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Abstract

Consider the elastic scattering of a plane or point incident wave by an unbounded and rigid rough surface.
The angular spectrum representation (ASR) for the time-harmonic Navier equation is derived in three di-
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uniqueness is proved through a Rellich-type identity for surfaces given by uniformly Lipschitz functions.
In the case of flat surfaces with local perturbations, an equivalent variational formulation is deduced in a
truncated bounded domain and the existence of solutions are shown for general incoming waves. The main
ingredient of the proof is the radiating behavior of the Green tensor to the first boundary value problem of
the Navier equation in a half-space.
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1. Introduction

Rough surface scattering problems have important applications in diverse scientific areas such
as remote sensing, geophysics, outdoor sound propagation, radar techniques. Significant progress
has been made by Chandler-Wilde and his co-authors concerning the mathematical analysis and
the numerical approximation of the acoustic scattering problems modeled by the Helmholtz equa-
tion. We refer to [10,11,14,15,41] and [8,12] for the integral equation method and the variational
approach, respectively, in both two- and three-dimensional settings. In the work of Durdn, Muga,
and Nédélec [20], the radiation condition and well-posedness in the absence of acoustic surface
waves were discussed under the non-absorbing boundary condition in a locally perturbed half
plane. The electromagnetic scattering problems were studied in [35] when the medium is lossy
and also in [28,36] in the more challenging case of a penetrable dielectric layer.

This paper concerns the mathematical analysis of the time-harmonic elastic scattering from
unbounded rigid surfaces in three dimensions. The relevant phenomena for the elastic wave
propagation can be found in geophysics and seismology (see e.g., [1,2] and the references
cited therein). In linear elasticity, the existence and uniqueness of solution were first studied
by Arens in [3-5] for C!'* surfaces via the boundary integral equation method in two dimen-
sions. The results generalize the solvability of the rough surface scattering problems discussed in
[11,15,41] on acoustic waves to elastic waves. Moreover, an upward propagating radiation con-
dition (UPRC) was proposed in [4] based on the elastic Green tensor of the Dirichlet boundary
value problem for the Navier equation in a half-space. It is known that the classical Kupradze
radiation condition (e.g. [18]) is not appropriate for unbounded rough surfaces. The variational
approach was proposed in [22,25] to handle well-posedness of the scattering problems in peri-
odic structures by using the Rayleigh expansion condition (REC) and in [23,24] for general rigid
rough surfaces by using the angular spectrum representation (ASR). The early study may also
be found in [9] for with less rigorous arguments. However, most of these works are devoted to
two-dimensional elastic scattering problems and little has been done in three dimensions.

The goal of this paper is threefold. First, we present a mathematical formulation of the elas-
tic rough surface scattering problems in three dimensions. In particular, we derive the upward
angular spectrum representation (UASR) and the Green tensor to the first boundary value prob-
lem of the Navier equation in the half space. To the best of our knowledge, the UASR and the
Green tensor have not been rigorously investigated in the mathematical literature. The UASR for
the Navier equation can be used as a formal outgoing radiation condition in rough surface scat-
tering problems (see [12] in the acoustic case). It leads to an equivalent Dirichlet-to-Neumann
(DtN) map, which can be used as a transparent boundary condition (TBC) to truncate the un-
bounded domain in the vertical direction. Next, we prove the uniqueness of weak solutions if
the rigid surface is the graph of a uniformly Lipschitz continuous function. Analogous to that
in the two-dimensional case [23], our uniqueness proof is essentially based on a Rellich-type
identity in an unbounded strip. However, the calculations of some key integral identities (see
e.g., (4.1)) are much more involved than the two-dimensional problem. Finally, as an applica-
tion of the half-space radiation condition and Green tensor, we show the existence of solutions
to locally perturbed scattering problems. Unlike the Helmholtz or Maxwell equations (see e.g.,
[7,32,33,35,40]), an essential difficulty in elasticity arises from the lack of a series solution of
the Navier equation satisfying the Dirichlet boundary condition on the ground plane. We refer
to Remarks 5.5 and 5.7 for a detailed comparison of the well-posedness results presented in this
paper and those in acoustic and electromagnetic waves. The local perturbation argument can sig-
nificantly simplify the analysis for general rough surfaces, since one can derive an equivalent
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variational formulation in a bounded domain in which the Fredhlom alternative can be applied.
Some open questions will be described in this respect in Section 6. A possible future work is to
investigate the well-posedness of general (non-periodic) rough surface scattering problems.

It should be pointed out that elastic surface waves, which exponentially decay in the vertical
direction, satisfy the newly established radiation condition (2.13) in a weighted Sobolev space
(see e.g., [24] in two dimensions) rather than in the usual H 1 -space as considered in this paper.
Hence, our uniqueness result (see Theorem 4.4) does not give rise to the absence of surface waves
caused by a rigid scattering interface. In fact, the horizontally decaying behavior of solutions in
H' (see Theorem 4.4) excludes the presence of elastic surface waves. An interesting problem is
to analyze the absence of elastic surface waves by proving well-posedness in weighted Sobolev
spaces, if the rigid rough surface is the graph of a function. For flat surfaces with local perturba-
tions, the well-posedness and the solution form (see Theorems 5.4 and 5.6) are not valid under
the traction-free boundary condition due to the presence of surface waves in the far-field expan-
sion. We refer to [21] for the two-dimensional Green tensor with a free flat boundary and the
corresponding well-posedness result in a locally perturbed half-plane. The limiting absorption
principle was justified in [19] for a free boundary in a locally perturbed half space. It is worthy to
mention that our arguments for rigid flat surfaces with local perturbations depend on the asymp-
totic behavior of the half-space Green tensor which is different from the case of free boundaries
(see Theorems 5.4 and 5.6).

The rest of this paper is organized as follows. In Section 2, we formulate the three-dimensional
rough surface problems and introduce the upward and downward angular spectrum representa-
tions. The downward and upward Dirichlet-to-Neumann maps will be defined and analyzed in
Section 3. Section 4 is devoted to the uniqueness of the solutions for general rough surface scat-
tering problems, while Section 5 is devoted to the existence of the solutions for locally perturbed
scattering problems. The paper is concluded with some general remarks and open questions in
Section 6.

2. Problem formulation

In this section, we present the mathematical formulation of the three-dimensional elastic wave
scattering by unbounded rigid rough surfaces. Let D C R? be an unbounded connected open set
such that, for some constants f_ < f.,

U, CDCUy, Up:={x=("x3):x3>b}, x':=(x1,x).

Forb > fi,let ', ={x € R3:x3 = b} and S = D\Ub. We assume that I" := 9D is an un-
bounded rough surface, which is Lipschitz continuous but not necessarily the graph of some
function. The space D is supposed to be filled with a homogeneous and isotropic elastic medium
with unit mass density.

Let u™ be a time-harmonic elastic wave which is incident on the rough surface from above.
Let w > 0 be the angular frequency of the incident wave. Denote by A, u the Lamé constants
characterizing the medium above I" and satisfying 4 > 0, > +2u /3 > 0. The incident wave field
u'™ is allowed to be a general elastic plane wave field of the following form

™ (x) = cpuy (¥) + e 1ully (%) + cs ol (x), ey €C, =12, .1)

where uliD“ is the compressional plane wave field
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up (x) =de™, d:=d(0.¢)=(sinfcosg,sindsing, —cos) " (2.2)
and u‘S" ; are the shear plane wave fields
ul (x) =djfe v, j=1,2. (2.3)

Here 6 € [0, 7/2), ¢ € [0, 27) are the incident angles, dJJ.- are unit vectors satisfying de.- -d=0,
and

kp=w/A+20n, Kki=w/J/1

are the compressional and shear wavenumbers, respectively. It is clear to note that uip“ is a longi-

tudinal wave and uisn I Jj =1, 2 are transversal waves. It can be verified that the incident field u®
satisfies the three-dimensional time-harmonic Navier equation:

uAu™ + A+ VYV - u" + 0’4" =0 inR3. (2.4)

In this paper, we assume that the elastic medium beneath the rough surface is impenetrable
and rigid. Hence the total field satisfies the homogeneous Dirichlet boundary condition

u=0 onT.

The displacement of the scattered field u*® := u — u™ satisfies the following boundary value
problem:

PAUS + o+ VY 1 +0?u* =0 inD,  u=-u" on T. 2.5)

We may also consider a spherical point source incidence given by the Green tensor of the
Navier equation in R3.ie.,

u™(x)=G(x,y), xeD\{y}, yeD, (2.6)
where

1 1
G(x,y) = ;gs(xa I+ EVyV;(gs(x, y) = &px, ¥)). 2.7

Here I is the identity matrix and

1 e*plx=yl 1 elkskx=yl

=T s =

2.8)

are the fundamental solutions of the three-dimensional Helmholtz equation with the com-
pressional and shear wave numbers, respectively. The incident field (2.6) satisfies the three-
dimensional Navier equation

pAU™ + A W VV - u™ + 0* ™ =8(x — ), x e R\ {y}.
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Since the domain D is unbounded, a radiation condition needs to be imposed at infinity to
ensure the well-posedness of the boundary value problem (2.5). Following [23], we propose a
radiation condition based on the upward angular spectrum representation (UASR) for solutions
of the scalar Helmholtz equation [12].

We begin with the decomposition of the scattered field into a sum of its compressional and
shear parts

usczl(v¢+V><¢), V.y =0, (2.9)

i

where the scalar function ¢ and the vector function i satisfy the homogeneous Helmholtz equa-
tions

A<p+/c§<p=0, A¢+K52¢=O in D.

Denote by v the Fourier transform of v in RZ ie.,

1 .y
B(E) = Fu() = o~ / v(xe ', &= (&1, 8&) eR%

RZ

Taking the Fourier transform of (2.9) and assuming that ¢, v satisfy the UASR for the Helmholtz
equations in Up, we obtain

1 . o,
(,D(X/,X3) = 2— / @(E’ b)elﬁ(s)()%—b)elé»x de,
T

RZ
U xz) = 2L/1/;(5’b)eiy(sxm—b)eis.x,ds’ 2.10)
JTRz
where
e —1E®Y (8 <k,
pE: {i(|é|2—K§)1/2, 161 > kp,
and
_JwE—1gP2 g <k,
7= {i<|s|2 — DV, g >
Denote

ApE)=(&.b),  A(E) =V (&, b).

Substituting (2.10) into (2.9), we obtain
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e (x) = % f [4p®) €. BTN 1 A(6) 70| 6 dg, @.11)
R2

where A5 = (AP, AP, AP)T (&) := (£, )T x Ag(&). It follows from (2.11) and the orthogo-
nality (£, y) - Al =0 that

20 1ol
weEb)| & 0 1 0 p R
0 & & v
which gives
aer=| " e =p1e [TED] Speace s 2.12
€)= AT é)= é) 0 =DE)u(&, D). (2.12)
Here D is a 4 x 3 matrix given by
&1 & 14

By +& —&& &y
By + €2 | —&& By +E &y
-6 —&p  IEP

D) =

Using (2.11)—(2.12) yields an expression of #* in Up, in terms of the Fourier transform of the
Dirichlet data u(x’, b):

1 1 P I
sc _ i(§-x"+B(x3—b)) i(§-x"+y (x3—b)) ;8¢
u (x)_ZnR/ziﬁy+|5|2<M"@)e T My T e ) b,

(2.13)
where
£ && &y
My€) = (51,6, Q@ E1.&2,y) = | E1& & &y (2.14)
&8 &B By
and

By +£ 816 —v&
M@E)=| —&i& Py +E —vE | =By +1EHT— Mp@). (2.15)
—5p —bp &P

Define M;r =M,/(By + |€]%). We can rewrite (2.13) into
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uSC(x)

- % / [M;(g)ei@'x/*ﬂm*b)) + (I— M;(g))ei@*’ﬂ@rb))}ﬁ“(g,b)dg. (2.16)

RZ

The representation (2.13) or (2.16), which is referred to as the UASR for elastic wave fields,
is the upward radiation condition. The downward ASR of u* in x3 < b can be similarly derived
and are written as

Msc(x):L/{ ! (MéD)(%—)ei(f‘x/—ﬁ(xs—b))+MéD)(%—)ei(é‘x/—}’(x3—b)))ﬁ50(é;’b)}dé:

2w ) LBy +IEP
R2
1 S (5)el X P b)) ~ (£ )elE vz =b) | pse
“ o [MP (§)e T (I_ M, (5))6 ‘ }u (¢, by, (2.17)
R2

Here My (&) == My” (6)/(By + |£1%),

[ & §1& &y
MP@E) =] a& & &y |,

| &8 —8B By
[By +&  —&&  yE&
MP (&) :=| —&& By+E ve |. (2.18)

§18 SY: A e
If 4% is quasi-biperiodic on I'p, then the ASR of u* in a half space is equivalent to the
Rayleigh expansion of u*¢ (see [3,22,25]). We say u*¢ is quasi-biperiodic with the phase-shift

o = (a1, @2) € R? in the variable x’, if u*(x’ +27n, b) = 27"y (x’, b) forall n = (ny, ns) €
72. Therefore, u*° (x’, b) admits the Fourier series expansion

W b= Y uE b, xR, (2.19)

neZ?

where o, =« + n and u}° (b) is the Fourier coefficient of 4 on I'j, given by

27 2w

. 1 ) . ’
Wb =5 / / N
0 0

Substituting (2.19) into (2.13) and noting that the Fourier transform of e is 27§ (& —ay), we
obtain

uSC(x)

1 1 (e (1 ey (ab) | 5
= {4;3 i <Mp(§)el(s~x B D) | (£)el €N (s b)))usc(g, b)}dg
R2
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= 3 [ {5 (@€ e aa g€ s —a e
neZsz

1 ) ) . ,
= m (Mp,nel(an'x +Bn (x3—Db)) + Ms,nel(a" X 4y (x3*b)))u’s1c(b)
neZ?

T
M (otn, ﬂn)—rei(an X' +By (x3—b))
neZ? B vn + lon |2

L@ v T % (50 % (@, )T el e, (2.20)
nsn n

where

Bn=Blw), vn=y(wm), Mp,n:Mp(Ofn)v Ms,nzMs(an)~

The representation (2.20) is the upward Rayleigh expansion of #%¢ in x3 > b. Using the vector
identities

(e ) x (15°6) x (@ )
= (@) @ ) )i ®) = (s )T 3B ) (et BT
= Buvn+ Lo ) = (@ ) T ®)) (s BT
we may rewrite (2.20) into

us(x) = Z Apn (s B) T x T D) L A pilenxFynlxs—b) 2.21)

neZ?

where

A, V)| - uS(b
A= ID_ED €€ A=) = Ap (e, ) €

It is clear to note that (o, ¥n) - Asn =0 for all n € Z2*. The representation (2.21) is the
reduction of the UASR (see (2.13) and (2.11)) to the Rayleigh expansion in quasi-periodic spaces.
The equivalence of the downward radiation conditions can be justified in the same manner.

The rough surface scattering problem can be stated as follows: Given a plane incident wave
field (2.1) or a point incident wave field (2.7), the scattering problem is to find the scattered field
u*¢ of the boundary value problem for the Navier equation (2.5) in a distributional sense, such
that the upward radiation condition (2.13) is satisfied. In this work, we

(1) prove uniqueness of the solution in H 1(8p)3 for any b > f7T (see Section 4.4);

(2) for locally perturbed flat surfaces, prove existence of the Kupradze radiating solution u*¢ —
u' e HILC(D)3, where u"™ denotes the reflected wave field corresponding to the unperturbed
flat surface (see Section 5).
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3. Dirichlet-to-Neumann map
In this section, we introduce a Dirichlet-to-Neumann (DtN) map on the artificial flat surface

I, for some b > £ and investigate its mapping properties.
Recall that the traction operator on a surface is defined as

Tu:=2udyu+A(V-u)v+ puv x (V xu),

where v = (v1, 12, 13) stands for the normal vector on the surface. Given b > f7, the DN map
for the rough surface scattering problem is defined as follows.

Definition 3.1. For v € H'/?(I';)?, the upward DIN map 7 v is defined as Tu*® on I';, where
1’ is the unique upward radiation solution of the homogeneous Navier equation in Uy, satisfying
u*® = v on I'p,. More explicitly, we have

Tu:=2pd3u+A(V-u)0,0, DT + (0,0, 1)" x (V x u), (3.1)

where d3u = 0y, u.
We mention that the upward DIN map 7T is well defined, since u*¢ can be uniquely determined
in Uy via the formula (2.13). Next we derive an explicit representation of the upward DtN map

T and show some of its properties.
Applying the traction operator T given in (3.1) to (2.13) and letting x3 = b, we get

2uBé wy 0 ué& A
FUTu)|r,1E)=i| 2uB& 0 wuy pn& [Ai} =:11G(§)AE). (32)
2,LL,32+AK§ 0 0 2uy s

Recalling A(§) =D (§)a*°(&, b) in (2.12), we have
FUTu™)r, 1) =1GE)DE)a* (£, b) =iM ()i (€, b),

where M (&) = G(£)D (&) € C3*3 is given by

M(&)

T EP T BY
ul(y — B)&3 + k2B —uéiér(y — B) QulE1* — o* +2uBy)E
x —pu&1E2(y — B) ul(y — &+ k281 QulEl* — o* +2uBy)&
—QuIEP —o? +2uBy)er  —QulE|* — o* +2uBy)6 yw?

(3.3)

Taking the inverse Fourier transform gives

T 16 = o [ Gea© de = o [ M@ e e,
R2 R2
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where the matrix function M is given in (3.3). Since v = u*°|r,, we obtain the upward DtN map
Tox') = 2L/M(g)a(g)eif'x/dg. (3.4)
b4
R2

The boundary operator 7 is non-local and it gives an equivalent representation to the upward
radiation condition (2.13).
Similarly, we may show that the downward DtN map takes the form

Tooe) = o [ M- @ped . (3.5)
R?
where

M) =—
&2 + By

—ul(y — B)EF +12B] néréa(y — B) Qulg* — o® +2uBy)&

x néi&x(y — B) —ul(y = BEF+ k3Bl QulEl? —o® +2uBy)&

—QulE? —® +2upy)Er  —QulEl? — o® +2uBy)& yw?

Comparing with the matrix M for the upward DtN (cf. (3.3)), we can easily see that the param-
eters B(¢) and y (§) are replaced by —f(§) and —y (§) in the definition of M~ (§), respectively.

Lemma 3.2. Let M (£) be defined in (3.3) and let b > fT.

(1) Given a fixed frequency w > 0, we have R(—iM) (&) > O for sufficiently large |&|.
(2) The DtN map T is a bounded operator from HY2(T)3 10 HV2(Ty)3.

The proof of Lemma 3.2 relies on properties of the matrix M and can be carried out by
following almost the same arguments as those in the quasi-periodic case [22]. The details are
omitted for brevity.

4. Uniqueness

In this section, we study the uniqueness for the boundary value problem (2.5) and (2.13) if '
is the graph of a uniformly Lipschitz continuous function f, i.e.,

F={xeR’:x3=f(x), x' = (x1.x2) € R?}
and there exists a constant L > 0 such that
If )= FON<LIX —y| ¥x',y eR%

First, we investigate the uniqueness when f is a C2-smooth function over R2. Denote the
unit normal vector on I' U I'y, by v := (v1, vz, v3) pointing into the region of x3 > b on ', and
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into the interior of D on I'. Since we consider the uniqueness, we assume that ui" = 0 in this
section. Thus u# = u*° is a radiation solution in Sp for any » > f%. The goal is to prove that
u =0 in D, depending on the geometry of d D. The proof depends on a Rellich-type identity
for the Navier equation in the unbounded strip Sp. The Rellich-type identity was first used in
[17] to prove uniqueness of the acoustic scattering by smooth periodic sound-soft curves and in
[26] to handle periodic Lipschitz graphs. A priori estimates and explicit bounds on the solution
were given in [12] for the acoustic rough surface scattering problems. We refer to [16] for more
general Rellich’s identities in a bounded domain.

Lemma 4.1. If u € H'(Sp)? and f is a C*-smooth function, then the following Rellich identity
holds:

2N /(MAu +A+WV - u+ a)zu) - d3udx
Sp

= (= | + [ )2%(Tu - d3i) — vsE, it) + w?ul* Lds,
(- [+ |

r 'y
where the bilinear form

3
Eu,v):=2u Z Qe j v + AV -u)(V-v) — w(V xu) - (V xv) Yu,ve H'(Sp) .
jk=1

Proof. The proof is similar as that in [23, Lemma 6]. We sketch it here. By standard elliptic
regularity, we see that u € H?2(S,)3. For A > 1, we choose a cut-off function xa(r) € CSO(RJF)
with r = |x| such that x4 (r) =1if r <A, xa(r)=0if r >A+1,0< ya(r) <1if A<r<
A+ 1, and || x,(r)|l < C for some fixed C independent of A. Multiplying both sides of (2.5) by
the test function y 4 (r)d3u, using the integration by parts, and letting A — 400, we may obtain
the desired identity. O

Since u satisfies the Navier equation in D, it follows from Lemma 4.1 that

/ (2R (Tu - d3i1) — v3E(u, i) + w?|ul*)ds = / (2R (Tu - d3i1) — v3E(u, it) + w?|ul*)ds.

r Tp
In the following lemma, we simplify the left hand side of the above identity by using the boundary
condition ¥ = 0 on I' and simplify the right hand side of the above identity by the radiation
condition of u = u*°.
Lemma 4.2. (i) Under the assumptions of Lemma 4.1, the following identity holds:

[(2m(Tu~83ﬁ)—V35(u,ﬁ)+a)2|u|2)ds:/(/L|GVMIZV3+(A+/L)|V-u|2v3)ds.
r T
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(ii) Let u = u*® satisfy (2.13) in x3 > b with the parameter-dependent coefficients A,(§) and
Ag(£) € C3X for £ € R3, then the following identities hold:

/ {zm(ru - 03i1) — Eu, i) + w2|u|2}ds

Ty

=2w2{ / BHE)|Ap(6)I> d§ + / y2(§)|AS(§)|2dg}, @.1)
& <Kp &1 <ies

3 / Tu-uids = / O BE)Ap(©)dE + / wy €)|As©)Pdé. 2)

Ly |S‘<Kp &<k

Proof. (i) Since u =0 on I', a direct calculation shows that on I' (see also [22, Lemma 5]),
v-83ﬁV-u=V3|V-u|2, o3u=v3opu, ohu—+vx(Vxu)—vV-u=0.
Hence, by the definitions of the traction operator 7' and the bilinear form £(, -), we get
Tu- 30 = E(u, @) = v3pldyul’vs + 4+ WV - ul’v3,

which proves the first assertion.

(ii) The proof of the second assertion depends on the upward ASR of u = u*° and the Parseval
formula.

It follows from (3.2) and the Fourier transform of T'u in terms of A, and Ag on on Iy that

Tu(é) =1iG(£)A(§), where A is defined in (2.12). By (2.13), the Fourier transform 8 ju of 0ju
on I'j, can be represented by

du=HjE)AE), j=12.3,

where H; are 3-by-4 matrices defined by

g2 & 0 0 g6 & 0 0 e, ¥y 0 0
H=i|l&& 0 & 0| . H=i|l & 0 & 0|, Hi=i|ps 0 y 0
&8 0 0 & 8 0 0 & gz 0 0 vy
Let
M, :=H{G, M,:=H{H + HSH,+ Hj Hs. (4.3)

The Fourier transforms of #, V- u and V x u on ', are given respectively by

AE.D) =D (E)AE), V- u=HiE)AE), Vxu=(Ey) x Ad),

where
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& agl 8 6B

& 1.0 0 gE2 2 0 0
Di©=|& 0 1 0|, H=il > 7
g 0 0 1 & 0 & 0

6 0 0 &

Noting the orthogonal identity (£, ) - A = 0, we have from a simple calculation that |V x u|> =
(€% + |7 )| As|?. Define

0 0 0 0
M3 :=HjHy, My4:=DiDy, Ms:= 0 P +IvP 0 0

0 0 &2 + |y |? 0

0 0 0 €12+ |y 2

By the definition of M;, j =1,2---,5 and the Parseval formula, we obtain

/ Tu - dyiids = / MiE)AE) - A(E)dE,
]RZ

Ty

[ gmas = [ (2uptae) + o) - uts)) a) - Aceree.

) R2

f uPds = f My(®)AE) - AE)dE.
R2

Ty
Hence,
/Zﬂi(Tu -o3u) — E(u,u) + a)2|u|2ds = /[ERW(S)]A(S) ~Z(§)d§, 4.4)
Ty R2

where W =2M| —2uMy — AM3 + uMs + a)2M4.
Next we calculate RW. To obtain the real part of M;, we decompose it into the sum Jj | +
J12+ Ji 3, where (e.g., (4.3))

2ulBIP(EI + 1B1) + Akp B> 0 0 0
0 uly> 0 0

Ji1= ) ,
0 0 ulyl 0

0 0 0 ulyl?
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B 0 wB&y unB&y  nBIEP +2up?y
2uByé 0 0 0
Jip= _ ,
2uByé 0 0 0
[ 2up?y +0ly 0 0 0
0 0 0 0
0 0 0 u&y
Ji3= _
0 0 0 uky
[0 0 0 ulyl?

Similarly, we decompose M3 into the sum J 1 + J2 2, where

T2+ 181%)? 0 0 0
0 €17 + |y |2 0 0
S = 5 ) ,
0 0 1E2 + 1y 0
L 0 0 0 €17 + |y |2
i 0 E(EP+yvB) &UEP+yB BUEP+vp)
E1(1€1% + B7) 0 0 0
Jro= ) _ )
£(1&17 + B7) 0 0 0
L BUE* + BY) 0 0 0

and decompose My into the sum Js 1 + Ja4 2 with

EP+1B1> 0 0 0 0 & & B
0 1 00 & 0 0 O
Ja1 = » Jap=
0 01 0 &L 0 0 0
0 0 0 1 B 0 0 0

We deduce from (4.4) that
<mW(g)A, A> - <Q(§)A, A> + (m(2]172 Yt w2J4,2)A, A>,

where Q = (Q,-,j);"j=1 = 9’%(2]1,1 —2udr1 —AM3+ puMs +a)2]4,1). Moreover, we can obtain
9{(211,2 —2uda+ wZJM) =0,0;;=0ifi # jand

2 2 27 ) 2 2 25 3
0, =127 Sl<kp g, 2 2@ Sl <k i 1034
0, &1 > «p, 0, I&] > ks,

Hence,
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[wea e =202( [ pomerer [ reneras)
R2 §l<x1 &1 <k2

which together with (4.4) proves the relation (4.1).
To prove the second identity (4.2), we observe that

Tp R2

S/Tuﬁds:;‘s/(iGA,ID)lA)dé =/<(mD’{G)A,A)dg,
RZ

where

2uBUEP + 1B + 1B &1y néay  wlEl* +2up?y

. 2upBé wy 0 223
DiG =

2uBé2 0 wy ué

2up? + hicy 0 0 2y

We decompose D} G into the sum J; + J, + J3, where

C2uBUEP+ 1B+ 0 0 0
0 wy 0 0
J1 = 14 ,
0 0 wuy O
L 0 0 0 wuy
0 uéy puEy wlElP+2uBy 000 O
2upé 0 0 0 0 0 0 u&
Jr= , 3=
2up& 0 0 0 0 0 0 u&
[ 2uB>+hey O 0 0 0 0 0 puy

It follows from straightforward calculation that (M (J> + J3)A, A)=0 and

O?BlAR? + nylAsl?, 1€l <«p,
(MS1A, A) = ;L)/|AS|2, kp < 1§] < «s,
0, ks < &].

Following (4.5), we deduce that

3 / Tuirds = / W) Ay (&) 2dE + / 1y ()| A )Pz,

Ty &1 <Kp &<k

which completes the proof. O

4059

4.5)
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The following lemma plays an important role in the subsequent analysis. It implies that the
upward propagating modes of the compressional and shear parts must vanish when u™ = 0.

Lemma 4.3. If u™ = 0 and the radiating solution u*® € H'(Sp)> for any b > f, then
Ap(§) =0 for|§| <kp and AyE)=0 for|§] <k,
where Ap(§) and A(§) are defined in (2.11).

Proof. Multiplying the Navier equation in (2.5) by the complex conjugate of #5 and using Bet-
ti’s formula yield

0= / (g(usc7 7€) — w*u'c . L_tsc)dx . / % TuCds.
Sp v,

Taking the imaging part of the above equation and recalling the definition of DtN operator, we
obtain

0=3 / 1% - Tu*ds = f?s/ﬁsc - Tu*ds =0,

Cp Ty

which proves the result by noting (4.2) with u = . 0O

By Lemma 4.3, the uniqueness does not hold for general rough surfaces. In the following the-
orem, we investigate the uniqueness under an additional geometrical assumption of the scattering
surface.

Theorem 4.4. If T is the graph of a uniformly Lipschitz function and u™ = 0, then u =0 in D.

Proof. If f is a C>-smooth function, it follows from Lemmas 4.1—4.3 that

[ oPon + Gt 19 - )

r
=2w2{ / B2 (E)|Ap(&)|* dE + / y2(5)|As<s>|2ds}
1§ <Kp 1§ 1<k
=0. 4.6)

The geometric assumption of I" implies that

v3(x) = >Cr >0, xeTl,

1
VI+IVe f?

where C is a constant depending on L only. Hence, we get u = d,u = 0 on I'. As a consequence
of the unique continuation in elasticity, it holds that # = 0 in D. This proves the uniqueness for
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C?-smooth functions. Finally, the proof can be completed by applying Necas’ approach [39,
Chapter 5] of approximating a Lipschitz graph by smooth surfaces. We refer to [22] for the ap-
plication of the NecCas’ approximation theory to bi-periodic surfaces and [23] for rough surfaces
in two dimensions in elasticity. O

In the proof of Theorem 4.4, the relation (4.6) is derived based on the important identity (4.1).
Combined with the identity (4.2), this identity will be used to prove the existence of solutions to
the rough surface scattering problems. We remark that, for the uniqueness proof only, the relation
(4.6) can be also obtained in a more straightforward way without using (4.1), which is given as
follows.

Proof. Using Lemmas 4.1 and 4.2 (i), we obtain for each fixed b > f, that

[(M|avu|2u3+(/\+u)|v-u|2u3)ds=/(2m(n-agﬁ)—V35(u,ﬁ)+w2|u|2)ds. 4.7)
r Ty

It suffices to show that the right hand side of (4.7) vanishes. By Lemma 4.3, we have

u=ut= / Ay(8) (&, B)T P g 4 / Ay(§) 7D gg s,

‘§|2Kp |§1=Ks
which gives
(g, c) =if(E) Ap(€) (&, B) PP Liy(E) Ay() P, c>b. (4.8)

Since the right hand side of (4.7) does not depend on the choice of b, we have for each ¢ > b that

/(2m(Tu.331,;)—V35(u,a)+w2|u|2)ds=f(2m(Tu-3312)—V35(u,zz>+w2|u|2)ds.

Iy Ce
(4.9)

First we prove that the first term on the right hand side of the above identity vanishes as
¢ — +o00. Using (3.4), (4.8) and Lemma 4.3, we obtain

m/Tu-aﬂds:mfﬂ-aTudg

Te R2

=3 f ME) (A BT+ A E)e )
R2

(BAE &, BT 1y A (E)elreD )dg

=3 / ME) (A6 E A7) - (BT )e 2N g

[1=Kp
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+3 [ MO (4,06 p7) - (rae)e TN e vy
&1=kp

+3 [ M©A© - (pagepyT)e VT T b
[&1=kp

#3 [ ME©AE: (rade)e Ve (4.10)
& 1=ks

where the matrix M is given by (3.3), and the dot denotes the inner product over R?. For each
€ > 0, there exists a sufficiently small § > 0, which does not depend on c, such that

s [ me(a©EnT) (B pT)e TN e <

Kp§|§|§’(p+5

On the other hand, we have

i [ M@ (456 7T (Bagte pr7)e VI e <o,

c—>—+00
|§|>Kp+8

since it is an exponentially decaying function as ¢ — +o00. Hence, the first term on the right
hand side of (4.10) tends to zero as ¢ — oo. Similarly, we may show that the remaining terms
on the right hand side of (4.10) and those of (4.9) vanish as ¢ — +00. Hence we show that (4.7)
vanishes due to the relation (4.9) and the arbitrariness of ¢ > b. O

5. Existence

In this section, we discuss the existence of the solutions to the scattering problems where the
flat surfaces are locally perturbed.

5.1. Scattering from flat surfaces

The propagation and reflection of elastic waves in a homogeneous half-space have been of
significant interest in the classical seismology (see e.g., [1,2] and the references cited therein).
The analytical solutions of such problems are frequently used in the literature for various pur-
poses. In this section, we assume that I' = I'g (i.e., b = 0) is a rigid flat surface. In this case, the
total field consists of the incident field ™ and the reflected field u'®, i.e., u = u'™ + u', where
u'® solves the boundary value problem

UAUC + A+ VYV - u® +0’u®=0 in Uy, u®=—-u" on To.
If u™™ is a compressional plane wave field of the form (2.2), then it takes the following form:
p p g

T
ue =yt — (a,y)' -d (a, IB)Tei(mx’-',-ﬂ)g)

P By + lal?
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- m[(% T x (d x (o, ﬂ)T>]ei(a-x’+VX3)’ 5.1)

where

o =kp(sinfcosg,sinfsing), B= 1//cg —le|?, y=/«k2—|al?.

For the shear incident plane wave field (2.3) with d - df- =0(j=1,2), we have

T, 41
re _re (e, 7) df (a, ‘B)Tei(a-x’+/3X3)
Y By +lef?
E (@) x (df x (@ p)T) Jeie 7, (5.2)
Y o

where

a =«ks(sinfcosg,sinfsing), = /K2 —lal>, y= k2 —|a

Thus, if u™ takes the general form (2.1), then it follows from the linear superposition principle
that the reflected wave field is given by

u(x) = cpu;,e(x) + cs,1u;f’1 (xX) + cs 215 (x). (5.3)

The expressions of (5.1) and (5.2) follow directly from the UPRC (2.13) with a™(&,0) =
—i" (£, 0). They can be also obtained from the upward Rayleigh expansion (2.20) with uy*(b) =
—uin“ (b) for n = (0,0) and u)°(b) = 0 for |n| # 0. These analytical solutions in a half-space
indicate that, in general case, a compressional (resp. shear) plane wave reflects back to the domain
as a sum of both compressional and shear waves.

Below we derive the reflected wave field corresponding to the point source incidence field
(2.7) with the source position y € Ri. In this case, the total field u = u™ + u™ coincides with
the Green tensor Gy (x, y) to the first boundary value problem of the Navier in a half-space, i.e.,
Gg(x, y) satisfies

MAyGH(xvY)+()L+H)VyVy'GH(X,Y)+C()2GH(X,Y)=—5(3C_Y)I in Uy, x#y,
Gu(x,y)=0 on TY.

Before stating the expression of Gy (x, y), we introduce the outgoing Kupradze radiation condi-
tion for the scattered field #°¢ in a half-space.

Definition 5.1. An upward radiating solution to the Navier equation (2.5) with D = Uj is said to
satisfy the half-space Kupradze radiation condition if its compressional part ¢ and shear part i
satisfy the Sommerfeld radiation condition as follows:

p)=00"h, o —ipp =00,
Y@ =00"Y, Y —iky =0, (5.4)
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uniformly in all x € {x e R3: |x| > R} N Uy as r := |x| — oo.

In the following lemma, G is the free-space Green tensor given by (2.7) and ¥ = (x’, —x3) is

the image point of for x = (x’, x3) € R3.

Lemma 5.2. (i) The half-space Green tensor Gy (-, y) (y3 > 0) can be expressed as

GH(-xay)ZG(xﬂy)_G(i’y)-i_U(-xvy)’ X3>O,

where U (x, y) is given by

X#Yy,

(5.5)

By
By &

i 1 > iE-(y/=x') i iBx iyx
060 = 5oz [ g (T @50 e — vy
RZ
+ Ms(g)eié-(y’—x’)eiym (eiﬁx3 _ eiyx3))d$
with
B vEL  vEiE EIEP B —-vE  —v&
My&)=|v&&  yE EIEP |, M(E)=|-v&a& —véE
By&  Br&  BIEP glE>  &lEP

—Bl&

(ii) The columns of the matrix function Gy(x, -) and the rows of the matrix function Gy(-,y)

satisfy the half-space Kupradze radiation condition.

We remark that the first two terms on the right hand side of (5.5), i.e., G(x, y) — G(X, y) does
not satisfy the Navier equation in x3 > 0, although it vanishes on x3 = 0. We refer to [4] for the

expression of U in two dimensions.

Proof. Since Gg(:, -) is symmetric, we fix x3 > 0 and take y as the variable in our proof.
(i) Taking the Fourier transform of g, (x, y) and gs(x, y) (see (2.8)) with respect to the variable

y' € R? gives

Sp(x, (£,y3) = éeiﬁm—ysle—i%‘me—ié‘zn’ 8s(x, (£, y3)) = zieiym—ysle—i%‘me—iéznl
14

The Dirichlet boundary condition on y3 = 0 gives the relation

U(x,y) =—-G(x,y) + G(x, y)

1 1 - -
= =5V Vy (@60, ) = (6, 1)) + — Vi V) (&5 (F, ) — gp(E, )

1 - 1 -
= V)V (&(E 3) = 86, ) = — Yy V] (gp(F, ¥) = gp(x, 1)

(5.6)

Therefore, the Fourier transform of U(x,y) on y3 = 0, which we denote by ﬁ(x,é) =

(U(x, (€,0));j, takes the form
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4065
. i . . . 0 0 &
O §) = e Eei®n (o o7y, V=10 0 &
&1 & 0

Consequently, we have from the UASR (2.13) that

i 1 e s . .
U= { (M i8:(Y'=x") ,iBy3 (oiBx3 _ Hivxs
2nw2/ By +ier M e
R?
+ MS(%-)ei%"()’/—X/)eiy(ys—b) (eiﬂxs _ ei)/x3)} V(£)dg
i

1 ~ e . .
_ T (81616075 By (B3 _ iyxa
2nw2/[/3y+|s|2( pO)eTT T e

RZ

+ M) P e Ldg, a0,

where My, and Mj are given respectively in (2.14) and (2.15), and

_ [ vEr vagL &lEP
My =My VE) = | va1&  vE &l

| By&r Bre  BIEP

N [ —vEl —v&  Br&
M) =ME)VE) = | —v&&r —vE  Bré
| EIEP BlE)? —BIE)

(i) To prove the half-space Kupradze radiation condition of Gy, we adopt the two-
dimensional arguments of Arens [0, Theorem 4.5]. Let

3

i 1 T _
— §-(y'—=x") ,iBy3 (,iBx3 _
Uf’(x’y)‘zm2/ﬂy+|§|z(MP(5)el TR elym))df’
R2

i 1 ~ H / ’ . H H
_ &-(y'=x") ,iBy 3 _ 3
US(x’y)_Zna)z/ﬁy+|§|2<M5@)el R ) 3
]RZ

It suffices to verify that U, (o = p,s) satisfies the Sommerfeld radiation condition specified

in Definition 5.1. Note that (Ay + ké)Ua(x, y) =0 for « =p,s and all y € Ri\{x}. Since
U =Uj; + U, it follows from (5.6) that

1 . 1 -
Up(x, 1) = — Vi V) (86(F, ) = &6, 9)) = 5 Vy V) (gp(E, ) = gp(x, 1)) = Us(x, y), y3 =0.

Direct calculations show that |g, (X, y) — go(x, )| < C(1 4+ x3)(1 + y3)|x — y|’2 forall x #y

with x, y # 0 and x3, y3 > 0 and o = p, s. Following the same proof as that in [6, Theorem 2.13]
and applying the interior estimate, we obtain

w(x, ") :=Up(x, )lyz0 < C(1+1y'[)"  for some fixed x € R3. (5.7)
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Recalling the UPRC and ASR for the Helmholtz equation, we have for y3 > 0 that

a 9 1 - M y/ A
Up(x,y) =2 / 98002 s = - / SPEOVHEY (1 £)de.
973 2

To R2

We can then use the argument in [13, Section 5] and [30, Lemma 2.2 and Corollary 4.1] to
conclude that the decay rate of (5.7) ensures the Sommerfeld radiating behavior of U, as |y| —
oo in y3 > 0. The Sommerfeld radiation condition of Ug can be proceeded analogously. We note
that the arguments of [13,30] present the decaying behavior of the scattered field for the two-
dimensional acoustic rough surface scattering problems due to a compact source term or a point
source incidence and can be readily carried over to the three-dimensional case. O

5.2. Scattering from locally perturbed flat surfaces

In this section we consider the existence of weak solutions for the scattering problem (2.5)
and (2.13), where T is a locally perturbed flat surface. Without loss of generality, we assume
that I" coincides with the ground plane I'g := {x3 = 0} in |x| > R for some R > max,er{xs}.
Hence, the domain D above I is a locally perturbed half space. In this case, as can be seen from
the subsequent subsections, we can propose an equivalent variational formulation in a bounded
domain by truncating the unbounded domain D with a transparent boundary condition and then
applying the Fredholm alternative. The reduction to a bounded domain can significantly simplify
the arguments for globally perturbed scattering problems, where the compact embedding of H'!
into L? is in general not valid any more in an unbounded domain.

In the following, we consider to cases:

(i) The perturbation lies entirely below the ground plane, i.e., ' N {x3 > 0} = 0.
(i) The perturbation is allowed to occur in the upper half space, i.e., ' N {x3 > 0} # @.

Note that in the literature on acoustic and electromagnetic wave propagation, Case (i) is re-
ferred to as an open cavity scattering problem, whereas Case (ii) is known as an overfilled cavity
scattering problem. The above two cases will be investigated in the following two subsections
separately. In particular, the existence result of Theorem 5.4 improves the well-posedness of
acoustic cavity scattering problems [34], while Theorem 5.6 generalizes the two-dimensional
result [23] to three dimensions. Some open questions will be discussed in Remark 5.5.

5.2.1. Case (i): perturbation beneath the ground plane

For simplicity, we assume that €2 is connected. The problem geometry is shown in Fig. 1. If
2 is disconnected, one can apply our variational argument to each connected set of Q. Let Ag
be the aperture of 2 and S be the boundary of €2 in the lower half-space. We have 92 = Ao N S
and D =QUUyU Ag. Let g =T'9\Ag and I' = S U T';. We assume that the scattering surface
I (especially the boundary §) is a Lipschitz continuous surface but not necessary the graph of
some function.

Introduce the functional space

H'2(Ao)* ={v:9 e HY?(R?)? and 7 is the zero extension of v from Ag to o).

Denote by H’l/z(Ao)3 the dual space of Fll/z(Ao)3. Define the Hilbert space
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D

Fig. 1. The problem geometry of a local perturbation of the ground plane which lies entirely in the lower half space.
HY Q) ={ueH Q) :u=00nS, ulr, € H/*(A0)%}.

Consider a downward propagating pressure wave field of the form

. 1 . ’
1y (x) = / mM@(&)(&—ﬁ)Tg@)el@'x*ﬂ(’“*b”ds, X €S, (5.8)
]RZ

where b > 0 and g belongs to space of distributions D’(R?) such that supp(g) C {|&| < Kp}.
Alternatively, we may consider an incident shear wave field of the form

. 1 : ’
ugy(x) = / mwm(é)((s, —y) x q(&) e ETTITEE xes,,  (59)
RZ

where ¢ € D'(R?)? is a vector distribution such that supp(q) C {|€] < «s}. Here, the matrices
MéD) and MS(D) are defined in (2.18). It is easy to verify that both u};‘}; (x) and u‘sré (x) satisfy the
Navier equation (2.4).

Remark 5.3. We remark that the set of incident compressional (resp. shear) wave fields (5.8)
(resp. (5.9)) includes the compressional (resp. shear) plane wave field (2.2) (resp. (2.3)). In fact,
since the plane wave fields can be rewritten as

ikgx-d

. 1 . . 1 i
u" = — velkpxd, uls’}j(x) = Id X qje =q;V x elsxd j=1,2,
S

p
1Kp

where g; (j = 1,2) are unit vectors in R3 satisfying g1 - ¢> = 0 and qj-d =0, it follows from the
downward ASR (2.17) that uy' and u" can be also formulated respectively as the representations
(5.8) and (5.9) with

— ikpx3b iksx3b

_ 1 ikpx-d _¢ _ / . — . _ 4
8(5)—%6" &)lr, = P 8§ —xpd), qj)= p g0 —ksd').

Let u™ be an incoming wave field of the form
u(x) = cpui)ljg(x) + csuis?;(x), cp, cs € C. (5.10)

Multiplying the complex conjugate of a test function ¢ € H S] (£2)? on both sides of the Navier
equation
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uAu+ O+ wWVV-u+o0’u=0 inQ,

integrating over 2 and using the integration by part together with the DtN map (3.1), we deduce
an equivalent variational problem: find u € H ; (£2)? such that

B(u,¢)=/p.¢3dx’ Vo € Hi(Q)?, (5.11)

Ao

where p:=Tu™ — Tu'™ € H~'/2(A¢)? and

B, 9) 2=f(5(u,¢_>)—w2u~<f;)dx—f<5~Tﬁdx/.

Q

Note that the symbol f stands for the zero extension of f from A to . In deriving (5.11), we
have used the following identities on Ag:
Tu=Tu* +Tu™=Ti* + Tu™
~sc + Tum TM _ 7—~1n + Tuin
=Tu—p
Moreover, using (3.4), we have an explicit form of p:
i 20°B T e +igh
— o () T g E)ds i W =y,
/ kp E1* + By P

PO = /2 i 202y

i&-x'+iyb
ks €12 + By ‘I(é) x (&, ,3) e de if ™™ usg

By the trace theorem ||u||H1/2(AO); C ||u||H1(Q)3 for all u € Hg 1(€)? and the boundedness of
the DN map 7 (see the second assertion in Lemma 3.2), there ex1sts a continuous linear operator
B:HN Q) — Hg'(2)3 = (H}(Q)3)' associated with the sesquilinear form B such that

B(u, ) = (Bu,¢) Vo e Hy(Q2) .
Hence, the variational formulation (5.11) can be rewritten as
Bu=F, (5.12)
where F € HS_l (22)3 is defined by the right-hand side of (5.11).

Theorem 5.4. For incoming wave fields of the form (5.10), there always exists a solution u €
H 51 (Q)3 1o the variational problem (5.11). Moreover; this solution can be extended from Q2 to

D as a solution of the scattering problem (2.5) and (2.13) in H; (D), which can be split as

loc
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u=u"+u" + v in D. Here u™ is the reflected wave field caused by the rigid ground plane
x3 = 0 and v*° satisfies the half-space Kupradze radiation condition (see Definition 5.1 ).

Proof. We divide the proof into two steps: the first step is to prove the well-posedness of the

variational equation (5.12) and the second step is to extend the solution of (5.12) from 2 to D.
Step 1. By the Plancherel identity, we have

N [y, T - iidx’ =9 fpo T Fdx' =9 [ T thdg
= &|>K IM(S)ﬁ . L:idé-' +'[\E\§K 1M(§)Ifi . Ifidé,

where the matrix M (&) defined in (3.3) and K > 0 is sufficiently large such that M (£) is positive
definite for all |£] > K (see Lemma 3.2). Hence, the above identity implies that

_m/m.ﬁdx/z —C / i (&, 0)2de > —c/ it (8, 0)2dg = —C llul 72 -
R2

Ag €<k
Using the inequalities
2 2 2
||u||L2(A())3 <€ ||M||HI(Q)3 + C0(€)||M||L2(Q)3, € > O

and

[ e ias s [ular = ci@iulqy.
Q Q

we obtain
2 2
S{B(u, M) = C2||M ”H] Q3 C3 ”u”LZ(Q)3

Since the injection of H Sl ()3 into L?(Q)? is compact, the above inequality shows that the
sesquilinear form B is strongly elliptic and thus the operator B is Fredholm with index zero.
Hence, the operator equation (5.12) is solvable if its right-hand side JF is orthogonal to all solu-
tionsve H Sl ()3 of the homogeneous adjoint equation B*v = 0. Note that such v satisfies

(B*v, ¢) 12 = (V. B) 20y = B($,v) =0 V¢ € Hg(Q)’. (5.13)

Furthermore, we can extend v € H ; (22)3 to a solution of the Navier equation (2.5) in the un-
bounded domain Uy by setting

00 = [ (Ap6)E ~BENTEE I L 4@ T aE, a3 =0

RZ

where A4 (&) € C3*3 satisfies the orthogonality relation Ag(&) - (£, —y) =0 and
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. &1 1 0 0 |:Ap($):| 5
0E0)=|& 0 1 0 Tl gery
-8 00 1[LA®

Analogously, we have from Lemma 4.3 and (5.13) that

Ap(6)=0 forl&] <kp, As()=0 forl§] <«ks.

Hence, if the incident wave field has the form (5.8) with supp(g) C {§ : [§] < «p}, then

Fv) = f pode
R2

B i 20?B T - T3
_ / (EW(_M) 2®) - (A )+ Ay®))de

- / (K‘ |§|22‘“j’;y< £n7) - (Ap©)E BT + A6 )

|$|<Kp

=0.

Similarly, in the case of (5.9), we have

_ i 20y T T n T, 2
Fw= | (Cierr g, 9@ < E-pT) (AEOE -pT +A,0))d
R2

N / <Kl |é|22w+yﬂ a®)" x € -p)7) (@ E )T )as

€] <5

=0.

Therefore, the right-hand side of (5.12) is always orthogonal to each solution of (5.13). Applying
the Fredholm alternative, we obtain the existence of solutions to (5.12).

Step 2. Let v*¢ :=u — ul™ — 4™ in Q. Let 7% be the zero extension of v%¢| o, onto I'g. Note
that the sum of the incident field ™ and the reflected field u' vanishes on Fg . We extend v*¢
from Q2 to D by (2.13) with b =0, i.e.,

1 1 o R
SCy) — i(§-x"+Bx3) i(§-x"+y x3) | ~sc
v (x)—zn/{ﬁy_i_'g'z(Mp(é)e D My©)EET )5, 0)]de, x € U,
RZ
(5.14)

We claim that the scattered field v*¢ defined in (5.14) can be represented as

v(x) = / TyGu(x, y)v*(y)ds(y), x € Up, (5.15)
To



G. Hu et al. / J. Differential Equations 269 (2020) 4045-4078 4071

where Gy (x, y) is the half-space Green tensor (see (5.5)) and T,Gy(x, y) represents the column-
wisely action of the stress operator T to Gy (x, y) with respect to the variable y. Since the trace
of v%¢ on I’y is compactly supported in Ao, by Lemma 5.2, v*¢ satisfies the half-space Kupradze
radiation condition, which completes the proof of the second part of Theorem 5.4.

It remains to prove (5.15). Since v*° has compact support on I'g, applying the Fourier trans-
form with respect to y’ gives

/ T,Gr(x, v (y)ds (y) = / T,Gn(x, (=&, 0)3%(&)dz.

To R?

For simplicity, we denote T/yG\H(x, (—&,0)) by T/yG\H(x, —&), which will be calculated as fol-
lows. By (5.5),

T,Gu(x, —&) = T,G(x, —&) + T,G(%, —&) + U(x, —£).

The Fourier transform of G(x, y) with respect to the variable y’ on Iy is

N 1
G(x’ E? 0) = ;ép(x7 ‘i:a O)I

i) & &a&s &ap —i)? £ &&E &y
b0 | e 8 8B |- a0 | as 8 &y
§ap &8 P &y &y v

The expression of G(i, &, 0) can be obtained analogously. For x3 > 0, the functions G(x, -) and
G(x, -) propagate downward and upward propagating near Iy, respectively. It follows from the
downward and upward DtN maps that

T,G(x, &) =iM~(£)G(x,£,0), T,G(, &) =iME)G(, £, 0), (5.16)

where the matrices M and M~ are given by (3.3) and (3.5), respectively. Moreover, we have
from (5.6) that

- : —i&x’ " " . .
UG8 = 5o (O + TEOME) )@ =), 617)
where
up 0 w1 wy 0 w1
LE=i| 0 up  pk |, TE©:=i| 0wy ub
M M k208 M1 M Gk20)y

Combining (5.16)—(5.17), we obtain after tedious but straightforward calculations that
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T,G(x, —£) + T,G(%, —£) + T,U(x, —£)
=iM~(—=6)G(x, —£,0) +iM(—=£)G(F, —£,0)
i o5 ~ ~ - -
e _ _ _ _ iBxz _ iyx
+2m2ﬂy+|§|2(Tp( £)My(—&) + To(—£) Mq( s))(e 3 elr3)
1 e o
_ i(§-x"+B (x3—b)) i6-x"+y (x3—b))
——ﬁy+|g|2(Mp(5)e T M ()l 6y b)),

Furthermore, we obtain from (5.14) that
vSC(X)=/TyGH(x,—f;“)ﬁS°(€)d$=/TyGH(x,y)vSC(y)dS(y),
R2 To

which completes the proof of (5.15). O

Remark 55 We make a few comments on the existence result in Theorem 5.4.
(i) If u™ is of the form (5.8), then the reflected wave field uffg is given by (cf. (5.1))

ENT-E-pT
By + 1£12)?

Ui (x) = — Mp(E)(E. B) " g(§)e TN gg

1 B
- G MO[E T (€ -pTx EpT) e e,
R2

If u™ is of the form (5.9), then the reflected wave field u{eg is given by (cf. (5.2))

M (&) (&, ,B)Tei(é'x/"'ﬁ(”_b))dg

W () = — / ENT (G =P xq@)
e J (By + €172

1
Y R S—
R/z By + e @

x[E 1T x (€ =BT x a©) x € BT [lEx g,

Thus, if u™ takes the general form (5.10), it follows from the linear superposition that the re-
flected wave field is given by

U™ (x) = cptpy (X) + cstugg (x).

(ii) It is unclear whether the solution given by Theorem 5.4 is unique or not. By the proof of
Theorem 4.4, the uniqueness is correct if the third component of the normal at the boundary S
is non-negative (i.e., v3 > 0). Note that this condition includes interfaces given by step functions
and is thus weaker than the assumption used in Section 4.4. For the Helmholtz and Maxwell
equations, the well-posedness results have been established for general locally perturbed flat
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Fig. 2. Geometry of the scattering problem in a locally perturbed half plane.

surfaces which are not necessarily the graph of a function (see [32,35,40]). The arguments rely
heavily on properties of the DtN maps derived from the corresponding reflection principle. How-
ever, due to the lack of a pointwise reflection principle for the first boundary value problem of
the Navier equation, we are not sure whether the DtN approach can be applied to our scattering
problem. Thus, we can only obtain the existence result in the general case.

(iii) The result in Theorem 5.4 improves the acoustic and electromagnetic counterparts in the
following sense. First, it shows that the existence results can be verified for general incoming
waves from the upper half-space even if the uniqueness is unknown. One can expect the same
conclusion for acoustic and electromagnetic transmission problems. Second, the split of #*¢ into
the sum u" 4 v¢ is rigorously justified under the mild assumption that u*¢ satisfies the UASR
(2.13).

5.2.2. Case (ii): perturbation above the ground plane

In this subsection, we consider the scattering surface I' = {x € R3 x3=f(x), x' € Rz},
where f is a Lipschitz continuous function and is assumed to satisfy f(x’) =0 when |x'| > R
for some R > 0. This means that I" is a local perturbation of the ground plane x3 = 0. The
problem geometry is shown in Fig. 2. Let D = {x e R3: x3 > f(x'), x’ € R?} and Ag:=TnN
{x : |x’| < R}, which contains the perturbed part of I". Denote by Qg = {x € D : |x| < R} the
truncated bounded domain and by B;{ ={x e R3:|x| < R, x3 > 0} the upper half-sphere. Let
Sg ={x € D : |x| = R} and denote by v the unit normal vector on Sg, pointing into the exterior
of Qr. Obviously, 9Q2g = Ag U Sg.

Let 1™ be the incident elastic plane wave field (2.1). Due to the local perturbation, we assume
that the scattered field ¥ = u™ + v5¢ can be further decomposed into the sum of the reflected
wave fields u™ and v*¢, where u" is the reflected field of the form (5.3) solving the unperturbed
scattering problem and v*¢ satisfies the outgoing Kupradze radiation condition as defined in
Definition 5.1.

Define the Sobolev space Xg = {v € HI(QR)3 :v =0 on Agr} and denote by XRTI the dual
space of X g. Introduce the Sobolev spaces on the open surface (see e.g., [38]):

HY2(SR)? = {uls, :u e HY20Qr)*),  HY?(Sg)? :={u e H/?(3Q2r)* : supp(u) C Sr}.

Denote by H_l/Z(SR)3 the dual space of FIUZ(SR)3 and by I-~1_1/2(SR)3 the dual space of
H'2(Sg)3.

Next, we introduce the generalized stress (or traction) operator and the corresponding bilinear
form



4074 G. Hu et al. / J. Differential Equations 269 (2020) 40454078

Tapu=@+a)du+bvV-u+av x(Vxu),

3
Eu, w) = (t+a) Z Ot jdxw; +b(V -u)(V-w) —a(V x u) - (V x w),
jk=1

where a, b € R satisfying a + b = X + p. Throughout this section, we choose

a:M()\Jru) b:(k+u)(k+2u)
A4+3p ] A4+30 '

The above choice of a and b yields a compact double layer operator D with a weakly singular
kernel (see [29]) as defined below in (5.21). For simplicity we still denote 7, , by T, which is
called the pseudo stress operator [29] with the new choice of a and b. Note that the usual stress
operator corresponds to @ = w1 and b = A and the Betti’s formula are still valid for the new choice,
ie.,

f(E(u,v)—wzu-v)dx—/v-Tvuds=0. (5.18)
QR SR

By applying Green’s formula and the half-plane Kupradze radiation condition, it is easy to
derive the Green representation formula for the scattered wave field v¢:

0™ (x) Z/Tu(y)GH(xvy) () = Gu(x, ) - Ty v (M)ds(y), x €D\Qg. (5.19)
Sr

Taking the limit x — Sg in (5.19) and setting p = T, v*°|s, € H~'/2(Sg)?, we obtain

1 .
(EI—D)(U”|5R)+Sp=O on Sg. (5.20)

Here 7 is the identity operator, D and S are the double-layer and single-layer operators over Sg,
respectively, and are defined by

(Dg)(X)ZfTv(y)GH(x,y)g(y)dS(y), (Sg)(X)Z/GH(x,y)g(y)dS(y)- (5.21)
SR SR

Combining (5.18) and (5.20) yields the variational formulation for the unknown solution pair
(u, p) € Xg X H1/2(Sg)3 := X as follows:

[s, Touo - @ds
B, p). (0. 1)) = [m«u,p), (¢, x))} _ [ S0

5.22
ba((u, p), (¢, X)) fSR(%I—D)(u0|SR)~7ds:| 622

for all (¢, x) € X, where ug = ul™ + u' is the reference field and
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bl((u,p),(w,x))zf(5(u,¢)—w2u-¢)dx—/¢-pds,

QR Sk

1
batw. ). (9.0 = [ (GT = Drtwlsy) +5p) s
Sr

The Fredholm property of the sesquilinear form B can be proved by following almost the same
lines in [31]. To prove the uniqueness, one has to assume that w? is not a Dirichlet eigenvalue
of the operator —(uA + (A + u)V(V-)) over Qg. This assumption implies the equivalence of
the variational problem (5.22) posed on Q2 and our scattering problem in D. As a consequence
of Theorem 4.4, one obtains the uniqueness. We refer to [31] for the details and only state the
well-posedness results below.

Theorem 5.6. Assume that w* is not a Dirichlet eigenvalue of the operator —(uA + (A +
WV (V.)) over Q. Then, there exists a unique solution u € Xg to the variational formula-
tion (5.22). Moreover, one may extend v*° := u — u™ — u*® from Qg to D\ through (5.19)
and the extended solution satisfies the radiation solution (5.4).

Remark 5.7. We make some comments on the well-posedness results in Theorem 5.6.

(1) In contrast with Theorem 5.4, Theorem 5.6 is justified under the strong assumption that u =
u™ 4 1™ 4 v5¢ where v*° satisfies the half-plane Kupradze radiation condition; see (5.19) where
this assumption was used. This automatically implies that u — ™ fulfills the weaker radiation
condition UPRC (2.13). We refer to Remark (5.5) (ii) for the reason why we cannot prove the
uniqueness for non-graph scattering surfaces.

(ii) By the proof of Theorem 5.6, one can discuss the well-posedness of the elastic scattering
from a trapezoidal surface, which is a non-local perturbation of flat surfaces. This requires a
modified radiating assumption on u — u” which depends on both the incident wave and the
scattering surface; see [37] for the acoustic scattering problem with a trapezoidal sound-soft
curve.

Now we consider the boundary value problem in a locally perturbed half-space:
pAV+ A+ V(V-v)+0’v=0 inD, v=h onT, (5.23)
where h € (H'/?(I'))? and v is required to satisfy the UPRC (2.13) in x3 > 0. We can always

find a function hg € (H'/?(I'g))? such that hg =h in T N {x : |x| > R} for the R specified at the
beginning of this subsection. Let

1 1 e I ~
- - i(€-x"+Bx3) i(E-x"+yx3)
vo(x) = o / {,8)/ TIER (Mp(é)e V4 Ms(§)e v )ho(é)}dé, xeD.
R2

Then vy € H'(Sp)? for any b > 0 with strip Sj, := {x : 0 < |x3| < b} and it is an upward prop-
agating solution to the Navier equation with the Dirichlet data vg = ko on x3 = 0. By Sobolev
extension theorem (see e.g., [27, Theorem 7.25]), vp can be extended to a function vi € H 1 (Sp)
from x3 > 0 to D such that v = vg in x3 > 0. Defining w; = v — vy, we deduce that
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pAwy + A+ w)V(V-w) +o’w =f; inD, w =h onTl,

where fi € (H'(Qg))’ is compactly supported in D N {x3 < 0} and h; € H'/>(I") is compactly
supported in A . Finally, by a lifting argument, the previous problem can be reduced to a homo-
geneous boundary value problem

wAwr + A+ V(Y -w) +0*wr=f> inD, w,=0 onTl,

with f, € (Hl(SZR))’ compactly supported in Qr, where wy = w1 — v for some v, € Hl(Sb)3
(b > 0) such that vp = h; on T and v = 0 in x3 > 2R. Choose R > 0 such that «? is not a Dirich-
let eigenvalue of the operator — (A + (A 4+ ) V(V-)) over Qg. Then the above inhomogeneous
source problem can be equivalently formulated as the variational problem:

fQR f2 adx

B((w2, p), (¢, X)) = [ 0

} . pi=Tyunls, € H2(Sr)*, (g, x) € X.

By the proof of Theorem 5.6, there exists a unique solution wy € H'(Q2g)3, which can be ex-
tended to a Sommerfeld radiating solution in D N {|x| > R}. We summarize the solvability result
as follows.

Corollary 5.8. The boundary value problem (5.23) admits a unique upward propagating solution
v="0+wy € H! (Sb)3f0r any b > 0, where v satisfies the UASR (2.13) and wy satisfies the half-
space Kupradze radiation condition.

6. Concluding remarks

We have presented the mathematical formulation of time-harmonic elastic scattering from
general unbounded rough surfaces in three dimensions. In particular, the ASR in a half-space is
derived and properties of the DtN map are analyzed. The uniqueness is proved for the Lipschitz
continuous rough surface which is given by the graph of a function. We deduce the Green tensor
for the first boundary value problem of the Navier equation in a half-space. The existence of
weak solution to locally perturbed scattering problem is established by applying the Fredholm
alternative to an equivalent variational formulation in a truncated bounded domain.

Below we list three interesting questions for locally perturbed scattering problems which de-
serve to be further investigated.

e The uniqueness result for perturbations given by non-graph functions.

e Equivalent variational formulation in a bounded domain without the coupling scheme be-
tween the finite element method and the integral representation. In particular, a numerical
scheme avoiding the half-space Green tensor and involving the free-space’s tensor only
would be desirable from the numerical point of view.

e Explicit dependence of the solution on the frequency of incidence in linear elasticity. The
variational approach developed [12] leads to an explicit wavenumber dependence of solu-
tions to the acoustic rough surface scattering problems. However, the derivation of such kind
of estimates relies on the positivity of the real part of the DtN map (see [12, Lemma 3.2]),
which unfortunately is not applicable to the Navier equation.
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Based on the framework presented in this work, we plan to carry out the study of the elastic
scattering from globally perturbed (non-periodic) rough surfaces, for example, due to an inho-
mogeneous elastic source term or an incoming point source incidence. This will extend at least
the acoustic results of [12] and [8] in weighted and non-weighted Sobolev spaces to linear elas-
ticity in three dimensions. In particular, the absence of elastic surface waves can be proved as a
consequence of well-posedness in weighted Sobolev spaces.

References

[1] I. Abubakar, Scattering of plane elastic waves at rough surface I, Proc. Camb. Philos. Soc. 58 (1962) 136-157.
[2] J.D. Achenbach, Wave Propagation in Elastic Solids, North Holland, Amsterdam, 1973.
[3] T. Arens, The scattering of plane elastic waves by a one-dimensional periodic surface, Math. Methods Appl. Sci. 22
(1999) 55-72.
[4] T. Arens, Uniqueness for elastic wave scattering by rough surfaces, SIAM J. Math. Anal. 33 (2001) 461-476.
[5] T. Arens, Existence of solution in elastic wave scattering by unbounded rough surfaces, Math. Methods Appl. Sci.
25 (2002) 507-528.
[6] T. Arens, The Scattering of Elastic Waves by Rough Surfaces, Ph.D. thesis, Brunel University, Uxbridge, UK, 2000.
[7] G. Bao, G. Hu, T. Yin, Time-harmonic acoustic scattering from locally perturbed half-planes, SIAM J. Appl. Math.
78 (2018) 2672-2691.
[8] S.N. Chandler-Wilde, J. Elschner, Variational approach in weighted Sobolev spaces to scattering by unbounded
rough surfaces, STAM J. Math. Anal. 42 (2010) 2554-2580.
[9] A. Charalambopoulos, D. Gintides, K. Kiriaki, Radiation conditions for rough surfaces in linear elasticity, Q. J.
Mech. Appl. Math. 55 (2002) 421-441.
[10] S.N. Chandler-Wilde, C. Ross, Scattering by rough surfaces: the Dirichlet problem for the Helmholtz equation in a
non-locally perturbed half-plane, Math. Methods Appl. Sci. 19 (1996) 959-976.
[11] S.N. Chandler-Wilde, B. Zhang, A uniqueness result for scattering by infinite rough surfaces, SIAM J. Appl. Math.
58 (1998) 1774-1790.
[12] S.N. Chandler-Wilde, P. Monk, Existence, uniqueness, and variational methods for scattering by unbounded rough
surfaces, SIAM J. Math. Anal. 37 (2005) 598-618.
[13] S.N. Chandler-Wilde, C.R. Ross, B. Zhang, Scattering by rough surfaces, in: Mathematical and Numerical Aspects
of Wave Propagation, Golden, CO, 1998, SIAM, Philadelphia, PA, 1998, pp. 164—168.
[14] S.N. Chandler-Wilde, E. Heinemeyer, R. Potthast, A well-posed integral equation formulation for three dimensional
rough surface scattering, Proc. R. Soc. A 462 (2006) 3683-3705.
[15] S.N. Chandler-Wilde, B. Zhang, Scattering of electromagnetic waves by rough surfaces and inhomogeneous layers,
SIAM J. Math. Anal. 30 (1999) 559-583.
[16] P. Cummings, X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz
equations, Math. Models Methods Appl. Sci. 16 (2006) 139-160.
[17] A. Kirsch, Diffraction by periodic structures, in: L. Pdivirinta, et al. (Eds.), Proc. Lapland Conf. Inverse Problems,
Springer, Berlin, 1993, pp. 87-102.
[18] V.D. Kupradze, et al., Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity,
North-Holland, Amsterdam, 1979.
[19] Y. Dermenjian, J.C. Guillot, Scattering of elastic waves in a perturbed isotropic half space with a free boundary. The
limiting absorption principle, Math. Methods Appl. Sci. 10 (1988) 87-124.
[20] M. Durén, I. Muga, J.-C. Nédélec, The Helmholtz equation in a locally perturbed half-space with non-absorbing
boundary, Arch. Ration. Mech. Anal. 191 (2009) 143-172.
[21] M. Durén, I. Muga, J.-C. Nédélec, The outgoing time-harmonic elastic wave in a half-plane with free boundary,
SIAM J. Appl. Math. 71 (2011) 443-464.
[22] J. Elschner, G. Hu, Scattering of plane elastic waves by three-dimensional diffraction gratings, Math. Models Meth-
ods Appl. Sci. 22 (2012) 1150019.
[23] J. Elschner, G. Hu, Elastic scattering by unbounded rough surfaces, SIAM J. Math. Anal. 44 (2012) 4101-4127.
[24] J. Elschner, G. Hu, Elastic scattering by unbounded rough surfaces: solvability in weighted Sobolev spaces, Appl.
Anal. 94 (2015) 251-278.
[25] J. Elschner, G. Hu, Variational approach to scattering of plane elastic waves by diffraction gratings, Math. Methods
Appl. Sci. 33 (2010) 1924-1941.



4078 G. Hu et al. / J. Differential Equations 269 (2020) 4045—4078

[26] J. Elschner, M. Yamamoto, An inverse problem in periodic diffractive optics: reconstruction of Lipschitz grating
profiles, Appl. Anal. 81 (2002) 1307-1328.

[27] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, 1983.

[28] H. Haddar, A. Lechleiter, Electromagnetic wave scattering from rough penetrable layers, SIAM J. Math. Anal. 43
(2011) 2418-2443.

[29] P. Hihner, On Acoustic, Electromagnetic, and Elastic Scattering Problems in Inhomogeneous Media, Habilitation-
sschrift, Gottingen, 1998.

[30] G. Hu, A. Rathsfeld, Acoustic scattering from locally perturbed periodic surfaces, WIAS Preprint 2522, 2018.

[31] G. Hu, X. Yuan, Y. Zhao, Direct and inverse elastic scattering from a locally perturbed half-plane, Commun. Math.
Sci. 16 (2018) 1635-1658.

[32] P. Li, Coupling of finite element and boundary integral methods for electromagnetic scattering in a two-layered
medium, J. Comput. Phys. 229 (2010) 481-497.

[33] P. Li, A survey of open cavity scattering problems, J. Comput. Math. 36 (2018) 1-16.

[34] P. Li, A. Wood, A two-dimensional Helmholtz equation solution for the multiple cavity scattering problem, J. Com-
put. Phys. 240 (2013) 100-120.

[35] P. Li, H. Wu, W. Zheng, An overfilled cavity problem for Maxwell’s equations, Math. Methods Appl. Sci. 35 (2012)
1951-1979.

[36] P. Li, G. Zheng, W. Zheng, Maxwell’s equations in an unbounded structure, Math. Methods Appl. Sci. 40 (2017)
573-588.

[37] W. Lu, G. Hu, Time-harmonic acoustic scattering from a non-locally perturbed trapezoidal surface, SIAM J. Sci.
Comput. 41 (2019) B522-B544.

[38] W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge,
2010.

[39] J. Necas, Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, 1967.

[40] A. Wood, Analysis of electromagnetic scattering from an overfilled cavity in the ground plane, J. Comput. Phys.
215 (2006) 630-641.

[41] B. Zhang, S.N. Chandler-Wilde, Acoustic scattering by an inhomogeneous layer on a rigid plate, SIAM J. Appl.
Math. 58 (1998) 1931-1950.



	Elastic scattering from rough surfaces in three dimensions
	1 Introduction
	2 Problem formulation
	3 Dirichlet-to-Neumann map
	4 Uniqueness
	5 Existence
	5.1 Scattering from flat surfaces
	5.2 Scattering from locally perturbed flat surfaces
	5.2.1 Case (i): perturbation beneath the ground plane
	5.2.2 Case (ii): perturbation above the ground plane


	6 Concluding remarks
	References


