Fine Grained Group Gesture Detection Using
Wearable Devices

Yongjian Zhao
Department of Computer Science
Colorado School of Mines
Golden, CO, USA
yzhao2 @mines.edu

Xiaodong Zhang
School of Electrical Engineering and Telecommunication
University of New South Wales
Sydney, NSW, Australia
xiaodong.zhang @student.unsw.edu.au

Abstract—People may perform synchronized activities
in a group setting. It is helpful to provide notifications
to users and also the group leader whether people are in
sync. This work aims to provide this support via analyzing
motion data collected from wearable devices. We collected
experimental data from smart watches worn by people,
applied signal processing algorithms in both time and fre-
quency domains for identification of the fine-grained group
gesture status. We further developed a prototype system
consisting of a smart watch, a smartphone, and a server.
Our simulation results and actual system implementation
demonstrate the feasibility of our approaches.

Index Terms—Group gesture detection, motion sensor,
time domain analysis, frequency domain analysis

I. INTRODUCTION

Wearable computing devices show promise in taking
human life experience way beyond expectations as a
result of the number of attractive services provided by
them. Today wearable devices are extremely popular
as personal health and fitness tracking devices. How-
ever, the true potentials of wearable devices are yet to
discover. These smart wearable devices such as smart
watches, smart glasses, fitness bands, smart shoes are
equipped with a rich set of sensors that can continuously
monitor a wide variety of attributes of the human body,
the physical surroundings, and the online behaviors of
the users that are not available through any other means.
In the future, it is highly likely that individuals will wear
more than one of these devices in their day-to-day life.

Stephen New
Department of Computer Science
Colorado School of Mines
Golden, CO, USA
snew @mines.edu

Kanchana Thilakarathna
School of Information Technologies
The University of Sydney
Sydney, NSW, Australia
kanchana.thilakarathna @sydney.edu.au

Qi Han
Department of Computer Science
Colorado School of Mines
Golden, CO, USA
ghan@mines.edu

These wearables can be effectively used for the iden-
tification of user status in groups that perform the same
activity at the same location. This fine grained identifi-
cation of user status can be helpful in many applications
such as emergency response, disaster recovery, and sport
activities. For instance, we can help guide people towards
emergency exits during a fire evacuation or identifying
the group of supporters of a particular team in a sports
game. This fine-grained identification of user status can
also be used for resource optimization. For instance, the
fitness tracking apps on two devices can collaborate with
each other to save the energy consumption of the devices
if the devices identify that the user is running together
with a partner.

The primary aim of this paper is to explore the
potential of identifying the user groups with similar
activity at the same location. Instead of using tradi-
tional methodology of video analysis, we use sensor
data extracted from smart watches. We first develop
an experimental measurement framework to collect and
exchange wearable sensor data. We then apply a signal
processing algorithm to accurately identify the group
behavior and validate the algorithm with the collected
data. We finally develop a prototype smart-watch/smart-
phone app to demonstrate the practical feasibility of the
solution.

II. RELATED WORK

Since people tend to form groups in real world
activities, a lot of work has been done to recognize

i

E\A J{ l} \ “
‘(\(\

\
S ‘ \
;

amplitude (s

=
S
plitude (mis?)

WJ M M M\uwﬂm *X Q W WWU SP W J”W' J&‘(

I
f |
“’ WW’“””WM oy MWWMJ

W 1\ o W "

amplitude (m/s?)

(a) hand waving left and right

(b) hand waving up and down

60 80 100 120 o 20 40 60
time (s) time (s)

(c) hand pushing and pulling

Fig. 1: raw signals of different gestures

groups. One way to detect groups is to first recognize
each user’s activity and then analyze their cooperative
or collaborative relationship [2], this can be classified
as the group activity detection problem. Most activity
recognition approaches are not generic and they often
lead to solutions that are tied to the specific scenarios.
Therefore, an algorithm was designed which embeds
feature construction into the machine learning process
[1]. However, in some cases we may just want to find
out whether people belong to the same group rather than
identifying what specific activity they are performing.
This leads to the problem called group affiliation detec-
tion.

Groups can be identified based on interactions, prox-
imity, mobility, or activity. Most existing work relies on
mobility for group detection, in which the individuals
who have the similar trajectories are considered in the
same group. For example, GruMon [5] determines a
group of individuals in a specific location who are
traveling together in crowded urban environments. Spa-
tial and WiFi information [4] are utilized for indoor
group detection. Location is the key factor to determine
whether users belong to the same group when relying on
mobility.

Another kind of group based on similarities of activ-
ities /gestures performed by users, a divergence-based
affiliation detection (DBAD) approach [3] is proposed
which provides a framework to identify group affiliation
based on a sensing modality. Since the modality has to
be manually selected, a two-stage process [6] is designed
where sensing modality selection given a high level
activity is performed, followed by multimodal clustering
to build a general platform to identify sub-groups. In our
work, rather than identifying specific activities or deter-
mining group affiliation, we determine whether group

members are performing same activities in synchronicity
using wearable sensors.

highs and lows

Filter by difference>1.4

]
w00 00 w00

Fig. 2: Peak detection

ITI. GROUP GESTURE DETECTION

We assume each user wears a wearable device in
the same position of the body. Accelerometer data is
collected from each user and sent to a central server.

There are various gestures and each can be represented
by an index (e.g, waving hands from left to right, moving
hands up and down). We define a set of gestures I as
I = {1, I5,...,I,}. Each gesture is associated with a
starting time stamp S and a completion time stamp C.
i.e., it takes a user 7' = C' — S (s/round) to complete a
gesture, implying the frequency f = 1/T Hz. The ges-
tures may be repetitive, i.e., users can repeat a particular
gesture k times. Therefore, the total completion time for
the user would be k7. For each user in a group, we
define his activities as a series of gestures I1, I>, ..., I;
with starting time stamp 57, .53, ...,.5; and completion
time stamp C1, Cs, ..., C;.

In order to identify different status of users, the
server first selects a user as reference, each user is then
compared with the reference and the status is identified
and reported to both the individual user and server within
each time window.

7 1.2 [§70.150000, y=1.227000

s2)

amplitude (m/s?)

amplitude (m

=0.200000, y=2.310851

4 '

I
L M,

b§=0.250000, y=5.315665

o 2 4 3 14 16 18 20 o 5

B 10 12
frequency (Hz)

(a) reference

frequency (Hz)

(b) slow

10 15 o 14 16 18 20

B 10 12
frequency (Hz)

(c) fast

Fig. 3: User status detection using frequency domain features

1) Select the group “reference” user - We define a
user as the reference if the majority of group users
(i.e., over 50%) are doing the same gesture with
respect to the the selected reference.

2) Identify each user’s status at different time win-
dows. A user’s gesture status within a group can
fall into the following categories:

« Different gestures - the users are performing
different gestures.

e Same gestures, which can be divided into
several synchronization status:

— Synchronized - the gesture period of the
user under test (UUT) is the same as the
reference, and the difference in starting
times tamp is less than 0.5s, that is, Syyr—
Sre § < 0.5s.

— Lagging - the gesture period of the user un-
der test (UUT) is the same as the reference,
and the difference in starting times tamp is
greater than 0.5s, that is, Syyr — Sref ¢,
0.5s.

— Fast - the gesture period is smaller than that
of the reference, that is, Tyyr < Tref.

— Slow - the gesture period is larger than that
of the reference, that is, Tyyr > Trey.

We next describe the details of each of the two steps.

A. Selection of Reference User

The reference user can be either pre-assigned or
selected using the following steps. First, we choose
the gesture performed by most users (at least half of
the group) as the reference gesture, this will exclude
the users who are doing different gestures. Second,
we choose the most common gesture completion time
among all users. Last, we determine the proper time

lag. Here we assume all the time lags form a normal
distribution, then the user with the lag closest to the
expected value should be the reference.

B. Identification of User Status

We divide the total completion time for each user into
several fixed length time windows. For example, if the
total completion time is 2 minutes, and the time window
size is selected to be 5 seconds, then for each user, we
have 24 time windows.

1) Different gestures: In a group setting, people may
perform different gestures and we would like to distin-
guish them. Fig. 1 shows the raw acceleration signal
of three different gestures. We can observe that the
acceleration data varies among three axes, namely, X,
y, z: data in x-axis varies the most on the gesture which
the user waves the hand left and right, whereas data in z
axis varies the most on the gesture which the user waves
the hand up and down.

Since our primary goal is to determine if the users in
the group are doing the same gesture with the reference
rather than to specifically identify which gesture each in-
dividual user performs, we simply extract the amplitude
of the signals at each axis and. We calculate the average
amplitude of peak values from each axis for each user.
if the difference between the values of the two users
exceeds the predefined threshold 6, the two users are
performing two different gestures.

2) Same gestures: If two users are performing the
same gesture, we then determine whether the user is syn-
chronized with the reference. We apply two approaches
to identify each user’s status: time domain analysis and
frequency domain analysis.

a) Time Domain Analysis: We apply extrema detection
on the raw signal, here the extrema refers to peak (local
maximal) and trough (local minimal). For two signals,

we detect the peak and the trough in each time window.
As peak and trough appear in pairs, we pair them up
and filter out the pairs that have the smallest difference.
The difference is computed by subtracting the trough
value from the peak value. This algorithm is described
in Algorithm 1.

Algorithm 1 :Extrema detection

Require: time series data si, sa, 83, ..., Sp
Ensure: peaks and troughs with certain difference values
1: Sort the time series acceleration data in ascending order.
return array S’
2: for i € [1,n] do
3: if S’(i) is a local minimal then

4: Create a span, a range with left and right bound that
covers the local minimal

5. end if

6: if S’(i) is neither a local minimal nor a local maximal
then

7: Expand the span to the left or right

8: endif

9: if S’(i) is a local maximal then

10: Generate the paired extrema. Calculate the difference

11: end if

12: end for

13: Filter out the extrema pairs with small differences

To generate the results shown in Fig. 2, we use half of
the difference of the highest and lowest as the threshold.
If we detect more peaks and troughs within one time
window than the reference, the user is considered being
‘fast’. In contrast, if we detect fewer peaks and troughs
than the reference user, the user is considered being
‘slow’. We then calculate the time difference between the
starting point of the window and the nearest peak/trough.
If the difference is larger than 0.5s, the user is considered
lagging behind; otherwise, the user is synchronized.

b.) Frequency Domain Analysis. We first apply Fast
Fourier Transformation (FFT) to the original time series
data. After getting the frequency of the signal, we choose
the frequency with the highest amplitude value as the
movement frequency. For instance, in Fig. 3, we use
the frequency f as 0.15Hz, 0.2Hz and 0.25Hz for the
status of slow, synchronized and fast respectively. We
then compare these frequencies with the reference. If
the measured frequency is larger than the reference, we
consider this user as moving fast (Fig. 3 (c)), otherwise,
the user is moving slower than the reference (Fig. 3(b)).
If the user is moving with the same frequency as the
reference, we calculate the phase difference between the
user and the reference, if it is bigger than 0.7s, the user
is lagging behind; otherwise, the user is synchronized.

IV. PERFORMANCE EVALUATION

We first use simulation to test our approaches and then
implement the system on actual hardware platforms.

A. Simulation Setup and Results

To evaluate system scalability, we test the performance
under different number of users. Due to the limited
devices available, we only compared the result of one
smart watch with the ground truth. We consider four
scenarios: different gestures, fast or slow, lagging, and
synchronized. Each scenario has a percentage associ-
ated: «, 3,7,0. To match our assumption of selecting
a reference user, d should be larger than 0.5. Here we
set it to be 0.6. « = 0, 8 = 0.2, v = 0.2. We
can generate the lagging and synchronized cases using
a normal distribution. As 0.5s will be our threshold
to distinguish between the status of synchronized and
lagging, we expect around 75% of the time difference to
fall into (-0.5s, 0.5s) region and the expectation of the
time difference with the reference should be 0. We then
generate 40 random users status of lagged using normal
distribution N (0,0.5). Finally we add 50x0.1 = 5 users
as slow cases and 5 users as fast cases.

To keep scenarios simple, we make the following
assumptions: (1) each user performs the same gesture:
waving hand from left to right. This generates raw
signals in Sinusoid-like waveform. (2) all users move
periodically. (3) minimum window size should be larger
than the completion time of the reference gesture. We
choose one reference user and generate other data by
shifting the signals. For reference case, a user waves
hand from right to left for 5 seconds. We test five basic
cases:

1: synchronized

2: waving hand from left to right with 0.5s lagging

3: waving hand from left to right with 1s lagging

4: waving hand from left to right with the period

of 4s

5: waving hand from left to right with the period

of 6s

We use precision and recall to measure the overall
performance of gesture detection. Precision is the ratio
of correctly identified windows to the total number of
identified time windows, recall is the ratio of correctly
identified windows to the total number of time windows
that should have been identified. In addition, we are in-
terested in (a) whether we can correctly find the reference
user; and (b) precision in different time window.

Fig. 4 shows the result using frequency domain anal-
ysis averaged over 10 simulations. We observe that

FFT achieves overall good performance under difference
scenarios except for the fast scenario. This is because
faster movement results in small frequency values and
may not be distinguished when the frequency of the
reference user is small enough.

Accuracy

‘;?Vindow Size(sz;0 55 %
Fig. 4: Frequency domain analysis (50 users, a = 0, 5 =
0.2,7y=0.2)

We also test the performance on five different datasets
with similar basic cases mentioned above.

left: waving hand from left to right

push: push hand forward and pull hand backward

up: waving hand up to down

walk: attach a smart watch to the ankle and walk

twist: twist hand clockwise and anticlockwise alter-

natively

Fig. 5 shows that the walk dataset performs the worst
since we attach a smart watch on the ankles and the
data variation on each axis is not as significant as the
data collected when the watch is worn on the wrist.

08

Accuracy
°
5
a

—leftright | |
—— up-down
06 pu?llg-pu\l 4

— twist hand

L L L
15 20 25 30
Window Size(s)

Fig. 5: Frequency domain analysis on different datasets

Table I and II shows the precision and recall results
on two datasets: left and push. The confusion matrix

Status | Sync | Lag | Fast | Slow | Precision | Recall
Sync 360 0 0 0 0.986 1
Lag 0 120 0 0 0.857 1
Fast 0 0 60 0 1 1
Slow 5 20 0 35 1 0.583
TABLE I: Confusion Matrix on left dataset
Status | Sync | Lag | Fast | Slow | Precision | Recall
Sync 240 | 78 40 2 0.872 0.667
Lag 10 93 17 0 0.419 0.775
Fast 11 17 25 8 0.298 0.410
Slow 14 34 2 10 0.5 0.167

TABLE II: Confusion Matrix on push dataset

provides the multi-class precision and recall information.
The tables reveal that the accuracy drops on push dataset
since the sensor data only vary significantly on one axis.

Fig. 6 shows the sample output when applying time
domain analysis and frequency domain analysis under
five cases, where a small block represents a time window
and different colors of the block represents different user
status. The figure shows a total length of two-minute
data analysis with the window size set to 5 seconds, so
for each case, there are 24 time windows analyzed, the
precision values on the right indicate the ratio of the
correctly identified time windows.

casel:

snchronized
Groud truth:
Time domain: 2124
Frequency domain: 224

aase2:

lag within 0.5ses
Groud truth:

Time domain: 1924
Frequency domain: 224
19/24
20/24
cased:
fast(3 secs/round)

Groud truth:
19724
Frequency domain: 024

Time domain:
Groud truth:
Time domain:

Frequency domain:

case3:
lag with Tsec

Groud truth:
Time domain:
Frequency domain:

Synchronized

Different gesture

Lag

ases:
slow(6secs/round) Fast
Slow
]] 18/24
MM

Fig. 6: Five cases

B. System Implementation

A Nexus 5 with Android 6.0.1, API 23 and a LG
Watch Urbane with Android 7.1.1, API 25 were used in
the implementation. The PC server was hosted on a 2017

Smartwatch Phone

SensorService SensorReceiverService

+client: DeviceClient
-unpackSensorData()

+SendMsg()
+pushNotification()

+onSensorChanged()

K

DeviceClient

+sendSensorData()
-sendSensorDatalnBackground()
-validateConnection()

-send()

TCPAndroidServer
+PORT: int

MessageRecieverService +run()

N

+onMessageRecieved()

PC Server

TCPDesktopServer SensorDataPoint

-manager: SensorManager

-timestamp: long
-values: float
-accuracy: int
-valuesFFT: Complex

+run()
+SendMsg()

+complexConvert()

SensorManger Sensor

-sensors: Set<Sensor>
+FREQ_DIFF_TOLERANCE
+startTime: long

-id: long

-name: String

> +dataPoints: List<SensorDataPoint>
++ | +FFTarraysAxes: List<List<Complex>>

+MaxFrequencies: List<Double>

+addSensorDataPoint(String dataLine)
+checkTimeElapsed()
+compareFFTResults()

+processFFT()
+addDataPoint(String dataLine)

Fig. 7: Overview of system implementation

Macbook Pro. The application was based off the open-
source project SensorDashboard by GitHub user pocmo
under the Apache License 2.0. The project provided the
structure to send sensor data from a smart watch to a
smart phone. To better fit the desired prototype, we added
communication between the phone and PC server and
between the phone and watch. Fig, 7 shows the overview
of the system implementation.

As only one watch was used, previously recorded sen-
sor data simulated another watch. Two types of periodic
motions were examined: an upwards-facing stationary
watch and a waving motion restricted to the y — z plane
with a period of 5 seconds. All of the processing is
handled by the PC server. After collecting 10 seconds of
sensor data from the watch, the SensorManager preforms
the FFT on all the collected accelerometer data. If the
most occurring frequency for a particular watch was not
within a range (£0.005Hz) of the designated leader, then
the PC server would send back either Fast or Slow.
Otherwise the server would send back Sync. Once the
phone receives the message, it notifies the current wearer.
The latency for the round trip time between the watch
and the server is about 0.1 second on average.

V. CONCLUSION

In this paper, we target a specific application scenario
where multiple users try to perform same gestures at
the same time such as a group fitness lesson, group
dance lesson, orchestra. We use data collected from
wearable devices and apply signal processing algorithms
to determine whether a user is in in sync with the

reference user such as a coach or an instructor. We
evaluated our approaches using data generated based on
real data collected from smart watches. We also devel-
oped a prototype system on Android smartwatches and
smartphones. Our simulation and actual system results
demonstrate that group gesture synchronicy status can
be accurately identified.

REFERENCES

[1] R. Cachucho, M. Meeng, U. Vespier, S. Nijssen, and A. Knobbe.
Mining multivariate time series with mixed sampling rates.
In Proceedings of the 2014 ACM Conference on Ubiquitous
Computing (UbiComp ’14), pages 413423, 2014.

[2] D. Gordon, J. Hanne, M. Berchtold, A. A. N. Shirehjini, and
M. Beigl. Towards collaborative group activity recognition using
mobile devices. Mobile Networks and Applications, pages 326—
340, 2013.

[3] Dawud Gordon, Martin Wirz, Daniel Roggen, Gerhard Troster,
and Michael Beigl. Group affiliation detection using model di-
vergence for wearable devices. In Proceedings of the 2014 ACM
International Symposium on Wearable Computers (ISWC’14),
pages 19-26, 2014.

[4] M. B. Kjargaard, M. Wirz, D. Roggen, and G. Troster. Mobile
sensing of pedestrian flocks in indoor environments using wifi
signals. In Proceedings of the IEEE International Conference on
Pervasive Computing and Communications (PerCom’12), pages
95-102, 2012.

[5]1 R. Sen, Y. Lee, K. Jayarajah, A. Misra, and R. K. Balan.
Grumon: Fast and accurate group monitoring for heterogeneous
urban spaces. In Proceedings of the 12th ACM Conference on
Embedded Network Sensor Systems(SenSys’14), pages 46—60,
2014.

[6] Na Yu, Yongjian Zhao, Qi Han, Weiping Zhu, and Hejun Wu.
Identification of partitions in a homogeneous activity group using
mobile devices. Mobile Information Systems, 2016:3545327:1—
3545327:14, 2016.

