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a b s t r a c t

Alternating current (ac) circuits can have electromagnetic edge
modes protected by symmetries, analogous to topological band
insulators or semimetals. How to make such a topological circuit?
This paper illustrates a particular design idea by analyzing a series
of topological circuits consisting purely of inductors (L) and capac-
itors (C) connected to each other by wires to form periodic lattices.
All the examples are treated using a unifying approach based on
Lagrangians and the dynamicalH-matrix. First, the building blocks
and permutation wiring are introduced using simple circuits in
one dimension, the SSH transmission line and a braided ladder
analogous to the ice-tray model also known as the π-flux ladder.
Then, more general building blocks (loops and stars) and wiring
schemes (m-shifts) are introduced. The key concepts of emergent
pseudo-spin degrees of freedom and synthetic gauge fields are
discussed, and the connection to quantum lattice Hamiltonians is
clarified. A diagrammatic notation is introduced to simplify the
design and presentation ofmore complicated circuits. These build-
ing blocks are then used to construct topological circuits in higher
dimensions. The examples include the circuit analog of Haldane’s
Chern insulator in two dimensions and quantum Hall insulator
in four dimensions featuring finite second Chern numbers. The
topological invariants and symmetry protection of the edgemodes
are discussed based on the H-matrix.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Classical many-body systems including mechanical [1–7], acoustic [8–12], and photonic [13,14]
metamaterials are receiving a renewed interest regarding their topological properties. In light of the
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active experimental and theoretical developments in these areas, it is desirable to have simple toy
models to examine their nontrivial band topologies and the corresponding edge modes. Hopefully,
the toy model can be built and tinkered with by non-experts using cheap, easily available parts.
And ideally, the model is also intuitive, i.e., based on familiar concepts such as coupled harmonic
oscillators. The goal of this paper is to present and analyze a few toy models that meet these
requirements.

It is well known that a linear inductor (L) and a capacitor (C) in series make an electromagnetic
harmonic oscillator. Wiring more and more inductors and capacitors together recursively into a
periodic ladder gives the familiar transmission line along which electromagnetic waves can travel.
Historically, various lattice structures of LC circuits have played an important role in network
synthesis and filter design in the domain of electrical engineering [15]. They also serve as the lumped
circuitmodels for continuum electromagneticmetamaterials [16]. Thusmost properties of LC circuits,
including their periodic structures, have been extensively studied and well understood. Yet their
topological aspects have rarely been discussed until very recently.

In this paper, we focus on certain periodic lattices of inductors and capacitors that are wired
differently. At first sight, these circuits may appear utterly useless, or even nonsensical, from the
traditional engineering perspective. But they possess one remarkable property: their frequency-wave
number band structures, ωm(k), are topologically nontrivial, reminiscent of electronic topological
insulators and semimetals. Accordingly, via the bulk-boundary correspondence, there exist localized
modes of electromagnetic excitations at the boundary or edge of the lattice. This begs a list of
questions: what can serve as the building blocks of such topological circuits? What are the design
principles? Can we use inductors and capacitors to study topological phenomena hard to reach in
other classical many-body systems? What is the simplest topological LC circuit? And what is the
natural language to describe their topological properties?

To address the first two questions, we proceed by following Nature’s recipe for making crystal
solids. First, we construct ‘‘molecules" out of two kinds of ‘‘atoms" (namely L and C) in the shape of
loops, stars, and ladders as the building blocks. Then we design the coupling, or ‘‘bonding", between
these ‘‘molecules" by properly connecting themusing L or C to formaperiodic structure, i.e. a ‘‘crystal’’.
Here a key concept is braided wiring between the building blocks which possess internal degrees of
freedom, i.e., an emergent pseudospin structure. The ‘‘weaving pattern" of L and C then dictates the
frequency-wave number dispersion ωm(k). We show that in this way, a surprisingly large variety of
topological circuits can be built for arbitrary effective spatial dimension D = 1, 2, 3, 4 and beyond. This
is an example of designing topological matter from bottom up, which in general is a highly nontrivial
task [17].

Our work rests on a few key ideas put forward recently by other authors. Jia, Owens, Sommer,
Schuster, and Simon designed and experimentally demonstrated the first topological LC circuit based
on inductorswith braided capacitive coupling [18]. They realized the classic analog of twodimensional
double Azbel–Hofstadter (dAH) model at flux 1/4 (the Chicago design). Albert, Glazman and Jiang
gave a general recipe to construct dAHmodel for any rational flux using capacitor loops with braided
inductive coupling [19]. They gave a detailed discussion of how to achieve the dAH model at flux 1/3
using the capacitor 3-loops (the Yale design) and also the symmetry protection of the edge modes.
The insights from these authors will become pivotal in Section 5.

This paper goes beyond the aforementioned work in four aspects. (1) We discuss much simpler
topological circuits, e.g. the one-dimensional SSH and braided ladder closely related to Creutz’s ice-
tray model, to illustrate the concepts of pseudospin, synthetic gauge fields, and symmetry protection
in topological LC circuits. While the SSH circuit has been discussed previously [20,21], the perspective
and approach here are different. (2) Different building blocks of topological circuits are proposed
and treated within a single framework. In addition to capacitor loops, we also discuss inductor
loops, capacitor stars, and inductor stars. The relationship between these designs, in particular the
duality, is clarified. (3)We introduce and advocate a diagrammatic notation that drastically simplifies
the presentation and design of topological LC circuits. For example, the Chicago and Yale design
mentioned above appear clean and easier to understand in the new notation. (4) A list of new
topological circuits are constructed. Using the simplified diagrammatic notation,wedemonstrate how
the circuit analogs of Dirac semimetal, Haldane’s honeycomb lattice model of Chern insulators, and
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four-dimensional quantum Hall insulator (4D dAH model) can be realized. We show that all these
circuits can be understood using the same language and approach, which also establishes and clarifies
the link between these ac circuits and quantum lattice models.

We emphasize that our main motivation is to show how a series of topological circuits could be
designed following the idea pioneered in [18] and [19], and how a single theoretical framework can
be used to understand their properties, including their connections to each other and to quantum
lattice Hamiltonians describing topological insulators. We do not claim chronological originality in
the design of any particular circuit. Many independent works have explored, for example, the SSH
circuit [20,21], Dirac cone and higher dimensional circuits [20], Chern circuit [22], Weyl circuit [23]
and topological corner modes [24–26]. Alternative theoretical approach can be found for example in
[18,27].

I hope the reader find it amusing to witness Möbius strip, monopoles, geometric phases, and the
first and second Chern numbers emerging from a tangled web of inducting coils, capacitor plates, and
wires.

2. Lagrangian for circuits

Consider an arbitrary lattice circuit consisting of linear inductors (L) and capacitors (C), i.e., coupled
electromagnetic oscillators. It is conventional to describe the jth element of a circuit using the current
ij(t) through it and the voltage vj(t) across it. Alternatively, one can use the charge variable qj(t) and
the flux variable φj(t). They are related to the current and voltage by

qj =

∫
ij(t)dt, φj =

∫
vj(t)dt. (1)

A dot denotes the time derivative, e.g., vj(t) = φ̇j(t) ≡ dφj(t)/dt . Whenever possible, the time
dependence is suppressed for brevity.

We describe linear circuits using Lagrangians. This approach is economical and convenient,
because the analysis and calculation proceed pretty much the same way from one circuit to another.
In addition, the language is familiar to physicists in the context of coupled oscillators or field theory.
Consider a circuit described by m charge variables, {qj} with j = 1, . . . ,m, and n flux variables, {φj}

with j = m + 1, . . . ,m + n. The action is given by

S =

∫
dt

(
L [qj, φj; q̇j, φ̇j] +

∑
j≤m

qjVj +
∑
j>m

φjIj
)
. (2)

Here Ij and Vj are external current and voltage sources, if any, coupled to the circuit. From the action
principle, δS = 0, standard calculus of variations yields the Euler–Lagrange (EL) equation of motion

Vj =
d
dt

∂L

∂ q̇j
−

∂L

∂qj
, (3)

Ij =
d
dt

∂L

∂φ̇j
−

∂L

∂φj
. (4)

For circuits not connected to any external source, we simply set Vj and Ij to zero in the equations
above. Our notation follows that of Chua [28].

The Lagrangian for a capacitor is LC = −q2/2C , with C the capacitance. Plugging it into the EL
equation, we recover the defining relation for capacitor, V = q/C . Alternatively, we can take

LC =
C
2

φ̇2 (5)

which gives I = CV̇ . These two descriptions are equivalent for ac circuits. For a linear inductor,

LL = −
1
2L

φ2 (6)

where L is the inductance. This gives via the EL equation I = φ/L. We can also choose LL = Lq̇2/2
which gives V = Lφ̈ = Lİ as expected. In the representation based on the flux variable φ, the
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mechanical analog of LC is the kinetic energy, and LL plays the role of potential energy [19]. The
Lagrangian of the whole circuit is just the sum of the Lagrangian of all the capacitors and inductors.

3. Connection and curvature

Themathematical language describing the topological properties of periodic LC circuits is similar to
that of electronic topological insulators and superconductors. But there are also key differences. For a
periodic circuit, the Lagrangian and the equations of motion are invariant under discrete translations
of any lattice vector. Via Bloch’s theorem, the normal modes of electromagnetic oscillations of the
circuit can be labeled by the quasi-momentum k living in a D-dimensional Brillouin Zone (BZ), a
D-torus TD. For all the circuits considered this paper, the equations of motion can be reduced to
eigenvalue problems of the following form

H(k)u(k) = (aωb
+ c)u(k). (7)

Here H(k) is a Hermitian matrix which we call dynamical matrix or simply H-matrix, the Bloch wave
function u(k) is a column vector, ω is the frequency of oscillation, a and c are two constants, and
b = ±2. We stress that Eq. (7) does not hold true for arbitrary LC circuits. Solving this eigenvalue
problem yields the band structure ωm(k), where the index m labels the bands. The H-matrix H(k)
plays a central role in our analysis. By design, it may possess certain symmetries.

Eq. (7) resembles the eigenvalue problem of a quantum Hamiltonian H with energy eigenvalue
E ≡ aωb

+ c. To make the connection more apparent, let us adopt Dirac’s notation for the eigenvector
u,

H(k)|um(k)⟩ = Em|um(k)⟩, (8)

which is simply a rewriting of Eq. (7) above. The phase choice of each eigenvector |um(k)⟩ is arbitrary,
for example, |um(k)⟩ and eiθk |um(k)⟩ are equivalent. Each k point within the base manifold TD is thus
associatedwith a fiber, namely aU(1) space spanned by eiθk . Fiber bundles of this type arewell studied
in quantummechanics, e.g. in the context of Berry’s phase. As onemoves fromk tok+dk, a connection
1-form A, known as the gauge potential, can be defined by following the parallel transport of |um(k)⟩.
Assume themth band is separated from other bands, the Berry connection Am is the 1-form

Am(k) = ⟨um(k)|dum(k)⟩. (9)

Here d denotes the exterior derivative, and we follow the notation of Ref. [29]. The Berry curvature Fm
is defined as the 2-form

Fm(k) = dAm(k). (10)

Topological invariants for the Bloch bundles are defined as integrals of A or F , depending on the spatial
dimension and symmetry. These formulae arewell known and can be found for example in Ref. [29]. In
the rest of the paper, we will apply the framework outlined above, Eqs. (7) to (10), to various circuits.
To see how these equations come about and to make sense of them, let us first examine two simple
examples in one dimension.

4. Topological circuits in one dimension

The transmission line is perhaps the most familiar one-dimensional (1D) periodic circuit. It is
an infinite LC ladder (see figure below) and supports a gapless propagating mode with frequency
ω(k) = 2 sin(k/2)/

√
LC , which is proportional to the wave number k in the long wavelength limit

k → 0 (we take the lattice constant to be unit length). By tweaking the transmission line a little bit,
we canmake 1D periodic circuits with topologically interesting band structures. They are the simplest
topological circuits.
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4.1. SSH circuit

Let us double the unit cell of the transmission line above by introducing two alternating values of
the inductance, L1 ̸= L2. This will open a gap in the spectrum. The diagram below shows the nth unit
cell, which contains two dynamic variables φ1(n) and φ2(n).

L1 φ1

C

L2 φ2

C

The Lagrangian for the infinite ladder then has the form

L =

∑
n

C
2

[φ̇2
1 (n) + φ̇2

2 (n)] −
1
2L1

[φ1(n) − φ2(n − 1)]2 −
1
2L2

[φ1(n) − φ2(n)]2. (11)

The EL equations of motion are

C φ̈1(n) = −L−1φ1(n) + L−1
1 φ2(n − 1) + L−1

2 φ2(n),

C φ̈2(n) = −L−1φ2(n) + L−1
2 φ1(n) + L−1

1 φ1(n + 1), (12)

with the shorthand notation L−1
= L−1

1 + L−1
2 . The t dependence of φj is suppressed for brevity.

a. Band structure. Assume oscillating solution and go over to the wave number k space by Fourier
transform,

φj(n; t) = e−iωt 1
√
N

∑
k

eiknϕj(k), j = 1, 2, (13)

where N is the number of unit cells and k ∈ [−π, π]. Then the EL equations in k space become

−Cω2
[

ϕ1
ϕ2

]
=

[
−L−1 L−1

1 e−ik
+ L−1

2
L−1
1 eik + L−1

2 −L−1

][
ϕ1
ϕ2

]
(14)

Let us define

ω2
0 = 1/C

√
L1L2, η =

√
L1/L2. (15)

Then the eigenvalue problem becomes

H(k)
[

ϕ1(k)
ϕ2(k)

]
=

(
ω2

ω2
0

− η − η−1
)[

ϕ1(k)
ϕ2(k)

]
, (16)

with

H(k) =

[
0 −η−1e−ik

− η

−η−1eik − η 0

]
. (17)
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We see Eq. (16) indeed has the form of Eq. (7) with b = 2. Let us label the two Bloch bands by subscript
±,

ω2
±
(k)/ω2

0 = η + η−1
±

√
η2 + η−2 + 2 cos k. (18)

The lower band ω−(k) ∝ k as k → 0 and thus is the ‘‘acoustic" branch, while the upper band, the
‘‘optical" branch, is separated from the lower branch by a finite energy gap. The gap closes when
η = 1, i.e., L1 = L2. The figure below shows the dispersion for η = 0.75.

b. H-matrix and winding number. The eigenvalue problem Eq. (16) is analogous to the Su–
Schrieffer–Heeger (SSH) model for spinless electrons [30]. The combinationω2(k)/ω2

0 −η−η−1 plays
the role of the electron energy E(k) while the dynamical matrix H(k) corresponds to the Hamiltonian
of the quantum lattice model. We can rewrite H(k) in terms of Pauli matrices {σ̂i},

H(k) = d(k) · σ =

∑
i=x,y,z

di(k)σi. (19)

The vector d(k) lies within the xy plane,

dx = −η − η−1 cos k, (20)

dy = −η−1 sin k, (21)

dz = 0. (22)

As k transverses the Brillouin Zone (which is topologically a circle S1) from −π to π , the unit vector
d̂(k) = d(k)/|d(k)| winds by 2π for η < 1,

In contrast, there is no net winding of d̂(k) for η > 1,



E. Zhao / Annals of Physics 399 (2018) 289–313 295

Thewinding numberw can be defined through the turning of the arrows confinedwithin the xy plane,

w =
1
2π

∫ π

−π

dk[d̂(k) × ∂kd̂(k)] · ẑ, (23)

which gives w = 1 for η < 1, and w = 0 for η > 1. Thus H(k) has two distinct topological sectors. It
is impossible to deform an H(k) with w = 1 smoothly to w = 0 without closing the gap.

c. Chiral symmetry. The matrix H(k) belongs to a class of Hermitian matrices that have sub-
lattice or chiral symmetry: there exists a matrix Γ that anti-commutes with H and squares to one,
Γ H(k)Γ = −H(k) and Γ 2

= 1. Such chiral matrices can be brought into off-diagonal form in the
eigenbasis of Γ ,

H(k) = |DetH|

[
0 q(k)

q†(k) 0

]
, (24)

where q is a U(N) matrix in general. For the SSH circuit here, we have Γ = σz and q is just a complex
number,

q(k) = [dx(k) − idy(k)]/|d(k)| ≡ eiθ (k) ∈ U(1). (25)

Thus q(k) defines a map from the k-space BZ, which is a circle S1, to U(1) which is also equivalent to
S1. The homotopy group of the mapping is π1(S1) = Z . And the topological invariant is the winding
number

w =
i

2π

∫
BZ

q−1dq = −
1
2π

∫ π

−π

dk∂kθ (k). (26)

Evidently, this definition of w agrees with the earlier definition Eq. (23). Chiral symmetry is vital to
have a meaningful definition of q and w.

d. Berry connection and Zak phase. We can define the winding number in yet another way
using the language of geometric phase, outlined in Section 3. In Dirac notation, let |u±(k)⟩ be the
eigenvectors of H(k),

H(k)|u±(k)⟩ = ±

√
η2 + η−2 + 2 cos k|u±(k)⟩. (27)

Explicitly, |u±(k)⟩ stands for the column vector

|u±(k)⟩ =
1

√
2

[
q(k)
±1

]
. (28)

And its conjugate transpose gives ⟨u±(k)|. We can compute the Berry connection A defined as

A(k) = ⟨u+(k)|du+(k)⟩. (29)

From Eqs. (28) and (25), we find

A =
i
2
dθ. (30)

The same result is obtained if A is defined using u−(k). The curious factor of 1/2 in Eq. (30) has an
interesting consequence. As k transverses the BZ to complete one circle, the state may not go back to
itself, just like the trip of an ant on the Möbius strip. This phenomenon (holonomy) is described by
the geometric phase, also known as the Zak phase in 1D periodic structures [31],

θZ ≡ i
∫
BZ

A = wπ. (31)

We see that the Zak phase is quantized: it is either 0 or π and proportional to the winding
number.

e. Edge states. For the topologically nontrivial case of w = 1 and θZ = π , edge states form within
the bulk band gap at frequency ω = ω0

√
η + η−1. An example of the frequency spectrum of a finite

chain (40 unit cells) is shown below for η = 0.5.
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In this case, the open end of the finite chain terminateswith L2, i.e. the inductorwith larger inductance.
The decay of the edge state wave function is shown below.

4.2. Braided ladder

In our second example,we choose a symmetric layout for inductors along the two legs of the ladder,
and the unit cell now contains a twist in the inductive wiring:

φa
n

C

φb
n

L1 φc
n

C

φd
nL1

L2

C

L2

φa
n+1

φb
n+1
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The Lagrangian has the form

L =
C
2

∑
n

[(φ̇a
n − φ̇b

n)
2
+ (φ̇c

n − φ̇d
n)

2
]

−
1
2L1

∑
n

[(φa
n − φc

n)
2
+ (φb

n − φd
n)

2
]

−
1
2L2

∑
n

[(φc
n − φb

n+1)
2
+ (φd

n − φa
n+1)

2
]. (32)

With the ansatz

φµ
n (t) = e−iωt 1

√
N

∑
k

eiknϕµ(k), µ = a, b, c, d, (33)

the EL equations become the eigenvalue problem

− Cω2

⎡⎢⎣ 1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

⎤⎥⎦
⎡⎢⎣ ϕa

ϕb
ϕc
ϕd

⎤⎥⎦ (34)

=

⎡⎢⎢⎣
−L−1 0 L−1

1 L−1
2 e−ik

0 −L−1 L−1
2 e−ik L−1

1
L−1
1 L−1

2 eik −L−1 0
L−1
2 eik L−1

1 0 −L−1

⎤⎥⎥⎦
⎡⎢⎣ ϕa

ϕb
ϕc
ϕd

⎤⎥⎦ .

As before, the shorthand notation L−1
= L−1

1 + L−1
2 .

We further diagonalize the matrix on the left hand side of Eq. (34) by a similarity transformation[
ϕa
ϕb

]
= U

[
ξ1
χ1

]
,

[
ϕc
ϕd

]
= U

[
ξ2
χ2

]
, (35)

with

U =
1

√
2

[
−1 1
1 1

]
. (36)

Then the four equations in Eq. (34) decouple into two sets. The first set involves the flux difference
(or voltage difference, after taking the time derivative) ξ1 = (ϕb − ϕa)/

√
2 and ξ2 = (ϕd − ϕc)/

√
2,

H(k)
[

ξ1(k)
ξ2(k)

]
=

(
2
ω2

ω2
0

− η − η−1
)[

ξ1(k)
ξ2(k)

]
, (37)

where the H-matrix has chiral symmetry,

H(k) = σx(η cos k − η−1) + σyη sin k. (38)

The second set involves flux average χ1 = (ϕa + ϕb)/
√
2 and χ2 = (ϕc + ϕd)/

√
2,

0 = (L−1
1 + L−1

2 e−ik)χ2 − L−1χ1, (39)

0 = (L−1
1 + L−1

2 e+ik)χ1 − L−1χ2. (40)

For χ1,2, there is no effective capacitive coupling and consequently no oscillation. A nonzero solution
only exists for k = 0, which gives constant χ1 = χ2 throughout the circuit. The similarity transform
properly decouples the interesting dynamical degrees of freedom ξ1,2 from the rest, χ1,2. Such
decoupling procedures will be used repeatedly in later sections.

a. Band structure. The dynamics of the braided ladder now reduces to the eigenvalue problem
Eq. (38) which is similar to the SSH ladder and takes the form of Eq. (7) with b = 2. The band structure
of H(k) consists of two bands separated by a nonzero gap as long as η ̸= 1,

2ω2
±
(k)/ω2

0 = η + η−1
±

√
η2 + η−2 − 2 cos k. (41)
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The minus sign before the cosine term marks the key difference from the SSH case. For example, the
lower band ω−(k) = 0 touches zero at k = ±π rather than k = 0. The Zak phase and winding
number can be introduced the same way as the SSH case and will not be repeated here. We find that
the winding number w = 1 (0) for η > 1 (η < 1), and edge states form for w = 1.

b. Mapping to the π-flux ladder. To connect the braided ladder to a quantum lattice model, we
perform yet another rotation [32][

α(k)
β(k)

]
= V

[
ξ1(k)
ξ2(k)

]
, V =

1
√
2

[
1 i

−1 i

]
. (42)

In the new basis, the H-matrix becomes

H ′(k) = V †H(k)V = σz(η−1
− η cos k) + σxη sin k. (43)

Fourier transform to real space, e.g. α(k) → αn, we find that H ′ describes a hopping problem,

Eαn = + η−1αn −
η

2
[αn+1 + αn−1] + i

η

2
[βn−1 − βn+1],

Eβn = − η−1βn +
η

2
[βn+1 + βn−1] + i

η

2
[αn−1 − αn+1]. (44)

Here we may view E = 2ω2/ω2
0 − η − η−1 as energy, αn and βn as wave functions on the two legs of

a ladder shown in the figure below, where lines with arrows represent hopping and their associated
phase factors (±1, ±i) are indicated.

αn−1 −1 αn αn+1−1

βn−1
1 βn βn+1

1

i −i

i −i

The total phase accumulated for a closed loop (e.g. the parallelogram αn−1 → αn → βn+1 →

βn → αn−1) is −1. The situation is exactly the same as Creutz’s ice tray model [33] which describes
spinless electrons hopping on a ladder with magnetic flux of π (half the flux quantum) threading
each loop. Creutz gave a very intuitive explanation for the existence of edge states in the ice tray
model [33]. Complete destructive interference for waves propagating, say, from αn−1 to βn+1, along
the two alternative paths leads to lack of diffusion, and consequently, edge modes localized at the
boundary of the ladder.

c. Synthetic gauge field. The braided ladder illustrates the concepts of ‘‘synthetic gauge field"
and ‘‘synthetic dimension" which have been discussed in the context of cold atoms in optical lattice.
Physically, αn and βn are two independent modes that span the vector space of the internal degrees
of freedom within each unit cell n. We may refer to them loosely as two different polarization states
[see Eq. (42)], or pseudo-spin up and down states, constructed from the linear combination of ξ1,2.
Alternatively we can visualize them as two ‘‘sites" extending in a ‘‘synthetic dimension" to form a
rung, perpendicular to the physical spatial dimension labeled by unit cell index n. Moreover, braided
wiring gives rise to a synthetic gauge field, an effective π-flux in the ladder system. The end result is
the hopping model Eq. (44).

d. Time reversal symmetry. The Lagrangian for the SSH circuit or the braided ladder is quadratic
in φ̇n and invariant under time reversal (TR). Accordingly, the equations of motion obey TR symmetry.
Only ω2 appear in the eigenvalue problem for H , and the band structure is degenerate for ω(k) and
−ω(k). This is common for coupled classical oscillators where dissipation is negligible. Compared to
many-body problem of fermions with Kramers degeneracy, the consequence of TR symmetry here is
trivial.

For the simple 1D circuits above, the Lagrangian approach may seem an overkill. These circuits
can be treated equally well by conventional methods of network analysis, e.g. by computing the
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impedance or scattering matrix. Yet, the Lagrangian approach provides a general route L →

H(k) → ω(k) that works formuchmore complicated circuits. Once the interesting degrees of freedom
are identified and described by H , it is straightforward to map the problem to quantum lattice
Hamiltonians or analyze the topological invariants directly. The concepts of pseudospin, synthetic
gauge field, and Berry connection will be generalized to construct and analyze circuits in higher
dimensions. In the next section, we will see that the braided ladder is only a special case of a general
construction scheme.

5. Building blocks for topological circuits

To build more general topological circuits, we first construct various ‘‘molecules" from L and C
and study how they are coupled to each other. Obviously, there are infinite number of ways to hook
them up. We will focus on the simplest constructions of loops and stars which enjoy a high degree
of symmetry. One class of braided wiring, called ‘‘shift’’, will play a key role in engineering the phase
factors (synthetic gauge fields) in the H-matrix. Their mathematics turns out to be very neat. Our
overall goal here is to have a modular design: these ‘‘lego blocks" will be pieced together to form
topological circuits in later sections. The blocks and wires will be encapsulated, i.e. with their inner
details hidden in a simplified notation, to become nodes andm-connections respectively.

5.1. Capacitor loops

Consider p identical capacitors C connected in series to form a loop labeled by n. We will treat this
case in great detail because all other designs are similar and can be easily understood by analogy. The
figure below shows a p = 4 loop:

φ0

φ1 φ2

φ3

In terms of the flux variables {φj(n)}, j = 0, . . . , p − 1, the Lagrangian of the loop

Ln ≡
C
2

p−1∑
i,j=0

tijφ̇i(n)φ̇j(n) =
C
2

p−1∑
j=0

[φ̇j(n) − φ̇j+1(n)]2 (45)

with φp identified with φ0. Hence the capacitance matrix tij is tridiagonal, resembling a tight binding
Hamiltonian describing particles hopping on a ring with onsite energy tii = 2 and hopping amplitude
ti,i±1 = −1 between nearest neighbor sites, which is easily diagonalized by going to the quasi-
momentum space. It is thus convenient to transform φj to ϕk,

φj(n) =

∑
k

Ujkϕk(n) =
1

√
p

p−1∑
k=0

ei2πkj/pϕk(n), (46)

which makes Ln diagonal,

Ln = 2C
∑
k

[1 − cos(2π
k
p
)]ϕ2

k (n). (47)

We can think of the capacitor loop as a benzene-like molecule, and interpret k as its eigenmode index.
Now let us connect two such capacitor loops, labeled by n and n+ 1 respectively, using p identical

inductors L. Each inductor connects a node φi(n) of the first loop to some node φj(n+ 1) of the second
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loop. The inductive coupling thus has the general form

Ln,n+1 = −
1
2L

∑
i,j

vijφi(n)φj(n + 1). (48)

The wiring pattern can be illustrated with less clutter by hiding the capacitors as well as the wires
connecting them within each loop, for example,

φ0(n)

φ2(n + 1)

φ1(n)

φ0(n + 1)

φ2(n)

φ1(n + 1)

φ3(n) φ3(n + 1)

Furthermore, if we always align φj in some fixed order, say, φ0 to φ3 from top down, it is then
unnecessary to label the nodes or draw the inductors explicitly. As shown in the figure above, we can
simply use a dashed line to indicate a connection via L. There are p! different inductivewiring patterns,
each corresponding to an element of the permutation group of order p.

Let us focus on permutations given by the shift operation j → j+m, wheremodulo p is implied and
m = 0, . . . , p − 1. In other words, we connect the jth capacitor within the nth loop to the (j + m)-th
capacitor within the n + 1 loop,

L
(m)
n,n+1 = −

1
2L

∑
j

[φj(n) − φj+m(n + 1)]2. (49)

We will also call these connections the m-shift or m-twist. The figure below shows the example of
p = 4. From left to right are the connectionm = 0, 1, 2, and 3.

Now comes a crucial step. Let us express L (m) in terms of ϕk. We find L (m) not only becomes
diagonal in k but also picks up an interesting phase factor,

L
(m)
n,n+1 =

1
2L

∑
k

[−ϕ2
k (n) − ϕ2

k (n + 1) + ϕk(n)ϕk(n + 1)eim2πk/p
]. (50)

This result should not come across as a complete surprise. The phase factor eim2πk/p is nothing but the
representation of them-shift operation in basis {ϕk}.

The total Lagrangian of the two loops coupled by inductive wiring of typem is then

L (m)
= Ln + Ln+1 + L

(m)
n,n+1. (51)

The EL equation takes a rather clean form

−2
ω2

ω2
0
[1 − cos(2π

k
p
)]ϕk(n) = −ϕk(n) + eim2πk/pϕk(n + 1) (52)

where ω2
0 = 1/LC as before. Again, if we make an analogy to quantum lattice models, the last term

on the right hand side corresponds to a hopping amplitude with nontrivial phase factor eim2πk/p,
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depending on the wiring pattern indexm and the molecular eigenmode index k. This result is central
to the design of topological circuits.

Next we show explicitly how pseudospin degrees of freedom emerge from the p-tuple {ϕk}. The
procedure is best illustrated by a few examples.

(a) Four-loop. Consider the p = 4 capacitor loop. First note that for mode k = 0, the prefactor
of the ω2 term on the left hand side of Eq. (52) (i.e. the effective capacitance) vanishes, so there is no
dynamics associated with ϕk=0, just like what we have encountered in the braided ladder. The mode
ϕk=1 and ϕk=3 are degenerate, with 1 − cos(2πk/p) = 1. We may call them the pseudo-spin up and
down mode, ϕ↑ = ϕ1 and ϕ↓ = ϕ3. They obey the EL equation

−2
( ω

ω0

)2 [
ϕ↑(n)
ϕ↓(n)

]
= −

[
ϕ↑(n)
ϕ↓(n)

]
+

[
(+i)mϕ↑(n + 1)
(−i)mϕ↓(n + 1)

]
. (53)

Thus for ϕ↑, themth wiring pattern, them-shift, is uniquely characterized by its corresponding phase
factor im in Eq. (53). In the wiring diagram, it is sufficient to depict each p = 4 loop using an empty
circle and each wiring patternm using a single solid line together with its phase factor. The four types
of inductive coupling shown above (m = 0, 1, 2, 3) then simplify to the 1 connection, i connection,
−1 connection, and −i connection below.

1 i −1 −i

The remaining ϕk=2 mode has a different eigenfrequency,

−4
( ω

ω0

)2
ϕ2(n) = −ϕ2(n) + (−1)mϕ2(n + 1). (54)

Therefore it is energetically separated from the spin up and down mode.
(b) Three-loop. The case of p = 3 is similar and worked out in detail in Ref. [19]. The ϕ0 mode has

no dynamics since it describes the flux average of all the nodes within the loop. The ϕ1 and ϕ2 modes
are degenerate with phase factor e±im2π/3,

−3
( ω

ω0

)2 [
ϕ1(n)
ϕ2(n)

]
= −

[
ϕ1(n)
ϕ2(n)

]
+

[
e+im2π

3 ϕ1(n + 1)
e−im2π

3 ϕ2(n + 1)

]
. (55)

We can refer to them as the spin up and down mode respectively. Them = 0, 1, 2 inductive wiring

can be simply denoted by a single line with its phase factor for the ϕ1 mode:

1 ei
2π
3 e−i 2π3

(c) Two-loop. The simplest case is p = 2. The 2-loop is trivial, since two capacitors in parallel
amounts to a capacitor 2C . In other words, 2-loop is just a single capacitor.

C

φ1

C

φ0 φ0

2C

φ1
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Only the relative mode ϕ1 = (φ0 − φ1)/
√
2 has oscillations when inductively coupled,

−4
( ω

ω0

)2
ϕ1(n) = −ϕ1(n) + (−1)mϕ1(n + 1), (56)

while the ‘‘center of mass" mode ϕ0 = (φ0 + φ1)/
√
2 is static and trivial. There are only two kinds of

wiring,m = 0 and 1,

which, according to our notation scheme above, simplify to

1 −1

We now recognize that these are exactly the building blocks for our braided ladder discussed
earlier.

To summarize, by connecting capacitor loops using inductors in braided fashion, pairs (except for
p = 2) of oscillation modes, referred to as pseudospin up and down mode ϕ↑,↓, emerge to acquire
hopping phase factor e±im2π/p respectively. These phase factors are the solutions of zp = 1 evenly
distributed on theunit circle of the complexplane. So in principle,we can engineer almost anyhopping
phase factor by choosing some proper p. In this subsection, we have also simplified the notation for
the inductive wiring patterns to a single line labeled by its ‘‘engineered" phase factor for the spin
up mode ϕ↑. This simplification is required for handling complicated topological circuits in later
sections.

5.2. Capacitor stars

Following the wisdom of the ∆-Y transformation, we are led to a design based on star structures
of capacitors. The simplest is a three-star:

φ1
φc

φ0

φ2

The total current flowing into the central node is zero from current conservation,
∑2

i=0 Ii = 0. The
total charge of all plates connected to the central node is constant. Assuming the capacitors are initially
uncharged, we have

∑
i(φ̇i − φ̇c)/C = 0, or φ̇c =

∑
i φ̇i/3. So the voltage at the central node equals

the average voltage of φ̇i. The Lagrangian for a general p-star labeled by n is

Ln =
C
2

p−1∑
j=0

[
φ̇j(n) − φ̇c(n)

]2 (57)

=
C
2
(1 − p−1)

∑
j

φ̇2
j (n) −

C
2
p−1

∑
j̸=i

φ̇i(n)φ̇j(n).

We find that the capacitancematrix of the three-star is identical to the 3-loop, after rescaling C → 3C .
Therefore, all the discussions for inductive wiring and phase factors proceed the same way as before
and will not be repeated here. Higher order stars with p > 3 are less interesting because they are
(p − 1)-fold degenerate.
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5.3. Inductor loops

The inductor loops are the dual design of the capacitor loops. An example is the inductor 3-loop
below.

φ1 φ2

φ0

The Lagrangian for an inductor p-loop is

Ln = −
1
2L

p−1∑
j=0

[φj(n) − φj+1(n)]2. (58)

For two such loops, labeled by n and n+1, the coupling by p identical capacitors according to a wiring
pattern with shiftm is given by

L
(m)
n,n+1 =

C
2

∑
j

[φ̇j(n) − φ̇j+m(n + 1)]2. (59)

In terms of ϕk, the EL equation gives

−2
ω2

0

ω2 [1 − cos(2π
k
p
)]ϕk(n) = −ϕk(n) + eim2πk/pϕk(n + 1). (60)

Thus we arrive at a result very similar to the capacitor loop, only with ω/ω0 replaced by ω0/ω. In
passing, we note that the duality

L ↔ C,
ω

ω0
↔

ω0

ω
(61)

also applies to the SSH and braided ladder circuits discussed above.

5.4. Inductor stars

For completeness, we also mention the inductors 3-star.

φ1
φc

φ0

φ2

Current conservation requires
∑

i(φi − φc)/L = 0, or φc =
∑

i φi/3. The Lagrangian

Ln = −
1
2L

∑
j

[
φj(n) − φc(n)

]2 (62)

= −
1
2L

(1 − p−1)
∑

j

φ2
j (n) +

1
2L

p−1
∑
j̸=i

φi(n)φj(n).

For p = 3, the inductive coupling is identical to the inductor 3-loop after rescaling 3L → L. Therefore,
one can choose either one to construct topological circuits.
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5.5. Other permutations

Let us briefly comment on permutation wiring other than them-shift, using the capacitor loops as
examples. Within the subspace spanned by the spin up and down modes, all permutations are 2 × 2
matrices and can be decomposed in terms of the Pauli matrices. For example, for p = 3, permutations
of two nodes only

give rise to off-diagonal matrix elements that couple spin up to down, i.e. the spin operator

σx
−σx−

√
3σy

2
−σx+

√
3σy

2

As another example, for p = 4, the permutations

correspond to Pauli matrix

σx σy

Interesting circuits containing such ‘‘spin-flip" wiring σi will be discussed elsewhere.

6. Two dimensional topological circuits

Now that the building blocks have been abstracted into nodes (p-loops or stars) and connections
(m-shifts with phase factor eim2π/p), we are ready to design topological circuits using these modular
‘‘lego blocks’’. In this section, we retrofit a fewwell known quantum lattice models in two dimensions
to illustrate the construction procedure. Along the way, we also review the Chicago design and the
Yale design that inspired our work and present their layouts using the simplified notation.

6.1. Dirac cones

Our first 2D circuit is a square lattice array of capacitors connected by inductors. Each node consists
of a single capacitor, which we may think of as the p = 2 loop in the general scheme. There are
two kinds of inductive connections, the 1 connection (m = 0, straight inductive wires) and the −1
connectionwith phase shiftπ (m = 1, twisted inductivewires). The 1 and−1 connection are arranged
alternatively in the following form:

−1

A

1

B

1

1
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The unit cell contains two inequivalent nodes/sites A and B. The diagram above depicts the actual
wiring below (dangling wires connecting to the rest of the lattice are not shown to avoid clutter):

Our simplified notation thus hides the wiring details to highlight the ideas behind the design. One
may recognize that the circuit here mimics the Azbel–Hofstadter (AH) model [34,35] at flux 1/2, a
tight-binding model describing charged particles hopping on the square lattice in a perpendicular
magnetic field with the magnetic flux per plaquette being half the flux quantum. This is also known
as theπ-flux, since the total Peierls phase picked up by the particle after hopping around the plaquette
is π , so the overall phase factor is eiπ = −1.

As a shortcut to find the band structure, we can take Eq. (56) as our starting point. Let ϕ(m, n)
be the flux difference across the capacitor C at lattice site labeled by a pair of integer coordinates
(x, y) = (m, n), we have

−2ω2ϕ(m, n) = −zϕ(m, n)+ϕ(m−1, n)+ϕ(m+1, n)+(−1)m[ϕ(m, n−1)+ϕ(m, n+1)] (63)

where z = 4 is the coordination number of the lattice, andω is in units ofω0 = 1/
√
LC . One can check

that this equation indeed follows from the Lagrangian of the whole lattice. In k-space, it leads to the
eigenvalue problem

ω2(k)
[

ϕA(k)
ϕB(k)

]
= (2 + cos kyσz − cos kxσx)

[
ϕA(k)
ϕB(k)

]
. (64)

The frequency spectrum is gapless. The two bands

ω±(k) = 2 ±

√
cos2 kx + cos2 ky (65)

touch each other at a pair of Dirac points at the Brillouin zone boundary,K± = (kx, ky) = (π/2, ±π/2).
Near the Dirac point, the spectrum is linear and takes the form of Dirac cones.

6.2. The Yale design

A more interesting 2D topological circuit was proposed by Albert, Glazman and Jiang using
capacitor 3-loops and permuted inductive wires [19]. We will call it the Yale design. In our notation,
it takes the form

1 ei
2π
3 e−i 2π3

1

1
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Here each node is a capacitor 3-loop, and three kinds of inductivewiringswith phase factor eim2π/3 are
used. The circuit corresponds to the double Azbel–Hofstadter (dAH) model at flux 1/3. The spectrum
has three bands separated by two gaps. And each band is characterized by a nonzero Chern number.
This guarantees the existence of edge states within the band gaps. The actual layout and more details
can be found in Ref. [19] and will not be repeated here. Note that a few variants of the Yale design can
be created. Aswe have argued above, the node could be replaced by a capacitor 3-star, inductor 3-loop,
or inductor 3-star. For each choice of the node, one needs to use the correspondingm-connection.

6.3. The Chicago design

The first topological LC circuit was designed and experimentally demonstrated by Jia, Owens,
Sommer, Schuster, and Simon [18]. They introduced the ingenious idea of braided capacitor coupling.
We will refer to it as the Chicago design. In the simplified notation, it has the following layout

1 −1

Here each node is an inductor (i.e. a p = 2 inductor loop in the general scheme). The dashed line is
the braided m = 1 capacitive connection with phase factor −1, while the solid line is the m = 0
connection with phase factor 1. The unit cell is quite large and consists of four different layers, each
forming a straight or braided ladder that extends in the y-direction. The whole circuit realizes the flux
1/4 dAH model.

Alternatively, we can follow the idea of the Yale design to realize the flux 1/4 dAHmodel by using
the capacitor 4-loops as nodes and the connection pattern

1 i −1 −i

Compared to the Chicago design, the unit cell looks simpler. But each node (empty circle) now is a
4-capacitor loop, so the unit cell actually contains more circuit elements.

6.4. Magnetic monopole

The flux 1/2 AH circuit in Section 6.1 has no spectral gap. To construct the analog of quantum
Hall insulator at flux 1/2, we need to gap out the Dirac spectrum. One mechanism to achieve this is
by introducing coupling between the next nearest neighbors, i.e. adding more wires and inductors.
In addition, we need to use capacitor 4-loops as nodes (the lattice sites), which offer four kinds of
inductive connections (hopping between sites) with phase factor ±1 and ±i respectively. This leads
to the following circuit design.

1

A

−1

B

i −i
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Each unit cell contains two nodes A and B. To work out the band structure, let us start from Eq. (53)
and consider the pseudo spin up mode ϕ↑ for example. In k space, its eigenvalue problem takes the
form (

ω2(k) −
1
2

)[
ϕ↑A(k)
ϕ↑B(k)

]
= H(k)

[
ϕ↑A(k)
ϕ↑B(k)

]
, (66)

where the H-matrix

H(k) = −h(k) · σ (67)

with σ = (σx, σy, σz) the Pauli matrices and h is a fictitious magnetic field

h = (hx, hy, hz) = (cos kx, −2 sin kx sin ky, cos ky). (68)

The eigenfrequency (in unit of ω0) is then given by

ω2
±
(k) =

1
2

± |h(k)|. (69)

The spectrum contains two bands labeled by± and separated by a finite gap. The eigenvalue problem
is similar to the generalized flux 1/2 AH model considered by Hatsugai and Kohmoto [36]. The
eigenequation for ϕ↓ is the complex conjugate of that for ϕ↑. Namely, the spin up and down mode
experience opposite synthetic magnetic field, hence the ‘‘double" in double AH model. The spectrum
of ϕ↓ is degenerate to ϕ↑ and also given by Eq. (69), a manifestation of time reversal symmetry.

The unit vector ĥ(k) defines a mapping from the two dimensional BZ, a torus T 2, to a sphere S2.
One can verify that as one exhausts the k points within the BZ, 0 ≤ kx ≤ π and −π ≤ ky ≤ π , the
corresponding ĥ(k) will cover the whole S2 once. For example, kS = (π/2, ±π ) maps to the south
pole, and kN = (π/2, 0) to the north pole, while the two cuts ky = ±π/2 across the BZ correspond to
the equator. This mapping is characterized by an integer topological invariant c , since the homotopy
group π2(S2) = Z . The integer c is known as the Pontryagin index

c ≡
1
4π

∫
BZ

1
|h|

3 h · (∂xh × ∂yh)dkxdky. (70)

Plugging in the expression for h from Eq. (68) and performing the integral, we find that c = 1. The
number c has a clear physical interpretation. In the space of h, the set of vectors {ĥ(k)} span the unit
sphere. Then c is the totalmagnetic flux out of the sphere, i.e., the charge ofmagneticmonopole inside
the sphere. In our circuit model, the monopole has unit charge. For some other circuits, {ĥ(k)} may
cover the unit sphere twice. Then c = 2 and we will have a charge-2 monopole.

As before, the band topology can be described in the general language of bundles and connections.
Introduce the eigenvectors in Dirac notation,

H(k)|u±(k)⟩ = E±|u±(k)⟩, (71)

and consider for example the lower band, E− = −|h|. The Berry connection A is the 1-form

A = ⟨u−|du−⟩, (72)

and the Berry curvature F is the 2-form

F = dA, (73)

where d denotes the exterior derivative. The topological invariant is the first Chern number

c =
i

2π

∫
BZ

F . (74)

In our case, H = −h(k) · σ, both A and F can be evaluated following Berry’s treatment of spin 1/2
problem [37],

F = −
i
4
|h|

−3ϵ ijkhidhj ∧ dhk. (75)



308 E. Zhao / Annals of Physics 399 (2018) 289–313

Plugging this expression into Eq. (74), we recover Eq. (70): the first Chern number coincides with the
Pontryagin index introduced earlier. For the pseudo spin up mode, the Chern number for the lower
(upper) band is c = 1 (c = −1). The Chern number for the pseudo spin downmode is the opposite of
the spin up mode.

It would bemessy to draw all the capacitors and inductors explicitly: there are 32wires coming out
of each node. Compared to the Chicago and Yale design, this circuit is not simpler in its actual layout.
But as a two-band model, its mathematics is very elegant. Using only inductors and capacitors, we
have engineered a magnetic monopole living in the parameter space of ĥ(k).

6.5. Haldane circuit

As the final example in 2D, we show that the building blocks are sufficient to construct the analog
of Haldane’smodel of Chern insulators [38]. Let us arrange capacitor 3-loops (empty circles), inductive
1-connection (solid line), ei2π/3 connection (dashed line), and e−i2π/3 connection (dotted line) into a
honeycomb lattice:

A B

The inductors used in the solid (dash/dotted) connection have inductance L2 (L1), and in general
L1 ̸= L2. It is easier to analyze this circuit directly fromEq. (55), but in order to illustrate the calculation
procedure, we will start from the Lagrangian for the whole lattice,

L =
C
2

∑
r,j

[
(φ̇jA(r) − φ̇j+1,A(r))2 + (A → B)

]
−

1
2L1

∑
r,j,γ

(
φjA(r) − φj+1,A(r + bγ )

)2
−

1
2L1

∑
r,j,γ

(
φjB(r) − φj−1,B(r + bγ )

)2
−

1
2L2

∑
r,j,γ

(
φjA(r) − φj,B(r + aγ )

)2
. (76)

Here r is the lattice vector labeling the unit cell (with two sites A and B), j = 0, 1, 2 labels the flux
variables inside each capacitor 3-loop, aγ and bγ are vectors connecting the nearest neighbor and the
next nearest neighbor respectively: a1 = (1, 0), a1 = (−1/2,

√
3/2), a3 = −a1 − a2; b1 = a2 − a3,

b2 = a3 − a1, b3 = a1 − a2. Carry out the differentiation to find the EL equations of motion and then
Fourier transform

φjA(r) =
1

√
3N

∑
k,ℓ

ϕℓA(k)eik·r+i2πℓj/3. (77)

We find the equations for different modes ℓ decouple. For example, for the ℓ = 1 (spin up) mode, we
once again have a 2 × 2 eigenvalue problem,(

3ω2(k) − 9
) [

ϕℓA(k)
ϕℓB(k)

]
= H(k)

[
ϕℓA(k)
ϕℓB(k)

]
, (78)

with an H-matrix

H(k) =

[
ηβ+

k αk
α∗

k ηβ−

k

]
. (79)
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As before, ω is measured in unit of ω0 = 1/
√
L1C , and η = L1/L2. The form factors are defined by

αk =

∑
γ

eik·aγ , β±

k =

∑
γ

ei(k·bγ ±2π/3)
+ h.c. (80)

Comparing to Haldane’s model for spinless electrons [38], we see that E = 3ω2(k) − 9 plays the
role of electron energy, η is the hopping ratio t ′/t , the staggered potential is set to zero, and the flux
Φ = 2π/3. The equations for the spin downmode, ℓ = 2, take the same formexcept for a replacement
2π/3 → −2π/3 in Eq. (80). So we arrive at a double copy of Haldane’s model, where the effective
magnetic flux for two pseudospins is opposite of each other.

Other variants of Haldane circuits can be constructed easily. For example, one can use capacitor
4-loops with 1-connection (nearest neighbor) and ±i (next nearest neighbor) connections. This will
give rise to double Haldane model for Φ = π/4. One can also add more wires to implement third
nearest neighbor coupling t3, which can give bands with Chern number ±2 [39].

6.6. Symmetries

The2Dcircuits in Section 6.2 to 6.5 above share a common feature that the bands of interest are spin
degenerate. More specifically, the Chern number for the spin upmode is the negative of the spin down
mode. As a result, while the edge state of each spin is chiral, they propagate in opposite directions. The
key question then is how robust these edge states are, and what kind of perturbations can hybridize
the spin up and down modes and gap out the edge spectrum. The situation is thus similar to the
quantum spin Hall effect. There the edge modes are protected by time reversal symmetry (applied to
fermions), scattering from nonmagnetic impurities cannot mix the spin up and down modes or open
a gap. For the circuits here, by design them-connections do not couple different spin species and each
spin is separately conserved. More specifically, the phase factor eim2πk/p in Eq. (50) is diagonal in the
mode index k, and does not lead to spin mixing such as the σx,y terms mentioned in Section 5.5.

To further clarify the symmetry behind the spin degeneracy, recall that the spin up and down
modes correspond to a pair of degenerate modes, ϕk and ϕp−k respectively, for instance, k = 1 for
the p = 3 or p = 4 capacitor loop. One can think of them as modes traveling in the clockwise (k) or
counterclockwise (p− k) direction along the loop. The eigenindex k follows from the p-fold rotational
symmetry of the loop.We can formally define an operatorP that exchanges k and p−k, i.e. reversing k
modulo p, and thus flips the spin. Nowconsider a connection of type-mbetween two loops. The spin up
mode sees the connection as a phase shift Sm = eim2πk/p, for the twist j → j + m is in the same screw
direction of mode k. According to Eq. (51), the spin down mode sees a phase shift S∗

m, the complex
conjugation of Sm, since the twist is in the opposite direction of mode p − k. A loose optical analogy
is the left and right circularly polarized light picking up different phases after a birefringent medium.
The circuit Lagrangian and equations of motion are invariant under CP , i.e. spin flip P followed by
complex conjugation C. The combined operation CP is a symmetry of the circuit and commutes with
H . It protects the edge state and plays the role of time reversal symmetry in quantum spin Hall effect.
Note however, the physical time reversal symmetry applies to any LC circuit, and by itself cannot
explain the robustness of the edge states. The related issues are discussed in Ref. [19].

7. Four dimensional topological circuits

Finally, let us generalize the discussion to periodic lattices of arbitrary dimension D. Each node
(e.g. a capacitor loop) is labeled by a D-tuple, n = (n1, n2, . . . , nD), where the integer ni is the lattice
coordinate along the ith direction. For example, on a 4D hypercube lattice, each node is denoted by
four integers, n = (nx, ny, nz, nw). Let x̂, ŷ, ẑ, ŵ be the four unit lattice vectors along the respective
direction, e.g. x̂ = (1, 0, 0, 0). We stress that the effective spatial dimension of a circuit network is
determined by the connectivity among the nodes. To realize a periodic lattice circuit, it isnot necessary
to literally lay out the circuit elements periodically in space. It only requires the values of L and C , and
thewiring pattern, to repeat inD independent directions. There is no difficulty constructing a periodic
3D or 4D circuit on a breadboard.
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The following example of 4D circuit illustrates these points. Start from a set of identical square
lattices (the green plaquettes in figure below) extending in the x and y direction. Here each node is
a capacitor 3-loop, and the solid line denotes the inductive 0-connection. Next connect these square
lattices in the z direction. The inductive coupling depends on the x coordinates: it is of type mx ≡ nx
modulo 3. That is, three types of connections, the 0-connection (solid line), 1-connection (dashed line),
and 2-connection (dotted line) alternate. Finally, connect the square lattice in similar fashion in the
w direction with typemy ≡ ny modulo 3. The result is the following circuit (the wires are shown only
partially to avoid clutter).

Another perspective of the same circuit is as follows

High dimensional lattices like these are harder to imagine, but a moment’s reflection will convince
these are indeed identical circuits. This 4D example also illustrates the advantage of having a
simplified notation. Without it, the circuit would appear to be a complete mess.
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The circuit Lagrangian is actually easy to write down

L =
C
2

∑
n,j

[φ̇j(n) − φ̇j+1(n)]2 (81)

−
1
2L

∑
n,j

[φj(n) − φj(n + x̂)]2 + [φj(n) − φj(n + ŷ)]2

+ [φj(n) − φj+mx (n + ẑ)]2 + [φj(n) − φj+my (n + ŵ)]2,

where j labels the flux variables inside each node, andmx,y are defined above as nx, ny modulo 3. After
the Fourier transform Eq. (46), the equations of motion for mode ℓ = 0, 1, 2 decouple. For example,
the ℓ = 1 (spin up) mode is governed by equation

(8 − 3ω2)ϕ1(n) = ϕ1(n + x̂) + ϕ1(n − x̂) (82)
+ ϕ1(n + ŷ) + ϕ1(n − ŷ)

+ einxΦϕ1(n + ẑ) + e−inxΦϕ1(n − ẑ)

+ einyΦϕ1(n + ŵ) + e−inyΦϕ1(n − ŵ),

with Φ = 2π/3. The equation for the ℓ = 2 (spin down) mode is given by replacing Φ with
−Φ . After Fourier transform n → (nx, ny, kz, kw), we find the eigenvalue problem factorizes,
i.e. ϕ1(nx, ny, kz, kw) = ϕnx (kz)ϕny (kw), with ϕ satisfying the Harper equation

Exzϕnx (kz) = eikxϕnx+1(kz) + e−ikxϕnx−1(kz)

+ 2 cos(nxΦ + kz)ϕnx (kz), (83)

Eywϕny (kw) = eikyϕny+1(kw) + e−ikyϕny−1(kw)

+ 2 cos(nyΦ + kw)ϕnx (kw). (84)

The eigenfrequency is given by E ≡ 8 − 3ω2
= Exz + Eyw . The solution to such Harper equation is

well known from the study of the AH model [40]. For flux Φ = 2π/3, it features three bands with
first Chern number c = 1, -2, and 1 respectively. From these, the bulk spectrum ω(kx, ky, kz, kw) can
be obtained. The figure below shows the density of states of the frequency spectrum.

The lowest and highest bands are separated from the rest by a well defined gap.
For the bottom band, define the second Chern number

C2 =
1

8π2

∫
BZ

F ∧ F (85)

For our 4D circuit, it reduces to the product of the first Chern number

C2 = cxz × cyw. (86)
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At flux 1/3, cxz = cyw = 1, so we have C2 = 1. Note that similar 4D quantum Hall effect has been
proposed [41] and realized in cold atoms [42] and photonic waveguides [43].

8. Outlook

In summary, we have described an assortment of topological LC circuits within a unified approach,
building on the pioneering works of Refs. [18,19]. We have distilled the common design strategy
behind these circuits (Section 5) and shown how topological circuits in one, two, and four dimensions
can be constructed based on this strategy. Along the way, we have introduced new building blocks
(e.g. capacitor or inductor stars) and a simplified notation scheme. The notation is not just for
convenience. It enforces modular design, i.e., constructing ever more complicated circuits using a
few standard blocks and connections. We have also streamline the theoretical analysis by using the
Lagrangians and H-matrix, L → H(k) → ω(k). This general framework is applied repeatedly to treat
all the circuit examples, and to clarify the connection between topological LC circuits and quantum
lattice models as well as the role played by symmetries. This is facilitated by using a consistent
language in terms of connection A, curvature F , pseudospins and synthetic gauge fields throughout.

How useful are these topological LC circuits? First of all, they provide a convenient yet flexible
platform to understand the topological properties of classical oscillations and waves. Among the
classical topological systems studied so far, LC circuits have the advantages of being easy to build and
probe. More importantly, wire connection alone can offer versatile control over the coupling between
the building blocks. For example, one can easily go beyond (effectively) three dimensions or nearest
neighbor couplings. Any graph or network geometries such as tori, periodic or open boundaries,
domains, defects can be realized. Some of these features would be much harder to achieve, for
instance, in mechanical oscillators or photonic crystals. From an engineering point of view, a large
class of electromagnetic metamaterials can be modeled by periodic circuits in the lumped-element
description. An improved understanding of robust electromagnetic modes localized at domains,
defects, or boundaries from the study of topological LC circuits may have implications for designing
novel metamaterials, e.g., to fill the terahertz gap.

Thework presented here points to a few possible directions for futurework on topological circuits.
One can imagine all kinds of ‘‘crystals" (circuits) made from ‘‘molecules" (building blocks) of the
‘‘atoms" (L and C). So far, we have only considered simple unit cells, lattice geometries, and wiring
patterns. Special emphasis is placed on exploiting the discrete translation and permutation symmetry
of the loops and stars by braiding (m-shift in particular). More interesting band structures may
result from nontrivial point group or nonsymmorphic space group symmetries. We have not included
transformers, gyrators or other circuits elements in our design. The couplings between the pseudospin
degree of freedomor the analogs of spin–orbit coupling havenot been included either. Finally, classical
linear LC circuits are the first step toward understanding topological quantum circuits involving
Josephson junctions where the flux variable φ is quantized and conjugate to the number operator,
giving rise to the possibility of bosonic symmetry protected topological phases.
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