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Abstract

This paper is concerned with the mathematical analysis of an inverse random
source problem for the time fractional diffusion equation, where the source
is driven by a fractional Brownian motion. Given the random source, the
direct problem is to study the stochastic time fractional diffusion equation.
The inverse problem is to determine the statistical properties of the source
from the expectation and variance of the final time data. For the direct
problem, we show that it is well-posed and has a unique mild solution under
a certain condition. For the inverse problem, the uniqueness is proved and the
instability is characterized. The major ingredients of the analysis are based
on the properties of the Mittag—Leffler function and the stochastic integrals
associated with the fractional Brownian motion.

Keywords: fractional diffusion equation, inverse source problem, fractional
Brownian motion, uniqueness, ill-posedness

(Some figures may appear in colour only in the online journal)

1. Introduction

In the last two decades, the fractional differential equations (FDEs) have received ever-increas-
ing attention by many researchers due to their potential applications in modeling real physi-
cal phenomena. For examples, the FDE can be used to describe the anomalous diffusion in a

3 Author to whom any correspondence should be addressed.

1361-6420/20/045008+30$33.00 © 2020 IOP Publishing Ltd  Printed in the UK 1



Inverse Problems 36 (2020) 045008 X Feng et al

highly heterogeneous aquifer [1], the relaxation phenomena in complex viscoelastic materials
[10], the anomalous diffusion in an underground environmental problem [13], and a non-
Markovian diffusion process with memory [26]. We refer to [11] for some recent advances in
theory and simulation of the fractional diffusion processes.

Motivated by significant scientific and industrial applications, the field of inverse problems
has undergone a tremendous growth in the last several decades since Calderén proposed an
inverse conductivity problem. Recently, the inverse problems on FDEs have also progressed
into an area of intense research activity. In particular, for the time or time-space fractional dif-
fusion equations, the inverse source problems have been widely investigated mathematically
and numerically. Compared with the semilinear problem [25], many more results are available
for the linear problems. The linear inverse source problems for fractional diffusion equa-
tions can be broadly classified into the following six cases: (1) determining a space-dependent
source term from the space-dependent data [3, 9, 18, 19, 36-38, 4042, 44, 47, 48]; (2) deter-
mining a time-dependent source term from the time-dependent data [14, 23, 24, 35, 45]; (3)
determining a time-dependent source term from the space-dependent data [2, 15]; (4) deter-
mining a space-dependent source term from the time-dependent data [50]; (5) determining a
space-dependent source term from the boundary data [43]; (6) determining a general source
from the time-dependent data [28]. Despite a considerable amount of work done so far, the
rigorous mathematical theory is still lacking [16], especially for the inverse problems where
the sources contain uncertainties, which are known as the inverse random source problems.

The inverse random source problems belong to a category of stochastic inverse problems,
which refer to inverse problems that involve uncertainties. Compared to deterministic inverse
problems, stochastic inverse problems have substantially more difficulties on top of the exist-
ing obstacles due to the randomness and uncertainties. There are some work done for the
inverse random source scattering problems, where the wave propagation is governed by the
stochastic Helmholtz equation driven by the white noise. In [8], it was shown that the correla-
tion of the random source could be determined uniquely by the correlation of the random wave
field. Recently, an effective computational model was developed in [4—7, 20-22], the goal was
to reconstruct the statistical properties of the random source such as the mean and variance
from the boundary measurement of the radiated random wave field at multiple frequencies.

The work is very rare for the inverse random source problems of the fractional diffusion
equations. In [30], the authors presented a study on the random source problem for the frac-
tional diffusion equation. Specifically, they considered the initial-boundary value problem

O%u(x, t) — Au(x, 1) = f(x)h(t) + g(x)W(t), (x,¢) € D x (0,T),

u(x, 1) =0, (x,t) € 0D x [0,T],  (1.1)

u(x,0) =0, x €D,
where D is a bounded domain with the Lipschitz boundary 9D, f and g are deterministic func-
tions with compact supports contained in D, A is also a deterministic function, W and W are
the Brownian motion and the white noise, respectively, and 0%u(x, 7),0 < o < 1is the Caputo
fractional derivative given by

1 t Ou(x,s) _ds
9 E 0, 1 Py
8?14()(7, t) = T'(l—a) JO 0s (1—s)> (0% ( )
Ou(t,x), o=1

Here I'(«) = fooo e~*s*~!ds is the Gamma function. For the model problem (1.1), the authors
studied the inverse problem of reconstructing f(x) and g(x) up to sign, i.e. +g(x) or equiva-

lently |g(x)

, from the statistics of the final time data u(x, T') with % < a < 1. It was shown
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that f and |g| can be uniquely determined by the expectation and covariance of the final data,
respectively. Besides, they also showed that the inverse problem is not stable in the sense that
a small variance of the data may lead to a huge error of the reconstruction. Naturally, one may
ask the following two questions:

QI. Can the results be extended to 0 < « < 1 for the Brownian motion?
Q2. Can the results be extended to the fractional Brownian motion?

Motivated by above reasons, the main purpose of this paper is to study the inverse source
problem for the time fractional diffusion equation, where the source is assumed to be driven
by a more general stochastic process: the fractional Brownian motion B#(¢) with € (0, 1]
and H € (0,1), where H is called the Hurst index of the fractional Brownian motion (FBM).
The FBM is a widely used stochastic process that is particularly suited to model short- and
long-range dependent phenomena, and anomalous diffusion in a variety of fields including
physics (e.g. motion of ultra-cold atoms), hydrology (e.g. ground water flow and solute trans-
port), biology (e.g. motion of tracer particles in living biological cells), network research (e.g.
traffic in communication networks), financial mathematics (e.g. derivatives of the stock), etc.
Clearly, the model equation (1.1) is reduced to the classical heat conduction equation with the
Brownian motion for & = 1. In this work, we give affirmative answers to Q1 and Q2. For Q1,
due to the singular integral (see lemma 3.4 in [30] or the proof later in this paper), the results
can not be extended; for Q2, the results can be extended as long as o + H > 1. For the restric-
tion o + H > 1, it is not difficult to understand since both H and o imply some smoothness
requirement of the solution for the model equation.

The rest of this paper is organized as follows. In section 2, we introduce some preliminar-
ies for the time-fractional diffusion equation and the Mittag—Leffler function. Section 3 is
concerned with the well-posedness of the direct problem. Section 4 is devoted to the inverse
problem. The two cases H € (0, 3) and H € (3, 1) are discussed separately for both of the
direct and inverse problems. The paper is concluded with some general remarks and directions
for future research in section 5. To make the paper easily accessible, some necessary notation
and useful results are provided in appendix on the fractional Brownian motion.

2. Preliminaries

Let (2, F,P) be a complete probability space on which the fractional Brownian motion B is
defined with H € (0, 1). Here 2 is a sample space, F is a o-algebra on €2, and P’ is a probabil-
ity measure on the measurable space (2, F). For a random variable X, we denote by E(X) and
V(X) = E(X — E(X))* = E(X?) — (E(X))? the expectation and variance of X, respectively.
For two random variables X and Y, Cov(X, Y) = E[(X — E(X))(Y — E(Y))] denotes the cova-
riance of X and Y. In the sequel, the dependence of random variables on the sample w € 2 will
be omitted unless it is necessary to avoid confusions.

Consider initial-boundary value problem of the fractional diffusion equation with a random
source driven by the fractional Brownian motion

OCu(x,1) — Au(x,1) = f(x)h(t) + g(x)B (1), (x,1) € D x (0,T),
u(x, 1) =0, (x,t) € 9D x [0,T], (2.1)
u(x,0) =0, x€D.

Let {Ar, ¢}, be an eigen-system of the operator —A with the homogeneous Dirichlet
boundary condition. The eigenvalues satisfy 0 < A\ < Ay < --- < A\ < -+ - with Ay — oo as
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k — 0o, and the eigen-functions {¢;}22, form a complete and orthonormal basis for LX(D).
Hence, any function v in L*(D) can be written as

oo
V= E ViPk
k=1

with coefficients {v;}¢2,. Noting that B" is a distribution instead of a classical function, the
equation (2.1) does not hold pointwisely. Instead, it should be interpreted as an integral equa-
tion, and its mild solution is defined as follows based on the Mittag—Leffler function. We refer
to [12] and references therein for more details on the Mittag—Leffler function.

Definition 1. A stochastic process u taking values in L*(D) is called a mild solution of (2.1)
if

u(x, ) = /0 (= 1) B (1 — 7)°A) f)h(r)dr + /0 (= 1) B (1 — 7)°A) g(x)dBH (1)

is well-defined almost surely, where E, g is the two-parametric Mittag—Leffler function de-
fined as

!

= Z
Eaﬂ(Z) :;m, a,ﬂ € R.

If u € L?(D) is a mild solution of (2.1), then we have equivalently

(1) =Y w()pr. 2.2)
k=1

where
u(t) = (u(- 1), Q)2 (o)
ka/ (t = 7)  Eqo (=Nt — T))R(T)dT + g / (t = 7) Eq o (=Nt — 7)*)dB (1)
0 0

= Ik’l(t) + Ik,2([),
(2.3)
where fi = (f,wx)r2py and g« = (g, i) 2y, and (1) satisfies the stochastic fractional
differential equation

D&uy () + Mg (1) = fih(1) + giB™ (1), 1€ (0,7T),
uk(O) = 0,
where Dy denotes the fractional derivative for ordinary differential equations.

In particular, if g = 0, the stochastic fractional differential equation (2.4) reduces to a
deterministic fractional differential equation

{Df‘uk(t) + M (1) = fih(r), te€(0,7),
uk(O) = O,

(2.4)

whose solution can be obtained directly by applying the following lemma.
Lemma 2.1. Consider the Cauchy problem for the fractional differential equation:

{D?v(r) — () =£(1), te(0,T),

42 (0) = v, n=0,....|al

2.5)
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If £(t) € C%Y with v € [0, &}, then the Cauchy problem (2.5) has a unique solution given by

Lo 1
V(1) =D vt"Eanii (M%) + /0 (t = 7)" " Eaa(A(r = 7)) f(r)dr.

n=0

The proof of the lemma above can be found in [17, page 230] or [32, example 4.3] by uti-
lizing some a priori estimates of the Mittag—Leffler function. The Mittag—Leffler function is
important when proving the well-posedness of the stochastic problem (2.1). For convenience,
some of its properties are given as follows.

Lemma 2.2 ([32, theorem 1.6]). If« € (0,2), 3 is an arbitrary real number and y, satis-
fies ma/2 < p < min{m, wa}, then there exists a positive constant C = C(a, [3) such that

|Eap(2)] < o p<lag(g)f <o 2] 2 0.

1+ |7

Lemma 2.3 ([35, lemma 3.2]). For A > 0,a > 0, we have

d
$Ea,1(—/\ta) = - N"E o (M%), t>0.

Lemma 2.4. For ),z € C, we have
d - (e o — (e}

EZ(ZQ 1E04,04(_)‘Z ) =z 2Ea,azfl(_)‘z )-
Proof. By [12,4.3.1]

d — o a— (e
Ez(za lEa,a(Z ) =2 2Ea.a—1(z )s

which completes the proof after using the chain rule. O

Lemma 2.5. Forany s € (0,t) and A\, > 0, there exists some constant C = C(«) such that

ra—2

t
a—1 (e} a—1 (e
1T Eq o (=AY — Eqa(—=X <C | ——d
| al=Mt%) —s a(=As)]| /SH-/\kr’lr

Proof. By lemmas 2.4 and 2.2, we have

d — o a— (e
a[ro‘ lEa,a(—)\kr ))=r 2Eo[,a_l(—)\kr )
and
C
Eqo1(=r®)| < ———.
oot (=M < 150

A simple calculation yields that
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t
\za—‘Ea,a(—Akza)—sa—‘Ea,a(—Aksaﬂ:/ 1 2 Eq o1 (=Nr®)dr
S

which completes the proof. O

Lemma 2.6 ([34]). For « € [0, 1], the function E,  is completely monotonic, i.e.

dnEaJ (—x)

S >0, x>0,neN.

(="

By lemmas 2.3 and 2.6, we have the following property of E,, .

Lemma 2.7. Fora € (0,1] and x > 0, there holds Eq o(—x) > 0 and x* 'Eq o (—Mx%) is
monotonically decreasing.

3. The direct problem

In this section, the well-posedness of the direct problem is studied. We show that the mild
solution (2.2) of the initial-boundary value problem (2.1) is well-defined under the following
assumptions.

Assumption 1. Let H € (0,1) and o € (0, 1] such that « + H > 1. Let f,g € L*(D) with
llgllz2py # 0. Assume in addition that h € L>(0,T) is a nonnegative function, i.e. h > 0,
whose support has a positive measure.

It is easy to note that the mild solution (2.2) satisfies

2

e )72 ) =

Zlkl + Lo (1)) i ()
k=1

L2(D)

= i(lk’l(t) + Ikz (Z Ik1 + ibiZ(”) ’

where Ii ) and I;, are defined by (2.3) with I;; being a stochastic integral. Hence,

o [ e
se| [ (S0 0] o
0 \i=1 k=1
= /0 (;1,31@)) dt+E /0 (;I,f,z(t)) dt]

0o T ')
= Z 11120y Jr/ <ZE [h%,z@]) dr
k=1 0 \i=1

=85 +85.

3.1
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Hereinafter a < b stands for a < Cb, where C > 0 is a constant. It then suffices to show the
boundedness of S| and S5, respectively.

ForS,bydenoting G, k() = tY 1 Eq o (—Mt®),itiseasytoseethat I 1 () = fi (Gax * ) (2).
Applying the Young convolution inequality yields

1
il < T2l Gaklle o) 17l Lo (0.1)- (3.2)
It follows from lemma 2.2 that
T T T
1Gaxllzr o) =/ |ta_]Ea,a(_)\kta>|dt5/ e = —. (3.3)
0 0 &
Combining (3.2) and (3.3), we obtain
%) T2a+1 00 T2a+1
Si=> ellZ20m) S o S PIAIE 0.7 = 7||h”zoo(o,r)\[f||i2(0)~
k=1 k=1

(3.4)
For S, it is easy to note that

E [Ilf,z(f)] =E

(] (=) Bt ﬂ“)dBHm)z]

= gE l(/ot(t — 1) Eg (=Mt — T)Q)dBH(T))Z] . (3.5)

The case H = % and o € (%, 1) has been studied in [30]. We investigate the more general case
o€ (0,1] and H € (0,1) \ {3}, in which Itd’s isometry is not available and properties of
fractional Brownian motions will be used instead.

Next, we discuss the cases H € (0, %) and H € (%, 1) separately since the covariance oper-
ator of B in I » has different forms in these two cases.

3.1 The case H € (0, 1)

It follows from appendix on the fractional Brownian motion B that the stochastic integral in
(3.5) with respect to B satisfies



Inverse Problems 36 (2020) 045008 X Feng et al

E

( / (1= 1) Bt~ ﬂ%dB”(ﬂﬂ

Ko (1= ) Ena(=Me(t = )))]* (r)dr

t

Ku(t,7)(t = 7)°*  Eqo(—=X(t — T)%)

S— S—

2
+ / [(l - u)o‘flEa,a(—/\k(l —u)®) —(t— T)O‘flEa,a(—Ak(t — 7')0‘)} Wdu} dr

t H_L )
< [C) z(fﬂ“*”‘%Ea,a(Ak(zﬂ“)} dr

* /Ot i K/: " (u T)“‘%du> (1 =7)° Ena=Mlt - T)a)} 4

+ 0’ /T’ [(l — u)o‘—lEa’a(—/\k(l _ u)a) _ ([ _ T)a_lEa,a(—)\k(f . T)a)} wd"{l dr

=15(1) + L(1) + L(1),

(3.6)
where Ky (u, 7) denotes the kernel of B given by (A.5).
For I,(¢), according to lemma 2.2, we get
1 2H—1
o= [(£)7 =R = e
< t2H71 /tT172H(t o T)2a+2H73d7_
0
2a+2H-2 3.7

<—
2a0+2H -2

under conditions H € (0,1)and a + H > 1.
For I,(f), using lemma 2.2, we have

L) = /O o ( / Pl T)Hédu>2 (1 — T2 2E2 (<Nt — 7)%)dr

t t 2
< / -2 ( / uH-%(u—T)H—édu> (t —7)%2dr. (3-8)
0 T

Since H > 0, the integral [’ u'’ =3 (u — 7)#~2du is well-defined. Furthermore, we have from
the binomial expansion that
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t
/ uH_%(u — T)H_%du
-

t 0 1
H— 3 T\"
_ 2H—-2 2 _
[ S () e
n=0
1 t2H—l—n 7_2H—1—n

- i (H; i) g

> (H-1 (—=1)"
< (£H—1 _ _2H—1 2
s T )Z( n ) 2H—-1—-n

n=0

< pH- _ 2H-1
Combing the above estimate, we obtain from (3.8) that

t
Ig(f) 5 / Tl—ZH (t4H—2 + 7_41‘1—2) ([ _ T)Za—ZdT
0

P2 s [ oot |- (202 \"
B /OT Z( n )(;) dr

n=0

o9}
20 -2\ (1)
2H+20—2 | 2H+20-2
St i nz:;) < n ) 2H +n

< t2H+2a72 (39)

where we have used conditions H € (0,3)and a € (3,1)dueto a + H > L.
For I5(t), based on lemma 2.5, there holds

(7 = w)* T Eaa (=Mt = u)*) = (1 = 7)* " Eaa(=Xe(r = 7)%)]

-
5/ ra_zdI’S(l—M)a_%(u_T)%’ O<T<u<t
t

—u

Hence,

L) S /0 M(z_ )3 (u — 7)1 (2)“ durdﬂ

which is well-defined under conditions H € (0, %) and o + H > 1. In addition, we have
(4)H=2 < 1for 0 < 7 < u < t, which leads to

2

s [[[ o onia] e

= E: (O‘; %> % 2 /0 (1 = pyean=ig

n=0
< po+2H-2 (3.10)

Plugging (3.7), (3.9), and (3.10) into (3.6), we obtain for H € (0, %) that

2

E < pot=2 (3.11)

/0 (t = 7)* " Eqo(=X(t — 7)*)dB" (1)
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3.2. The case H e (},1)

It follows from appendix again that the stochastic integral in (3.5) with respect to B satisfies

E K/Ot(t ) B (N — T)a)dBH(T)ﬂ

= aH/O /0 (¢ —p)a*lEa,a(_)\k(t —-p))(t— q)a*IEa,a(—)\k(t —9)Y)|p - Q|2H72dpdq

By lemma 2.2, we have

(Abrwwwaaurwxwﬂﬂ)j

t t
< aH/ / (t—p)*'(1—q)* 'lp— /" *dpdq
0 0

t t
= ZaH/ / p*'q* ' (p— @) dpdq
0 Jgq

! — - 2H -2 n_n ! «a —3—n
=2aﬂ/q“Z< . )(—1)61(/P+2H3 dp)dq,
0 n=0 q

where we used the binomial expansion since || < 1.

To deal with the singularity of the above integral, we consider the following two cases,
respectively.

Case I: 2H — 2 = —q. It follows from the straightforward calculations that

! - . 2H -2 n_n [05 —3—n
/OqO‘IZ( " )(—1)4(/qP+ZH3 dp)dq

! >\ [2H -2 !
-1 a—1 1\ —l—n
pldp+q Z( . )( 1)q(/qp dp)}dq

n=1

E

I
h
—
N

]
L
~—

t t

(2H =2\ (=) ([ !

=Int [ ¢* 'dg— lim q"fllnqdq—kZ( )7( ) (/ q‘kldq—f"/q"*"’]dq)
e—0+ € P n n 0 0

1% = (2H -2 a1

= () e

e} n a+n

Moreover, the condition > 0 can guarantee the convergence of the singular integrals.
Case II: 2H — 2 # —a. Similarly, we have from straightforward calculations that

' a— - 2H -2 n_n ' a —3—n
LN‘Z(nquUp%3@@
0 n=0 q
o t t
2H —2 1
_ 1 n ta+2H72fn/ n+a71d _/ 2a+2H73d
nzg( n )( )Oz+2H—2—n< Oq 1 Oq 4

B t2a+2H—2 i 2H —2 ( l)n 1
_2a+2H—2n:0 n oa+n’

where the conditions & > 0 and o + H > 1 are needed to ensure the convergence of the sin-
gular integrals.

10
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Combining Case I and Case II, we get

! > /2H -2 !
qa—l < ) -1 nqn (/ pa+2H—3—ndp> dq
/O > () e (]

_ t2a+2H72 o 2H -2 ( 1)n 1
72a+2H—2n=0 a+n

n

It is easy to know from the asymptotic expansion for the binomial coefficients that the series
in above formula is convergent. Therefore,

t 2
E K/O (r—r)“lEa,a(—/\k(t—r)“)dBH(T)) ] < ot (3.12)

3.8. Estimates of the solution

In this section, we discuss the stability of the solution. From (3.11) and (3.12) and the analysis
for H = §in [30], it holds

t 2
E l(/ (t— 1) Eqo(=N(t — T)a)dBH(T)> ] < o2 (3.13)
0
for H, a satisfying assumption 1. With the help of (3.13), we obtain the stability estimates for
the mild solution (2.2).

Theorem 3.1. Let assumption 1 hold. Then the stochastic process u given in (2.2) satisfies

E ||“||i2(Dx[0,T]) S ”h”i"o((),T)”fHIz](D) JrTzoﬁm*l||8H22(D)-

Proof. The proof follows easily from (3.1), (3.4), (3.5) and (3.13). Especially, one can
check it is also true for a = 1. O

Moreover, boundedness of the solution u in stronger norms can also be obtained.

Theorem 3.2. Let assumption 1 hold. The supremum of the expected norm of the solution
satisfies

s B[] S Wl ) + T el
\t\

Moreover, if in addition g € H*(D), there also holds

s E [, | < Wl 1) + 72 el

Proof. Thetheorem canbe provedfollowing similar arguments forthe case H = %, a € (%, 1)
in [30, lemma 3.5]. The details are omitted for brevity. O

1
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We would like to mention that the procedure above is applicable to a more general case:

Ou(, 1) + (—~AYulx, 1) = (1) + g(IBH(1), (v1) € D x (0,7),
u(x,t) =0, (x,1) € R"\D x [0, T],
u(x,0) =0, xeD,

where (—A)*, 0 < s < 1 is the fractional Laplacian, and H, « satisfying assumption 1. The
fractional Laplacian operator (—A)* is defined by (see e.g. [29, formula (3.1)]):

u(x, 1) — u(y, 1)
e =yt

>
n

(=AY u(x, 1) = C,,,Xp.v./

where C, is a positive constant depending on n and s. Using the properties of the eigen-
system for the fractional Laplacian operator (—A)* given in [46, proposition 2.1], one can also
use the method of separation of variables to obtain a mild solution. Then all the results are the
same except the second result in theorem 3.2. But it can be easily shown that if g € H*(D),
then there holds

sup B [ 1) B S 1013w 0y I oo + 7222 gl
0<I<T

We refer to [29] and references therein for more details about the fractional Sobolev space
H(D).

4. The inverse problem

In this section, we consider the inverse problem of reconstructing f and |g| from the empirical
expectation and correlations of the final time data u(x, T). More specifically, the data may be
assumed to be given by

ur(T) = (u("T)’QOk('))LZ(D)o

We shall discuss the uniqueness and the issue of instability, separately.

4.1. The uniqueness of reconstruction

It follows from (2.2) and (3.5) that

T
E(u(T)) :fk/o (T — 1) Eq o (=N (T — 7)%)h(7)dT, 4.1)

V(u(T)) = gt E

(/OT(T —7)* ' Eqa(=M(T — T)a)dBH(T)>2] (4.2)

and
Cov(ux(T), m(T)) = gkng[ (/OT(T — 1) Ega (=M (T = T)a)dB”(T)>

12
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Lemma 4.1. Let assumption 1 hold. For each fixed k € N, there exists a constant C; > 0
such that

/OT(T - T)a_lEa,a(_/\k(T - T)a)]’l(T)dT >C; >0.

Proof. Letting 7 = T — 7, we have from lemma 2.7 and assumption 1 that
T
/ (T — 7)) Eq o (=N (T — 7)*)h(7)d7
0
T
= / F  Eqa(=MF)W(T — 7)d7
0

T
> To"lEa,a(—AkT“)/ h(T — 7)d7
0

> ChTaEa!a(—)\kTa) =C; >0,
here ¢, := fOT h(T — 7)d7. It completes the proof. O

Lemma 4.2. Let assumption 1 hold. For each fixed k,l € N, there exists a constant C; > 0

such that
E[ (/OT(T )P B o (< (T — T)a)dBH(T)>
: (/OT(T — 1) Ega(—N(T — T)a)dBH(T)> ] >C, > 0.

Proof. Denote ¢(s) = (T — $)* 'Eq.o(— (T — 5)%) and

e[ ([ et ([ )]

We estimate I, for H € (3,1) and H € (0, 1), separately.
For H € (1,1), we have from (A.4) that

T T
Iu = au /0 /0 e (F)a(a) | — u~2dudr
T T
= aH/ / (T - r)“_lEa,a(—)\k(T — )T — u)“_lEa,a(—)\,(T —u)Y)|r— u|2H_2dudr
0o Jo

T T
= aH/ / O E g o (= M) u®  Eq o (= Nu®)|u — r[P2dudr.
o Jo

By lemma 2.7, the function 7%~ 'E,, ,(—\7%) is a monotonically decreasing function with
respect to 7. Hence

13
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T T
Iy > ay / / T Eq o (= MT)T ' Eq o (= NT*)|u — r|*" ~2dudr
0 0

aHTZ(a+H—1)

= FEoa(-MTNEq o (—NT®) =: '
H(2H — 1) aa(=MT)Eqa(=NT") =1 C2 >0

For H € (0, 1), by (A.6), we have
Iy = <K;I,T¢k’ K;,T¢1>L2(O,T)’

where

0Ky (u, s)
ou

Kn(T.s) = cn {(T)H (7 — 1% (Hf %) st /STuH‘?ws)H—%du] ,

) ()"

(K r0x)(s) = Ku (T, )¢ (s) + / (¢ () — di(s)) du,

Obviously, Ky(T,s) > 0 since H € (0, %), 0 < s < T. It follows from the mean value theorem
that

0Kz (u, s)

d
ou "

/ (6e(w) — &u(s))

o | (0nt) ) (4)" w9t
—an [ o) (4) w9t G<u<us)
= cudi(u;) / (4" st <<

= My (s)¢r(ui™),

where
T u Hﬁ% 1
My(s) = CH/ (;) (u—s)""2du > 0.

A simple calculation gives that

Iy = (Ku(T, 5)pi(s) + Mu(s) by (™) Ku (T, 5)d1(s) + M (s) 9 (7)) 120.7)
= (Ku(T,s)px(s), Ku(T, S)¢1(S)>L2(0,T) + <MH(S)¢2(“Z*)’MH(S)¢;(M1**)>L2(0,T)
+ (Ku (T, 5)dx (), My (5) 0y (™)) 1207y + (Mu(8) 0 (™), Kt (T, 8)1(8)) 12 0,1 -

14
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It follows lemma 2.7 again that there holds

(Ku(T,s)¢x(s), Ku (T, 5)p1(5)) 20,1

T
_ / K2(T,5)¢x(s)n(s)ds
0
T
> TZOC_ZEQ’Q(_)\kTa)Ea,a(_AlTa)/ KIZ{(T,S)dS =c1 > 0.
0

Using lemmas 2.3 and 2.6, and noting 7 — s = 7, we obtain that ¢4 (s) > 0 and ¢ (s) is a
monotonically increasing function; ¢ (s) > 0 and ¢, (s) is a monotonically increasing func-
tion, which imply ¢ (s) = ¢x(0) > 0 and ¢} (s) = ¢,(0) > 0for 0 < s < T. Hence

(M (5) 0 (™), Myt () (™)) 20.m) 2 ¢z’<(0)¢§(0)/0 M (s)ds =: & > 0.

Similarly, we have
T
(Kt (T )0 (s). Mg (5) 6} (7" )iz 0 > 64(0)6(0) / Kia(T. )My (s)ds =: & > 0
0
and
T
(My(5) 0 (u™). Ku (T, $)1(s)) 20.1) = ¢2(0)¢1(0)/ Ku(T.5)Mu(s)ds =: ¢4 > 0.
0
Combining the above estimates gives

Iy >

J

& =:Cy >0,

4
=1

which completes the proof. O

Combining (4.1)—(4.3) and lemmas 4.1 and 4.2, we obtain the uniqueness of the inverse
problem.

Theorem 4.3. Let assumption 1 hold. Then the source terms f and g up to sign, i.e. =g, can
be uniquely determined by the data set
{E(ux(T)), Cov(ug(T), u,(T)) : k,I € N}.
Proof. Since f,g € L*(D), we have
F@) =D fion(x), g(x) = grpul),
k=1 k=1

which gives that

g (x) = <Z gkgok(m) (Z gm(x)> = > agii(x)ei(x).
k=1 =1

kleN

15
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By lemmas 4.1 and 4.2, the proof is completed by noting (4.1) and (4.3). O

4.2. Instability

Unfortunately, the inverse source problem is unstable. In [30, lemma 4.4], the authors have
explained the instability for H = %, o€ (%, 1). Since the formula (4.1) does not involve the
Brownian motion, the instability of recovering f is the same. Therefore, we shall only discuss
the instability of recovering g up to sign. It suffices to show that it is unstable to recover g7 in
(4.3) when k = [, i.e. we shall focus on the estimate of (4.2).

First, we choose 7, small enough such that

1 1 if r <t,,
— < | )
1+ \ere if r > t,.

Aer®

(4.4)

Below we discuss the two different cases H € (0, ) and H € (3, 1), separately.

4.2.1. The case H € (0,%) . We consider the estimate (3.6) with =7 and estimate

L(T)yj =123.
For I,(T), a simple calculation yields

() = /OT [(:)H (T — 7)o H1=3 B, (— (T — T)a)} 2 dr

_ ( /0 . /T :) ((Z)MH (T — 7)o 232 (AT — T)a)> dr.

We have from (4.4) that

T—t, T 2H—1
/ () (T — T)2a+2H_3Ei’a(—)\k(T —7)%)dr
0

T

T—t. T 2H—1 1
< L T _ )20+2H=3 d
/ () =) T = T

1 T—t. T 2H—1
== / — (T - 7)2H73 dr.
)\k 0 T

The condition H > 0 is enough to ensure the convergence of the above singular integral.
Moreover, it follows from the binomial expansion that we obtain

1 T—1, T 2H—1
- — (T —7)H3dr
)\,% 0 T

T4 —4 = (2H -3 —1)" T—t\"
_ - (T _ t*)2—2H Z ( ) ( ) ( )
A e n n+2—-2H T

1 1
< L pHH-A(p Ly V22 p2H-2
ST <

16
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On the other hand, by (4.4), there holds

T 7\ 21
/ <7) (T - 7)2“+2H_3E<21’a(—/\k(T —7)¥)dr.
T—1.

T

T T 2H—1
< / (7) (T — 1)?T2H=3qr,
T—t, \T

Clearly, the condition o + H > 1 is essential to ensure the convergence of the singular int-
egral. By the mean value theorem for the definite integral, there exists 7 — ¢, < £ < T such

that
T T 2H—1 -
- (T*T)2a+2H 3d7’
T—t, \T

T 2H—1 T
— (5) / (T _ 7_)2044’2[‘173(17_
T—ts

2H-1 20+2H -2
_ (T) 1y < pat2H-2

& 20 +2H -2 *

Combining the above estimate leads to

1
I](T) 5 FT2H—2 + ti(x+2H—2. “4.5)
k

For I(T), using lemma 2.2 and formula (4.4), we have
2

L(T) = TTI—ZH TuH—%(u — I du ) (T = 1)  En o (=M (T — 7)) | dr
0 T

2

! 2 ! 1 2a—2 1 ?
< 1—2H H—3 H-34 T _ a— ( ) d
N/O T (/T w2 (u—T) u) (T —7) g e ) &

2

T—t T—t ; . 1 2
< 1—-2H qui _ Hﬁidu) T— 2a0—2 ( > d
~ A T ([_ (l/t T) ( T) 1 —i—)\k(T—T)a T

2

=t o T ous H-! 2a—2 1 2
- 3 (y— )3 y A e . —
+/0 T (/T_r*u (u—1) du) ( T) <1+)\k(T—T)O‘> dr

2

! 1—2H ! H—3 H—1 2a0—2 1 ?
+/T—t*7- (/T w i (u—r) 2du) (T—71) <71+)\k(T—T)O‘> dr

2

< /T_t* ri=2# /T_t* =3 (u— ) du ) (T - 7)207271 dr
~ 0 T /\i(T - T)Za

2

T—t. T
* 1
+ / — (/ qu%(u — T)Hf%du) (T —7)* 2 o ———dr
0 T—t. (T — 7)2

2

T T
+/ ! (/ W3 (u— T)H_%du) (T —7)*2dr
T—1. T

= J\(T) + Jo(T) + J5(T). (4.6)

Next we estimate Ji(T),j = 1,2,3, respectively.

17
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For the term J,(T), we get

2

1 T—t, T—t. N 1

Ji(T) = 7/ (T —1)? (/ u =1 (u — T)H_fdu) dr
>\k 0 T

Ly 2 )21 H— (-1" 1\

_ —2H(T _ -\~ —

Aﬁ/o T { Z< n >2H—1—n(T—t*>
S (H- iy )

_ 2H-1 2

’ g( n )2H717n]d7

1 T—t, T—t,

= (T_t*)4H72/ 7_172H(T_7_)72d7__'_/ TZHfl(T_T)72dT ,

A 0 0

1 — 2H 1)n T—1, !

X { Z( ) 2-2H+n ( T )

Ly (T =0\ < 1 pana, 4.7)
T b) Z( )2H+n< T )}N/\ZT

where the condition H € (0, 2) is used.
For the second term J,(T), similar to the estimate of J,(7), we have

N

2

1 Tt r 3 1
JZ(T):)\;%/O 7'172H(T—T)72 (/T t uHi(u—T)szu) dr
LTy 2H—1 5 (=1 7\"
_ - T — T 2y N 7 ([
/\i/o T [ Z( n >2H—l—n(T)

ZO/H-L\ (=1  \"’
_ _ 2H—1 2
(T'—) ;( n )2H—1—n<T—t*>]dT

<1

I Sy L \4H—2 g (=" T—r1\"
,AZ[T + (T =)™ T7%( Z iyl G

< iTszz-

T—ts
/ 7_172H(T _ 7_)72 [T4H72 4 (T o t*)4H72] dr
0

(4.8)
For the third term J5(7T), we obtain

T T 2
I5(T) = /T 7T - )2 (/ w3 (u — T)H‘idu> dr
. .

T
5 / 7_172H(T _ 7_)20472 (T4H72 + 7_4H72) dr
T—t,

e} 2—2H+n 2—2H+n
_ T4H+2a_4z (2@2) (—1)”T‘"T Hin (T — )220+
— n 2—2H+n
oo 20 =2 T2H+n _ (T —t )2H+n
T2(x—2 -1 nT—n *
+ ; ( n ) (=1) 2H +n

18
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The differential mean value theorem and the Holder continuity of x** are used to obtain
J3(T) S THP253 4 7272 (20 v 1 (T — 1) 7). 4.9)
Here a V b = max{a, b}. Combining (4.7), (4.8) and (4.9), we have
L(T) SN2+ (v e). (4.10)
For I5(T), according to lemma 2.5,

2

Tr T fT-7 a2 = 3
< e u hed
n % [/ [/ 1+)\kradr} ()" e zdu] o
T—1. T—1. T—r Jo—2 N 3
s T (= — ) idu| d
A s [ T e
T—t. T T—1 2 H_l
T ] () el e
0 T—t. LJT—u 1+ Ar® T
T Tr (T-7 a2 = 3
+/T—t* |:/T |:/T—u 1+)\er r:| (7—) (M T) 2 u:l T

= K\(T) + Ko(T) + K5(T).

For K (T), a simple calculation gives

2

K(T) < /OH* UTH* Hk /:T r_zdr} (g)Hﬁ% (u77—)H‘%du] dr

2

1 T—t. T—t. . H—1
S %, {/T (T—w)(u—m7)z (E) 2du] dr.

T

Sy oo [i (_,f) (—1)"(T = 7)™ /OT_Z*_Tr"'”'H_%dr} dr

n=0

1 2H—3 1
<5 T—7)"7dr S ——.
S /0 (7= ~ e

*

For K5(T), noting that t, <T—7<T and 0<T—u<t, since 0 <7 <T—1t, and
T—t.<u<T,weget

T—1 rafz I 5 T—T1 1 )
——dr < / re” dr—|—/ —r “dr
/Tfu 1+ )\kra T—u 1y >‘k
1 T—1
< <tf vV ) / r2dr
)‘k T—u

< <r§ v ;}{) (T = u)2(u — 7).

As aresult, we have for H € (0, 1) that
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1 2

Kz(T)S/OLI* UT: (: vi) (T —u)2(u— 7Y} (;)H”du} dr
N (2“ v %) /H* (T-7)"* [i (;2> (=T —7)™" /T:T_T r"“’%drych

< [2a+2H—2 v 1
~ * )\2 N2.2—2H

For K3(T),since 0 < T —u<T -7 <t forT—t, <7<u<T,

| 2

K3(T) < /TTt* /TT {/TTMT ra_Zdr] (g)H_E (u— T)H_%d“] dr
. /T: :/TT(T — ) (u— )z (g)Hﬁ% du} sz

2

T r pT—r .
< / / (T—71—- r)o‘ferffdr} dr
T—t. LJO

T
< / (T _ T)2a+2H73d7_ S tia+2H72’
T—t.

~

where the condition « + H > 11is used.
Combining the above estimates, we conclude that

_ 1
I3(T) S (tiaJrZH 2 \Vi e 2—2H> . 4.11)
K

Finally, it follows from (4.5), (4.10) and (4.11) that

2
E

/0 (T = 1) B o (~ (T — 7)%)dB" (7)

< ma {22 \2RH2 N2 2y (4.12)

* bl

4.2.2. The case H € (% 1) . From (4.2) and (A.4), we have

2

! — el — — 7)) dBY (1
E' / (T — 702 B o (— (T — 7)2)dBY (7)
= om/ / (T = ) Ena (= M(T = p)NT = @)% Evv o (= M(T — 9)%)|p — g 2dpdg

—aH(// // // //) T Eaa(=Mp®)q" Eaa(—Mg™)lg — pIdpdg

= ag(M\(T) + Max(T) + M5(T) + My(T
(4.13)

We choose 1, as that in (4.4). It is easy to see that M3(T) = My4(T). Then we only need to
discuss M;(T)j = 1,2,3.
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For the term M (7T), similar to the estimate in section 3.2, we get

/ / (=2MP™)q" ™ Ea.a(—Mq®)lg — pI*" dpdg

5/ / p*~'q* g — p|*~*dpdgq
o Jo 4.14)

< 12a+2H72.
For the term M(7), it is easy to verify that

T
T)=/ /p"‘lEa,a(—/\kpo‘)qo‘"Ea,a(—Akq"‘)lq—plz"_zdpdq
[

11
< A2/ / ~|g — p[*"*dpdq
Iy
)\ztz/ / lg — p[*"dpdq
=/\2t2/ / q—p)*2dpdg
t

_ 2 (w1 4.15)
CONA22HQH 1)~

//\

For the term M3(T), we may similarly have

« T
T)=/ /p“‘lEa,a(—/\kp“)q”‘“Ea,a(—Akq")Iq—p\ZH_zdpdq
0

1 /= /T

f/ / —q*'(p — ¢q)*" *dpdg
1y

/\kt / / "(p—q)*" *dpdg

/ a-lgg < Lot (4.16)
0

<
™~ Aty

~ Ak

It follows from (4.13)—(4.16) that

2
< max {tiaHH 2

T
E / (T = 1) Eg o (= M(T — 7)°)dB" (7)

" Al o ‘}, @.17)

which is crucial to explain the instability of the inverse problem.
Based on the analysis above, we can obtain the following theorem which shows that it is
unstable to reconstruct f and +g.

Theorem 4.4. The problem of recovering the source terms f and £g is unstable. Moreover,
the following estimates hold

T
/ (T — 1) Eq o (= M(T — 7)*)h(1)dr| S N (4.18)
0

and
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2

T
E / (T — 7)) Eq o (=M (T — 7)*)dB" (1) 5/\;’3, (4.19)
0

where

min {2y(a + H —1),2 + 2v(H — 1),2H~} if He(0,3),
B={min{2y(a+H—-1),2(1-7),1—~(1-a)} if He(L1),
min {y2a —1),1 —~} if H=

Here v € (0,1)and oo + H > 1.

Proof. For (4.18), one can refer to [30, lemma 4.4]. For (4.19), one can obtain it by choos-
ingt, = )\k_"y, 0 <y < 1in(4.12) and (4.17). Here the case H = %can be seen in [30, lemma
4.4]. For « = 1, one can use e ™~ < %ﬂ,x > 0 to obtain the same results. Since A\, — 0o as
k — oo, the instability follows easily from the estimates (4.18)—(4.19) and the reconstruction

formulas (4.1) and (4.2). O

5. Numerical experiments

In this section, we present some numerical results of a one-dimensional problem with
D = [0, 71]. The eigen-system of the operator —A is

2
A\ = K2, cka\/;sin(kx), k=1,...,00.

For some fixed integers N; and N,, we define the time and space step-sizes h, = T/N,,
h, = 7/N, and nodes

ty =nh, n€{0,1,2,...,N;}, x;=ihy, i€{0,1,2,...,N,}.

5.1 Numerical scheme

We introduce the numerical discretization of the direct problem, which is used to generate the
synthetic data for the inverse problem.
To discretize the Caputo derivative, we use the method proposed in [27, 49]:

n

O u(xis1a) = o, Y (ulxi ) = ulx 1)) [(n —j+ 1) 7% = (n =)' =] + O(hy),

Jj=1
where
1 1
- pa
F(l—a)l—a

Oah =

The central difference is utilized for the spatial discretization:

u(xi—1,t,) — 2u(x;, t,) + u(xiry, t,
Mxx(-xistn) _ ( 1 ) (h2 ) ( +1 ) +0(h)2c)
X
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Let u! be the numerical approximation to u(x;,#,). Then we obtain the following implicit
scheme:

n 7 n n
ul | —2ul + uiy |

Oan Y (] —ul Dln=j+ 17 = (n =)' = =5
AR CELI )

Remark 5.1. For the two-dimensional case, one may similarly get the following semi-dis-
crete scheme:

— Au"(x) 4+ oapu"(x)
BH(thrl) - BH(tn)

=f(x)h(t,) + g(x) 1 — 1 — Oant’(x)[(n— )17 —n'79]

n—1

—Oan Y W (n—k=1)""" =2 —k)""* + (n—k+1)'"]
k=1

=: F"(x) n=1,...,N,.

Based on the homogeneous Dirichlet condition, we have the following variational problem:
(V" (x), Vv (x)) + oo, (0" (x),v(x) = (F"(x).v(x)), v(x) € H'(D).

Then we can use the finite element method to solve the above variational problem and obtain
u"(x). The final approximated data is u™ (x) ~ u(x, T).

5.2. Numerical results

For the inverse problem, coefficients f; and gig; can be recovered by (4.3) and (4.1), respec-
tively, based on which one get

f=) fip €= agipner.
k=1

= k=1

Since the inverse problem is ill-posed, we truncate above series by the first N terms as a
regularization.

In the numerical experiments, we choose N = 3, N, = 213N, = 100, and T = 1. Functions
in (2.1) are chosen as

s

h(t) =1, f(x) =sin(3x), g(x) = exp(~(x=3)%).

The total number of 1000 sample paths are used when simulating the covariance of the solu-
tion. In addition, the data is assumed to be polluted by a uniformly distributed noise with the
noise level 6. The code given by [33] is adopted to evaluate the Mittag—Leffler function E, 4.
To compute the singular integral in (4.3), we use the global adaptive quadrature.

We present the results for three different sets of parameters (o, H). The results of
{a=09,H=09},{a =0.9,H =04}, and {o = 0.4, H = 0.9} are given in figures 1-3,
respectively. Based on the numerical experiments, it can be observed that the recovery would
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a=0.9, H=0.9, §=0.005

Exact solution
Approximation

a=0.9, H=0.9, §=0.005

Exact solution
Approximation | 7

o
o

The value of f(x)
I
=

The value of |g(x)|
o
(&

o
w

o
o

o

o
o

Figure 1. The exact solutions and the reconstructed solutions for &« = 0.9 and H = 0.9
with 6 = 0.005. (a) f(x); (b)|g(x)].
Q:O.Q,‘ H=0.4, J‘:0.001

2=0.9, H=0.4, §=0.001
15 . . -

T T 1 T T

The value of f(x)

The value of f(x)

0.5 1

(a)

a=0.9, H=0.4, §=0.005

3 3.5

Exact solution
Approximation

3.5

The value of |[g(x)|

The value of |g(x)|

14
o

=
el

o
IS

o
w

o
)

°

o
=)
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(b)

3 35

o
o

o
o

o
~

o
w

o
o

°

o

=0.9, H=0.4, §=0.005

Exact solution
Approximation | |

35

Figure 2. The exact solutions and the reconstructed solutions for « = 0.9 and H = 0.4.

(a) f(x) with & = 0.001; (b) |g(x)| with § = 0.001; (c) f(x) with § = 0.005; (d) |g(x)]
with § = 0.005.

24



Inverse Problems 36 (2020) 045008 X Feng et al

a=0.4, H=0.9, §=0.005 a=0.4, H=0.9, §=0.005

Exact solution
Approximation

Exact solution
Approximation

o
o
T

06

The value of f(x)
o
The value of |g(x)

-0.5

02r

Figure 3. The exact solutions and the reconstructed for o = 0.4 and H = 0.9 with
5 = 0.005. (a) f(x): (b) [g(x)].

be more accurate if the problem is more regular, i.e. o or H is larger; if the noise level § is
smaller, the result would also be better, which exactly implies the ill-posedness of the inverse
problem.

6. Conclusion

In this paper, we have studied an inverse random source problem for the time fractional diffu-
sion equation driven by fractional Brownian motions. By the analysis, we deduce the relation-
ship of the time fractional order o and the Hurst index H in the fractional Brownian motion
to ensure that the solution is well-defined for the stochastic time fractional diffusion equation.
We show that the direct problem is well-posed when e + H > 1 and the inverse source prob-
lem has a unique solution. But the inverse problem is ill-posed in the sense that a small devia-
tion of the data may lead to a huge error in the reconstruction.

There are a couple of interesting observations. First, if the Laplacian operator is also frac-
tional, the method can be directly applied and all the results can be similarly proved. Second,
forl < a < 2, the direct problem can be shown to be well-posed since lemma 2.2 is still valid.
However, the inverse problem may not have a unique solution. The reason is that lemma 2.7
is not true any more for 1 < o < 2. We will investigate the case 1 < a < 2 and report the
numerical results elsewhere in the future.
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Appendix. Fractional Brownian motion

In the appendix, we briefly introduce the fractional Brownian motion (fBm) and present some
results which are used in this work.
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A.1. Definition and Hélder continuity

A one dimensional fBm B! with the Hurst parameter H € (0, 1) is a centered Gaussian pro-
cess (i.e. B(0) = 0) determined by its covariance function

Ru(t,s) = E[B" (1)B!(5)] = % (P14 21— | — sPH)

for any s,¢ > 0. In particular, if H = %, B turns to be the standard Brownian motion, which
is usually denoted by W, with covariance function Ry(t,s) =t A s.
The increments of fBms satisfies

E [(BH(I) — BH(s)) (BH(S) — BH(r))} = [(t — ) — (=) — (r - s)2H]

N -

and
E[(B() - B(9))’] = (1=

for any 0 < r < s < t. It then indicates that the increments of B” in disjoint intervals are lin-
early dependent except for the case H = %, and the increments are stationary since its moment
depends only on the length of the interval.

Based on the moment estimates and the Kolmogorov continuity criterion, it holds for any
e > 0and s, t € [0, T|that

B (1) — B"(s)| < Clt —s|"~*

almost surely with constant C depending on € and T That is, H represents the regularity of B:
the trajectories of fBm B with Hurst parameter H € (0, 1) are (H — €)-Holder continuous.

A.2. Representation of fBm and integration

For a fBm B with H € (0, 1), it has the following Wiener integral representation

B (1) = /0 Ky (1, 5)dW(s)

with Ky being a square integrable kernel and W being the standard Brownian motion (i.e.
H=1.

For a fixed interval [0, T, denote by &£ the space of step functions on [0, 7] and by H the
closure of £ with respect to the product

(1j0,9- 1jo.5))2 = Ru(t,s),

where 1(g 4, 1, are the characteristic functions. Define the linear operator K; 7 : € — L*(0,T)
by

(K)o = Kn(T.9)9) + [ 000 = w6 28 an

where

1w

8KHa(;4,s) e (E)H—% (1 — )1

N
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and cy is a constant given below depending on H. Then K7, ;- is an isometry from & to L*(0,T)
(see e.g. [31, 39]), and the integral with respect to B can be defined for functions  satisfying

||¢H|H| = (Y, P)y < 00,
and (see e.g. [31, 39])

/ (s)dB" (s / (5) 10y (5)dBY (s) = / Ky (61 0.))(5)dW(s)

for any ¢ € [0, 7. Hence, according to the Itd isometry,

E { /0 W (s)dB" (s) /0 ¢(S)dBH(S)} = <K:I,T(1/)1[O,t])’K:I,T(QSI[OJ]»LZ(O,T)%A §

A.2.1. The case H € (},1) . For the case H € (},1), the covariance function Ry of B

satisfies
t S
Ru(t,s) :aH/ / |r — u|*~2dudr
0 Jo

T T
:aH/ / 14 (r)l[o,s] (u)|r — u|2H72dudr
o Jo

with ag = H(2H — 1). The square integrable kernel has form

! u H*% 3
KH(I,S):cH/ (;) (u—s)""2du

. 1
with cyg = (W”H) 2 such that

(Lo, Ljo.5))2 = Ru(t,s) :OlH/ / 100, (r) o, () [r — u*"~*dudr
0 0
T

= / Lo, ()Xo, () Kpr (2, ) Ky (5, u)du, (A.3)
0
and Kz 7 in (A.1) turns to be

(K5 (s / o B3],

By noting that

* T OKy(u, s " OKy(u, s
(R toa)s) = [ T i = 1005 5) [ D 1) 1.5),

one get
T
(Ljo,95 Ljo.5) 1 Z/ 10, ()Xo, () Kpr (2, u) K (5, u)du
OT
= /0 (Kzr.r10.9) () (K 71j0.)) () due
=(Knr1jo.a KirLjos) 2 01)-

27



Inverse Problems 36 (2020) 045008 X Feng et al

In this case, (A.2) can be calculated as follows

B | [Coeass) [ o]

=(Kir(¥L0.4), Ky r(#Lj0.)) 20.1)
=10, L)1

o [ ) (Ad)
*OZH/O/Od’(”)Qs(“)V ul dudr

according to (A.3), which is used in (3.6).

A.2.2. The case H € (0, %) . If the trajectories of B is less regular than the case above with
H € (0, %), the square integrable kernel K has the following form instead

t H—3} 1 1 1 ! 3 1
Ku(t,s) =cu (f) (t—s)72 - <H — E) sffH/ w2 (u — s)" " 2du

s
(A.5)
: _ 2H 1
with cy = ((1—2H)ﬁ(l—2H,H+%)> 2 such that
NS
Ry(t,s) = / Ku(t,u)Kg (s, u)du
0
similar to (A.3). Utilizing the fact (see [39])
(Kirr (V1)) (s) = (K 0) () Ap,q(s), V€ [0,T],
where K7, is defined in (A.1), we may rewrite (A.2) into
t t
E { / (s)dB" (s) / ¢(S)dBH(S)] = (Kn.r(V1joq), Ky (d110.0))120m)
0 0
(A.6)
= (K, Kp®)12(04)5 (A7)

which is used in section 3.2 and (4.13).
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