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We propose a versatile framework to dynamically generate Floquet higher-order topological insulators
by multistep driving of topologically trivial Hamiltonians. Two analytically solvable examples are used to
illustrate this procedure to yield Floquet quadrupole and octupole insulators with zero- and/or π-corner
modes protected by mirror symmetries. Furthermore, we introduce dynamical topological invariants from
the full unitary return map and show its phase bands contain Weyl singularities whose topological charges
form dynamical multipole moments in the Brillouin zone. Combining them with the topological index of a
Floquet Hamiltonian gives a pair of Z2 invariant ν0 and νπ which fully characterize the higher-order
topology and predict the appearance of zero- and π-corner modes. Our work establishes a systematic route
to construct and characterize Floquet higher-order topological phases.
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Introduction.—Topological phases of matter [1,2] are
characterized by bulk topological invariants and the appear-
ance of robust edge or surface states. Recently, the notion of
topological phases and bulk-edge correspondence has been
extended to higher-order topological insulators (HOTIs)
[3,4]. A defining characteristic of HOTIs is the emergence
of corner modes (CMs) or hinge modes, i.e., excitations at
the intersections of edges or surfaces with energies inside
the bulk gap and protected by crystalline symmetries [3–
18]. Theoretical concepts such as the nested Wilson loops
[3,4] and many-body multipole operators [19,20] have been
proposed to capture their topological properties and the
bulk-corner or hinge correspondence. Experimentally,
HOTIs have been observed in phononic [21] and photonic
systems [22–24], circuit arrays [25], and crystal solids [26].
The notion of topological phases has also been gener-

alized to Floquet systems where the Hamiltonian is periodic
in time, Hðtþ TÞ ¼ HðtÞ, with T the driving period [27–
31]. Periodic driving provides a powerful tool to engineer
the quasienergy band structure by tuning the driving
amplitude, frequency, and shape. Despite the apparent
similarity between quasienergy and energy, the topological
properties of Floquet systems are much richer than static
systems. One of its unique features is the appearance of in-
gap modes pinned at quasienergy, ε ¼ 0; π=T, and local-
ized at the edge, even though the bulk quasienergy bands
are trivial. Such anomalous Floquet topological insulators
are intrinsically dynamical phases. In order to systemati-
cally classify Floquet topological phases [32–34], one must

examine the full time-evolution operatorUðtÞ. In particular,
the so-called return map ŨðtÞ [see Eq. (1) below] defines a
Z or Z2 topological invariant [33,34] for each quasienergy
gap. In 2D, for example, it corresponds to the winding
number [31,35,36] which counts the topological charge of
Weyl-like singularities [37,38] in the instantaneous phase
band during time evolution. The return map, together with
the effective Hamiltonian HF, can describe a large class of
first-order Floquet topological insulators [32–34].
It is then natural to ask whether periodic driving can give

rise to new high-order topological phenomena that have
no static analogs, and if so, how to characterize them.
Recently, several specific models have appeared to realize
Floquet HOTIs (FHOTIs) in periodically driven systems
[39–43]. These proposals, however, rely on building-block
Hamiltonians with specific lattice structures or symmetries
and are therefore not general. Moreover, the existing
topological invariants in Refs. [39–43] are supplied in a
case-by-case manner, applicable only to a certain specific
model or symmetry class. A theory for FHOTIs that can
predict the corner modes from bulk invariants constructed
from a general ŨðtÞ and HF is still lacking.
Motivated by these considerations, in this Letter we

demonstrate a generic route to realize and characterize
FHOTIs. The construction does not rely on any specific
space-time symmetries of the building-block Hamiltonians.
As an example, a 2D model is solved analytically to
determine the phase diagram, which contains two Floquet
quadrupole topological phases with 0 and π CMs,
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respectively. Via the decomposition of the unitary evolution,
we show that the topology of the quasienergy bands is
captured by Z2 invariant νF0 from the nested Wilson loops,
while the return maps feature multipole patterns of dynami-
cal singularities: the topological charges of the Weyl-type
singularities of ŨðtÞ form a quadrupole moment in the
Brillouin zone (BZ) at certain instants. Two dynamical
invariants n0, nπ are introduced to count these charges. From
νF0 and n0;π , we show that each quasienergy gap is charac-
terized by a Z2 index ν that predicts the appearance or
absence of CMs. The newZ2 invariants work for all mirror-
symmetry protected FHOTIs and go beyond the periodic
table of first-order Floquet topological insulators. The
construction and topological analysis are then generalized
to 3D Floquet octupole topological insulators.
Dynamical construction of FHOTI.—The dynamics of a

periodically driven lattice system with Hamiltonian HðtÞ
is governed by the unitary evolution UðtÞ ¼ T e−i

R
t

0
HðτÞdτ,

where ℏ ¼ 1 and T denotes time ordering. To extract its
topology, it is convenient to decompose UðtÞ into a
unitary loop ŨðtÞ satisfying Ũð0Þ ¼ ŨðTÞ ¼ I and the
time evolution of a constant Hamiltonian HF [33].
Explicitly, one can define the effective Hamiltonian
HF ¼ i logUðTÞ=T as well as the return map [31,33,34]:

ŨðtÞ ¼ UðtÞeiHFt: ð1Þ

Usually, ŨðtÞ is defined for a given gap with the logarithm
branch cut lying within it. It is apparent from Eq. (1) that
the topology of UðtÞ is carried by both HF and ŨðtÞ. The
spectra εn of HF are known as quasienergy bands, and we
take εn ∈ ½−π=T; π=T�.
The basic idea of dynamical construction of FHOTIs can

be illustrated by a simple example of a Floquet quadrupole
insulator depicted in Fig. 1(a). Consider a square lattice,
where each unit cell (shaded box) consists of four lattice
sites. Our strategy is to herd the motion (more precisely,
the quantum walks) of particles by spatial control of the
tunneling amplitudes in multiple steps within each driving

period. Three trivial Hamiltonians, hx, hy, and h0, serve as
the building blocks: hx=y only contains intercell hopping
tx=y along the x=y direction, and h0 only contains intracell
hopping t0. To visualize the emergence of topological
CMs, consider the limit of t0 ¼ 0 and two-step driving:
Hðt < T=2Þ ¼ hy followed by Hðt > T=2Þ ¼ hx. The
semiclassical particle motion is sketched in Fig. 1(b). It
is clear that particles in the bulk move along a plaquette,
while particles on the four edges hop back and forth.
However, particles initially at the four corners remain
localized and completely decoupled from the bulk and
edge dynamics. They are nothing but Floquet CMs. Wewill
show below that the CMs persist to finite t0 as the bulk
excitations form Floquet bands separated by gaps. Similar
to the static case [3,4], the Floquet CM is protected by
crystalline symmetries (e.g., mirror reflection).
This picture motivates us to propose the following

generic N-step driving sequence. In each step s with time
interval Ts the system evolves according to a constant
Hamiltonian hs assumed, for simplicity, to be a sum of
anticommuting terms [see h0, hx;y in Eq. (4) below].
Accordingly,

UðTÞ ¼
YN
s¼1

ðcos θs − i sin θsh̃sÞ: ð2Þ

Here, θs ¼ TsjEsj, h̃s ¼ hs=jEsj, with�Es the spectrum of
hs. By definition, the wave functions of CMs at quasie-
nergy zero (0 CM) and π=T (πCM) satisfy

UðTÞjψ0i ¼ jψ0i; UðTÞjψπi ¼ −jψπi: ð3Þ

The existence of a solution to these eigenequations is
guaranteed by properly choosing θs and hs as follows.
Consider a state jηi localized at the corner [Fig. 1(b)]. It
may couple to neighboring sites by hs¼1 in the first step, but
for all other steps s > 1, hs is chosen, so hs>1jηi ¼ 0.
A 0 CM is realized if we choose θ1 ¼ 0. Its wave function
jψ0i is simply given by jηi. Similarly setting θ1 ¼ π gives
rise to πCM with jψπi ¼ jηi. For 0 and π CMs to coexist
[39], one can choose, for example, θ1 ¼ π=2 and θs>1 ¼ π
for even N. We will give a few examples below to illustrate
how this construction procedure can be applied to generate
different kinds of FHOTIs.
Floquet quadrupole insulator.—First, we present an

analytically solvable model of the Floquet quadrupole
insulator (FQI) and demonstrate the emergence of topo-
logical CMs. The overall setup has been introduced in
Fig. 1 on the square lattice. The 2 × 2 unit cell is
conveniently described by two sets of Pauli matrices σ
and τ. The trivial building blocks are hopping
Hamiltonians, h0 ¼ t0ðτ0σ1 þ τ2σ2Þ, hx ¼ txðcos kxτ0σ1−
sin kxτ3σ2Þ, and hy ¼ tyðcos kyτ2σ2 þ sin kyτ1σ2Þ, where
k ¼ ðkx; kyÞ is the quasimomentum. The terms in h0;x;y

(b)(a)

FIG. 1. Construction of a FHOTI on a square lattice from
multistep driving. (a) The trivial building blocks h0 (left), hx
(middle), and hy (right) with intracell hopping t0 and intercell
hopping tx, ty. Dashed lines represent hoppings with negative
signs. (b) Schematic of particle motion in one period of two-step
driving hy followed by hx with t0 ¼ 0. The corners are dynami-
cally decoupled from the bulk, giving rise to four localized corner
modes (big solid circles).
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anticommute and the system possesses two mirror sym-
metries Mx ¼ iτ3σ1 and My ¼ iτ1σ1. The driving
protocol is

t ∈ T1; HðtÞ ¼ h0; t ∈ T2; HðtÞ ¼ hy;

t ∈ T3; HðtÞ ¼ hx; t ∈ T4; HðtÞ ¼ h0; ð4Þ

with time interval Ts¼½ðs−1ÞT=4;sT=4). For txT¼
tyT¼π, the FQI phase with 0 CMs appears when [44]

ðN − 1=6Þπ < ϕ0 < ðN þ 1=6Þπ; N ∈ Z; ð5Þ

with ϕ0 ≡ ðt0T=2
ffiffiffi
2

p Þ. The FQI phase with π CMs lies
within

ðN þ 1=3Þπ < ϕ0 < ðN þ 2=3Þπ; N ∈ Z: ð6Þ

For all other values of ϕ0, the system is a trivial band
insulator with no CMs.
Figure 2(a) shows the quasienergy spectra as a function

of ϕ0 for a finite lattice with open boundary conditions. In
between the bulk bands, we observe fourfold degenerate in-
gap modes pinned at ε ¼ 0 or ε ¼ π=T. They appear
alternatively with a period of exactly π as ϕ0 is varied,
and are separated from each other by the topologically
trivial phase, consistent with Eqs. (5) and (6). The wave
functions of these in-gap modes are shown in Fig. 2(b).
They are indeed localized at the four corners arising from
the bulk quadrupoles. In comparison, the quasienergy
spectra for periodic boundary condition or stripe geometry
are fully gapped [44], indicating vanishing conventional
dipoles.
This model provides an elegant example of our dynami-

cal construction of FHOTIs and CMs summarized in
Eq. (2). Denote the wave functions of four CMs as
jψ i

0=πi (i ¼ ll; lr; ul; ur) and take i ¼ ll, the lower-left
corner, for example. For ϕ0 ¼ 0, the 0-CM wave function
is localized at a single site labeled as 1 (Fig. 1),

jψ ll
0 i ¼ j1ill, corresponding to the value θ1 ¼ 0 in our

construction scheme. The other two driving steps hx;y do
not couple the CMs to the bulk. For ϕ0 ¼ π=2, the π-CM
wave function is jψ ll

π i ¼ ð1= ffiffiffi
2

p Þðj2ill − j4illÞ, correspond-
ing to θ1 ¼ π. When deviating from these ideal limits, the
CMs spread further into the bulk but remain localized. The
FQI and CMs persist as long as the bulk gaps stay open.
Dynamical topological invariants.—For static HOTIs,

the higher-order bulk topology and appearance of CMs can
be described by introducing Wannier bands and nested
Wilson loops [3,4,44,45]. The analysis can be generalized
to Floquet systems to capture the topological properties of
HF and the quasienergy bands. We chose the lower two
overlapping quasienergy bands to construct the Wannier-
band subspace jωj

x;ki (j ¼ 1, 2) and compute the nested
polarizations [3,4,44], for example,

pj
y ¼ i

Z
BZ

d2k
ð2πÞ2 hω

j
x;kj∂ky jωj

x;ki: ð7Þ

In the presence of mirror symmetries Mx and My, the

nested polarizations pj
y and p

j
x are quantized to be 0 (trivial)

or 1=2 (topological) [3,4], yielding a Z2 classification. The
topological quadrupole phase corresponds to ðpj

y; p
j
xÞ ¼

ð1=2; 1=2Þ. It is characterized by Z2 invariant

νF0 ¼ 4pj
yp

j
x: ð8Þ

For the two FQI phases above, νF0 is found to be 1, which is
consistent with the quantized tangential polarization along
the edges [3,4,44]. By itself, however, νF0 cannot distin-
guish the two FQI phases or predict in which gap the CMs
reside or even the existence of CMs (e.g., for anomalous
FQI [39], νF0 is zero but CMs are present). This is not
surprising because it only captures the topology of HF, not
the full UðtÞ. For FHOTI, an intrinsically dynamical
topological invariant is needed.
Such a dynamical invariant can be defined from the

return map ŨðtÞ. The diagonalization of Ũ yields
ŨðtÞ ¼ P

m e−iε̃mðk;tÞjφmðk; tÞihφmðk; tÞj, with the eigen-
phases ε̃m forming the phase bands [33,37]. For our system,
during the time evolution t ∈ ð0; TÞ, the gap may close at 0
or π=T as the phase bands touch each other at isolated
points in the (k; t) space, similar to Weyl points in
semimetals, and reopen afterwards. Such singular points
resemble magnetic monopoles and carry topological
charges [37]. For the ith degeneracy point dj ¼ ðkj; tjÞ
of band m, we compute its topological charge,
Cj ¼ ð1=2πiÞ HSj ∇ × hφmðk; tÞj∇jφmðk; tÞi · dS, with Sj
a small surface enclosing dj.
Because of the mirror symmetries Mx;y, these “Weyl

points” at a specific time instant always come in quar-
tets, i.e., at k ¼ ð�kx;�kyÞ in the 2D BZ. And their

FIG. 2. (a) Phase diagram of the Floquet system with driving
Eq. (4). Top: Topological invariants ν0 (black) and νπ (red)
obtained from Eq. (9) showing two FQI phases. Bottom:
Quasienergy spectra for a finite 24 × 24 lattice. The fourfold
degenerate 0 (π) CMs are marked by the black (red) lines. (b) The
spatial wave functions of four π CMs, jψ i

π j2ði ¼ ll; lr; ul; urÞ,
ϕ0=π ¼ 0.45, tx ¼ ty ¼ π=T.
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charges form a quadrupole pattern [46], as illustrated in
Figs. 3(a)–3(d). Such a dynamical quadrupole (with zero
total charge) indicates the higher-order topology and the
absence of 1D edge states [31,37]. In fact, one can prove
that a quadrupole pattern is equivalent to its mirror image
by a continuous deformation based on Mx or My [44].

Thus, n0;π ¼
Pε̃ðdjÞ¼0;π

kj∈1 st qBz Cj, the total Weyl charge within

the first quadrant of the BZ during t ∈ ð0; TÞ, is only
defined modulo 2, and its parity can serve as the dynamical
invariant for the corresponding gap. Combining n0;π from
ŨðtÞ with the quadrupole invariant νF0 for HF, we arrive at
two Z2-valued invariants ν0;π for the 0 and π gap,
respectively (for details, see Ref. [44]):

νπ ¼ nπ mod 2; ν0 ¼ ðn0 þ νF0 Þ mod 2: ð9Þ

We stress that the Z2 nature of ν0;π originates from mirror
symmetries. A nonzero value of ν0 ¼ 1 (νπ ¼ 1) indicates
the appearance of CMs at the 0 gap (π gap). Thus, our
Floquet system follows a Z2 × Z2 classification and is
described by two Z2 invariants (ν0, νπ), one for each gap.
To check the correspondence between bulk invariants
Eq. (9) and the CMs observed in numerics, we give a
few examples of the Weyl charges in Figs. 3(a)–3(d). For
the FQI phase with 0 CMs [Figs. 3(a) and 3(b)], we have
n0 ¼ 0 and nπ ¼ 0 or 2. In both cases, ðν0; νπÞ ¼ ð1; 0Þ.
For the FQI phase with π CMs [Figs. 3(c) and 3(d)], n0 ¼ 1
and nπ ¼ 1 or 5. Thus, ðν0; νπÞ ¼ ð0; 1Þ. It is clear that
Eq. (9) correctly predicts the appearance of Floquet CMs,
in agreement with Fig. 2(a). We have checked that the
invariants ν0;π also apply to anomalous FQIs with ν0 ¼
νπ ¼ 1 discussed in Refs. [39,44].
Floquet octupole insulator.—Next we show how to

generate Floquet octupole insulators (FOIs) on a cubic
lattice following our general scheme. The degrees of
freedom inside the eight-site unit cell, illustrated in
Fig. 4(a), can be described by three sets of Pauli matrices
τ, σ, and s. The dynamical construction employs four
building blocks: an intraunit cell hopping Hamiltonian,

h0 ¼ t0ðΓ2 þ Γ4 þ Γ6Þ, and three interunit cell
hopping Hamiltonians, hx ¼ txðsin kxΓ3 þ cos kxΓ6Þ, hy ¼
tyðsin kyΓ1 þ cos kyΓ2Þ, hz ¼ tzðsin kzΓ5 þ cos kzΓ4Þ, with
Γ0 ¼ τ3σ3s0, Γi ¼ −τ3σ2si for i ¼ 1, 2, 3, Γ4 ¼ τ1σ0s0,
Γ5 ¼ τ2σ0s0, and Γ6 ¼ i

Q
5
j¼0 Γj. The driving protocol

consist of two steps: for 0 < t < T=4 and 3T=4 < t < T,
HðtÞ ¼ h0; for T=4 < t < 3T=4,HðtÞ ¼ hx þ hy þ hz. Let
us focus on the simple case of tx ¼ ty ¼ tz. Then the phase
boundaries can be found analytically [44],

ϕ0 � ϕx ¼ N π=2; N ∈ Z; ð10Þ

with ϕ0 ¼
ffiffiffi
3

p
t0T=4 and ϕx ¼

ffiffiffi
3

p
txT=4.

The phase diagram on the ϕ0 − ϕx plane is depicted in
Fig. 4(b). It contains three distinct FOIs and a trivial phase.
Roughly speaking, the FOI phase with only 0 CMs is
located near ϕ0 ¼ 0 and π, while the FOI phase with only π
CMs occupies regions around ϕ0 ¼ π=2. Sandwiched in
between is the third, anomalous FOI, which has both 0
and π CMs. The quasienergy spectrum for a finite system
with open boundary conditions is shown in Fig. 4(c) for
parameters along a cut in the phase diagram with fixed
ϕx ¼ 3π=8. The location of different Floquet CMs agrees
with the phase boundaries given by Eq. (10). To cast this
example in the general scheme Eq. (2), we notice the 0 CM
at point ϕ0 ¼ 0 is simply jψ0i ¼ j6iwith θ1 ¼ 0. The πCM
at ϕ0 ¼ π=2 is just jψπi ¼ ðj2i þ j7i − j8iÞ= ffiffiffi

3
p

with
θ1 ¼ π. The system has three mirror symmetries: Mx ¼
τ0σ1s3, My ¼ τ0σ1s1, and Mz ¼ τ0σ3s0. Together they
quantize the octupole moment. Similar to the FQIs, the
topology of the Floquet system is carried by both HF and
the return map ŨðtÞ. The former is characterized by a Z2

invariant νF0 [44]; the latter contains singularities of the
phase bands in 4D (k; t) space. We find that the invariants in
Eq. (9) are still valid [44].
Outlook.—We have introduced a versatile route to

construct and characterize FHOTIs. The building blocks
are topologically trivial and accessible in many synthetic

FIG. 3. Dynamical singularities of FQIs in (k; t) space. The
colored dots label the Weyl charges in the phase band of ŨðtÞ at
certain time instants. Their topological charges form quadrupole
moments in the BZ. The red and blue dots label charge�1 at the π
gap; themagenta and green dots label charge�1 at the 0 gap. From
(a) to (d), ϕ0=π ¼ 0.1, 0.95, 0.45, 1.45, with tx ¼ ty ¼ π=T.

(a) (b) (c)

FIG. 4. Floquet octupole insulator. (a) The unit cell contains 8
sites on a cubic lattice, the solid (dashed) lines denote hoppings
with þ (−) signs. (b) The phase diagram with ϕ0 and ϕx defined
in the main text. Color-coded regions represent three FOI phases
with 0 CMs only (blue), π CMs only (green), both 0 and π CMs
(red), and the trivial phase (white). Each phase is labeled by its
dynamical invariants ðν0; νπÞ. (c) Quasienergy spectra of a 16 ×
16 × 16 lattice along the dash line in (b) for fixed ϕx=π ¼ 3=8.
The black (red) lines mark the eightfold degenerate 0 (π) CMs.
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(e.g., photonic and cold-atoms) quantum systems. For
example, the quadrupole phase can be realized based on
the π-flux Hofstadter model [47,48] with the addition of a
superimposed superlattice along both the x and y directions
[3]. Alternatively, the modulation along one direction may
be replaced by utilizing spin degrees of freedom, with the
effective hoppings being induced by Raman coupling and
laser-assisted tunneling in different directions, respectively.
The driving protocol can be viewed more generally as
discrete-time quantum walks on a lattice [49–51]. By
imposing further constraints on the building blocks or
the driving protocols, our construction can be generalized
to realize higher-order topological phases in other sym-
metry classes. In contrast to previous constructions of
model-dependent topological invariants, the phase-band
singularities are general for Floquet systems, hinting at
the possibility of a unified scheme for characterizing the
higher-order topology for a wide class of systems.
Experimentally, in addition to the observation of CMs,
the higher-order topology may be identified from the
tomography of band-touching singularities [52]. Finally,
it would be interesting to investigate FHOTIs in the
frequency domain [31,53] and the time evolution of
CMs from the entanglement perspective [44].
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