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Abstract

Consider the scattering of a time-harmonic acoustic plane wave by a bounded
elastic obstacle which is immersed in a homogeneous acoustic medium.
This paper is concerned with an inverse acoustic-elastic interaction problem,
which is to determine the location and shape of the elastic obstacle by using
either the phased or phaseless far-field data. By introducing the Helmholtz
decomposition, the model problem is reduced to a coupled boundary value
problem of the Helmholtz equations. The jump relations are studied for
the second derivatives of the single-layer potential in order to deduce the
corresponding boundary integral equations. The well-posedness is discussed
for the solution of the coupled boundary integral equations. An efficient and
high order Nystrom-type discretization method is proposed for the integral
system. A numerical method of nonlinear integral equations is developed for
the inverse problem. For the case of phaseless data, we show that the modulus
of the far-field pattern is invariant under a translation of the obstacle. To break
the translation invariance, an elastic reference ball technique is introduced.
We prove that the inverse problem with phaseless far-field pattern has a
unique solution under certain conditions. In addition, a numerical method of
the reference ball technique based nonlinear integral equations is proposed
for the phaseless inverse problem. Numerical experiments are presented to
demonstrate the effectiveness and robustness of the proposed methods.
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1. Introduction

Consider the scattering of a time-harmonic acoustic plane wave by a bounded penetrable
obstacle, which is immersed in an open space occupied by a homogeneous acoustic medium
such as some compressible inviscid air or fluid. The obstacle is assumed to be a homogeneous
and isotropic elastic medium. When the incident wave impinges the obstacle, a scattered
acoustic wave will be generated in the open space and an elastic wave is induced simultane-
ously inside the obstacle. This scattering phenomenon leads to an acoustic-elastic interaction
problem (AEIP). Given the incident wave and the obstacle, the direct acoustic-elastic interac-
tion problem (DAEIP) is to determine the pressure of the acoustic wave field and the displace-
ment of the elastic wave field in the open space and in the obstacle, respectively; the inverse
acoustic-elastic interaction problem (IAEIP) is to determine the elastic obstacle from the far-
field pattern of the acoustic wave field. The AEIPs have received ever-increasing attention due
to their significant applications in seismology and geophysics [35]. Despite many work done
so far for both of the DAEIP and TAEIP, they still present many challenging mathematical and
computational problems due to the complex of the model equations and the associated Green
tensor, as well as the nonlinearity and ill-posedness.

The phased IAEIP refers to the IAEIP that determines the location and shape of the elastic
obstacle from the phased far-field data, which contains both the phase and amplitude infor-
mation. It has been extensively studied in the recent decades. In [10, 11], an optimization
based variational method and a decomposition method were proposed to the IAEIP. The direct
imaging methods, such as the linear sampling method [40, 41] and the factorization method
[16, 29, 49], were also developed to the corresponding inverse problems with far-field and
near-field data. For the theoretical analysis, the uniqueness results may be found in [40, 43]
for the phased IAEIP.

In many practical applications, the phase of a signal can not be measured accurately com-
pared with its modulus or intensity. Thus it is often desirable to solve the problems with phase-
less data, which are called phase or phase retrieval problems. These problems have a long
history in industry. They arise from diverse fields of science and engineering, such as electron
microscopy, astronomy, crystallography, optical imaging, and so on. We refer to [44, 46] for a
review on various methods of recovering phases for phase retrieval problems in protein crys-
tallography and optical imaging, respectively. It is worthy to point out the method of phase
retrieval combining holography [12], which is to interfer an electromagnetic field carrying
some image with another electromagnetic field of the same frequency and a known structure.
The method developed in this work is indeed closely related to the holography.

The phaseless IAEIP is to determine the location and shape of the elastic obstacle from the
modulus of the far-field acoustic scattering data, which contains only the amplitude informa-
tion. Due to the translation invariance property of the phaseless far-field field, it is impos-
sible to uniquely determine the location of the unknown object by a plane incident wave,
which makes the phaseless inverse problem much more challenging than the phased counter-
part. Various numerical methods have been proposed to solve the phaseless inverse obsta-
cle scattering problems, especially for the acoustic waves which are governed by the scalar
Helmbholtz equation. For the shape reconstruction with one incident plane wave, we refer to
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the Newton iterative method [33], the nonlinear integral equation method [17, 19], the fun-
damental solution method [27], and the hybrid method [36]. In particular, the nonlinear int-
egral equation method, which was proposed by Johansson and Sleeman [25], was extended to
reconstruct the shape of a sound-soft crack by using phaseless far-field data from a single inci-
dent plane wave [13]. To reconstruct the location and shape simultaneously, Zhang et al [54,
55] proposed an iterative method by using the superposition of two plane waves with different
incident directions to reconstruct the unknown object. In [22], a phase retrieval technique
combined with the direct sampling method was proposed to reconstruct the location and shape
of an obstacle from phaseless far-field data. The method was extended to the phaseless inverse
elastic scattering problem and phaseless IAEIP [21]. We refer to [45, 47, 50, 52, 53] for the
uniqueness results on the inverse scattering problems by using phaseless data. Related phase-
less inverse scattering problems as well as numerical methods can be found in [1, 3-5, 23, 30,
37, 51]. Recently, a reference ball technique based nonlinear integral equations method was
proposed in [9] to break the translation invariance from phaseless far-field data by one incident
plane wave. In our recent work [8], we extended this method to the inverse elastic scattering
problem with phaseless far-field data by using a single incident plane wave to recover both the
location and shape of a rigid elastic obstacle.

In this paper, we consider both the DAEIP and IAEIP. In particular, we study the IAEIP of
determining the location and shape of an elastic obstacle from the phased or phaseless far-field
data with a single incident plane wave. The goal of this work is fivefold:

(1) deduce the jump relations for the second derivatives of the single-layer potential and the
coupled system of boundary integral equations;

(2) prove the well-posedness of the solution for the coupled system and develop a Nystrom-
type discretization for the boundary integral equations;

(3) show the translation invariance of the phaseless far-field pattern and present a uniqueness
result for the phaseless IAEIP;

(4) propose a numerical method of nonlinear integral equations to reconstruct the obstacle’s
location and shape by using the phased far-field data from a single plane incident wave;

(5) develop a reference ball based method to reconstruct both the obstacle’s location and
shape by using phaseless far-field data from a single plane incident wave.

For the direct problem, instead of considering directly the coupled acoustic and elastic wave
equations, we make use of the Helmholtz decomposition and reduce the model problem into
a coupled boundary value problem of the Helmholtz equations. The method of boundary
integral equations is adopted to solve the coupled Helmholtz system. However, the bound-
ary conditions are more complicated, since the second derivatives of surface potentials are
involved due to the traction operator. Therefore, we investigate carefully the jump relations
for the second derivatives of the single-layer potential and deduce coupled boundary int-
egral equations. Moreover, we prove the existence and uniqueness for the solution of the
coupled boundary integral equations, and develop a Nystrom-type discretization to efficiently
and accurately solve the direct acoustic-elastic interaction problem. The proposed method is
extremely efficient for the direct scattering problem since we only need to solve the scalar
Helmbholtz equations instead of solving the vector Navier equations. Related work on the
direct acoustic-elastic interaction problems and time-domain acoustic-elastic interaction
problem can be found in [2, 24, 39, 48].

For the inverse problem, motivated by the reference ball technique [38, 50] and the recent
work [8, 9], we give a uniqueness result for the phaseless IAEIP by introducing an elastic ref-
erence ball, and also propose a nonlinear integral equations based iterative numerical scheme
to solve the phased and phaseless IAEIP. Since the location of reference ball is known, the
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method breaks the translation invariance and is able to recover the location information of
the obstacle with negligible additional computational costs. Numerical results show that the
method is effective and robust to reconstruct the obstacle with either the phased or phaseless
far-field data.

The paper is organized as follows. In section 2, we introduce the coupled acoustic-elastic
interaction problem and show the uniqueness for the coupled boundary value problem by
using the Helmholtz decomposition. In section 3, we study the jump properties for the second
derivatives of the single-layer potential and deduce the coupled boundary integral equations.
The existence and uniqueness are established for the solution of the coupled boundary integral
equations. Section 4 is devoted to the translation invariance and the uniqueness for the phase-
less IAEIP. Section 5 presents a high order Nystrom-type discretization to solve the coupled
boundary value problem. In section 6, a method of nonlinear integral equations and a refer-
ence ball based method are developed to solve the phased and phaseless inverse problems,
respectively. Numerical experiments are presented to demonstrate the effectiveness of the
proposed methods in section 7. The paper is concluded with some general remarks and direc-
tions for future work in section 8.

2. Problem formulation

Consider the scattering problem of a time-harmonic acoustic plane wave by a two-dimen-
sional (2D) elastic obstacle D with a sufficiently smooth boundary I'p. The elastic obstacle D
is assumed to be homogeneous and isotropic with a mass density p., and the exterior domain
R2\ D is assumed to be filled with a homogeneous and compressible inviscid air or fluid
with a mass density p, > 0. Denote by v = (vy,1,)" and 7 = (—v,11) " the unit normal
vector and the tangential vector on I'p, respectively. Let v, = (va, —1/1)T = —7. Given a
vector function U = (Uj, Ug)T and a scalar function u, we introduce the scalar and vector
curl operators

curlU = 0,,U, — 0,,Uy, curlu = (0y,u, —8xlu)T.

Specifically, the time-harmonic acoustic plane wave is given by u™(x) = e'®*¢ where
d = (cos,sin @) is the propagation direction vector, and # € [0,27) is the incident angle.
Given the incident field '™, the direct problem is to find the elastic wave displacement
U € (C*(D) N C'(D))? and the acoustic wave pressure u € C2(R? \ D) N C'(R? \ D), which
satisfy the Navier equation and the Helmholtz equation, respectively:

pAU + (A4 p)VV - U +w?p.U =0 in D, .1
Au+r2u=0 in R*\D. (2.2)
Moreover, U and u are required to satisfy the transmission conditions
1
T(U)=~uv, U-v=——0,u onIp. (2.3)
w2 pa

The scattered acoustic wave pressure u® := u — u'™ is required to satisfy the Sommerfeld

radiation condition

lim r? (Opu® —iku®) =0, r= x| 2.4)

r—00
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Here w > 0 is the angular frequency, k, = w/c is the wavenumber in the air/fluid with the
sound speed ¢, and A, u are the Lamé parameters satisfying p > 0, A + g > 0. The traction
operator T is defined by

TU) :=po,U+ A+ pw)(V-O)v.

It has been shown (see [39, 48]) that with a slightly different definition of traction opera-
tor T, the scattering problem (2.1)—(2.4) admits a unique solution (U,u) for all but some
particular frequencies w, which are called the Jones frequencies [26]. At the Jones frequency,
the acoustic wave field u is unique, but the elastic field U is not unique. In our case, although
the definition of the traction operator is different, following exactly the same argument as that
in [39, 48], we can also show the existence of the solution (U, «) for all w except the Jones
frequencies. Since the Jones frequency happens only for some special geometries [26], for
simplicity, we assume that D does not admit any Jones mode and the AEIP (2.1)-(2.4) has a
unique solution (U, u) throughout this work.

For any solution U of the elastic wave equation (2.1), we introduce the Helmholtz
decomposition

U=V¢+ curl ¢, (2.5)
where ¢, 1 are two scalar potential functions. Substituting (2.5) into (2.1) yields
VA +2p)A¢ + w?ped] + curl (uAY + w?petp) =0,

which is fulfilled if ¢ and v satisfies the Helmholtz equation with a different wavenumber

Ap+rpp =0, A¢+ kY =0.

1/2 1/2
aeletg)” )
A+2u W

is the compressional wavenumber and the shear wavenumber, respectively.
Substituting the Helmholtz decomposition into (2.3) and taking the dot product with v and
T, respectively, we obtain

uv -0,V + pv-dycurl p — (A + ,u)/qlz)qs +u' =fi,
ut -0,V + ut - dycurl ¢ = fo,
Dy + 0:1p — 0yu* (W pa) = f3.

Here

where

fi=—u", =0, fi=0,u"/(wp,)

In summary, the scalar potential functions ¢, 1 and the scattered acoustic wave u® satisfy
the following coupled boundary value problem

Ap+ryp =0, AY+rip =0, in D,

Au® + K2u® =0, inR?\ D,

uv - 0,V + pv - dycurl p — (A + u)nf)qb +ut =fi, onI'p,
T7-9,Vo+T1-0,curly = f, onTp, (2.6)
0y ¢ + 0r1) — Oyu® [ (W2py) = f, onI'p,

lim r2 (8 — ikqu) = 0, r=|x|.

r—00
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The following result concerns the uniqueness of the boundary value problem (2.6).

Theorem 2.1. The coupled boundary value problem (2.6) has at most one solution for
kp > 0,65 > 0,5, > 0.

Proof. It suffices to show that ¢ = = u® =0 when f; = f, = f3 = 0. It follows from
straightforward calculations that

—/ w0, usds = wzpa/ (uv -0, Vo + pv - dycurl p — (A + ,u)/i;gzﬁ)(aua + 0r1)ds
Tp I'p

= wzpa/ (10, (Vo + curly) - v — (A + p)/{%(ﬁ) (Vo +curl §) - v)ds

I'p
+ wzpa/ (10, (Vo + curl ) - 7) (V¢ + curl 4) - 7) ds
Tp
= wzpa/ (10, (Vo + curl ) - vv + ud, (Vo + curl ) - 77 — (A + p)r o)
I'p
. ((Va +curl ¥) - vv + (Vé + curl 9) - TT) ds

= wzpa/ (10, (V¢ + curl ¥) — (A + ,u)/i}z,gby) - (V¢ + curl ¢)ds
T'p

= w?p, / (uV(Vo +curl ) : V(Ve + curl ) + (A + 1)V - (Vo + curl 3)
D
V- (V¢ +curl ) — w?pe (Vo + curl ¢)) - (V¢ + curl 9))dx = 0,
where A : B = tr(AB") is the Frobenius inner product of square matrices A and B. The last

two identities follow from Green’s formula and the Navier equation (2.1). Taking the imagi-
nary part of the above equation yields

S/ u*o,usds =0,
I'p

which gives that u® = 0 in R?\D by Rellich’s lemma. Using the continuity conditions (2.3),
we conclude that U is identically zero in D provided that there is no Jones mode in D. Hence,

V¢ = —curly inD,

which implies A¢ = 0 and Ay = 0. The proof is completed by noting that A¢ = ﬂf%(ﬁ =0
and A) = —k2p = 0in D. O

It is known that a radiating solution of the Helmholtz equation (2.2) has the asymptotic
behaviour of the form

i |x]
w'(x) = eﬁ{um(fc) +0 (|xl|> } as |x| — oo,

uniformly in all directions X :=x/|x| The function u,, defined on the unit circle
Q = {x € R?: |x| = 1},isknownasthe far-field patternof u®. Let B = {x € R? : |x — xo| < R}
be an artificially added elastic ball centered at xy such that B C R?\ D. The problem geom-
etry is shown in figure 1. For brevity, we denote the boundary of D and B by I'p and I'p,
respectively. The phased and phaseless IAEIP can be stated as follows:
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|tool; [ — 00

Figure 1. Geometry of the scattering problem with a reference ball.

Problem 1 (Phased IAEIP). Given an incident plane wave '™ with a single incident di-
rection d and the corresponding far-field pattern u, (%), Vi € §2 due to the unknown obstacle
D, the inverse problem is to determine the location and shape of the boundary I'p.

Problem 2 (Phaseless IAEIP). Given an incident plane wave #™™ with a single incident
direction d and the corresponding phaseless far-field pattern |u.. (X)|, Vi € €2 due to the scat-
terer D U B, the inverse problem is to determine the location and shape of the boundary I'p.

3. Boundary integral equations

In this section, we derive the boundary integral equations for the coupled boundary value
problem (2.6) and discuss their well-posedness.

3.1. Jump relations

We begin with investigating the jump relations for the surface potentials at the boundary I'p.
For given vectors a = (aj, az)—r € R2, denote

Va= (Va,,Va,)", Va' =(Va,,Vay) = (Va)'.

For a given scalar function f(x,y), define

9yt 0%y
V)’(vxf) = vayf = [azy 62);{]
X2y

Y

and
2 2 2 2
fo0.u.f| |n Oy Ooyf | |1
vaT , — X1Y1 X1y , IXVT , — X2)1 X2y .
( yf l/) |:a%2)’lf ngyzf 2 (cur yf V) _831y1f _a,%]yzf 2
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Denote the fundamental solution of the 2D Helmholtz equation by
: L
D(x,y; k) = ZHO (klx=y]), x#y,

where H(()l) is the Hankel function of the first kind of order zero. The single- and double-layer
potentials with density g are defined by

0P (x,y; K)
ov(y)

In addition, we define the tangential-layer potential by

n(x) = / B(x.y: K)g()ds(),  x(x) = / ¢()ds(y), x€ R\ Tp.

9 (x,y; ) )
(= [ TR g0)asty). e B\,
r, O1()
The jump relations can be found in [6] for the single- and double-layer potentials as x — I'p.
It is necessary to study the jump properties for the derivatives of those layer potentials in order
to derive the boundary integral equations for the coupled boundary value problem (2.6).

Lemma 3.1. The first derivatives of the single-layer potential 1) with density g € C%*(I'p),
0 < a < 1, can be uniformly extended in a Holder continuous fashion from R \ D into R? \ D
and from D into D with the limiting values

()20 = [ V.Byme0)d0) F 308 v€To G
where
(Vi)+() i= lim (Vi) (x & ho ().

Moreover; for the single-layer potential 1 with density g € C%*(I'p), 0 < a < 1, we have

(curl n)L(x) = / curl, ®(x,y; k)g(y)ds(y) £ %T(x)g(x), xelp. (32
I'p

Proof. Noting
Vi®(x,y; k) = =V, @(x,y; k) (3.3)

and
0P (x,y; k)
v(y)

0D (x,y; k)

V,@(x, k) = v(y) a7 (y)

7(v) (34

we may similarly show (3.1) by following the proof of theorem 2.17 in [6]. It is clear to note
(3.2) by combining the fact that curl n = (V) , v, = —7 and the jump relation (3.1). []

Lemma 3.2. The first derivatives of the double-layer potential x with density g € C**(I'p),
0 < a < 1, can be uniformly extended in a Holder continuous fashion from R? \ D into R? \ D
and from D into D with the limiting values
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(x, y; k)v(y)g(y)ds(y) + /F curl, ®(x, y; F»)%(y)dS(y)

(V00 = [

I'p

(3.5)

Proof. Using the jump relation (3.2) and the identities
VV b= Ab+ curlcurl b

and

—AdD(x,y; k) = mzq)(x,y; K)y, X#Y,

we may easily show (3.5) by following the proof of theorem 7.32 in [32] and theorem 2.23 in

[6]. l
Theorem 3.3. For the tangential-layer potential { with density g € C'*(T'p), 0 < a < 1,
we have
0 1 0
(VO=(x) = = | Vab(ry30) 52 ()ds(y) & 3v(0) 521, x€ln. (3.6)
' or 2 or
Proof. Using integration by parts, we have
9P (x,y) / T O(® o p)(x,5)
x) = ds(y) = ———"(gop)(c)G(s)ds
¢(x) L o) g(y)ds(y) | o) (gop)(<)G(s)
c=2rn 27
=(@op)xo)(gor) )| | — /0 (@0 p)(x.<)(gop)(s)ds

= — X '/ﬁ% \)
= [ #rm oo,

for x € R?\I'p, where we have used T'p = {p(s) = (pi1(s),p2(c)); 0 < s <27} and
G(s) := |p'(s)|is the Jacobian of the transformation. With the help of jump relation (3.1) of
the first derivatives of the single-layer potential in Lemma 3.1, we obtain the jump relation
(3.6) immediately. O

Theorem 3.4. The second derivatives of the single-layer potential 1 with density
g € C(I'p), 0 < a < 1, can be uniformly extended in a Holder continuous fashion from
R?\ D into R*\ D and from D into D with the limiting values

(V9T )s0 = = [ @) 0T 0]s0)ast) — [ [ P2 eun ax i) asty

v r, L OT
- /FD [%U)ijb(x,y; 7)|ds(y) ¥ 19(sv) 10(gr)

()7 (x) F (x)v'(x), xelp

2 Or
3.7

and



Inverse Problems 36 (2020) 035014 H Dong et al

(wrt s ) = [ by [ro0 T )]0+ [ [Z0 eurt] b))

o [ [P 00w o ast) £ 525 0 (0 5 B8 00T (0, 5 T

(3.8)

Proof. Using (3.3)—(3.4), we have from taking the second derivatives of the single-layer
potential that

(VVT)(x) = g Vi(Vi®(x, y:£))g(v)ds(y) = =V, g Vy®(x, y; £)g(y)ds(y)
B D(x,y; k) 0P (x,y; k)
==V, . V()’)ai() g(y)ds(y) — Vi . T(Y)T(y)g(ﬂds()’)-

Combining the above equation and the jump relations (3.5)—(3.6) gives (3.7).

Analogously, noting curl n = (Vn),,v; = —7and 7, = v, we have
(curlV ") (x) = g V(Vi®(x,y; £)) L8(y)ds(y)
=V [ () by )g(y)dS(y) — Vi v(y) by )g(y)dS(y)~
T ov(y) rp o7(y)
Applying the jump relation (3.5)—(3.6) again yields (3.8). O

In view of 9,,(Vn) = (VV 'n,v), 8, (curl ) = (curlV "5,v) and theorem 3.4, we have
the following result.

Corollary 3.5. For the single-layer potential 1 with density g € C*(I'p), 0 < a < 1, we
have on I'p that

W) = = [ ey T 0] s)ast) — [ 2T 2 sy

+ [ CEnR O (ast) 3 5 D )

v(x) or 2 Or
and
T = [ ey )T )]st + [ S asiy
19(gv)

9 (x,y; k) I(gv)
+/FDT()C) or (y)ds(y)qti or (x),

where

10
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3.2. Boundary integral equations

We introduce the single-layer integral operator and the corresponding far-field integral operator

Silg)(x) = 2/F ®(x,y;5)g(yv)ds(y), x€Tp,

528 () = 7 / eI (y)ds(y), F € Q,

where y,, = ¢™/*/\/8km, the normal derivative integral operator

Kl =2 [ P85S e, e,

and the tangential derivative integral operator

o) =2 [ P2 gasp), st

which is a singular integral operator and the integral exists in the sense of Cauchy principal
value, see [32, chapter 7].
Let the solution of (2.6) be given in the form of single-layer potentials, i.e.

o(x) = / B(x.y: rp)g1 ()ds(y).  x € D, 3.9)
B(x) = / B(x.y: k) g2()ds(y). x €D, (3.10)
us(%)=/F ®(x,y; ka)g3()ds(y), x€R*\D, (3.11)

where the densities g; € C1*(I'p), g2 € C*(T'p), and g3 € C1*(I'p).

Letting x € D tend to boundary I'p in (3.9)—(3.10) and x € R? \5 tend to boundary I'p in
(3.11), using the jump relations of the single-layer potentials, lemmas 3.1 and 3.2, corollary
3.5, and the boundary conditions of (2.6), we obtain on I', that
2f1(x) = — ,tmguTS,€p [VyTg]] v+ ,uyTKK,p [70-81 + £10-7] — ,uZ/TH,Cp [vO-g1 + 810 V]

+ priv 'S, [rv T go)v + pv K, [v0-g2 + 20| + T Hy, [70-80 + 820, 7]
— (A )rpSe 1] + Sk lgs] + p(v - 9,7)g1 + p(v - 8,v)g2 + 10 o,
2f(x) = — nf,TTSKp [VVTg]]Z/ + 7'TKKp [T@Tgl + glﬁfﬂ — 7'TH,€p [V@Tgl + glaTV] (3.12)
+ K2 S [rv T @]+ 7K, [V0-82 + 82070 + 7T Hy [70,80 + 820, 7]
+ (7- : a7'7—)gl + a7'gl + (T : aTV)gL
263(x) = K, l&1] + Ha[82] — K, [83]/(0Ppa) + &1 + g3/(wpa).
The far-field pattern is

Uoo (X) = Vs, / e e (y)ds(y), *e Q. (3.13)
I'p

1
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We point out that v and 7 inside of [-] are given with respect to the variable y; otherwise v and
7 are taken with respect to the variable x. For brevity, we shall adopt the same notations in the
rest of the paper but they should be clear from the context.

Now we discuss the uniqueness and existence of the solution for the integral equation (3.12).

Theorem 3.6. There exists at most one solution to the boundary integral equation (3.12)

if Kk, is not the eigenvalue of the interior Dirichlet problem of the Helmholtz equation in D.

Proof. It suffices to show that g, = g» = g3 = 0if fi = f> = f3 = 0 for equations in (3.12).
For x € R? \ T'p, we define single-layer potentials

o) = [ @il )s0)
P(x) = /F D(x, y; Ks)g2()ds(y),
u'(x) = /F D(x, y; Ka)g3(y)ds(y).

Let
. ¢i, x€D . ’(/)i, xeD
ox) = {@, x€R\D’ Vx) = {¢e, x€R\D’

and

ul, x€D
wx) = {uls x€RN\D’

e’

Since ¢;, ¢; and u satisfy the boundary value problem (2.6), they are identically zero by theo-
rem 2.1. Using the jump condition of single layer potentials, we have on 0D that

e — i =0, t—1; =0, (3.14)
81/¢e - 8V¢i = =81 au"/}e - aVwi = —&2. (3.15)

Combining (3.14) and the fact ¢; = 1); = 0 in D, we derive that ¢, and 1), satisfy the zero
boundary condition on dD. By the uniqueness of the exterior problem for the Helmholtz equa-
tion, it holds that ¢, = 1, = 0 in R?\D. We conclude that g; = g = 0 by (3.15). Similarly,
we have on 9D that

=0, (3.16)
Opu, — Oyu; = —gs. (3.17)

By (3.16), we see that u satisfies the zero Dirichlet boundary condition. Since &, is not the ei-
genvalue of the interior Dirichlet problem, we conclude that u; is identically zero in D, which
implies g3 = 0 by (3.17). [l

Theorem 3.7. There exists a unique solution to the boundary integral equation (3.12) if

none of kp, Ks OF K, IS the eigenvalue of the interior Dirichlet problem of the Helmholtz equa-
tion in D.

12
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Proof. Since the original coupled equations (2.1)—(2.4) admit a unique solution (u, U), by
the Helmholtz decomposition U = V¢ + curl ¢, we have on 0D that

op+0-v=U-v, Op—0,0=U-7.

Plugging the single layer representations (3.9) and (3.10) for ¢ and ¢ into the above equa-
tions and using the jump property of boundary integral operators, we have

{U+&Q&+Hmnzﬂﬂu

H,@pg] —(I—‘rKRS)gz:ZU'T (318)

where [ is the identity operator. Following the conclusion in [34, theorem 4.1], we have that
the boundary integral equation (3.18) admits a solution (g, g2) when neither , nor & is the
eigenvalue of the interior Dirichlet problem of the Helmholtz equation in D. For g3, since «, is
not an interior Dirichlet eigenvalue either, the single layer operator Sy, is invertible. Therefore

_ ¢o—1ls
& =S, u.

Based on the construction, one can easily see that g, g» and g3 satisfy the boundary integral
equation (3.12). O

4. Translation invariance and a uniqueness result

In this section, we present the translation invariance of the phaseless far-field pattern and
prove a uniqueness result for the phaseless IAEIP. We assume that the solution (U, u*) solves
the following boundary value problem

pAU + (A + p)VV - U + w?p.U =0 in D, 4.1)
Au + K2 =0 in R?\ D, 4.2)

TU) + v'v = —u™v,  Ou’ — o U-v=—0,u™ on I'p,
(4.3)

lim 72 (Opu® —iku®) =0 (4.4)

r—00

for all w except the Jones frequencies.

Theorem 4.1. Let uo, be the far field pattern of the scattered waves u® with the incident
plane wave u™ (x) = e*«¥*, For the shifted domain Dy, := {x + h : x € D} with a fixed vector
h € R?, the far-field pattern u®, satisfies

Wl () = =DMy (%),
Proof. Denote (U, ufl) by the solution of above boundary value problem (4.1)—(4.4) for Dy,

We claim that

{Uh(y) = e"dhy(y — h), Yy € Dy,

uj(y) = €5y — k), Vy € R?\ D 4.5)

13
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In fact, since the boundary value problem (4.1)—(4.4) exists a unique solution and noting that
the Sommerfeld radiation condition is invariant under translations of the origin [7], it only
need to verify that (Uy,u;) shown in (4.5) satisfies the boundary condition (4.3). That is,
Vy € I'p,, we have

T(Un)(y) + u,(y)va(y) = e"” (%U(y —h)+ A+ p)(V-Uly —m)u(y) +u'(y - h)vh(y)>
= e (1) =)+ - iy =)

— gitad-h ( _ emad~(yfh)l/(y _ h)> _ _uinc(y)l/h(y)

and the second boundary condition of (4.3) on I'p, can be verified in the same way.
Using (4.5), we obtain
Ou;,

i ou’
gy ) =T (v —h), Wy eTp, (4.6)
Vp

ov

Then, combining (4.5) and (4.6) and [7, theorem 2.6], far field pattern satisfies

Oe~ kY gus s
ey — s _ Ot () iy
) = | {40757 Gaore s

; N Qeimaty gy e
_ alfa(d—3)-h s o —iraky L g
e Ve, /F ) {u S e } s(y)

— ema(d—fc) 'huoo ()AC)

which completes the proof. O

Theorem 4.1 implies that the location of the obstacle can not be uniquely recov-
ered by the modules of far-field pattern when the plane wave is used as an incident field.
To overcome this difficulty, motivated by [50], we may introduce an elastic reference ball
B = B(x0,R) = {x € R? : |x — xo| < R} to the scattering system in order to break the transla-
tion invariance.

Assume that P is a disk (with positive radius) such that P C R?\ (D U B) and &2 is not a
Dirichlet eigenvalue of —A in P. Denote the boundary of P by P. Consider that the incident
wave is given by a plane wave u"(x, d) and a point source v'"(x, z), i.e. u"(x,d) = elr+*4
and v"(x,z) = ®(x,z;Ka), Where z € OP is the source location. Assume further that
{5 p(x)(x,d), uy g(x,2)} and {v}, p(x,2),v35(%,2)} are the scattered field and the far-
field pattern generated by D U B corresponding to the incident field u'™(x,d) and 0™ (x, z),
respectively.

The next lemma shows a mixed reciprocity relation for the acoustic-elastic interaction
problem. A similar result for acoustic obstacle scattering problem can be found in [7, theorem
3.13].

Lemma 4.2 (Mixed reciprocity relation). For acoustic-elastic interaction problem
(2.1)—(2.4) with point source v**¢ and plane wave u*™°, we have the relation

v>°(=d,z) = v u'(z.d), zER*\D, dcQ. 4.7

14
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Proof. From Green’s theorem, we have

inc é inc _ ,,inc 2 inc
O/FD{U (,z)ayu (,d)—u (,d)av (,z)}ds

0= US(-,Z)—MS(-,d)—us(-,d)gv‘(-,z) ds.
IR )

With the aid of [7, theorems 2.5 and 2.6], we have
1 0 . ) o
o) = [ (o g - e Lo fas

Ve v

0 . 0
S,d: s.’dilnc.’ _vlnc_, 73",(1 ds.
) = [ {0 — 0 ) o
We now subtract the last equation from the sum of the three preceding equations to obtain

Lo (d2) ~ w(ed) = / {z;(.,z)(jju(.,d) _ u<.,d>§yv<.,z>} ds.

Vea

Using boundary condition (2.3) for solutions (u, U) and (v, V) and the Betti formula, we get

%ﬂv%d,n —w(ed) = o, / {1069 V) - T V2 s =0

which gives (4.7) and completes the proof. ]

Now we present a uniqueness result for the phaseless inverse scattering problem. A similar
uniqueness result may be found in [50, theorem 4.1] for the phaseless inverse medium scat-
tering problem.

Theorem 4.3. Let D; and D; be two elastic obstacles with smooth boundaries, and w is
not a Jones frequency either for D or for D,. Suppose that the far-field patterns satisfy the
following conditions:

|up, s (% do)| = |up, (%, do)l, Vi e, (4.8)
[y us(%,2)| = [v3us (%, 2)], V(x,z) € Q x OP, (4.9)
lup, (X, do) + vp,up(%, 2)| = |up,up(X,do) + vpup(X,2)l,  V(,2) € 2 x OP (4.10)

for a fixed dy € €, then Dy = D.

Proof. By (4.8)-(4.10), we have

R{up 5%, do)vRy p(%, 2)} = R{ug (% do)vpy (%, 2)}, VieQzeor

In view of (4.8) and (4.9), we assume that

upsp (R do) = r(R, do)e 0, sy (3,2) = s(h,2)eEI,j=1.2,

15
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where (%, do) = |ug (% do)|. s(x.2) = [vFp(X.2)|, (X, do) and f(X,z) are real-valued
functions, j = 1,2. From Lemma 4.2, we have that

v°(X,2) = v’ (z, —%), Vi€ Q,zeOP. 4.11)

Using (4.11) and the analyticity argument in [50, theorem 3.1], we obtain that

up,up(xd) = €7Dy, p(rd), Vx e R\ (D1UDyUB), —d€ S(’4 12)

where (%) 1= (%, dy) — aa(X,dy) —2mm, X €S, m € Z, and S C 2 is an open arc. Fur-
thermore, for x € I'p, —d € S, we get

. ous d ) ous d
uh, g, d) = eV CDus, p(x,d), um#fc) = elv(fd)%@)'

Noting that the total fields (up, s, Up,us) and (up,us, Up,up) are the solutions of (2.1)—(2.4)
corresponding to the scatterers D; U B and D, U B, respectively, we find that

i(x,d) == up,up(x.d) — " Dup,p(x.d), U(x,d) := Up,up(x.d) — e “DUp, p(x.d)

satisfy the Navier equation and the Helmholtz equation

pAU + A+ p)VV - U + w?p.U =0 in B,
A+ r2i=0 inR*\D,UD,UB,

and the transmission conditions on I'p

T(U) = —av, U-v= Dy i. (4.13)

w?py

Suppose that (w(x, dp), W(x,dp)) is the solution of (2.1)—-(2.4) corresponding to the single
reference ball B with incident plane wave '™ (x, dy), then the far-field w™ (%,dp) # 0, % € Q.
Using the Betti formula and the transmission condition (4.13), and noting the identity

i(x,d) = (1 — e D)™ (x, d), @(x, d)=(1- eiv(—d))aL

% £y (x,d), VxeTlp,—deS,

we have
0= | {TON0.d0) D) = T@)0)- W) s

= [ {0 Z5D a0 2

- =

et O™ (3,d) e Ol do)

o w2 P, I's {w(y, o) ov u(y.d) ov }ds(y)
—(1 — (=)

_ me(d, dy), Y—deSs.
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We claim [w™(—d, dy)| £ 0, V — d € S. Otherwise, we obtain by using the analytic con-
tinuation that w™(%,dy) = 0, Vi € (2. This is a contradiction. By continuity, there exists an
open curve S C S, such that [w™(—d, do)| # 0, V — d € S, which implies that e"7(~9) = 1 for
—d € §. From (4.12), we have

ugy up(k.d) = uy p(x.d), V(x, —d) € QxS.

Again, using the reciprocity relation and the analyticity of ”(L))fu p(%,d) for j = 1,2, we obtain
that the far-field patterns u3’ ;3 and ug;, g coincide for all observation and incident directions
x,d € Q. We conclude from [40, theorem 4.1] that D = D,. O

Remark 4.4. In view of the proof of theorem 4.3, we can also assume that the scatterers
Dy, D, and the reference ball B possess different mass densities and Lamé parameters.

Remark 4.5. Theorem 4.3 only gives a sufficient condition to uniquely reconstruct the the
unknown obstacle D with phaseless data. We expect that the uniqueness result may also hold
with much less data. In particular, in our numerical experiments, we do not use the phaseless
far-field data generated by the point source v'™(x,z) with z € OP, although in this case, the
uniqueness result is still under investigation.

5. Nystrém-type discretization for boundary integral equations

In this section, we introduce a Nystrom-type discretization for the boundary integral equa-
tions and present some effective numerical quadratures to handle the singular integrals.

5.1. Parametrization

For simplicity, the boundary I'p is assumed to be an analytic starlike curve with the param-
etrized form

Ip={pX) =c+r(X)i c= (c],cz)T, xeQ},

where = {&(¢) = (cost,sinft)T; 0 <t < 27}. We introduce the parametrized integral
operators which are still represented by S, S.°, K,; and H,; for convenience, i.e.

2

(Sk[9:p]) (1) = ; M(t,s; k)9(s)ds,

transformation,

17
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(1,50 = LHO (slp(0) — p(o))

ik H{Y (slp(1) — p(s)])
Kirsim) =500 () = PO =070
I Y (slp(r) — p(<)))
H(t,g,ﬁ)_En(t)l-[p(c)—P(f)] PO —pe)

and
0l 0] = (P40, 2i0) . 7 =vop.

/
n(0* =70l 0l = (Pi0.pa(0) . F=Top.

Thus, (3.12) can be reformulated as the parametrized integral equations

>
—
=

|

wi = — pkpi ' S, (007 01Gip| i + pir Ky, 7o) + 7 p1:p] — pir He, [0 + 7013 p)
+pii0 S [F07 2Gip| i+ i T Kie [0 + 0'paip] + ub T Hie [T + 7' p2:p]
— (A + w)rpSi, [91G: pl + Sk, [93Gs pl + (7 - 7)p1 /G + (0 - 7)) 02 /G + g /G,

wy = — Ko Sy, [P0 01Gip|i + 7T Ky [0} + 7 o1:p]) — 7 Hy, [0 + 7 p1:p] (5.1)
+ KT8 [T07 aGipl 0+ 7T Ko [0 + 7 paip] + 7T Hy [7h + 7 ipaip]
+(7-7)e1/G+¢1/G+ (7 7)p2/G.

w3 =Ky, [¢1G: p| + Hi [02G; p] = K, [93G:p] /(WP pa) + 1 + 03/ (P pa),

o T

where w; =2(fiop), ¢i=(gop), ¥ =(gop), j=123 and 7 :=(7,7
V= (o), 1) .

To avoid calculating the derivative of the Jacobi G in numerical discretization, we trans-
form the parametrized integral equation (5.1) to

s

wy = — /u-cﬁz?TSKP [nnTgél;p}D + MDTKKP [nﬂé/l + nlltﬁl;P] - MDTHKp [ngb’l + n'g51;17]
+ urlo TS, [nJ‘nTcﬁz;p] U4 u Ky, [ncﬁé + n'@z;p] + ui "H,, [nJ‘cﬁé + nJ‘,gég;p]
— (A WS, [B1G7 P+ 8. [@3G75p) 4 a7 )31 /G o+ (') 62/ G+ i,
wy = — k277 S, [T G1ip] D+ 7 Ky [0 3 + 0t Grip] — 7T H, [0 40/ Grsp] (5.2)
+ 827 TS, [ntn T Gospl o + 7 Ky, [ngh 4+ '@ p| + 7 Hye [0t + nJ‘/gbg;p]
+ (7 nt)E /G4 @+ (F )3 /G,
w3 =Ky [21G%p] + Hy, [22G%: p] = Ky [$3G%5 P/ (w?pa) + $1G + 3G/ (w0 pa),

where ¢ = ¢1/G, 1 = 1,2,3,n' = (p}, —p}) T, and n*" = (p,pf) 7.
5.2. Discretization

As in [7, section 3.5], the kernel M and K of the parametrized single-layer and normal deriva-
tive integral operators can be written in the form of

18
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M(t,g;/f) :]l~41(t,g;m) In <4sm tT) +M2(t S K),

K(t,;k) = Ki(t,<;5) In <4sin2 %) + Ky (1,6 k),
where

W(1.63) = —5Jolslp(t) — p(s)).

Mz(t,g;/i)=A~4(t,§;/-€)—]l~/ll(t,g;) (4s1n 2g>

R4 = 52000 [p(0) (9] (|p|<p § 5 <<(>g|)|)’

. ~ . t
K>(t,s;k) = K(t,5; k) — Ki(t,5: k) In <4sin —),

\S)

and the diagonal terms are given as

_ U T B
Mi(15ik) = =, Mot tim) = 5 = = 7T1n(2G(z)),
. . 1 n()-p"(1)
Ki(t,t; k) =0, K(t,tk) = — ,
1) 25 = o TP

with the Euler constant E. = 0.57721 - - -
For the kernel H of parametrized tangential derivative integral operator, analogously to [8],
we split the kernel in the form

H(t,¢; k) = fll(t,g;n)ﬁ + Hy(t,5; k) In (4sm %) + Hs(t,; k),
where

- L ln . B sin(¢ — 1)

Hi(ts55) = — )" [p(s) — p(2)] FORT O

Hy(t,6;K) = %n(t)l [p@t) = p(s)] d (|/;|5)(t);(p§()§|)|)’

Hy(t,s:5) = H(t,5; k) — Hy (1,63 k) —

~ . t—¢
—  _E(t,R)] (4 2—)
R Py 2(t,6; k) In (4sin 7

turn out to be analytic with the diagonal terms

~ 1 ~ ~
Hi(t,t;k) = —, Hy(t,t; k) =0, Hi(t,t;k) =0.
™

Let gj(")

egrals of weakly singular and singular, by making use of quadrature rule in [7, equation (3.93)]
and our previous work [8, equation (4.6)], we employ the following quadrature rules

:=mj/n, j=0,---,2n — 1 be an equidistant set of quadrature nodes. For the int-

2n—1

2 t n n n
/o In <4s1n T)Q ¢)ds &~ Z R( (1 j( ))f(gj( ))’ (5.3)
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2n—1

m 1 n n n
/0 mQ(n $)f(c)ds ~ ]:ZO 7" (100(t.5") (™), (5.4)

where the function Q is required to be continuous, and the quadrature weights are given by

n—1
Rj(n)(f) = *2% Z % cos [ (rt— §(n))} % cos [n(t - gj("))]

m=1

[ o] - -
—2z Z"/zolsm [(2m+1)(t7<(n))} n=246---.

On the other hand, with the help of trapezoidal rule

2nl

Zf ) (5.5)
and Lagrange bases
Ln(s) = {l—l—ZZcosk —g(my +cosn(<—§,£,”))}

for the trigonometric interpolation, we design the following quadrature rules for the integra-
tion with derivatives of a function involved

2n 12n—1
Q(l ) f' (s)ds ~ = Z > 00 £(5™).
j=0 m=0 (56)
2 f—c 2n—12n—1
AldmﬁﬁﬁmmW@&%ZE}ﬁﬂﬂw@#M@%
=0 m=0 (5.7)
27 1 2n—12n—1
/ ————0(r.)f (s~ D N a1 (0. ) (™),
o sin(¢ —1) o~
J= (5.8)

(n)

where we have setd,,”; = L (g,(,,")), and the quadrature weights are given by

I e N e S R
! 0, j=0.
To obtain a Nystrom-type discretization, we use the following combination

2n—1

2" () = > 1L(<)

J=0

with unknowns T;I) = {él(gj(")) as finite dimensional approximation of the densities ¢,
I =1,2,3. Then, the derivative @] can be approximated by
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2n—1

(n 1
2" () =31 L),
j=0

Hence, in view of the quadrature rules (5.3)—(5.8), the full discretization of (5.2) can be

deduced as a linear system with unknowns Tj(l),l =1,23,j=0,1,--- ,2n— 1.

6. Reconstruction methods

In this section, we introduce the iterative methods and the algorithms for the phased and
phaseless IAEIP.

6.1 lterative method for the phased IAEIP
We assume that the field equations are given in (3.12), and the data equation is given by
S: [83] = too.
Thus, the field equations and data equation can be reformulated as the parametrized integral
equation (5.1) and
S lp3Gipl = wee, (6.1)

where Wo, = Uso O p.

In the reconstruction process, when an approximation of the boundary I'p, is available, the
field equation (5.1) are solved for the densities ¢;, [ = 1,2, 3. Once the approximated densities
p; are computed, the update of the boundary I'p can be obtained by solving a linearized data
equation for (6.1) with respect to I'p.

6.1.1. lterative scheme. The linearization of (6.1) with respect to a given p requires the
Fréchet derivative of the parameterized integral operator S.°, which can be easily computed
and is given by

27

e AR CRCECT

2T
= —iKkY, / exp (—ik(cr cost + exsint + r(s) cos(r — <))
0

- (Acycost + Acysint + Ar(<) cos(r — <)) (<) ds,
(6.2)

where g(¢) = (Acy, Acy) + Ar(s)(cos g, sin ) is denoted as the update of the boundary T'p.
Then, the linearization of (6.1) leads to

52" [03G; plg = w, (6.3)
where
W= Woo — S3- [03G; ).

Here, we apply the regularization techniques to overcome the ill-posedness of the lin-
earized data equation (6.3). In order to apply Tikhonov regularization, the injectivity and
denseness of the range for operator S,;’j' are proved in [18, theorems 4.1 and 4.2] with the
assumption that k2 is not an interior Neumann eigenvalue for the negative Laplacian in D.
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Table 1. Parametrization of the exact boundary curves.

Type Parametrization
Apple-shaped po(f) = 25 (H?f&?; ’;g‘t' s20) (cost, sint), t € [0,27]
Peanut-shaped pp(f) = 0.654/0.25 cos? ¢ 4 sin® t(cos t,sin ), ¢ € [0, 27]

These properties imply that Tikhonov regularization combined with the discrepancy principle
is a regularizing scheme. Analogously to [18], we can control the size of D such that k, k2, k2
are not interior Dirichlet eigenvalues and k2 is not a interior Neumann eigenvalue to ensure
the existence and uniqueness of a solution to the boundary integral equations involved in the
algorithm. We refer to [20, equation (3.5)] for an interrelation between the iterative scheme of
Johannson and Sleeman [25] and the traditional Newton iterations [14, 28, 31]. Theoretically,
the convergence of regularized Newton iterations for inverse obstacle scattering problems has
not been completely settled due to its highly ill-posedness and it remains an open problem
[7, 20, 31]. We refer to [15, 42] for the promising convergence results of regularized Newton
iterations for inverse obstacle scattering problems.

As usual for iterative algorithms, the stopping criteria is necessary to justify the conv-
ergence numerically. With regard to our iterative procedure, the relative error estimator is
chosen as follows

[Woo — 82 [3G:p™]|

[Pocll.2

E; = <e 6.4)
for some sufficiently small parameter € > 0 depending on the noise level, where p® is the kth
approximation of the boundary I'p.

We are now in a position to present the iterative algorithm for the inverse obstacle scatter-
ing problem with phased far-field data as algorithm I.

Algorithm I. Iterative algorithm for the phased IAEIP.

Step 1 Send an incident plane wave u™™ with a fixed wave number «, and a fixed
incident direction d € §2, and then collect the corresponding far-field data uo,
for the scatterer D;

Step 2 Select an initial star-like curve ') for the boundary I'p, and the error tolerance
e. Setk=0;

Step 3 For the curve r®, compute the densities ¢;, [ = 1,2, 3 from (5.1);

Step 4 Solve (6.3) to obtain the updated approximation T*+1) := T®) 4+ 4 and evaluate
the error Ey, defined in (6.4);
Step SIf Ejy1 2> €, then set k = k + 1 and go to Step 3. Otherwise, the current

approximation T*+1) is taken to be the final reconstruction of I'p.

6.1.2. Discretization. We use the Nystrom-type method which is described in section 5 for the
full discretizations of (5.1). Now we discuss the discretization of the linearized equation (6.3)
and obtain the update by using the least squares with Tikhonov regularization [31]. As for a
finite dimensional space to approximate the radial function r and its update Ar, we choose the
space of trigonometric polynomials of the form
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Z Q,y, COSMS + Z B SIn mg

m=0

where the integer M > 1 is the truncation number. For simplicity, we reformulate the equa-
tion (6.3) by introducing the following definitions

Li(t,5;¢) == —ikaYs, exp { —ika(c) cost + ¢ sint + (<) cos(t — <)) } cost ¢(s),

La(1,55¢) 1= —ikae, exp { —ika(c1 cost + crsint + r(c) cos(t — <)) } sint ¢(c),

Lym(t,550) := —ikaYs, exp { —ika(c1 cost + casint + r(s) cos(t — <)) } cos(r — <) cos ms (<),
Liw (1,63 9) == —ika Ve, exp { —ika(c1 cost + casint + r(c) cos(t — <)) } cos(r — <) sinme o(<)

Then, by combining (6.2) and (6.3) together and using trapezoidal rule (5.5), we get the dis-
cretized linear system

2 M
Z Blc(gi(n)>Acl + Z OémBi ") + Z Bm 2m W(gi(”)) (65)
=1 m=0

todetermine thereal coefficients Acy, Acs, i, and 3,,, where gl-(" =mi/n, i=0,1,---,2n—1
are the far-field observation points in [0, 27],

an

(™ ZL (5,6 03G)

forl=1,2, and

2n1 2nl

(q(n) Z L3 m (” Y ” SD3G) B; (n) Z L4 m 5 C ’ ()03 G)

In general, 2M + 1 < 27, and due to the ill-posedness, the overdetermined system (6.5)
is solved via the Tikhonov regularization. Hence the linear system (6.5) is reformulated into
minimizing the following function

2ii—1 2

>

i=0

2 M M
STB(S) A+ Y anB (67 + 3 BB (7)) = wl(s™)

=1 m=0 m=1
M
Z (02 + B2 )D (6.6)

with H? penalty term, where A > 0 is a regularization parameter. It is easy to show that the
minimizer of (6.6) is the solution of the system

l\) \

n )\(|Ac1|2 Al + 27r[

(M + R(B*B))¢ = R(B*W), (6.7)
where

B = (B{,B5. B Bl yBhys - ,B;,M)(zﬁ)x(m“),
§= (Acl,Acz,ao,--- S, B ,ﬁM)T,
I =diag{1,1,2m,7(1 + 122, ,7(1 + M2, n(1 +12)%,- - 7 (1 + M?)?},

W=l ol )T
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Thus, we obtain the new approximation

PV (x) = (c+ Ac) + ( (x) + Ar(ic))fc.

6.2. lterative method for the phaseless IAEIP

To incorporate the reference ball, we find the solution of (2.6) with D replaced by D U B in the
form of single-layer potentials with densities g; 5, 2. and g3 »:

9= / B(x.y: rp)81.0(7)d5(), 68)
0=3 / B(x.y: 1) 82,0 (Y)d5(). 69)

X)=>_ /F 0 D(x, y; Ka) 3.0 (1)ds (), (6.10)

for x € R?\ T'pus, where o = D, B.

Furthermore, we introduce following integral operators, i.e.

ST =2 [ BymgO)B0), e T,

o

Sl = [ RO)0), ren
Kzl =2 [ P, e,

el =2 [ D gas), xer,

where ¢ = D, B. Then, letting x € R?> \ D U B tend to boundaries I', and I'p respectively in
(6.8)—(6.10), and making use of the jump relation of the single-layer potentials and the bound-
ary condition of (2.6) for I'p_p, we can readily deduce the following field equations in the
operator form on I'p:

2fi =

2 =

TSDD [vpvp g1.0]vp + MVEKD'D [Toamgl b + 81,007,

TsDD[

— pkpv
D.D T

— pvp HY P [vp0r,81.0 + 81.00m, VD) + gy, ToVp 82.0| VD

+ pvp KD [vp0r,82.0 + 82.007,vp| + pvp H2P 150,820 + 82.007,7p]

+ uvp - 3unVSg;D[gl 8] + pvp - Oy,curl SB’D[ng] - (A + u)FLZ (SDD[gl p] + 8% [gl 5))

SDD[g% p] + SB [g3.8] + p(vp - Or,70)g1.0 + (VD - Orpyvp)g2.0 + 107,820, (6.11)

TSDD [VDV;&,D] vp + TJKS’D [TDangl b+ 81.007,7p]

— K7D
—Tp HD [vpOr,81.0 + 81,007, vp] + k2P S2P [TV g2.0] VD

+ 1 K ,.;S [Vbamgz,z) + gz,DarpVD] +7p HD [TDaTDgZ,D + gz,DarDTD]
+ 7D - 8VDVS£’;D [g1.8] + 7p - Oypcurl SﬁsD [22.5]

+ (7p - 07,70)&1.0 + 07,810 + (T - 07, VD) 820 (6.12)
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2 = K2P[g1o) + K2P (18] + HP P [g2.0] + HEP 28] — (K2 g3.0] + K2 (83.8]) /(w0 pa)

+ &1p+ gS,D/(sza)a
(6.13)
and on I'p the field equations are the same as above with superscript/subscript D and B inter-
changed. The phaseless data equation is given by

Z Slzj,a[gld]

In the reconstruction process, the field equations are solved for g, 82, and g3, with an
approximation of the boundary I'p. Then, by keeping g ., g2+ and g3, fixed, the update of
the boundary I'p can be obtained by linearizing (6.14) with respect to I'p.

2
= Juoo . (6.14)

6.2.1. Parametrization and iterative scheme. For simplicity, the boundary I'p and I'p are
assumed to be starlike curves with the parametrized form

Ip={pp(&) =c+r@@)i c=(c1,c2)", x € Q},
Tp={p(x) =b+Ri; b= (b,by)", ¥ € Q},

where Q= {&(t) = (cost,sint)"; 0 <t <27} We assume Gp(s):=|p'(s)| =
(r'(s))? + r2(c) and Gp = R denoted as the Jacobian of the transformation.
Now, we reformulate the phaseless data equation (6.14) as the parametrized integral
equations

2
‘ZSiig[%.aGa;pa] = [uco|’, (6.15)

where @3, = g3 0 p,, 0 = D, B. By recalling the Fréchet derivative operator S°'[p; ¢]q in
(6.2), the linearization of (6.15) leads to

2R (Z Sif.’,a [SOS,O'GO';pO'}S:(:/[@3,DGD;pD]q> =W, (6.16)

where

2
W= |uo<,|2 —

Z S:j,o [903,0 GU;PU]

Again, with regard to our iterative procedure, the relative error estimator is chosen as
following

2
|too|* — Sif,p[sﬂs,DGDmgc)] + SZ?,B[@&BGB;PB]’
E = L. (617
[ el
LZ

for some sufficiently small parameter € > 0 depending on the noise level, where pgc) is the kth
approximation of the boundary I'p.
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Figure 2. Reconstructions of an apple-shaped obstacle with phased data
at different levels of noise (see Example 1). The initial guess is given by
(cio),cgo)) = (—0.6,—0.3), 7 = 0.4andtheincidentangle§ = 7/8.(a) Reconstruction
with 1% noise, € = 0.2. (b) Relative error with 1% noise. (c) Reconstruction with 5%
noise, € = 0.2. (d) Relative error with 5% noise.

The iterative algorithm for the phaseless IAEIP is given by algorithm II.

Algorithm Il. Iterative algorithm for the phaseless IAEIP.

Step 1 Send an incident plane wave u™™ with a fixed wave number &, and a fixed
incident direction d € €2, and then collect the corresponding far-field data u,
for the scatterer D U B;

Step 2 Select an initial star-like curve T for the boundary I'p, and the error tolerance

€. Setk=0;
Step 3 For the curve I'®), compute the densities ¢y 5, 2, and @3, from field equations;

Step 4 Solve (6.16) to obtain the updated approximation I'**1) := T'®) 1 ¢ and evaluate
the error Ej defined in (6.17);
Step 5 If Exy1 = €, then set k = k + 1 and go to Step 3. Otherwise, the current

approximation I'®+1) is served as the final reconstruction of T'p.
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Figure 3. Reconstructions of a peanut-shaped obstacle with phased
data at different levels of noise (see Example 1). The initial guess is
given by (cio),cgo)) =(-0.67,-0.12),r®» =04 and the incident angle

6 = 137 /8. (a) Reconstruction with 1% noise, € = 0.25. (b) Relative error with 1%
noise. (¢) Reconstruction with 5% noise, € = 0.25. (d) Relative error with 5% noise.

6.2.2. Discretization. Noting that the kernels of S7-¢, K7-¢ and Hy ¢ are weakly singular when
o = p. With the help of quadrature rules (5.3)—(5.8), the full discretization of (6.11)—(6.13)
can be handled the same as those described in section 5.

In addition, we introduce the following definition
Mp(t,5;¢) := Y, exp { —ika(c1 cost + ez sint + r(s) cos(t — <)) } ¢(s),
Mp(t,5;0) := 7, exp {—ika(c1 cost + casint + Reos(t — <)) } o(<),

2n—1

_ T _ _
Z SI;..;,U [@3,0(;02170—] (gi(n)) - ; Z (MD(gi(n) 5 gj(n); 803,DGD) + MB(gi(n)7 gj(n); @3,DGD)) .
o Jj=0

Then, we get the discretized linear system
2 ) M . M . )
A A+ Y anAl (67 + D Budb () =) (6.18)
=1 m=0 m=1
to determine the real coefficients Acy, Ac,, o, and 5,,, where

27



Inverse Problems 36 (2020) 035014 H Dong et al
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Figure 4. Reconstructions of an apple-shaped obstacle with different initial guesses,

where 1% noise is added and the incident angle § = 7/6. (a) (cgo), Cgo)) (—0.6,0.6),
’0=04,e=02;(b) (cio),c2 ) = (0.4,-0.9), ¥ = 0.7, € = 0.15 (see Example 1).
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Figure 5. Reconstructions of a peanut-shaped obstacle with different initial
guesses, where 1% noise is added and the incident angle 6 = 7/3 (see Example 1).

@ (") =(-08503), F0=04, =025 (b) (c\”,c”)=(08,-0.1),
0 =0.47,¢=023.

2n—1

7 ™
A5 (6") = 2R{ 237522 (030G o( ZLI 6 030Go)

o

forl=1,2, and

Al ") —2§R{ ZS o 103.0GoiPo)( (") X_: C,(") QOzDGD)}

2n—1

A3,,(s; ™) = 2%{ Zsmao[%a o3 Do) (S " )) L4,m(§i(ﬁ),€j(");903,DGD)}-
0
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Figure 6. Reconstructions of an apple-shaped obstacle with different incident directions,
where 1% noise is added and the initial guess is given by (cgo),cgo)) =(-0.8,-0.1),
1 = 0.38 (see Example 1). (a) Incident angle # = 5m /3, € = 0.2; (b) incident angle
0 =107/7,e=0.2.
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Figure 7. Reconstructions of a peanut-shaped obstacle with different incident directions,

where 1% noise is added and the initial guess is given by (

) (0)

c1”,6) =(—05,-0.2),

1 = 0.4 (see Example 1). (a) Incident angle § = ,e = 0.2;(b)incidentangle § = 37/2,
e=0.2.

Similarly, the overdetermined system (6.18) is also solved via the Tikhonov regularization

with H? penalty

term which is introduced in section 6.1.2.

7. Numerical experiments

In this section, we present some numerical examples to illustrate the feasibility of the iterative
reconstruction methods. We use a single plane wave to illuminate the obstacle. The synthetic
far-field data and phaseless far-field data are numerically generated by the Nystrom-type
method described in section 5. In order to avoid the inverse crime, the number of quadrature
nodes used in the inverse solver (n = 64) is chosen to be different from that of the direct solver
(n = 100). The noisy data u, s and |uoo,5|2 are generated in the following way
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Figure 8. Reconstructions of an apple-shaped obstacle with different levels of noise by

using phaseless data and a reference ball (see Example 2). The initial guess is given by
(cgo), Cgo)) = (—0.6,0.3),7® = 0.3, the incident angle # = /6, and the reference ball
is (b1, b2) = (6.2,0), R = 0.74. (a) Recnstruction with 1% noise, ¢ = 0.05. (b) Relative
error with 1% noise. (¢) Reconstruction with 5% noise, ¢ = 0.1. (d) Relative error with

5% noise.

Uso s = uoo(l =+ &b),

o5 = [u[*(1 + 6w),

where @ = w0 + ity Wi, w, and w are normally distributed random numbers ranging in
[—1,1], 6 > 0 is the relative noise level. In addition, we denote the L2 relative error between

the reconstructed and exact boundaries by

(k)
Err, = ||PD PD||L2(Q)
||PD||L2(Q)

In the iteration process, we obtain the update & from a scaled Newton step with the Tikhonov

regularization and H? penalty term, i.e.

¢ = p(\ + R(B*B)) ' R(B"W),
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Figure 9. Reconstructions of a peanut-shaped obstacle with different levels of noise by
using phaseless data and a reference ball (see Example 2). The initial guess is given by
(cgo), Cgo ) = (=0.7,0.2), /9 = 0.3, the incident angle § = 7 /6, and the reference ball
is (b1, by) = (6.6,0),R = 0.71. (a) Reconstruction with 1% noise, e = 0.1. (b) Relative

error with 1% noise. (¢) Reconstruction with 5% noise, € = 0.1. (d) Relative error with
5% noise.

where the scaling factor p > 0 is fixed throughout the iterations. Analogously to [9], the regu-
larization parameter A in (6.7) is chosen as

A = Hwoo — S,;“;[%G;p(k)]

,k=1,2,---.
12

In all of the following figures, the exact boundary curves are displayed in solid lines, the
reconstructed boundary curves are shown in dashed lines ——, and all the initial guesses are
taken to be a circle which is indicated in the dash-dotted lines -—. The incident directions are
denoted by directed line segments with arrows. Throughout all the numerical examples, we
take \ = 3.88, u = 2.56, the angular frequency w = 0.7, the densities p, = 2 and p, = 1,
the wave number x, = 2, the scaling factor p = 0.9, and the truncation M = 6. We present
the results for two commonly used examples: an apple-shaped obstacle and a peanut-shaped
obstacle. The parametrization of the exact boundary curves for these two obstacles are given
in table 1.
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Figure 10. Reconstructions of an apple-shaped obstacle with different initial guesses,
where 1% noise is added, the incident angle 6 = 117/6, and the reference ball is

(b1.by) = (6.2,0), R = 0.65 (see Example 2). (a) (c\”,c!”) = (—0.6,0.3), ¥ = 0.3,
e=0.15; (b) (c\V,¢l”) = (—0.6,0.3), KO = 0.7, e = 0.15.
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Figure 11. Reconstructions of a peanut-shaped obstacle with different initial guesses,
where 1% noise is added, the incident angle # = /3, and the reference ball is

(b1.by) = (6.7,0), R = 0.67 (see Example 2). (a) (c\”,c!”) = (=0.7,0.2), #¥ = 0.3,
e=0.1; () (!, V) = (0.6,-0.26), K0 = 0.3, ¢ = 0.15.

Example 1: The IAEIP with far-field data. We consider the inverse problem of reconstructing
an elastic obstacle from far-field data by using algorithm I. The synthetic far-field data is
numerically generated at 128 points, i.e. 7 = 64. In figures 2 and 3, the reconstructions of an
apple-shaped and a peanut-shaped obstacles with 1% and 5% noise are shown, respectively.
Moreover, the relative L? error Err, between the reconstructed and exact boundaries and the
error Ey defined in (6.4) are also presented with respect to the number of iterations. As we can
see from the figures, the trend of two error curves is basically the same for larger number of
iteration. Therefore, the choice of the stopping criteria is reasonable. The reconstructions with
different initial guesses for the two curves are given in figures 4 and 5, and the reconstructions
with different directions of incident waves are presented in figures 6 and 7. As shown in
these results, the location and shape of the obstacle could be simultaneously and satisfactorily
reconstructed for a single incident plane wave.
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Figure 12. Reconstructions of an apple-shaped obstacle with different reference balls,

where 1% noise is added, the inciedent angle § = 57/6, and the initial guess is given by
(e, ) = (~0.6,0.3), 7 = 0.3 (see Example 2). (a) (by.bs) = (6,0),R = 0.35,
€ =0.2; (b) (by,b2) = (—6,0),R = 0.6, ¢ = 0.15.
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Figure 13. Reconstructions of a peanut-shaped obstacle with different reference
balls, where 1% noise is added, the inciedent angle # = 117/6, and the initial

guess is given by (cio),cgo)):(fOJ, —0.1),79 =03 (see Example 2). (a)

(b1,by) = (—7.8,0),R = 0.47, ¢ = 0.2; (b) (b1, by) = (6.6,0),R = 0.71, ¢ = 0.1.

Example 2: The TAEIP with phaseless far-field data and a reference ball. By adding a refer-
ence ball to the inverse scattering system, we consider the inverse problem of reconstructing
an elastic obstacle from phaseless far-field data based on algorithm II. The synthetic phaseless
far-field data is numerically generated at 64 points, i.e. 7 = 32. The reconstructions with 1%
noise and 5% noise are shown in figures 8 and 9, respectively. Again, the relative L* error Erry
and the error Ej are presented in the figures. The reconstructions with different initial guesses
for the two curves are given in figures 10 and 11. The reconstructions with different reference
balls are shown in figures 12 and 13. From this example, we found that the translation invari-
ance property of the phaseless far-field pattern can be broken down by introducing a reference
ball. Based on this algorithm, both the location and shape of the obstacle can be satisfactorily
reconstructed from the phaseless far-field data for a single incident plane wave.
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8. Conclusions

In this paper, we have studied the 2D inverse acoustic scattering problem by an elastic obstacle
with the phased and phaseless far-field data for a single incident plane wave. Based on the
Helmbholtz decomposition, the coupled acoustic-elastic wave equation is reformulated into a
coupled boundary value problem of the Hemholtz equations, and the uniqueness of the solu-
tion for this boundary problem is proved. We investigate the jump relations for the second
derivatives of single-layer potential and establish coupled boundary integral equations. We
prove the well-posedness of the solution for the coupled boundary integral equations, and
develop an efficient and accurate Nystrom-type discretization to solve the coupled system.
The method of nonlinear integral equations is developed for the inverse problem. In addition,
we show that the phaseless far-field pattern is invariant under translation of the obstacle. To
locate the obstacle, an elastic reference ball is introduced to the scattering system in order to
break the translation invariance. We establish the uniqueness for the IAEIP with phaseless
far-field pattern. A nonlinear integral equation method is proposed for the inverse problem.
Numerical results show that the location and shape of the obstacle can be satisfactorily recon-
structed. Future work includes the uniqueness for the phaseless inverse scattering with one
incident plane wave and the extension of the method to the three-dimensional (3D) inverse
scattering problem. For the 3D problem, since the Helmholtz decomposition leads to a system
involving both the Helmholtz equation and the Maxwell equation, both numerical schemes
and theoretical analysis become much more complicated. We are currently investigating the
3D problem and hope to report the progress elsewhere in the future.
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