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Abstract. Consider the elastic scattering of a time-harmonic wave by multiple well-separated
rigid particles with smooth boundaries in two dimensions. Instead of using the complex Green’s
tensor of the elastic wave equation, we utilize the Helmholtz decomposition to convert the boundary
value problem of the elastic wave equation into a coupled boundary value problem of the Helmholtz
equation. Based on single, double, and combined layer potentials with the simpler Green’s function
of the Helmholtz equation, we present three different boundary integral equations for the coupled
boundary value problem. The well-posedness of the new integral equations is established. Compu-
tationally, a scattering matrix based method is proposed to evaluate the elastic wave for arbitrarily
shaped particles. The method uses the local expansion for the incident wave and the multipole
expansion for the scattered wave. The linear system of algebraic equations is solved by GMRES
with fast multipole method (FMM) acceleration. Numerical results show that the method is fast and
highly accurate for solving elastic scattering problems with multiple particles.
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1. Introduction. The scattering problems for elastic waves have recently re-
ceived ever increasing attention in both the engineering and the mathematical com-
munities for their important applications in geophysics and seismology [1, 3, 22, 35,
36, 42, 46]. The propagation of elastic waves is governed by the Navier equation,
which is complex because of the coexistence of compressional and shear waves with
different wavenumbers. In many applications, it is desirable to develop a computa-
tional model to simulate the wave propagation in a medium consisting of multiple
particles [23, 24, 26, 38, 43], such as imaging a target in a cluttered environment [4]
and designing composite materials with a specific wave response [16].

In this paper, we consider the two-dimensional elastic scattering problem of a
time-harmonic wave by multiple smooth rigid obstacles which are embedded in a
homogeneous and isotropic elastic medium. Compared to finite difference or finite
element methods [5], the boundary integral method enjoys several intrinsic advan-
tages: the solution is characterized solely in terms of surface distributions so that
there are fewer unknowns, and the radiation condition is implicitly and exactly im-
posed so as to avoid the error that is introduced by using artificial radiation conditions
[17, 19]. The well-posedness for the boundary integral formulations of elastic scat-
tering problems can be found in [21, 31, 50]. However, the Green’s function of the
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ELASTIC SCATTERING BY MULTIPLE PARTICLES A3277

elastic wave equation is a second order tensor and is complicated to compute in the
boundary integral equations. We refer the reader to [8, 11, 47] and references therein
for some recent advances along this direction. To avoid this issue, we introduce two
scalar potential functions and use the Helmholtz decomposition to split the displace-
ment of the wave field into the compressional wave and the shear wave which satisfies
the Helmholtz equation, respectively [51]. Therefore, the boundary value problem of
the Navier equation is converted equivalently into a coupled boundary value prob-
lem of the Helmholtz equations for the potentials. By analyzing the properties of
integral operators thoroughly and introducing appropriate regularizers, we prove the
well-posedness for three different boundary integral formulations which are based on
using the single, double, and combined layer potentials. The theoretical analysis lays
a foundation on the numerical implementation of solving the elastic wave equation
based on the Helmholtz decomposition.

In numerical practice, the advantages of boundary integral methods can be offset
by the high computational cost incurred in evaluating the mutual interactions among
all elements. Moreover, each interaction involves singular integrals whose analytical
and/or numerical evaluation is expensive. In this work, we propose a fast and highly
accurate numerical method for solving the elastic scattering problem with multiple
particles. The method extends the classic multiple scattering theory for acoustic and
electromagnetic waves to elastic waves. It can handle many particles that are arbi-
trarily shaped and randomly located in a homogeneous medium. The idea goes back
to [16, 33, 32, 48, 49] for the electromagnetic scattering of multiple particles. For a
given particle, we first use the integral formulation, which is based on the Helmholtz
decomposition, to construct a scattering matrix. With this matrix precomputed, we
then treat the outgoing scattering coefficients, instead of the discretization points on
the boundary of particles, as the unknowns in our equation. Moreover, the resulting
system based on outgoing coefficients can be preconditioned by the scattering matrix
and the GMRES iterative solver becomes extremely efficient after the precondition-
ing. The algorithm is further accelerated by the fast multipole method (FMM) [44].
Numerical experiments show that the method is well suited for the elastic scattering
problem with multiple particles. The idea of using the scattering matrix to replace
the original scatterer is also called the T-matrix method in the literature [39]. The
power of this method has been shown in the applications of computing the scattering
in acoustics and electromagnetics from tens of thousands particles in both the two-
and three-dimensional cases [7, 13, 14, 20, 28, 52]. In particular, a stable way was
proposed in [12] to compute the scattering matrix for elongated particles. Theoretical
analysis on how to choose the appropriate number of truncation terms in a scattering
matrix was also studied in [15]. In this paper, we restrict ourselves to particles which
do not have high aspect ratio in the two-dimensional case. Extensions to more general
shaped particles and the three-dimensional case will be investigated in the future.

The paper is organized as follows. In section 2, we introduce the model equation
for the elastic scattering by multiple obstacles. In particular, the Helmholtz decom-
position is utilized to convert the elastic wave equation into a coupled Helmholtz
system. Section 3 gives some preliminaries for boundary integral operators. Section 4
is devoted to three different boundary integral formulations for the coupled Helmholtz
system. Their well-posedness is proved based on the regularization theory and the
Fredholm alternative. In section 5, the scattering matrix based numerical method is
proposed for solving the coupled integral equation. Numerical experiments are pre-
sented in section 6 to show the performance of the proposed method. The paper is
concluded with some general remarks in section 7.
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Fig. 1. Problem geometry of the elastic scattering by multiple obstacles.

2. Problem formulation. Let us first specify the problem geometry which is
shown in Figure 1. Consider the scattering problem for many two-dimensional elasti-
cally rigid obstacles, the union of which is represented by a bounded domain D with
boundary Γ. The infinite exterior domain R

2 \setminus D is assumed to be filled with a homo-
geneous and isotropic elastic medium. In particular, we assume that the domain D
consists of M inclusions Dj , j = 1, . . . ,M , which are bounded with smooth bound-
aries Γj , i.e., D = \cup M

j=1Dj and Γj = \cup M
j=1Γj . Moreover, the obstacles are assumed

to be well separated; i.e., there exist balls Bj such that Dj \subset Bj , j = 1, . . . ,M , and
Bi \cap Bj = \emptyset for i \not = j. Denote by ν = (ν1, ν2) and τ = (τ1, τ2) the unit normal and
tangential vectors on Γ, respectively, where τ1 =  - ν2 and τ2 = ν1.

Let the obstacles be illuminated by a time-harmonic plane wave uinc, which sat-
isfies the two-dimensional Navier equation

µ∆uinc + (λ+ µ)\nabla \nabla \cdot uinc + ω2uinc = 0 in R
2 \setminus D,

where ω > 0 is the angular frequency and µ, λ are the Lamé constants satisfying
µ > 0, λ+ µ > 0.

The displacement of the total wave field u also satisfies the Navier equation

µ∆u+ (λ+ µ)\nabla \nabla \cdot u+ ω2u = 0 in R
2 \setminus D.

By assuming that each obstacle is impenetrable and rigid, we have

u = 0 on Γ.

The total field u consists of the incident field uinc and the scattered field v:

u = uinc + v.

It is easy to verify that the scattered field v satisfies the Navier equation

(2.1) µ∆v + (λ+ µ)\nabla \nabla \cdot v + ω2v = 0 in R
2 \setminus D

and the boundary condition

(2.2) v =  - uinc on Γ.

Given a vector function w = (w1, w2) and a scalar function w, define the scalar
and vector curl operators

curlw = ∂x1
w2  - ∂x1

w1, curlw = (∂x2
w, - ∂x1

w).
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ELASTIC SCATTERING BY MULTIPLE PARTICLES A3279

For any solution v of the elastic wave equation (2.1), we introduce the Helmholtz
decomposition

(2.3) v = \nabla φ+ curlψ,

where the scalar functions φ and ψ are called potentials. Substituting (2.3) into (2.1)
yields

\nabla ((λ+ 2µ)∆φ+ ω2φ) + curl(µ∆ψ + ω2ψ) = 0 in R
2 \setminus D,

which is fulfilled if φ, ψ satisfy the Helmholtz equation

∆φ+ k2pφ = 0, ∆ψ + k2sψ = 0 in R
2 \setminus D,

where kp = ω/(λ + 2µ)1/2 and ks = ω/µ1/2 are the compressional wavenumber and
the shear wavenumber, respectively. In addition, the potentials φ, ψ are required to
satisfy the Sommerfeld radiation condition [45]

∂ρφ - ikpφ = o(ρ - 1/2), ∂ρψ  - iksψ = o(ρ - 1/2).

Combining (2.2) and (2.3) yields the boundary condition

v = \nabla φ+ curlψ =  - uinc on Γ.

Taking the dot product of the above equation with ν and τ , respectively, and noting
that τ1 =  - ν2, τ2 = ν1, we obtain a coupled boundary condition for φ, ψ on Γ:

(2.4) ∂νφ+ ∂τψ = f, ∂τφ - ∂νψ = g,

where

f =  - ν \cdot uinc, g =  - τ \cdot uinc.

Hence the obstacle scattering problem for elastic waves can be reduced equiva-
lently to the coupled boundary value problem of the Helmholtz equations:

(2.5)

\left\{ 

 

 

 

 

∆φ+ k2pφ = 0, ∆ψ + k2sψ = 0 in R
2 \setminus D,

∂νφ+ ∂τψ = f, ∂τφ - ∂νψ = g on Γ,

∂ρφ - ikpφ = o(ρ - 1/2), ∂ρψ  - iksψ = o(ρ - 1/2) as ρ\rightarrow \infty .

The proof can be found in [37] for the well-posedness of the above scattering problem
(2.5) by using the variational approach. In this work, our goal is to develop a new
and well-posed boundary integral equation and propose a fast numerical method to
the scattering problem (2.5). We first claim that the boundary value problem (2.5)
has a unique solution.

Theorem 2.1. The coupled Helmholtz system (2.5) has at most one solution for

ks > 0 and kp > 0.

The proof is standard and given in the supplementary materials, linked from the
main article webpage.
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A3280 JUN LAI AND PEIJUN LI

3. Preliminaries of integral operators. Let Γ \subset R
2 be a smooth closed curve.

Consider the integral operator of the form

F (x) =

\int 

Γ

K(x, x - y)φ(y)ds(y) for x \in Γ(3.1)

and its adjoint with respect to L2(Γ)

G(x) =

\int 

Γ

K(y, y  - x)φ(y)ds(y) for x \in Γ,(3.2)

where K is an integral kernel and φ is called the density. The following theorem can
be found in [40].

Theorem 3.1. Let α = (α1, α2) be a multi-index and β be a positive integer.

Assume that the kernel K in (3.1)–(3.2) is given by

K(x, y) = h(x)yα| y| 2β ln | y| ,

where h(x) is a smooth function defined on Γ. Then the kernel is of class m =
 - (| α| + 2β + 1). The integral operator in (3.1)–(3.2) associated with the kernel K is

continuous from Hr(Γ) into Hr+m(Γ) for any real r.

Consider Green’s function of the two-dimensional Helmholtz equation

Φk(x, y) =
i

4
H

(1)
0 (k| x - y| ),

where H
(1)
0 is the Hankel function of the first kind with order zero. Given a bounded

domain D \subset R
2 with smooth boundary Γ, let ν and τ be the exterior unit normal

vector and the unit tangential vector of Γ, respectively. For x /\in Γ, define the single
and double layer potentials

\scrS kφ(x) =

\int 

Γ

Φk(x, y)φ(y)ds(y),

\scrD kφ(x) =

\int 

Γ

∂Φk(x, y)

∂ν(y)
φ(y)ds(y)

and the tangential boundary layer potential

\scrH kφ(x) =

\int 

Γ

∂Φk(x, y)

∂τ(y)
φ(y)ds(y).

For k = 0, these potentials denote the layer potentials corresponding to the two-
dimensional Laplace equation where the Green function is Φ0(x, y) =  - 1

2π ln | x  - y| .
Moreover, these potentials satisfy the well-known jump relations [10]:

lim
x\rightarrow Γ\pm 

\scrS kφ(x) = Skφ(x) =

\int 

Γ

Φk(x, y)φ(y)ds(y),(3.3a)

lim
x\rightarrow Γ\pm 

\scrD kφ(x) =

\biggl( 

\pm 1

2
+Dk

\biggr) 

φ(x) = \pm 1

2
φ(x) +

\int 

Γ

∂Φk(x, y)

∂ν(y)
φ(y)ds(y),(3.3b)

lim
x\rightarrow Γ\pm 

∂\scrS kφ(x)

∂ν(x)
=

\biggl( 

\mp 1

2
+D\prime 

k

\biggr) 

φ(x) = \mp 1

2
φ(x) +

\int 

Γ

∂Φk(x, y)

∂ν(x)
φ(y)ds(y),(3.3c)

lim
x\rightarrow Γ\pm 

\scrH kφ(x) = Hkφ(x) =

\int 

Γ

∂Φk(x, y)

∂τ(y)
φ(y)ds(y),(3.3d)
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ELASTIC SCATTERING BY MULTIPLE PARTICLES A3281

where the plus sign means that x approaches Γ from the exterior and the minus sign
means that x approaches Γ from the interior. The boundary operators Dk, D

\prime 
k, and

Hk are defined in the sense of the Cauchy principal value. In L2(Γ), Sk is self-adjoint,
i.e., Sk = S\prime 

k, and D
\prime 
k is the adjoint of Dk. The adjoint of Hk is given by

H \prime 
kφ(x) =

∂Skφ(x)

∂τ(x)
=

\int 

Γ

∂Φk(x, y)

∂τ(x)
φ(y)ds(y).

For further investigation, it is indispensable to study the regularity of all these
boundary operators. We begin with the asymptotic form of the Green function
Φk(x, y) which can be found in [41].

Lemma 3.2. When k > 0, the Green function Φk has the expansion

Φk(x, y) = Φ0(x, y) - 
k2| x - y| 2

4
Φ0(x, y) + | x - y| 4p1(| x - y| 2)Φ0(x, y) + p2(| x - y| 2),

where p1(x) and p2(x) are analytic functions.

The next lemma follows from the property of Cauchy integrals [30].

Lemma 3.3. Let Γ \subset R
2 be a smooth curve. Then

D2
0  - H2

0 =
I

4
, H0D0 =  - D0H0, D\prime 

0
2  - H \prime 

0
2
=
I

4
, H \prime 

0D
\prime 
0 =  - D\prime 

0H
\prime 
0,

where I is the identity operator.

Proof. It was shown in [30, Theorem 7.12] that

(H0 + iD0)
2 =  - I

4
.(3.4)

Taking the real and imaginary parts of (3.4) gives the first and second identities,
respectively. The remaining two identities follow from the duality argument.

Combining Theorem 3.1 and Lemmas 3.2 and 3.3, we obtain several useful prop-
erties for the integral operators. The following results are related to the regularity of
boundary operators Dk, Hk and their adjoint.

Corollary 3.4. The following operators are bounded:

D0, D
\prime 
0 : Hr(Γ) \rightarrow Hr+s(Γ),

H0, H
\prime 
0 : Hr(Γ) \rightarrow Hr(Γ),

Dk, D
\prime 
k : Hr(Γ) \rightarrow Hr+3(Γ),

Hk, H
\prime 
k : Hr(Γ) \rightarrow Hr(Γ),

where r is an arbitrary real number and s is an arbitrary positive real number.

Proof. We first give the proof for the integral operators Dk and D\prime 
k. It follows

from Lemma 3.2 that the kernel Dk satisfies

∂Φk(x, y)

∂ν(y)
=
∂Φ0(x, y)

∂ν(y)
 - | k| 2

4

∂(| x - y| 2Φ0(x, y))

∂ν(y)
+O

\biggl( 

∂(| x - y| 4Φ0(x, y))

∂ν(y)

\biggr) 

= K0(x, y) - 
| k| 2
4
K1(x, y) +K2(x, y),
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where K0 is the kernel for the integral operator D0 and is of class  - \infty , and K2 is of
class at most  - 4 by Theorem 3.1. A simple calculation yields

K1(x, y) =  - 2(ν(y) \cdot (x - y))Φ0(x, y) +K0(x, y)| x - y| 2.

For a smooth curve Γ, it is shown in [10] that

ν(y) \cdot (x - y) = O(| x - y| 2).

Hence it follows from Theorem 3.1 that K1 is a kernel of class  - 3 and Dk is a bounded
operator from Hr(Γ) to Hr+3(Γ). Similarly, we can show that the kernel of D\prime 

k is
also of class  - 3. The boundedness for H0, H

\prime 
0 follows from Lemma 3.3 directly. We

complete the proof by noticing that for Hk and H \prime 
k, their differences with H0 and H \prime 

0,
respectively, are compact from Hr(Γ) to Hr(Γ).

The following results are related to the properties of difference of boundary op-
erators. The proof is similar to that for Corollary 3.4, so we omit it.

Corollary 3.5. The following mappings are bounded:

Dk  - D0, D
\prime 
k  - D\prime 

0 : Hr(Γ) \rightarrow Hr+3(Γ),

Hk  - H0, H
\prime 
k  - H0 : Hr(Γ) \rightarrow Hr+2(Γ),

where r is an arbitrary real number.

In this paper, we mainly focus on functions in H1/2(Γ) and H - 1/2(Γ), which are
the trace spaces ofH1(D) and L2(D), respectively. We also denote the vector function
space with each component in H1/2(Γ) by H1/2(Γ)2. Similar notation applies to
Hs(Γ) for any real s. It is well known that the two-dimensional single layer boundary
operator S0, which is bounded from Hs(Γ) to Hs+1(Γ), is not invertible in general.
However, we have the following result, which can be found in [30].

Lemma 3.6. There exists a constant c > 0, which only depends on the curve Γ,
such that the operator S0, defined by

(S0φ)(x) =

\int 

Γ

(Φ0(x, y) + c)φ(y)ds(y) = S0φ(x) +

\int 

Γ

cφ(y)ds(y),

is invertible from Hs(Γ) to Hs+1(Γ) for any real s.

To this end, we denote the operator

S0S0 =

\biggl[ 

S0S0 0
0 S0S0

\biggr] 

for a vector function w = (w1, w2) \in Hs(Γ)2 by S0S0. By Lemma 3.6, the operator
S0S0 is invertible from Hs(Γ)2 to Hs+2(Γ)2.

4. Boundary integral equations. In this section, we derive boundary integral
equations for the scattering problem (2.5) and show the well-posedness of the proposed
boundary integral equations. For clarity, we restrict our discussion to the scattering
of a single particle, which is still denoted by D with boundary Γ.

Define two single layer potentials corresponding to the compressional and shear
wavenumbers:

φ(x) = \scrS kp
α(x), ψ(x) = \scrS ks

β(x), x \in R
2\setminus D,
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where (α(x), β(x)) \in H - 1/2(Γ)2 are densities. Let x \rightarrow Γ from the exterior of D.
Using the boundary condition (2.4) and the jump relations (3.3), we obtain the integral
equation

A

\biggl[ 

α(x)
β(x)

\biggr] 

=

\Biggl[ 

 - I
2 +D\prime 

kp
H \prime 

ks

H \prime 
kp

I
2  - D\prime 

ks

\Biggr] 

\biggl[ 

α(x)
β(x)

\biggr] 

=

\biggl[ 

f(x)
g(x)

\biggr] 

,(4.1)

where I is the identity operator. We first state the following existence result for (4.1).

Theorem 4.1. Assume that neither ks nor kp is the eigenvalue of the interior

Dirichlet problem for the Helmholtz equation in D. Then the integral equation (4.1)
has a unique solution in H - 1/2(Γ)2.

Remark 4.2. It is easy to see that A = A0 +K, where

A0 =

\biggl[ 

 - I
2 H \prime 

0

H \prime 
0

I
2

\biggr] 

(4.2)

is bounded in H - 1/2(Γ)2 and K is a compact operator in H - 1/2(Γ)2. If A0 is invert-
ible, the Fredholm alternative can be directly applied to show the invertibility of A.
However, A0 is degenerated in the sense that

A2
0 =

\biggl[ 

D\prime 2
0 0

0 D\prime 2
0

\biggr] 

,(4.3)

where D\prime 
0 is a smooth operator by Corollary 3.4.

The existence result also holds for the integral representation by using double
layer potentials

φ(x) = \scrD kp
α(x), ψ(x) = \scrD ks

β(x), x \in R
2\setminus D.

Using the jump relations (3.3), we obtain the integral equation

M

\biggl[ 

α(x)
β(x)

\biggr] 

=

\biggl[ 

Tkp

1
2∂τ + ∂τDks

1
2∂τ + ∂τDkp

 - Tks

\biggr] \biggl[ 

α(x)
β(x)

\biggr] 

=

\biggl[ 

f(x)
g(x)

\biggr] 

,(4.4)

where Tk = ∂νDk. The following existence result holds.

Theorem 4.3. If neither ks nor kp is the eigenvalue of the interior Neumann

problem for the Helmholtz equation in D, the integral equation (4.4) has a unique

solution in H1/2(Γ)2.

To remove the assumption of Theorem 4.1 or 4.3, we propose a combined double
and single layer representation to obtain a uniquely solvable integral system for any
ks and kp. Consider the combined layer potentials

φ(x) = (\scrD kp
 - i\scrS kp

)α(x), ψ(x) = (\scrD ks
 - i\scrS ks

)β(x), x \in R
2\setminus D,

which results in a combined integral equation

(M  - iA)

\biggl[ 

α(x)
β(x)

\biggr] 

=

\Biggl( 

\biggl[ 

Tkp

1
2∂τ + ∂τDks

1
2∂τ + ∂τDkp

 - Tks

\biggr] 

 - i

\Biggl[ 

 - I
2 +D\prime 

kp
H \prime 

ks

H \prime 
kp

I
2  - D\prime 

ks

\Biggr] \Biggr) 

\biggl[ 

α(x)
β(x)

\biggr] 

=

\biggl[ 

f(x)
g(x)

\biggr] 

.(4.5)

We have the following existence result.

D
o

w
n
lo

ad
ed

 1
0
/3

0
/1

9
 t

o
 1

2
8
.2

1
0
.1

0
7
.2

7
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3284 JUN LAI AND PEIJUN LI

Theorem 4.4. For any kp > 0 and ks > 0, the integral equation (4.5) admits a

unique solution in H1/2(Γ)2.

Remark 4.5. In general, we may consider the following combined potentials:

φ(x) = (\scrD kp
 - iη\scrS kp

)α(x), ψ(x) = (\scrD ks
 - iη\scrS ks

)β(x), x \in R
2\setminus D,

where η > 0 is a given coupling parameter. Depending on the wavenumbers kp and ks,
the coupling parameter η = 1 may not be the optimal choice in terms of the condition
number in the discretized system. We will not elaborate on this issue in this work,
and we refer the reader to [6, 9, 29] for how to choose the optimal η for the acoustic
scattering problems.

In what follows, we discuss the proof of Theorem 4.1 in detail and give the proofs
of Theorems 4.3 and 4.4 in the supplementary materials.

4.1. Proof of Theorem 4.1. We first construct an appropriate regularizer for
the operator A by considering the coupled Helmholtz system obtained from an interior
Dirichlet elastic scattering problem:

\Biggl\{ 

∆φ+ k2pφ = 0, ∆ψ + k2sψ = 0 in D,

 - ∂νφ+ ∂τψ = f, ∂τφ+ ∂νψ = g on Γ.
(4.6)

Compared with the system (2.5), the boundary condition here can be understood, as
the compressional wavenumber kp and shear wavenumber ks are interchanged. It is
constructed in order to regularize the operator A. The solutions φ and ψ of (4.6) are
assumed to have the integral representations

φ(x) = Skp
α(x), (x)ψ = Sks

β(x), x \in R
2\setminus D.

Using the boundary condition, we obtain the following integral equation when x\rightarrow Γ:

B

\biggl[ 

α
β

\biggr] 

=

\biggl[ 

f
g

\biggr] 

, where B =

\Biggl[ 

 - I
2  - D\prime 

kp
H \prime 

ks

H \prime 
kp

I
2 +D\prime 

ks

\Biggr] 

.

To prove Theorem 4.1, we also need to derive the adjoint operator of A in L2(Γ)2.
By applying Green’s identity to (4.6) and using the boundary condition in (4.6), we
have

\biggl( 

 - I
2
+Dkp

\biggr) 

φ - Skp
∂τψ =  - Skp

f,

\biggl( 

 - I
2
+Dks

\biggr) 

ψ + Sks
∂τφ = Sks

g.

Noting that Hkφ =  - Sk∂τφ, we obtain

A\prime 

\biggl[ 

φ
ψ

\biggr] 

=

\biggl[ 

 - I
2 +Dkp

Hkp

Hks

I
2  - Dks

\biggr] \biggl[ 

φ
ψ

\biggr] 

=

\biggl[ 

 - Skp
f

 - Sks
g

\biggr] 

.

It is easy to check that the operator A\prime is the adjoint of the operator A with respect
to the bilinear form in L2(Γ)2 given by

\langle u,v\rangle =
\int 

Γ

\bigl( 

u1v1 + u2v2
\bigr) 

ds,

where u = (u1, u2) and v = (v1, v2).
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Theorem 4.6. For any vector function f \in H - 1/2(Γ)2, the operators A,B satisfy

(AB)f =

\Biggl( 

 - 
(k2s + k2p)

2
S0S0 +K1

\Biggr) 

f ,

(BA)f =

\Biggl( 

 - 
(k2s + k2p)

2
S0S0 +K2

\Biggr) 

f ,

where K1,K2 are compact operators from H - 1/2(Γ)2 to H3/2(Γ)2.

Proof. It follows from a straightforward calculation that

AB =

\Biggl[ 

 - I
2 +D\prime 

kp
H \prime 

ks

H \prime 
kp

I
2  - D\prime 

ks

\Biggr] \Biggl[ 

 - I
2  - D\prime 

kp
H \prime 

ks

H \prime 
kp

I
2 +D\prime 

ks

\Biggr] 

=

\Biggl[ 

I
4  - (D\prime 

kp
)2 +H \prime 

ks
H \prime 

kp
D\prime 

kp
H \prime 

ks
+H \prime 

ks
D\prime 

ks

 - D\prime 
ks
H \prime 

kp
 - H \prime 

kp
D\prime 

kp

I
4  - (D\prime 

ks
)2 +H \prime 

kp
H \prime 

ks

\Biggr] 

.

We first look at the off-diagonal elements. It can be verified that

D\prime 
kp
H \prime 

ks
+H \prime 

ks
D\prime 

ks
= (D\prime 

kp
 - D\prime 

0)H
\prime 
0 +D\prime 

kp
(H \prime 

ks
 - H \prime 

0)

+H \prime 
ks
(D\prime 

ks
 - D\prime 

0) + (H \prime 
ks

 - H \prime 
0)D

\prime 
0,

where D\prime 
0H

\prime 
0 + H \prime 

0D
\prime 
0 vanishes due to Lemma 3.3. It follows from Corollaries 3.4

and 3.5 that (D\prime 
kp

 - D\prime 
0)H

\prime 
0, H

\prime 
ks
(D\prime 

ks
 - D\prime 

0) are bounded operators from H - 1/2(Γ) to

H - 1/2+3(Γ) and D\prime 
kp
(H \prime 

ks
 - H \prime 

0), (H
\prime 
ks
 - H \prime 

0)D
\prime 
0 are bounded operators from H - 1/2(Γ)

to H - 1/2+5(Γ). Therefore, D\prime 
kp
H \prime 

ks
+H \prime 

ks
D\prime 

ks
is a compact operator from H - 1/2(Γ) to

H3/2(Γ). Similarly, we can show that  - D\prime 
ks
H \prime 

kp
 - H \prime 

kp
D\prime 

kp
is also a compact operator

from H - 1/2(Γ) to H3/2(Γ).
Next we check the diagonal elements. Using Lemma 3.3, we obtain

I

4
 - (D\prime 

kp
)2 +H \prime 

ks
H \prime 

kp
= (H \prime 

ks
 - H \prime 

0)H
\prime 
0 +H \prime 

ks
(H \prime 

kp
 - H \prime 

0)

 - (D\prime 
kp
)2 + (D\prime 

0)
2.

From Corollaries 3.4 and 3.5, the operators (D\prime 
kp
)2, (D\prime 

0)
2 are bounded from H - 1/2(Γ)

to H - 1/2+6(Γ). Hence they are both compact from H - 1/2(Γ) to H3/2(Γ). Consider
the operator

(4.7) (H \prime 
ks

 - H \prime 
0)H

\prime 
0 +H \prime 

ks
(H \prime 

kp
 - H \prime 

0).

Clearly, it is bounded from H - 1/2(Γ) to H3/2(Γ). Using the asymptotic form in
Lemma 3.2, we have the following decomposition:

(H \prime 
ks

 - H \prime 
0)H

\prime 
0φ(x) =  - ∂

∂τ(x)

\int 

Γ

| ks(x - y)| 2
4

Φ0(x, y)

\times ∂

∂τ(y)

\int 

Γ

Φ0(y, z)φ(z)ds(z)ds(y) +K1φ(x),
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where K1 is a compact operator from H - 1/2(Γ) to H3/2(Γ). For the first operator in
the right-hand side of (H \prime 

ks
 - H \prime 

0)H
\prime 
0, we note that

 - ∂

∂τ(x)

\int 

Γ

| ks(x - y)| 2
4

Φ0(x, y)
∂

∂τ(y)

\int 

Γ

Φ0(y, z)φ(z)ds(z)ds(y)

=

\int 

Γ

\biggl( 

∂

∂τ(x)
+

∂

∂τ(y)

\biggr) \biggl( 

∂

∂τ(y)

| ks(x - y)| 2
4

Φ0(x, y)

\biggr) 
\int 

Γ

Φ0(y, z)φ(z)ds(z)ds(y)

 - 
\int 

Γ

∂

∂τ(y)

\biggl( 

∂

∂τ(y)

| ks(x - y)| 2
4

Φ0(x, y)

\biggr) 
\int 

Γ

Φ0(y, z)φ(z)ds(z)ds(y)

=Mφ(x) +Nφ(x),

where M denotes the first operator and N denotes the second one.
We show that M is a compact operator from H - 1/2(Γ) to H3/2(Γ). In fact, it

holds that
\biggl( 

∂

∂τ(x)
+

∂

∂τ(y)

\biggr) \biggl( 

∂

∂τ(y)

| ks(x - y)| 2
4

Φ0(x, y)

\biggr) 

=  - k2s
4π

(1 - τ(x)τ(y)) ln(| x - y| ) +O((x - y) ln(| x - y| ))
= O((x - y) ln(| x - y| )).

By Theorem 3.1, M is bounded from H - 1/2(Γ) to H5/2(Γ), which implies that M is
compact from H - 1/2(Γ) to H3/2(Γ). For the operator N , it is clear to note that

 - ∂

∂τ(y)

\biggl( 

∂

∂τ(y)

| ks(x - y)| 2
4

Φ0(x, y)

\biggr) 

=  - k
2
s

2
Φ0(x - y) +O((x - y) ln(| x - y| )).

Therefore,

Nφ(x) =  - k
2
s

2
S0S0φ(x) +Kφ(x),(4.8)

where K is compact from H - 1/2(Γ) to H3/2(Γ). Similarly, we may show that

\Bigl( 

H \prime 
ks
(H \prime 

kp
 - H \prime 

0)
\Bigr) 

φ(x) =  - 
k2p
2
S0S0φ(x) +Kφ(x).

Combining (4.7)–(4.8) yields that

\biggl( 

I

4
 - (D\prime 

kp
)2 +H \prime 

ks
H \prime 

kp

\biggr) 

φ =

\Biggl( 

 - 
(k2s + k2p)

2
S0S0 +K

\Biggr) 

φ,

where K is a compact operator from H - 1/2(Γ) to H3/2(Γ). Following the same
argument, we have

\biggl( 

I

4
 - (D\prime 

ks
)2 +H \prime 

kp
H \prime 

ks

\biggr) 

φ =

\Biggl( 

 - 
(k2s + k2p)

2
S0S0 +K

\Biggr) 

φ,
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which proves the first part of the theorem since S0 and S0 only differ by a smooth
operator.

For the second part, we have from straightforward calculations that

BA =

\Biggl[ 

 - I
2  - D\prime 

kp
H \prime 

ks

H \prime 
kp

I
2 +D\prime 

ks

\Biggr] \Biggl[ 

 - I
2 +D\prime 

kp
H \prime 

ks

H \prime 
kp

I
2  - D\prime 

ks

\Biggr] 

=

\Biggl[ 

I
4  - (D\prime 

kp
)2 +H \prime 

kp
H \prime 

ks
 - D\prime 

kp
H \prime 

ks
 - H \prime 

ks
D\prime 

ks

D\prime 
ks
H \prime 

kp
+H \prime 

kp
D\prime 

kp

I
4  - (D\prime 

ks
)2 +H \prime 

kp
H \prime 

ks

\Biggr] 

.

The rest of the proof is the same as the first part and is omitted here.

Next we consider the adjoint operator A\prime and introduce the operator

B\prime =

\biggl[ 

 - I
2  - Dkp

Hkp

Hks

I
2 +Dks

\biggr] 

,

which is the adjoint of operator B in L2(Γ)2. Following exactly the same argument,
we have the following result.

Theorem 4.7. For any vector function f \in H1/2(Γ)2, the operators A\prime , B\prime satisfy

(A\prime B\prime )f =

\Biggl( 

 - 
(k2s + k2p)

2
S0S0 +K1

\Biggr) 

f ,

(B\prime A\prime )f =

\Biggl( 

 - 
(k2s + k2p)

2
S0S0 +K2

\Biggr) 

f ,

where K1,K2 are compact operators from H1/2(Γ)2 to H5/2(Γ)2.

Since S0S0 is invertible from Hs(Γ)2 to Hs+2(Γ)2 with s \in R, by the Fredholm
alternative, the operators A and A\prime have finite-dimensional null spaces and their
ranges are given by

Ran(A) = \{ f \in H - 1/2(Γ)2 : \langle f ,g\rangle = 0, g \in Ker(A\prime )\} ,
Ran(A\prime ) = \{ f \in H1/2(Γ)2 : \langle f ,h\rangle = 0, h \in Ker(A)\} .

The kernels of A and A\prime are given in the following theorem.

Theorem 4.8. If neither ks nor kp is the eigenvalue of the interior Dirichlet

problem for the Helmholtz equation in D, then Ker(A) = Ker(A\prime ) = \{ 0\} .
Proof. Assume (α(x), β(x)) \in H - 1/2(Γ)2 satisfies

A

\biggl[ 

α
β

\biggr] 

=

\biggl[ 

0
0

\biggr] 

.

Let
φ(x) = \scrS kp

α(x), ψ(x) = \scrS ks
β(x), x \in R

2 \setminus Γ.
Then (φ, ψ) satisfies (2.5) with f = 0, g = 0. By the uniqueness result in Theorem
2.1, it holds that

φ(x) = ψ(x) = 0, x \in R
2 \setminus D.

It follows from the continuity of the single layer potential that φ(x) = ψ(x) = 0 for
x \in Γ - . Since neither ks nor kp is the eigenvalue of the interior Dirichlet problem in

D
o

w
n
lo

ad
ed

 1
0
/3

0
/1

9
 t

o
 1

2
8
.2

1
0
.1

0
7
.2

7
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3288 JUN LAI AND PEIJUN LI

D, we have φ(x) = ψ(x) = 0 for x \in D. Using the jump relation of the double layer
potential, we obtain α(x) = β(x) = 0, which implies Ker(A) = \{ 0\} .

Now assume (α(x), β(x)) \in Ker(A\prime ). Let x \in R
2 \setminus Γ, and consider

φ(x) = \scrD kp
α(x) - \scrS kp

∂τβ(x),

ψ(x) = \scrD ks
β(x) + \scrS ks

∂τα(x).

Since φ(x) = ψ(x) = 0 when x approaches Γ from the interior, by assumption, it
holds that φ(x) = ψ(x) = 0 for x \in D. By Green’s theorem, when x approaches Γ
from the exterior, i.e., x\rightarrow Γ+, we have

φ(x) = α(x), ψ(x) = β(x),(4.9a)

∂νφ(x) = ∂τβ(x), ∂νψ(x) =  - ∂τα(x),(4.9b)

which shows that φ and ψ satisfy (2.5) with f = g = 0. Therefore, by the uniqueness
of the scattering problem, φ(x) = ψ(x) = 0 in R

2 \setminus D. Following (4.9), it yields that
α(x) = β(x) = 0, which completes the proof.

The well-posedness of the integral equation (4.1) follows immediately from the
Fredholm alternative, which completes the proof of Theorem 4.1.

5. Numerical method. Multiple scattering of small particles, including min-
eral particles, liquid cloud particles, and biological microorganisms, is an important
research topic in material sciences, climatology, and biomedical engineering. Classic
multiple scattering theory, which will be mentioned below, is restricted to circular
shaped particles. In practice, particles may be arbitrarily shaped and highly disor-
dered. In this section, we introduce a fast numerical method for the elastic obstacle
scattering with multiparticles that are noncircular and randomly located in a homo-
geneous and isotropic elastic background medium. Numerical methods can be found
in [16, 32, 33] for the acoustic and electromagnetic scattering problems involving mul-
tiparticles.

5.1. Scattering of a single disk. Consider a rigid disk located in a homoge-
neous medium with Lamé constants given by λ and µ and the angular frequency given
by ω. The corresponding compressional wavenumber is kp, and the shear wavenum-
ber is ks. Let the disk be centered at the origin with radius R. Given an incident
compressional wave uincp and shear wave uincs , one can expand them in terms of the
Bessel functions, which is also called the local expansion:

uincp (r, θ) =

\infty 
\sum 

n= - \infty 

anJn(kpr)e
inθ,(5.1a)

uincs (r, θ) =

\infty 
\sum 

n= - \infty 

bnJn(ksr)e
inθ,(5.1b)

where Jn is the Bessel function of order n. By the classic Mie theory, the exterior
elastic scattered compressional and shear wave fields can be expanded by Hankel
functions, which is also called the multipole expansion:

usp(r, θ) =

\infty 
\sum 

n= - \infty 

cnH
(1)
n (kpr)e

inθ,(5.2a)

uss(r, θ) =

\infty 
\sum 

n= - \infty 

dnH
(1)
n (ksr)e

inθ,(5.2b)
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where H
(1)
n is the Hankel function of the first kind with order n. Given the expansion

coefficients \{ an\} and \{ bn\} of the incident wave and the boundary conditions

∂ν(u
inc
p + usp)| r=R + ∂τ (u

inc
s + uss)| r=R = 0,

∂τ (u
inc
p + usp)| r=R  - ∂ν(u

inc
s + uss)| r=R = 0,

we can easily find the expansion coefficients \{ cn\} and \{ dn\} of the scattered fields by
solving a 2\times 2 linear system for each n:

\Biggl[ 

kpH
(1)\prime 

n (kpR) inH
(1)
n (ksR)

inH
(1)
n (kpR)  - ksH(1)\prime 

n (ksR)

\Biggr] 

\biggl[ 

cn
dn

\biggr] 

=  - 
\biggl[ 

ankpJ
\prime 
n(kpR) + inbnJn(ksR)

inanJn(kpR) - bnksJ
\prime 
n(ksR)

\biggr] 

.

Explicitly, we have
\biggl[ 

cn
dn

\biggr] 

= Sn

\biggl[ 

an
bn

\biggr] 

,

where

Sn =  - 
\Biggl[ 

kpH
(1)\prime 

n (kpR) inH
(1)
n (ksR)

inH
(1)
n (kpR)  - ksH(1)\prime 

n (ksR)

\Biggr]  - 1
\biggl[ 

kpJ
\prime 
n(kpR) inJn(ksR)

inJn(kpR)  - ksJ \prime 
n(ksR)

\biggr] 

.

Note that the uniqueness result in Theorem 2.1 guarantees that the denominator
part of Sn is always invertible if kp and ks are both positive, which implies Sn is
well-defined. Therefore, we can give the following definition.

Definition 5.1. The mapping between the incoming coefficients \{ an\} and \{ bn\} 
and outgoing coefficients \{ cn\} and \{ dn\} is referred to as the scattering matrix for the

disk and is denoted by S , i.e.,

\biggl[ 

\{ cn\} 
\{ dn\} 

\biggr] 

= S

\biggl[ 

\{ an\} 
\{ bn\} 

\biggr] 

.

5.2. Scattering of multiple disks. Now let’s consider M (M > 1) rigid disks
with the same radius R. A global expansion for the exterior field which is done for
a single disk does not hold anymore. However, if we assume that the disks are well
separated, i.e., there exists a positive distance between any two disks, then the Mie
series expansion still holds in the vicinity of each disk. For the mth disk, the field
around it can be expanded in terms of the Hankel functions (5.2) with expansion
coefficients \{ cmn \} and \{ dmn \} . The incoming field has two components: the first one
is the external incident field, as the case for a single disk, and the second one is the
scattered field of the other disks. Therefore, in order to find \{ cmn \} and \{ dmn \} , we need
to solve the linear system

\left[ 

 

 

 

 

S  - 1 T 12 \cdot \cdot \cdot T 1M

T 21 S  - 1 \cdot \cdot \cdot T 2M

...
...

. . .
...

T M1 T M2 \cdot \cdot \cdot S  - 1

\right] 

 

 

 

 

\left[ 

 

 

 

 

 

 

 

 

 

 

\biggl[ 

\{ c1n\} 
\{ d1n\} 

\biggr] 

\biggl[ 

\{ c2n\} 
\{ d2n\} 

\biggr] 

...
\biggl[ 

\{ cMn \} 
\{ dMn \} 

\biggr] 

\right] 

 

 

 

 

 

 

 

 

 

 

=

\left[ 

 

 

 

 

 

 

 

 

 

 

\biggl[ 

\{ a1n\} 
\{ b1n\} 

\biggr] 

\biggl[ 

\{ a2n\} 
\{ b2n\} 

\biggr] 

...
\{ aMn \} 
\{ bMn \} 

\right] 

 

 

 

 

 

 

 

 

 

 

,(5.3)
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where the matrix T ml, m = 1, . . . ,M, l = 1, . . . ,M , which maps the outgoing coef-
ficients \{ cln\} and \{ dln\} of the lth disk to the incoming coefficients of the mth disk, is
constructed based on the Graf addition theorem [44].

From Lemma 3.1 in [33], we see that the translation matrix T ml has the form

T
ml =

\biggl[ 

\bigl\{ 

aml
ij \} i,j\in Z 0
0

\bigl\{ 

bml
ij

\bigr\} 

i,j\in Z

\biggr] 

,

where

aml
ij = H

(1)
i - j(kp| xl  - xm| )e - i(i - j)(θml - π), bml

ij = H
(1)
i - j(ks| xl  - xm| )e - i(i - j)(θml - π).

Since the scattering matrix S is ill-conditioned, it introduces large numerical errors if
inverting S directly. In particular, S is not invertible when kpR and ksR happen to
be the zero points of Bessel function Jn. The condition number also deteriorates when
the particle has high aspect ratio [12]. A better way to solve the linear system (5.3)
is to first introduce a block diagonal matrix, whose diagonal blocks are the scattering
matrix S , as the preconditioner of (5.3). Hence, instead of solving (5.3), we solve
the preconditioned linear system

\left[ 

 

 

 

 

I S T 12 \cdot \cdot \cdot S T 1M

S T 21 I \cdot \cdot \cdot S T 2M

...
...

. . .
...

S T M1 S T M2 \cdot \cdot \cdot I

\right] 

 

 

 

 

\left[ 

 

 

 

 

 

 

 

 

 

 

\biggl[ 

\{ c1n\} 
\{ d1n\} 

\biggr] 

\biggl[ 

\{ c2n\} 
\{ d2n\} 

\biggr] 

...
\biggl[ 

\{ cMn \} 
\{ dMn \} 

\biggr] 

\right] 

 

 

 

 

 

 

 

 

 

 

=

\left[ 

 

 

 

 

 

 

 

 

 

 

S

\biggl[ 

\{ a1n\} 
\{ b1n\} 

\biggr] 

S

\biggl[ 

\{ a2n\} 
\{ b2n\} 

\biggr] 

...

S

\biggl[ 

\{ aMn \} 
\{ bMn \} 

\biggr] 

\right] 

 

 

 

 

 

 

 

 

 

 

.(5.4)

Due to the existence of positive distance between any two disks, the translation op-
erators T ml, m = 1, . . . ,M, l = 1, . . . ,M , are compact and the scattering matrix
S is bounded, which implies the system (5.4) is much better conditioned than the
original system (5.3). Therefore, one can apply an iterative solver, such as GMRES,
to the system (5.4) and expect a fast convergence rate. In particular, the system (5.4)
is well-defined regardless of the invertibility of S . For numerical purposes, all the
infinite series \{ an\} , \{ bn\} , \{ cn\} , and \{ dn\} need to be truncated to a finite number of
terms with N > 0. Analysis on how to choose the right number of terms can be found
in [15]. Since the linear matrix in (5.4) is dense, the direct matrix-vector product in
each iteration takes a computational complexity on the order of O(M2) if the trun-
cation number N is relatively small. In this case, the FMM can be utilized to reduce
the complexity to O(M) in each iteration and greatly accelerate the computation [18].
More complicated and effective preconditioning methods can be found in [25, 13].

5.3. Scattering of arbitrarily shaped multiple obstacles. The theory de-
scribed above for the elastic scattering of multiple disks is based on the classic acoustic
multiple scattering theory, which is efficient to find the scattering field for a large num-
ber of disks. It is not easy, however, to extend to the scattering of noncircular shaped
particles. Here, we propose a fast algorithm for the scattering of a large number of
arbitrarily shaped multiparticles, which are assumed to be well separated in the sense
that each particle is included in a disk, and all the disks do not overlap. Given such an
assumption, we construct the scattering matrix S for each particle based on the disk
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that includes the particle and extend the multiple scattering theory to noncircular
particles.

More specifically, given M randomly located particles Dj , j = 1, . . . ,M , each
particle is included by a nonoverlapping disk Bj , j = 1, . . . ,M . We sample the
incoming field on the disk Bj rather than Dj in the form of (5.1). In particular, for
each n \in \{  - N, . . . , N\} , let αn and βn denote the solution to the integral equation
(4.1) with its right-hand side given by (5.1), where we choose an = 1 or bn = 1
with n sequentially being  - N, - N + 1, . . . , N  - 1, N and am = 0 or bm = 0 for any
 - N \leq m \leq N and m \not = n. Then we precompute the multipole expansion (5.2) from
these source distributions, where

cnl =

\int 

Γj

Jl(kp| y| )e - ilθj(y) αn(y)ds(y), dnl =

\int 

Γj

Jl(ks| y| )e - ilθj(y) βn(y)ds(y),

l =  - N, . . . , N . Here, y is the location of a point on Γj with respect to the center of
the disk Bj and θj(y) is the polar angle subtended with respect to the center of disk
Bj . The formulas for cnl and dnl are standard [44] and derived from Graf’s addition
theorem [41]. Note that we only have to solve the integral equation (4.1) by the LU
factorization or any other direct solver once and apply it to different hand sides. Once
the computation is done for each n \in \{  - N, . . . , N\} , we obtain the scattering matrix
Sj for Dj .

Remark 5.2. Here, we construct the scattering matrix for a given particle based on
the integral formulation (4.1) under the assumption of Theorem 4.8. If this assumption
is not satisfied, we can use either (4.4) or (4.5) to find the scattering matrix.

When the scattering matrix Sj for each particle is available, we plug them into
the linear system (5.4) to find the elastic scattered field. The advantage of using
the scattering matrix, instead of points that discretize each particle directly, is that
the number of unknowns represented by multipole expansion coefficients is usually
much less than the one represented by points, especially for particles with compli-
cated geometries. Moreover, by using the scattering matrix, we obtain a much better
conditioned system and GMRES can find the solution rapidly. In addition, if all the
particles are identical up to a rotation, we only have to compute the scattering matrix
S for one particle and apply it to all the other particles.

6. Numerical experiments. In this section, we test our algorithm by evaluat-
ing the elastic scattered field for a large number of identical particles embedded in a
homogeneous and isotropic background. Particles tested in all the examples, up to a
rotation and shift, are parametrized by

x(θ) = (a+ b cos(cθ)) cos θ, y(θ) = (a+ b cos(cθ)) sin θ,(6.1)

where θ \in [0, 2π) and the parameters a, b, c will be specified in each example. For
simplicity, we fix the Lamé constants to be λ = 3.88 and µ = 2.56 in all examples
and change the angular frequency ω only. The choice of λ and µ is made such that\surd 
λ+ 2µ and

\surd 
µ are rational numbers, but any other choice can be made as long

as λ + 2µ > 0 and µ > 0 are satisfied. In order to discretize the singular integral
accurately, we use the Nyström discretization for the system of equations (4.1) based
on the high order hybrid Gauss-trapezoidal rule of Alpert [2].

The following notations are given in Tables 1–4 to illustrate the results:
\bullet ω: the angular frequency,
\bullet Npts: the number of points to discretize a single particle,
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\bullet Nparticle: the total number of particles,
\bullet Nterm: the highest order used in the local and multipole expansions of a single

particle, i.e., the local and multipole expansions have 2Nterm + 1 terms,
\bullet Ntot: the total number of unknowns in the linear equation. If the unknowns
are given by points, then it is equal to 2NptsNparticle. If the unknowns are
given by the coefficients of multipole expansion, then it is equal to 2(2Nterm+
1)Nparticle,

\bullet Niter: the number of GMRES iterations,
\bullet Tsolve: the time (secs.) to solve the linear system by GMRES,
\bullet Eerror: the relative L

2 error of the elastic field measured at 20 random points.
They are chosen from a circle centered at (0, - 8) with radius 15.

All experiments were implemented in Fortran 90 and carried out on a laptop
with an Intel CPU and 16 GB of memory. We made use of the simple LU factorization
for matrix inversion when constructing the scattering matrix given in section 5.3. The
accuracy for GMRES was chosen to be 1E-9. No further acceleration was explored
during the GMRES iteration except for using the FMM.

6.1. Example 1: Scattering with an analytic solution. In this example,
we consider the elastic scattering of 10 particles, denoted by Di, i = 1, . . . , 10. Two
methods are used for comparison. One method is to discretize all particles by points
and apply the Nyström discretization to the integral equation directly. Since the
number of unknowns is large, we do not explicitly assemble the matrix but solve it by
the GMRES with the FMM acceleration. We call it a direct method. Another one
is the proposed method by constructing a scattering matrix first and then solving for
the coefficients of multipole expansion, which is called the scattering matrix based
method. To verify the accuracy of these two methods, we construct an artificial
solution by letting the field outside the particles be generated by a point source inside
the first particle. In particular, we choose the exterior elastic field to be

u(x) = \nabla usp + curluss =

\biggl[ 

∂x1
usp

∂x2
usp

\biggr] 

+

\biggl[ 

∂x2
uss

 - ∂x1
uss

\biggr] 

,

where

(6.2) usp(x) = H
(1)
0 (kp| x - x0| ), uss(x) = H

(1)
0 (ks| x - x0| ), x \in R

2 \setminus \cup 10
j=1Dj ,

where x0 \in D1. Due to the uniqueness, the solution can be recovered by enforcing a
boundary condition on Γj , j = 1, . . . , 10, that is consistent with the given u. More
specifically, we choose the boundary conditions on Γj to be
\Biggl\{ 

fj(x) = ∂νH
(1)
0 (kp| x - x0| ) + ∂τH

(1)
0 (ks| x - x0| ),

gj(x) = ∂τH
(1)
0 (kp| x - x0| ) - ∂νH

(1)
0 (ks| x - x0| ),

x \in Γj , j = 1, . . . , 10.

With such boundary conditions, it is easy to see that solution (6.2) satisfies (2.5) and
is the only solution by the uniqueness result given in Theorem 2.1.

We first check the accuracy for 10 disks with a = 1, b = 0, c = 0 in the pa-
rametrization equation (6.1) and ω = 4π. Nine digit accuracy is obtained with 200
discretization points for each disk by comparing with the analytic solution. We then
test the geometries with b \not = 0 and c \not = 0. Results for various angular frequencies are
shown in Figure 2 and Tables 1–2. Table 1 shows the results of the direct method.
It can be seen that the number of iterations grows rapidly when the number of dis-
cretization points increases. Since the integral equation (4.1) is not the second kind
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in L2 space, convergence rate based on the direct method is very slow due to the
ill-conditioning of the matrix. As shown in Table 1, if each particle is discretized by
200 points, more than 1000 iterations are required for the GMRES to converge in all
cases. Even with the FMM acceleration, the CPU time is on the order of hundreds
of seconds, which suggests that the direct matrix factorization may be more efficient
than the iterative method in this case. On the other hand, our scattering matrix
based method always achieves a quick convergence in various cases. One important
feature is that the convergence rate is almost constant for different Nterm used in the
multipole expansion if all the other factors are unchanged. If we ignore the cost for
precomputation of the scattering matrix, which is constructed by solving the integral
equation (4.1) with 200 discretization points, our solver is more than 1000 times faster
than the direct method for the same accuracy.

Figure 2 shows the error of the computed elastic field compared with the analytic
solution when ω = 4π by the scattering matrix based method. More specifically, the
field is evaluated by

\Biggl\{ 

usp(x) =
\sum 10

j=1

\sum \infty 
n= - \infty cjnH

(1)
n (kprj)e

inθj ,

uss(x) =
\sum 10

j=1

\sum \infty 
n= - \infty djnH

(1)
n (ksrj)e

inθj ,
x \in R

2 \setminus \cup 10
j=1Bj ,(6.3)

where (rj , θj) are the polar coordinates of x with respect to the center of Bj , and Bj

is the disk that encloses Dj . Due to the near field singularity, the scattered field in
Bj\setminus Dj is evaluated by the QBX [27]; i.e., the field near the boundary of each particle
is evaluated by the use of local expansions formed by the FMM. Overall, the error is
less than 1E-7. We also show the comparison of convergence rate between the direct
method and our method in Figures 2(c)–2(d). Obviously, one can see a much faster
convergence for the scattering matrix based method.

6.2. Example 2: Point source incidence. In this example, we test our al-
gorithm on a large number of rigid particles with point source incidence. The point
source is given by the form of (6.2) with x0 = (5, 5), and all the particles are randomly
located in the lower half plane. To ensure that the particles are well separated but
confined in a fixed region, we use a bin sorting algorithm to construct the random
distribution; i.e., we begin with particles located on a regular grid and then perturb
their positions randomly several times. The details can be found in [33].

We construct the scattering matrix by solving the integral equation (4.1) on a
single particle with 200 discretization points. The number of terms in the multipole
expansion is chosen to be Nterm = 20. To verify the accuracy of the computed
solution, we compare it with the solution obtained by choosingNterm = 40. Numerical
results for various angular frequencies are shown in Table 3 and Figure 3. From Table
3, we can see that the number of iterations grows roughly linearly with respect to
the angular frequency ω for a fixed number of particles. If ω is fixed, the number
of iterations increases sublinearly with respect to the number of particles. Another
observation is that the field is mainly affected by the size of a particle, not by the
detailed geometry, since the number of iterations is almost constant when we change
the value of c, which controls how many “leaves” that a particle has. The total field
plotted in Figure 3 for the scattering of 1000 particles also confirms this observation.
We have to note, however, that this conclusion may only hold when the size of each
particle is in a subwavelength regime for a given incident field.

6.3. Example 3: Plane incidence wave. For the third example, we evaluate
the elastic scattered field of a large number of particles by a plane wave incidence,
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Fig. 2. Elastic scattering of 10 particles at ω = 4π. (a) The logarithmic error of the computed

field when a = 1, b = 1/3, c = 3. (b) The logarithmic error of the computed field when a = 1,
b = 1/3, c = 5. (c) Comparison of the GMRES convergence rate when a = 1, b = 1/3, c = 3. (d)
Comparison of the GMRES convergence rate when a = 1, b = 1/3, c = 5. More details are given in

the text of Example 1.

Table 1

Example 1: Results for the elastic scattering of 10 particles based on the direct method with the

FMM acceleration.

a = 1 b = 1
3

c = 3 a = 1 b = 1
3

c = 5

ω Npts Ntot Niter Tsolve Eerr Niter Tsolve Eerr

50 1000 930 7.96E1 5.79E-4 943 7.84E1 2.12E-2
π 100 2000 1071 1.79E2 1.36E-6 1613 2.75E2 2.17E-7

200 4000 2243 7.23E2 4.47E-10 2814 1.01E3 2.56E-9
50 1000 930 7.92E1 5.79E-4 933 8.02E1 2.75E-3

2π 100 2000 1410 2.43E2 8.08E-7 1588 2.78E2 2.63E-5
200 4000 2243 7.26E2 4.47E-10 2327 8.15E2 7.94E-9
50 1000 847 7.42E1 2.12E-3 993 8.92E1 1.72E-2

4π 100 2000 939 1.61E2 1.04E-6 1670 3.01E2 5.27E-5
200 4000 1374 4.29E2 8.11E-10 2225 8.22E2 2.47E-8

which is given by

uinc(x) = deikpx\cdot d + d\bot eiksx\cdot d,

where d is the propagation direction and d\bot is orthogonal to d. In our test, we
choose d = (cos( - π

3 ), sin( - π
3 )) and d

\bot = (sin(π3 ), cos(
π
3 )). The locations of particles

are randomly distributed in a fixed region which is the same as that in Example
2. The transformation of plane wave into the local expansion (5.1) is given by the
Jacobi–Anger identity [41]. Numerical results for the plane wave incidence are given
in Figure 4 and Table 4. Comparing the results between Tables 2 and 4, we find that
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Table 2

Example 1: Results for the elastic scattering of 10 particles by using the scattering matrix based

method with the FMM acceleration.

a = 1 b = 1
3

c = 3 a = 1 b = 1
3

c = 5

ω Nterm Ntot Niter Tsolve Eerr Niter Tsolve Eerr

10 420 63 4.01E-2 8.35E-6 67 4.02E-2 6.59E-6
π 20 820 62 8.81E-2 4.71E-9 67 9.61E-2 6.17E-9

40 1620 61 2.39E-1 5.75E-9 67 2.72E-1 6.84E-10
10 420 74 4.81E-2 3.39E-5 88 6.01E-2 8.41E-5

2π 20 820 73 1.07E-1 6.49E-9 87 1.24E-1 5.32E-9
40 1620 73 2.91E-1 2.09E-9 87 3.61E-1 2.31E-9
10 420 94 6.39E-2 1.84E-2 104 7.21E-2 1.70E-2

4π 20 820 94 1.41E-1 7.85E-7 108 1.64E-1 1.72E-7
40 1620 93 3.84E-1 3.42E-9 107 4.47E-1 1.12E-8

(a) (b)

(c) (d)

Fig. 3. The elastic scattering of 1000 particles by point source illumination in Example 2. Here,

we show the real part of the first component of the total elastic field. (a) Field for a = 1
8
, b = 1

24
,

c = 3, ω = π. (b) Field for a = 1
8
, b = 1

24
, c = 5, ω = π. (c) Field for a = 1

8
, b = 1

24
, c = 3,

ω = 4π. (d) Field for a = 1
8
, b = 1

24
, c = 5, ω = 4π.

the number of iterations for the plane wave incidence is similar to the one with the
point source incidence. In particular, the results for both the point source incidence
and the plane wave incidence show that the number of iterations for GMRES does
depend on the size of particles but is almost independent of the shape of particles.
This fact is further illustrated in Figure 4 since the fields for two different kinds of
particles look almost identical. Again, the conclusion may only hold if we restrict
ourselves in the subwavelength regime. Another observation from Figure 4 is that
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Table 3

Example 2: Results for the elastic scattering of multiple particles by using the scattering matrix

based method with the FMM acceleration.

a = 1
8

b = 1
24

c = 3 a = 1
8

b = 1
24

c = 5

ω Nparticle Ntot Niter Tsolve Eerr Niter Tsolve Eerr

100 8400 57 3.51E0 1.38E-9 59 3.41E0 1.62E-10
π 500 42000 130 5.28E1 9.39E-10 131 5.21E1 2.21E-9

1000 82000 210 1.34E2 9.62E-10 212 1.36E2 2.81E-9
100 8400 96 6.09E0 1.64E-9 97 5.86E0 4.24E-9

2π 500 42000 249 1.05E2 4.10E-9 251 1.06E2 3.71E-9
1000 84000 347 2.48E2 1.03E-9 353 2.53E2 3.34E-9
100 8400 271 1.79E1 4.22E-9 255 1.65E1 6.31E-9

4π 500 42000 614 3.09E2 1.63E-9 667 3.43E2 2.54E-9
1000 84000 1197 1.31E3 7.69E-10 1211 1.34E3 7.42E-9

Table 4

Example 3: Results for the elastic scattering of multiple particles by using the scattering matrix

based method with the FMM acceleration.

a = 1
8

b = 1
24

c = 3 a = 1
8

b = 1
24

c = 5

ω Nparticle Ntot Niter Tsolve Eerr Niter Tsolve Eerr

100 8400 64 4.49E0 1.75E-9 66 3.68E0 8.66E-10
π 500 42000 140 5.62E1 2.21E-9 142 5.79E1 3.33E-9

1000 82000 221 1.47E2 2.44E-9 224 1.55E2 4.97E-9
100 8400 101 7.36E0 7.76E-10 103 6.34E0 3.85E-9

2π 500 42000 271 1.17E2 1.32E-9 273 1.19E2 7.06E-9
1000 84000 384 2.93E2 2.09E-9 391 2.93E2 1.01E-8
100 8400 287 1.91E1 1.05E-8 270 1.89E1 3.48E-8

4π 500 42000 693 3.70E2 6.21E-9 727 4.10E2 1.01E-8
1000 84000 1459 1.95E3 1.03E-9 1433 1.78E3 2.62E-8

when the average distance among particles is small, the scattered field acts as if there
exists a large obstacle. How to quantify such an equivalence will be explored in our
future investigation.

7. Conclusion. In this paper, we have studied the elastic scattering problem
with multiple rigid particles by using the Helmholtz decomposition. Three different
integral formulations are presented for the coupled Helmholtz system. Their well-
posedness is studied by using appropriate regularizers. A fast numerical method is
proposed for the elastic scattering of multiple arbitrarily shaped obstacles. The idea
is to construct the scattering matrix based on the proposed integral formulation for
a single particle and then extend the multiple scattering theory from acoustic waves
to elastic waves. In the end, the resulting linear equation is solved by the GMRES
with the FMM acceleration. Numerical results show that our algorithm is much
faster than the one that directly discretizes particles by points. In particular, we
show that the method can achieve high order accuracy even for the scattering of up
to 1000 elastic particles. One limitation of our solver is that the number of GMRES
iteration grows linearly when the number of particles increases. A successful approach
to overcome this difficulty was introduced in [25] for the Laplace equation, which is
based on the combination of the fast direct solver and GMRES. In addition, we also
observe that the iteration number grows as we increase the wavenumber. This is a
well-known phenomenon since higher frequency wave leads to stronger interactions
among particles, in which case the fast direct solver [7] can be applied to avoid too
many iterations in GMRES. Another factor that will increase the iteration number is
the shape of particles, particularly for the ones with high aspect ratio. One remedy
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(a) (b)

(c) (d)

Fig. 4. The elastic scattering of 1000 particles by the plane wave incidence in Example 3. Here,

we show the real part of the first component of the total elastic field. (a) Field for a = 1
8
, b = 1

24
,

c = 3, ω = π. (b) Field for a = 1
8
, b = 1

24
, c = 5, ω = π. (c) Field for a = 1

8
, b = 1

24
, c = 3,

ω = 4π. (d) Field for a = 1
8
, b = 1

24
, c = 5, ω = 4π.

for this issue was discussed in [12].
The method can be extended to the three-dimensional elastic wave scattering

problem where the Helmholtz decomposition involves a scalar potential function and
a vector potential function. The scalar function satisfies the acoustic equation, and the
vector function satisfies the Maxwell equation. They are coupled at the boundary. The
analysis for the well-posedness of the coupled system is more involved than the two-
dimensional counterpart. A numerical method also requires high order quadrature for
discretizing the singular surface integral [34]. The progress will be reported elsewhere
in the future.
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