until reaching the target statement.
Concolic testing has been extensively explored in software
domain to cover functional events [24]-[27]. These approaches
utilize different path selection heuristics and optimizations to
achieve specific coverage goals. Korel and Al-Yamo [28] ex-
plored concolic testing to find input that violates assertions by
analyzing data dependency to guide test generation. However,
these approaches are all designed for software (sequential)
models, and are not suitable for hardware designs where
multiple modules are running concurrently with different clock
domains and interacting with each other. There are initial
efforts in applying concolic testing on RTL models for test
generation [31], [32]. However, there are no prior efforts in
using concolic testing for activating assertions.

B. Test Generation for Hardware Assertion Coverage

Existing test generation approaches for activating hard-
ware assertions can be broadly classified in two categories:
simulation-based and formal methods. The first category
uses simulation based methods [33], [34]. In transaction-
level, Ferro et al. [33] proposed a framework for supervising
SystemC TLM simulation of PSL temporal properties with
combinatorial testing tools. In register-transfer level (RTL),
Pal et al. [34] restricted that assertions are defined over the
interface of a module (input and output) and proposed an
approach to bias random test generation for assertion coverage.
The second category uses model checking [35]-[37]. From
non-deterministic finite automata (NFA), Tong et al. [35]
utilized model checking to generate test for assertions with the
assumption that the signals in assertions refer to the primary
inputs. The above approaches have one major drawback. In
order to enable test generation, they restrict the assertions to
have variables of only specific types (e.g., primary inputs/out-
puts of modules). As a result, these approaches cannot be
applied on assertions that may require complex interactions
between any internal variables. Our test generation framework
does not impose any restriction on assertion variables, and
thereby enables test generation for activating a wide variety
of assertions.

III. PROBLEM FORMULATION

In this paper, activation of assertions refers to finding
counter-examples that fails the assertions non-vacuously.
Vacuity is defined in [38] as follows: if there exist a sub-
formula v of a formula ¢ such that ¢ can be replaced with
arbitrary formula and does not affect the outcome of model
checking, the formula ¢ is vacuous in model M. For example,
in the formula p — g, it is vacuously valid if p is always
false, since we can replace ¢ with any sub-formula. We address

the vacuity problem by converting the formulas into specific
branch targets and applying concolic testing to activate them.

Listing 1 shows the branches that are converted from two
types of assertions (immediate assertions and concurrent as-
sertions) in Arbiter. Note that the conversions from assertions
to branches are the same for these two types, except that
an individual concurrently running block is needed to wrap
the branches from concurrent assertions. In Listing 1, the
first assertion is an immediate assertion and its corresponding
branch is directly embedded in the same place as the assertion.
On the other hand, the second assertion is converted into an
always block that is running concurrently with all the other
blocks. To find counter-examples that make the assertions fail
non-vacuously, we need to generate tests to activate branch
targets that are converted from the assertions.

Listing 1: An example of branch conversion in Arbiter

module arb(clk, rst, reql, req2, gntl, gnt2);
input clk, rst, reql, req2;
output gntl, gnt2;
reg state , gntl, gnt2;
always @ (posedge clk or posedge rst)
if (rst)
state <= 0;
else
state <= gntl;
always @ (x)
if (state) begin
gntl = reql & “req2;
gnt2 = req2;
// Assert 1: assert(req2 == gnt2)
if (req2 != gnt2)
// target 1
end
else begin
gntl = reql;
gnt2 = req2 & “reql;
end
// Assert 2: assert property(gntl|->"gnt2)
always @ (=)
if (gntl)
if (gnt2)
// target 2
endmodule

IV. CONVERSION OF ASSERTIONS TO BRANCHES

To generate a test to activate assertion P, we first map the
assertion activation problem to branch coverage problem in
concolic testing. Algorithm 1 shows our procedure to convert
assertion P to blocks containing a corresponding branch
target. Section V will demonstrate how to use concolic testing
to generate tests to cover branch targets. In this section, we
introduce the details of converting assertions to branches.
In this paper, we consider assertions with logic operator,
implication (|- >) and delay (##). Other operations are not
described due to space limitation, but can be converted to
branches in similar ways.

A. Simplified Abstract Syntax Tree

To understand the meaning of one assertion, we parse
the assertion and build an abstract syntax tree (AST) for it.
Three types of operators are selected as non-terminal for our
simplified AST, i.e., logic operator, implication and delay.
Others are treated as terminals. For example, if the original
assertions is assert (a #4#7 b |- > ##[4: 9] ¢), which means

Algorithm 1: Assert2Branch

/+ Input: assertion P. */
/+ Output: B containing generated blocks. =/

1 Construct simplified AST for assertion P

2 Readjust AST with delay information

3 Empty stack S

4 for Post-order traversal readjusted AST do

5 if current node n is an implication then

6 ‘ Convert implication to logic operator

7 end

8 if current node n is a variable then

9 | PushntoS

10 end

11 if current node n is delay then

12 Pop variable a from S

13 Add delay to a

14 Push the modified variable to S

15 end

16 if current node n is a logic operator then
17 Pop all variables of its children from S
18 Combine the children with its operator
19 Push the result to S

20 end

21 end
22 Create branch to test the variable in S

Fig. 2: (a) Simplified AST for assert (a ##7 b |- > ##[4:
9] ¢). Logic operator, implication and delay are non-terminal
nodes (oval), and others are terminals (rectangle). (b) Read-
justed AST with timing. All delays are converted to local
history values.

if @ is 1 in clock O and b is 1 in clock 7, then ¢ must be 1
in any clock between clock 11 and clock 16. The simplified
AST for this assertion is shown in Figure 2a.

B. Adjust AST with Timing

As delays represent the future events, which cannot be
evaluated in the current clock cycle, we transform delays
into retrieving history values. We assume that there exists
a global clock counter (as shown in Listing 2), and the
design remembers all the “necessary” history values. We use
a[clk_cnt] to represent the history value of a in clock clk_cnt.
Figure 2b shows the readjusted AST for Figure 2a. There are
two things to consider:

1) Adjustment is local to its own children for each non-
terminal nodes. For example, the left sub-tree in Figure 2a
(a ##7 b) adjusts the delay of 7 to its left child. If
we look at the whole expression, the history values of a
should be at least 11 cycles ahead of c. This localization
property make adjustment efficient.

2) For delay range, we adjust the longest delay to the left
side and modify the range appropriately, e.g., ##[4: 9]
in Figure 2a rotates the ## -9 to the left side and adjusts
itself to ##[-5:0].

Listing 2: Global clock counter

always @(posedge clock) begin
clk_cnt <= clk_cnt + 1;
end

C. Conversion of AST to Branch Target

After we adjust AST with timing, each node is attached with
non-positive delay (implicitly O delay). From adjusted AST,
we construct branches by post-order traversal of the adjusted
AST with the help of a stack S. Each part of the clause is
represented by a unique variable except for the clauses which
can be directly accessed. Stack S contains the visited variables
that have not been combined by other clauses. Algorithm 1
shows how the target branch is generated (in italic bold text)
with the help of stack S. The generated code of Figure 2b is
shown in Listing 3. As shown in Algorithm 1, RTL code is
generated based on the root type of each sub-tree. We consider
the following three root types:

Listing 3: The branch converted from Figure 2b

always @(posedge clock)

begin
// pl = ##-7 a && b
pllclk_cnt] = a[clk_cnt - 7] && b[clk_cnt];
// p2 = ##[-5:0]c

p2[clk_cnt] = 0;

for (i [clk_cnt — 5,
p2[clk_cnt] = p2[clk_cnt]

// p3 = ##-9 pl |-> p2

p3lclk_cnt] = 1;

if (pl[clk_cnt - 9])
if (!p2[clk_cnt])

p3[clk_cnt] = 0;

// branch target

if (!'p3[clk_cnt])
$display (” Assertion fail”);

clk_cnt])
| clil;

end

Delay: For a single delay, we retrieve the history value
of the variable, e.g., when we visit the node #+# — 7 in
Figure 2b, the node a is in the top of stack S. We pop
a from S, and push back alclk_cnt - 7]. A delay range
represents an OR operation on all the values, e.g., ##[-5: 0]c
means c[—5]|c[-4]]...|c[0]. Listing 3 shows the expansion of
#4£[-5: 0]c using for-loop and uses variable p2 to represent
this part. When a single delay is applied, we skip generating
a new variable for the clause, e.g., ## — 7a directly utilizes
the history value of a instead of generating a new variable.

Logic Operator: When the root is a logic operator, Algo-
rithm 1 combines all its children (contains delay information)
using the operator. As each child is already represented by a
single variable in the stack .S, we just pop all of them from
S, and use a new variable to represent the combined result.

Implication: Implication, A |- > B, contains two parts:
A is called the antecedent, and B is called the consequent.
There are two implication operators in SVA, i.e., overlapped
implication (|- >) tests consequent sequence at the clock when
its antecedent sequence is activated, while nonoverlapped

implication (| =>) tests the consequent in the next clock cycle.
The latter one can be converted to the previous one by adding
one cycle delay to the consequent sequence. As shown in
Listing 3, we convert the implication node into variable p3.

When we finish traversing the readjusted AST, the assertion
expression is represented as a single variable in top of stack
S, e.g., p3 in Listing 3. A branch target is created by checking
the value of the final variable.

D. Complexity Analysis of Algorithm 1

For the ease of representation, we assumed that the design
remembers all “necessary” values in the previous iterations.
To achieve memory efficiency, the clk_cnt can be as small
as the largest delay in the whole assertion, e.g., 9 for
assert(a #4#7 b |- > ##[4:9] ¢), as a result of introducing
new variables. If we look at the code in Listing 3, the impact
of a[clk_cnt - 16] is already stored in pl[clk_cnt - 9]. Thus,
remembering older values than the longest delay is a waste
of memory. After determining the largest delay, we add a
module operation to Listing 2, i.e., clk_cnt<= clk_cnt mod
(9 + 1), with an extra one to remember the current clock.
Assume that b is the longest delay and n is the length of
the assertion. The memory requirement complexity is O(bn)
since the memory usage of the tree structure, the stack S, and
required new variables are linear to the length of assertion.
The running time of Algorithm 1 is dominated by post-order
traversal of the AST, compared to the AST construction and
adjustment. For each node, the running time is linear to the
number of children. Then, each node contributes twice to the
total running time. Since the number of nodes in AST is linear
to the length of the assertion, the running time complexity is
O(n).

V. TEST GENERATION USING CONCOLIC TESTING

Once the assertions are converted to branches, we apply
concolic testing to generate tests to cover the generated branch
targets. This section is organized as follows. First, we provide
an overview of our test generation framework. Next, we briefly
discuss efficient selection of alternate branches.

A. Overview

Figure 3 shows the overview of our test generation frame-
work. As discussed in Section II-A, concolic testing combines
concrete simulation and symbolic execution. In Figure 3, the
left side shows the concrete simulation part, and the right
side shows the symbolic execution part. To instruct symbolic
execution, the concrete path needs to provide every branch it
takes. Instead of changing simulator to execute symbolically
in each branch and assignment, we use existing tools for sim-
ulation, and instrument the RTL design with display statement
to show which branch the simulation has taken. For example,
the instrumented first block of Listing 1 is shown in Listing 4.

Based on Algorithm 1, the assertions in RTL design are
converted into branch targets in control flow graph (CFG).
For every test that is generated by symbolic execution, sim-
ulation will give the concrete execution and report every
branch it takes. Based on the branch information, constraints
are constructed together with all the assignments inside the
corresponding blocks. The most important step in concolic

RTL design
with assertions

Assert2Branch

CFG with
Branch Targets

Instrumented
RTL design

Constraints

Activated?

l Yes
Test

Fig. 3: Overview of our test generation framework. After
converting assertions to branch targets, concolic testing is
applied to generate tests to activate these branch targets
(assertions).

testing is to find the best alternative branch to flip, which will
be discussed in the next section. With the selected alternative
branch, new constraints are constructed, and solved by an
SMT solver to generate a new test for simulation. The general
idea is to efficiently explore different paths to get closer to the
branch target converted from a specific assertion.

Listing 4: Instrumented first block in Arbiter

always @ (posedge clk or posedge rst)

if (rst) begin
$display (”arb2 branch 1 taken”);
state <= 0;

end

else begin
$display (”arb2 branch 2 taken”);
state <= gntl;

end

B. Selection of Alternate Branches in CFG

To help alternative branch selection, we first chain the
relative blocks together in control flow graph. We use the
second assertion in Listing 1 as an example. The branch target
is controlled by the condition gnt/ & gnt2. Therefore, the
target block is chained to the blocks where either gntl or
gnt2 might be assigned ‘1’. Similarly, since the blocks in
the second CFG are controlled by the value of state, the
blocks are chained to the blocks in the first CFG, as shown
in Figure 4.

This chaining process helps alternative branch selection
concentrating only on related branches. When we consider
the relevance of one branch with the target, we calculate the
distance from the immediate block following the alternate
branch to the target. In each iteration, the most relevant
and reachable branch is selected as the alternative branch to
construct new constraints and generate a new test.

VI. EXPERIMENTS

This section is organized as follows. First, we describe
our experimental setup and an example of inserted assertions.

|
|
§i% |
state <= gntl L-~[gntl = reqt & <req2|
-7 - -
bR -7 __J---gnt2 =reqZ
! <

gntl = reql -

-

gnt2 = req2 & ~reql

Fig. 4: Chaining of related blocks in CFGs. A block is chained to the blocks where its condition is likely to be satisfied.

Next, we present our test generation results.

A. Experimental Setup

To evaluate our test generation technique in activating
assertions non-vacuously, we implemented our framework in
C++ using Icarus Verilog Target API [39] with Yices [40] as
the constraint solver. As shown in Section V, our framework
first converted all assertions to branches and inserted them
into modified designs. Next, it applied concolic testing to
generate test to activate the branches. Finally, we simulated the
assertion-inserted instances (before converting to branches) to
validate the correctness of generated test sets. Our framework
is compared with EBMC [37] to show the performance
improvement. All the experiments are performed on a machine
with Intel E5-2698 v4 @ 2.20GHz CPU.

B. Benchmarks and Assertions

We selected 12 benchmarks to evaluate our framework. The
first three benchmarks, wb_conmax-T200, AES-T1000 and
AES-T1100, are from TrustHub [41]. The remaining bench-
marks are custom benchmarks of AES, named as cb_aes_n,
where n is the number of rounds in AES. We varied the
number of rounds to easily control the size of our bench-
marks. To show the inserted assertions, we use AES-T1000
as an example. Listing 5 shows the Trojan_Trigger module
from AES-T1000 benchmark [41]. The inserted assertion is
assert property(rst == 0)|- > (trig == 0). In most scenarios,
the extremely rare branch in Listing 5 is never executed. As a
result, traditional testing approaches using millions of random
tests will not activate this assertion non-vacuously. For other
benchmarks, we inserted assertions in the same way.

Listing 5: Trojan_Trigger module in AES-T1000 [41]

module Trojan_Trigger (rst, state, trig);
input rst;
input [127:0] state;
output trig;
always @ (rst, state)
if (rst == 1’bl) trig <= 1°b0;

else begin
if (state==128"h0011223344556677\
8899 aabbccddeeff)
trig <= 1°bl;
end
endmodule

C. Test Generation Results

In this experiment, we applied our framework to generate
tests for assertions. The performance comparison is shown
in Table I. The number of unrolled cycles is just enough to
activate the assertions. For example, the number of unrolled

TABLE I: Performance comparison of our approach with
EBMC [37] in generating tests to activate assertions.

EBMC [37] Our Approach
Benchmark | Time | MEM | Time | Time | MEM | MEM
(s) (GB) (s) Imp. (GB) Imp.
wb_conmax | 5.42 0.74 6.86 -1.3x 0.13 5.7x
AES-T1000 116 7.99 8.91 13x 0.60 13x
AES-T1100 116 7.99 2143 | 5.4x 0.69 12x
cb_aes_01 2.89 0.17 0.90 3.2x 0.06 2.9x
cb_aes_10 58.4 342 12.81 4.6x 0.59 5.8x
cb_aes_15 113 6.42 27.9 4.1x 0.88 7.3x
cb_aes_20 178 10.3 63.7 2.8x 1.23 8.4x
cb_aes_25 260 15.0 127 2.1x 1.58 9.5x
cb_aes_30 411 20.7 230 1.8x 1.97 11x
cb_aes_35 478 27.1 372 1.3x 2.36 12x
cb_aes_40 617 34.3 578 1.1x 2.81 12x
Average 214 12.2 132 3.5x 1.17 9.1x

cycles is n + 5 for each custom AES benchmark cb_aes_n as
it requires n cycles to get results from output. As shown in
Table I, our approach is significantly faster (up to 5.4x, 3.5x
on average) than EBMC.

Our approach is also more efficient in memory usage. As
shown in Table I, our approach is up to 13x (9.1x on average)
more efficient in memory usage compared to EBMC. To better
visualize the relationship between the memory requirement
with respect to the size of the design, we plot the memory
requirement of two approaches for our custom benchmarks
in Figure 5. Note that the number of lines for each custom
AES benchmark is the total lines after hierarchy flattening.
As we can see, the memory requirement of EBMC grows
exponentially with the lines of code. It is due to the state space
explosion problem of model checking. On the other hand, the
memory requirement of our approach grows linearly with the
lines of code since it explores one path at a time, which is
linear to the code size. For the benchmark cb_aes_40 (around
1.3 million lines of code), EBMC requires over 34GB memory,
while our approach only needs 2.8GB. Due to exponential
memory requirement, EBMC is expected to fail for larger and
more complex designs, while our approach is expected to be
scalable since memory requirement increases linearly.

VII. CONCLUSION

Assertions are widely used in validation of hardware designs
(RTL models). A major challenge in assertion-based validation
is how to activate all the assertions to ensure that they are
valid. While existing model checking based directed test gen-
eration is promising, it cannot generate tests for large designs
due to state space explosion. We presented an automated and
scalable mechanism to generate directed tests using concolic
testing to activate assertions non-vacuously. Using a diverse

‘ ‘ " aes_40
A EBMC x
g 30 | | ® Our Approach aes:?: 5 -
g aes_30
5 20 4 -
= aes_25
g o
= 10| aes_ 0 |
g aesIOS
§ aes_10
)
ol aes‘01 ° ° ° ° L |
! ! ! ! ! ! ! !
0 200 400 600 800 1,000 1,200 1,400

Lines of code (x102 lines)

Fig. 5: Memory requirement with respect to the total lines of
code in custom benchmarks of AES.

set of benchmarks, our experimental results demonstrated that
our test generation approach is significantly faster (up to 5.4x,
3.5x on average) compared to state-of-the-art test generation
methods. Most importantly, our approach is scalable since it
has linear memory requirement, while state-of-the-art directed
test generation method has exponential memory requirement.

ACKNOWLEDGMENTS

This work was partially supported by grants from NSF
(CCF-1908131) and SRC (2020-CT-2934).

REFERENCES

[1] M. Chen and P. Mishra, “Functional test generation using efficient prop-
erty clustering and learning techniques,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2010.

[2] H. D. Foster, A. C. Krolnik and D. J. Lacey, Assertion-based design,
Springer, 2004.

[3] Y. Lyu, X. Qin, M. Chen, and P. Mishra, “Directed Test Generation
for Validation of Cache Coherence Protocols,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2018.

[4] F. Farahmandi and P. Mishra, “Automated Test Generation for Debugging
Multiple Bugs in Arithmetic Circuits,” IEEE Transactions on Computers
(TC), 2019.

[S] M. Chen, X. Qin, and P. Mishra, “Efficient decision ordering techniques
for SAT-based test generation,” in Design, Automation and Test in Europe
(DATE), 2010.

[6] E.Clarke, O. Grumberg, and D. Peled, Model Checking, MIT Press, 1999.

[71 M. Chen, X. Qin, H. Koo, and P. Mishra, System-Level Validation: High-
Level Modeling and Directed Test Generation Techniques, Springer, 2012.

[8] M. Chen, P. Mishra, and D. Kalita, “Automatic RTL test generation
from SystemC TLM specifications,” ACM Transactions on Embedded
Computing Systems (TECS), 2012.

[91 X. Qin and P. Mishra, “Directed Test Generation for Validation of
Multicore Architectures,” ACM Transactions on Design Automation of
Electronic Systems, volume 17, no 3, article 24, 21 pages, 2012.

[10] M. Chen and P. Mishra, “Property Learning Techniques for Efficient
Generation of Directed Tests,” IEEE Transactions on Computers (TC),
60(6), pages 852-864, June 2011.

[11] M. Chen, X. Qin, and P. Mishra, “Learning-Oriented Property Decom-
position for Automated Generation of Directed Tests,” Springer Journal
of Electronic Testing, 30(3), pages 287-306, 2014.

[12] H. Koo and P. Mishra, “Functional Test Generation using Design and
Property Decomposition Techniques,” ACM Transactions on Embedded
Computing Systems, volume 8, no 4, article 32, July 2009.

[13] P. Mishra and N. Dutt, “Specification-driven Directed Test Generation
for Validation of Pipelined Processors,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), 2008.

[14] F. Farahmandi and P. Mishra, “Automated Test Generation for Debug-
ging Arithmetic Circuits,” in Design Automation and Test in Europe
(DATE), 2016.

[15] X. Qin and P. Mishra, “Automated Generation of Directed Tests for
Transition Coverage in Cache Coherence Protocols,” in Design Automa-
tion and Test in Europe (DATE), 2012.

[16] M. Chen and P. Mishra, “Decision Ordering Based Property Decompo-
sition for Functional Test Generation,” in Design Automation and Test in
Europe (DATE), 2011.

[17] S. Proch and P. Mishra, “Test Generation for Hybrid Systems using
Clustering and Learning Techniques,” in International Conference on
VLSI Design, 2016.

[18] X. Qin, M. Chen, and P. Mishra, “Synchronized Generation of Directed
Tests using Satisfiability Solving,” in International Conference on VLSI
Design, 2010.

[19] N. Dang, A. Roychoudhury, T. Mitra, and P. Mishra, “Generating
Test Programs to Cover Pipeline Interactions,” in ACM/IEEE Design
Automation Conference (DAC), 2009.

[20] P. Mishra and M. Chen, “Efficient Techniques for Directed Test Gen-
eration using Incremental Satisfiability,” in International Conference on
VLSI Design, 2009.

[21] H. Koo and P. Mishra, “Functional Test Generation using Property
Decompositions for Validation of Pipelined Processors,” in Design Au-
tomation and Test in Europe (DATE), 2006.

[22] P. Mishra and N. Dutt, “Functional Coverage Driven Test Generation
for Validation of Pipelined Processors,” in Design Automation and Test
in Europe (DATE), 2005.

[23] P. Mishra and N. Dutt, “Graph-based Functional Test Program Genera-
tion for Pipelined Processors,” in Design Automation and Test in Europe
(DATE), 2004.

[24] K. Sen and G. Agha, “Cute and jcute: Concolic unit testing and explicit
path model-checking tools,” in Computer Aided Verification, 2006.

[25] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated ran-
dom testing,” in ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2005.

[26] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
USENIX Symposium on Operating Systems Design and Impl., 2008.

[27] V. Chipounov, V. Kuznetsov, and G. Candea, “The S2E platform: De-
sign, implementation, and applications,” ACM Transactions on Computer
Systems (TOCS), 2012.

[28] B. Korel and A.M. Al-Yami, “Assertion-oriented automated test data
generation,” in /EEE International Conf. on Software Engineering, 1996.

[29] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT-a formal system for
testing and debugging programs by symbolic execution,” in International
Conference on Reliable Software, 1975.

[30] A. Cimatti et al., “NuSMV 2: An opensource tool for symbolic model
checking,” in Computer Aided Verification, 2002.

[31] A. Ahmed, F. Farahmandi, and P. Mishra, “Directed test generation using
concolic testing on RTL models,” in Design, Automation and Test in
Europe (DATE), 2018.

[32] Y. Lyu, A. Ahmed, and P. Mishra, “Automated Activation of Multiple
Targets in RTL Models using Concolic Testing,” in Design, Automation
and Test in Europe (DATE), 2019.

[33] L. Ferro, L. Pierre, Y. Ledru, and L. du Bousquet, “Generation of
test programs for the assertion-based verification of tlm models,” in
International Design and Test Workshop, 2008.

[34] B. Pal, A. Banerjee, A. Sinha, and P. Dasgupta, “Accelerating assertion
coverage with adaptive testbenches,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2008.

[35] J.G. Tong, M. Boulé, and Z. Zilic, “Test compaction techniques for
assertion-based test generation,” ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES), 2013.

[36] Y. Oddos, K. Morin-Allory, D. Borrione, M. Boulé, and Z. Zilic,
“Mygen: Automata-based on-line test generator for assertion-based veri-
fication,” in ACM Great Lakes Symposium on VLSI, 2009.

[37] R. Mukherjee, D. Kroening, and T. Melham, “Hardware verification
using software analyzers,” in IEEE Computer Society Annual Symposium
on VLSI, 2015.

[38] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient detection of
vacuity in temporal model checking,” in FSMD, 2001.

[39] S. Williams, Icarus verilog, http://iverilog.icarus.com.

[40] B. Dutertre, “Yices 2.2,” In CAV, 2014.

[41] Trusthub, https://www.trust-hub.org/.

