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INVERSE ELASTIC SCATTERING FOR A RANDOM SOURCE\ast 

JIANLIANG LI† AND PEIJUN LI‡

Abstract. Consider the inverse random source scattering problem for the two-dimensional time-
harmonic elastic wave equation with a linear load. The source is modeled as a microlocally isotropic
generalized Gaussian random function whose covariance operator is a classical pseudodifferential
operator. The goal is to recover the principal symbol of the covariance operator from the displacement
measured in a domain away from the source. For such a distributional source, we show that the direct
problem has a unique solution by introducing an equivalent Lippmann–Schwinger integral equation.
For the inverse problem, we demonstrate that, with probability one, the principal symbol of the
covariance operator can be uniquely determined by the amplitude of the displacement averaged over
the frequency band, generated by a single realization of the random source. The analysis employs
the Born approximation, asymptotic expansions of the Green tensor, and microlocal analysis of the
Fourier integral operators.
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1. Introduction. The inverse source scattering problems are to recover the
unknown sources from the radiated wave field which is generated by the unknown
sources. These problems are motivated by significant applications in diverse scien-
tific areas such as medical imaging [3, 24, 36] and antenna design and synthesis [21].
Driven by these applications, the inverse source scattering problems have been exten-
sively studied by many researchers in both mathematical and engineering communi-
ties. Consequently, a great deal of mathematical and numerical results are available,
especially for deterministic sources [1, 7, 14, 21, 23]. It is known that the inverse
source problem, in general, does not have a unique solution at a single frequency due
to the existence of nonradiating sources [9, 18, 22, 25]. There are two approaches to
overcome the nonuniqueness issue: one is to seek the minimum energy solution [34],
which represents the pseudoinverse solution for the inverse source problem; the other
is the use of multifrequency data to achieve uniqueness and gain increasing stabil-
ity [13, 15, 16, 20, 31].

In many situations, the source, hence the wave field, may not be deterministic but
is rather modeled by random processes [8]. Due to the extra challenge of randomness
and uncertainties, little is known for the inverse random source scattering problems.
In [10, 11, 12, 17, 28, 29], the random source was assumed to be driven by an additive
white noise. Mathematical modeling and numerical computation were proposed for a
class of inverse source problems for acoustic and elastic waves. The method requires
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one to know the expectation of the scattering data, which needs to be measured
corresponding to a fairly large number of realizations of the source.

Recently, a different model was proposed in [19, 33] to describe random functions.
The random function is considered to be a generalized Gaussian random function
whose covariance is represented by a classical pseudodifferential operator. The authors
studied an inverse problem for the two-dimensional random Schrödinger equation
where the potential function was random. It was shown that the principal symbol of
the covariance operator can be uniquely determined by the backscattered far field [19]
or backscattered field [33], generated from a single realization of the random potential
by using either plane waves [19] or a point source [33] as the incident field. A related
work can be found in [26], where the authors considered an inverse scattering problem
in a half-space with an impedance boundary condition where the impedance function
was random. In [30], the inverse random source scattering problems were considered
for the time-harmonic acoustic and elastic waves in a homogeneous and isotropic
medium. The source was assumed to be a microlocally isotropic generalized Gaussian
random function. It was shown that the amplitude of the scattering field averaged
over the frequency band, obtained from a single realization of the random source,
determines uniquely the principal symbol of the covariance operator. In this paper,
we study an inverse random source scattering problem for the two-dimensional elastic
wave equation with a linear load inside a homogeneous and isotropic medium. This
paper significantly extends our previous work on the inverse random source problem
for elastic waves. The techniques also differ greatly because a more complicated model
equation is considered.

The wave propagation is governed by the stochastic elastic wave equation

\mu ∆u+ (\lambda + \mu )\nabla \nabla \cdot u+ \omega 2u - Mu = f in R
2,(1.1)

where u \in C
2 is the complex-valued displacement vector, \omega > 0 is the angular fre-

quency, \lambda and \mu are the Lamé constants satisfying \mu > 0, \lambda + 2\mu > 0, which implies
that the second order partial differential operator ∆\ast := \mu ∆+(\lambda +\mu )\nabla \nabla \cdot is strongly
elliptic [35], and M \in R

2\times 2 is a deterministic real-valued symmetric matrix with a
compact support contained in D \subset R

2 and represents the matrix of a linear load
inside a known homogeneous and isotropic elastic solid [6]. The randomness of (1.1)
comes from the external source f = (f1, f2)

\top . Throughout, we make the following
assumption.

Assumption 1.1. The domain D is bounded, simply connected, and Lipschitz.

The source f = (f1, f2)
\top is compactly supported in D and fj , j = 1, 2 are microlocally

isotropic Gaussian random fields of the same order m \in [2, 52 ) in D. Each covariance

operator Cfj is a classical pseudodifferential operator having the same principal symbol

\phi (x)| \xi |  - m with \phi \in C\infty 
0 (D), \phi \geq 0. Moreover, the source f is assumed to be bounded

almost surely with E(fj) = 0 and E(f1f2) = 0.

Since (1.1) is imposed in the whole space R
2, an appropriate radiation condition

is needed to complete the problem formulation. By the Helmholtz decomposition, the
displacement u can be decomposed into the compressional part up and the shear part
us away from the source:

u =  - 
1

\kappa 2p
\nabla \nabla \cdot u+

1

\kappa 2s
curlcurlu := up + us in R

2 \setminus D.

For a scalar function u and a vector function u = (u1, u2)
\top , the vector and scalar curl
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operators are defined by

curlu = (\partial x2
u, - \partial x1

u)\top , curlu = \partial x1
u2  - \partial x2

u1.

The Kupradze–Sommerfeld radiation condition requires that up and us satisfy the
Sommerfeld radiation condition:

lim
r\rightarrow \infty 

r
1
2 (\partial rup  - i\kappa pup) = 0, lim

r\rightarrow \infty 
r

1
2 (\partial rus  - i\kappa sus) = 0, r = | x| ,(1.2)

where \kappa p and \kappa s are known as the compressional wavenumber and the shear wavenum-
ber, respectively, and are defined by

\kappa p =
\omega 

(\lambda + 2\mu )1/2
= cp\omega , \kappa s =

\omega 

\mu 1/2
= cs\omega .

Here

cp = (\lambda + 2\mu ) - 1/2, cs = \mu  - 1/2.

Note that cp and cs are independent of \omega and cp < cs.
Given \omega , \lambda , \mu ,M , and f , the direct scattering problem is to determine u which

satisfies (1.1)–(1.2). For m \in [2, 5/2), the random source is a rough field and belongs
to the Sobolev space with a negative smoothness index almost surely. A careful
study is needed to show the well-posedness of the direct scattering problem for such a
distributional source. Using Green’s theorem and the Kupradze–Sommerfeld radiation
condition, we show that the direct scattering problem is equivalent to the Lippmann–
Schwinger equation. By the Fredholm alternative along with the unique continuation
principle, we prove that the Lippmann–Schwinger equation has a unique solution
which, almost surely, belongs to the Sobolev space with a positive smoothness index
\varepsilon \in (0, p/2) for some p \geq 2. Thus the well-posedness is established for the direct
scattering problem.

Given \omega , \lambda , \mu , and M , the inverse scattering problem is to determine \phi (x), the
microcorrelation strength of the source, from the displacement measured in a bounded
domain U \subset R

2 \setminus D, which stands for the measurement domain and is required to
satisfy the following assumption.

Assumption 1.2. The measurement domain U is bounded, simply connected, Lip-

schitz, and convex and has a positive distance to D.

In addition, the following assumption is imposed on M .

Assumption 1.3. The matrix M = (Mij)2\times 2 is a deterministic and real-valued

symmetric matrix with Mij \in C1
0 (D) for i, j = 1, 2.

The following result concerns the uniqueness of the inverse scattering problem
and is the main result of this paper.

Theorem 1.4. Let f , U , and M satisfy Assumptions 1.1, 1.2, and 1.3, respec-
tively. Then for all x \in U , it holds almost surely that

lim
Q\rightarrow \infty 

1

Q - 1

\int Q

1

\omega m+1| u(x, \omega )| 2d\omega = a

\int 

R2

1

| x - y| 
\phi (y)dy,(1.3)

where a = 1
32\pi 

\bigl( 
c3 - m
s + c3 - m

p

\bigr) 
is a constant. Moreover, the function \phi can be uniquely

determined from the integral equation (1.3) for all x \in U .
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For any finite Q, the scattering data given in the left-hand side of (1.3) is random
in the sense that it depends on realization of the source, while (1.3) shows that in the
limit Q \rightarrow \infty , the scattering data becomes statistically stable, i.e., it is independent
of realization of the source. Hence, Theorem 1.4 shows that the amplitude of the
displacement averaged over the frequency band, measured from a single realization of
the random source, can uniquely determine the microcorrelation strength function \phi .
The proof of Theorem 1.4 combines the Born approximation, asymptotic expansions
of the Green tensor, and microlocal analysis of integral operators.

For clarity, we briefly explain the steps of the proof for the main result. As men-
tioned above, the direct scattering problem is equivalent to the Lippmann–Schwinger
equation, which has a unique solution under Assumption 1.3. Considering the Born
series of the Lippmann–Schwinger equation

\sum \infty 
n=0 un(x, \omega ) (see (4.1) for the definition

of un(x, \omega )), we may show that the Born series converges to the solution of the direct
scattering problem when the angular frequency \omega is large enough. Therefore

u(x, \omega ) = u0(x, \omega ) + u1(x, \omega ) + b(x, \omega ), b(x, \omega ) :=

\infty \sum 

n=2

un(x, \omega ).(1.4)

For the leading term u0(x, \omega ), it is the solution of the random source problem in
a homogeneous medium for the time-harmonic elastic wave without the linear load,
which was considered in [30]. If the random source f satisfies the Assumption 1.1, it
was shown in [30] that

lim
Q\rightarrow \infty 

1

Q - 1

\int Q

1

\omega m+1| u0(x, \omega )| 
2d\omega = a

\int 

R2

1

| x - y| 
\phi (y)dy, x \in U,(1.5)

where a is some positive constant. In this work, it is required to consider the two
extra terms u1(x, \omega ) and b(x, \omega ), which are nontrivial. For the term u1(x, \omega ), we
show that

lim
Q\rightarrow \infty 

1

Q - 1

\int Q

1

\omega m+1| u1(x, \omega )| 
2d\omega = 0, x \in U.(1.6)

It is quite technical and takes half of the main body text of the paper to (1.6).
The major ingredients are the asymptotic expansions of the Green tensor and the
microlocal analysis of integral operator. For the remainder b(x, \omega ), we may show that

lim
Q\rightarrow \infty 

1

Q - 1

\int Q

1

\omega m+1| b(x, \omega )| 2d\omega = 0, x \in U.(1.7)

The main result (1.3) can be obtained by combining (1.4)–(1.7) and using the Cauchy–
Schwarz inequality.

The paper is organized as follows. In section 2, we introduce some necessary
notation including Sobolev spaces, generalized Gaussian random functions, and some
properties of the Hankel function of the first kind. Section 3 addresses the direct
scattering problem; sections 4 and 5 study the inverse scattering problem. In section
3, the well-posedness of the direct scattering problem is established for a distributional
source. Using the Riesz–Fredholm theory and the Sobolev embedding theorem, we
show that the direct scattering problem is equivalent to a uniquely solvable Lippmann–
Schwinger equation. Section 4 presents the Born approximation of the solution to the
Lippmann–Schwinger integral equation. Section 5 examines the second term in the
Born approximation via the microlocal analysis. The paper is concluded with some
general remarks in section 6.
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2. Preliminaries. In this section, we introduce some necessary notation and
properties of Sobolev spaces, generalized Gaussian random functions, and the Hankel
functions.

2.1. Sobolev spaces. Let C\infty 
0 (R2) be the set of smooth functions with compact

support and \scrD \prime (R2) be the set of generalized (distributional) functions. Given 1 <
p <\infty , s \in R, define the Sobolev space

Hs,p(R2) = \{ h = (I  - ∆) - 
s
2 g : g \in Lp(R2)\} ,

which has the norm
\| h\| Hs,p(R2) = \| (I  - ∆)

s
2h\| Lp(R2).

With the definition of Sobolev spaces in the whole space, the Sobolev space Hs,p(V )
for any Lipschitz domain V \subset R

2 can be defined as the restriction to V of the elements
in Hs,p(R2) with the norm

\| h\| Hs,p(V ) = inf\{ \| g\| Hs,p(R2) : g| V = h\} .

By [27], for s \in R and 1 < p < \infty , Hs,p
0 (V ) can be defined as the space of all

distributions h \in Hs,p(R2) satisfying supph \subset V with the norm

\| h\| Hs,p
0 (V ) = \| h\| Hs,p(R2).

It is known that C\infty 
0 (V ) is dense in Hs,p

0 (V ) for any 1 < p < \infty , s \in R; C\infty 
0 (V ) is

dense in Hs,p(V ) for any 1 < p < \infty , s \leq 0; and C\infty (V ) is dense in Hs,p(V ) for any
1 < p < \infty , s \in R. In addition, by [27, Propositions 2.4 and 2.9], for any s \in R and
p, q \in (1,\infty ) satisfying 1

p + 1
q = 1, we have

H - s,q
0 (V ) = (Hs,p(V ))\prime and H - s,q(V ) = (Hs,p

0 (V ))\prime ,

where the prime denotes the dual space.
Alternatively, the Sobolev spaces can be defined as follows [2]: For an integer

m \geq 1 and 1 < p <\infty , the integer order Sobolev space Hm,p(V ) can be defined by

Hm,p(V ) := \{ f \in Lp(V ),
\partial \beta f

\partial x\beta 
\in Lp(V ), | \beta | \leq m\} ,

which is equipped with the norm

\| f\| Hm,p(V ) :=

\left[ 
 \sum 

| \beta | \leq m

\int 

V

\bigm| \bigm| \bigm| \bigm| 
\partial \beta f

\partial x\beta 

\bigm| \bigm| \bigm| \bigm| 
p

dx

\right] 
 

1
p

.

Here \beta = (\beta 1, \beta 2) is a multiple index and | \beta | = \beta 1 + \beta 2,
\partial \beta f
\partial x\beta = \partial | \beta | f

\partial x
\beta 1
1 \partial x

\beta 2
2

. With the

definition of the integer order Sobolev space, the fractional order Sobolev space is
defined by the complex interpolation between Lp and the integer order Sobolev space.
Specifically, if s > 0 and m is the smallest integer greater than s, the space Hs,p(V )
is defined by

Hs,p(V ) := [Lp(V ), Hm,p(V )]s/m.(2.1)

The following two lemmas will be used in the subsequent analysis. The proofs of
Lemmas 2.1 and 2.2 can be found in [33, Lemma 2] and [37, Proposition 1], respec-
tively.
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Lemma 2.1. Assume that \epsilon > 0, 1 < r < \infty , 1
r + 1

r\prime = 1, g \in H\epsilon ,2r
loc (R2),

h \in H - \epsilon ,r\prime 

0 (R2). Then gh \in H - \epsilon ,r̃
0 (R2) and satisfies

\| gh\| H - \epsilon ,r̃
0 (R2) \lesssim \| g\| H\epsilon ,2r(R2)| | h| | H - \epsilon ,r\prime 

0 (R2)
,

where r̃ = 2r
2r - 1 .

Lemma 2.2. Assume that s > 0, 1 < p̃ <\infty , and 1
p̃ = 1

q1
+ 1

q2
= 1

r1
+ 1

r2
, q1, r1 \in 

(1,\infty ], q2, r2 \in (1,\infty ). Then the following estimate holds:

\| gh\| Hs,p̃(R2) \lesssim \| g\| Lq1 (R2)| | h| | Hs,q2 (R2) + \| h\| Lr1 (R2)\| g\| Hs,r2 (R2).

Throughout the paper, a \lesssim b stands for a \leq Cb, where C is a positive constant
and its specific value is not required but should be clear from the context.

2.2. Generalized Gaussian random functions. Let (Ω,\scrF ,P) be a complete
probability space. The function h is said to be a generalized Gaussian random function
if h : Ω \rightarrow \scrD \prime (R2) is a mapping such that, for each \̂omega \in Ω, the realization h(\̂omega ) is a
real-valued linear functional on C\infty 

0 (R2) and the function

\̂omega \in Ω \rightarrow \langle h(\̂omega ), \psi \rangle \in R

is a Gaussian random variable for all \psi \in C\infty 
0 (R2). The distribution of h is determined

by its expectation Eh and the covariance Covh defined as

Eh : \psi \in C\infty 
0 (Rd) \mapsto  - \rightarrow E\langle h, \psi \rangle \in R,

Covh : (\psi 1, \psi 2) \in C\infty 
0 (Rd)2 \mapsto  - \rightarrow Cov(\langle h, \psi 1\rangle , \langle h, \psi 2\rangle ) \in R,

where E\langle h, \psi \rangle denotes the expectation of \langle h, \psi \rangle and

Cov(\langle h, \psi 1\rangle , \langle h, \psi 2\rangle ) = E((\langle h, \psi 1\rangle  - E\langle h, \psi 1\rangle )(\langle h, \psi 2\rangle  - E\langle h, \psi 2\rangle ))

denotes the covariance of \langle h, \psi 1\rangle and \langle h, \psi 2\rangle . The covariance operator Covh :
C\infty 

0 (R2) \rightarrow \scrD \prime (R2) is defined by

\langle Covh\psi 1, \psi 2\rangle = Cov(\langle h, \psi 1\rangle , \langle h, \psi 2\rangle ) = E(\langle h - Eh, \psi 1\rangle \langle h - Eh, \psi 2\rangle ).(2.2)

Since the covariance operator Covh is continuous, the Schwartz kernel theorem shows
that there exists a unique Ch \in \scrD \prime (R2 \times R

2), usually called the covariance function,
such that

\langle Ch, \psi 1 \otimes \psi 2\rangle = \langle Covh\psi 1, \psi 2\rangle \forall \psi 1, \psi 2 \in C\infty 
0 (R2).(2.3)

By (2.2) and (2.3), it is easy to see that

Ch(x, y) = E((h(x) - Eh(x))(h(y) - Eh(y))).

In this paper, we are interested in the generalized, microlocally isotropic Gaussian
random function, which is defined as follows (cf. [33, Definition 1]).

Definition 2.3. A generalized Gaussian random function h on R
2 is called mi-

crolocally isotropic of order m in D if the realizations of h are almost surely supported

in the domain D and its covariance operator Covh is a classical pseudodifferential op-

erator having the principal symbol \phi (x)| \xi |  - m, where \phi \in C\infty 
0 (R2) satisfies supp\phi \subset D

and \phi (x) \geq 0 for all x \in R
2.
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In particular, we pay attention to the case m \in [2, 5/2), which corresponds to
rough fields. The following results will also be used in the subsequent analysis. The
proofs of Lemmas 2.4 and 2.5 can be found in [33, Theorem 2 and Proposition 1].

Lemma 2.4. Let h be a generalized, microlocally isotropic Gaussian random func-

tion of order m in D. If m = 2, then h \in H - \varepsilon ,p(D) almost surely for all \varepsilon > 0, 1 <
p <\infty . If m \in (2, 5/2), then h \in C\alpha (D) almost surely for all \alpha \in (0, m - 2

2 ).

Lemma 2.5. Let h be a microlocally isotropic Gaussian random field of order

m \in [2, 5/2). Then the Schwartz kernel of the covariance operator Covh has the form

Ch(x, y) =

\Biggl\{ 
c0(x, y)log| x - y| + r1(x, y) for m = 2,

c0(x, y)| x - y| m - 2 + r1(x, y) for m \in (2, 5/2),

where c0 \in C\infty 
0 (D \times D) and r1 \in C\alpha 

0 (D \times D) for any \alpha < 1.

2.3. Properties of the Hankel function. In this subsection, we present some
asymptotic expansions of the Hankel function of the first kind for small and large

arguments. Let H
(1)
n be the Hankel function of the first kind with order n. Recall the

definition

H(1)
n (t) = Jn(t) + iYn(t),

where Jn and Yn are the Bessel functions of the first and second kind with order n,
respectively. They admit the following expansions:

Jn(t) =

\infty \sum 

p=0

( - 1)p

p!(n+ p)!

\biggl( 
t

2

\biggr) n+2p

,(2.4)

Yn(t) =
2

\pi 

\biggl\{ 
ln
t

2
+ \gamma 

\biggr\} 
Jn(t) - 

1

\pi 

n - 1\sum 

p=0

(n - 1 - p)!

p!

\biggl( 
2

t

\biggr) n - 2p

 - 
1

\pi 

\infty \sum 

p=0

( - 1)p

p!(n+ p)!

\biggl( 
t

2

\biggr) n+2p

\{ \psi (p+ n) + \psi (p)\} ,(2.5)

where \gamma := limp\rightarrow \infty \{ 
\sum p

j=1 j
 - 1  - ln p\} denotes the Euler constant, \psi (0) = 0, \psi (p) =\sum p

j=1 j
 - 1, and the finite sum in (2.5) is set to be zero for n = 0.

Using the expansions (2.4) and (2.5), we may verify as t\rightarrow 0 that

H
(1)
0 (t) =

2i

\pi 
ln
t

2
+ b0 +O

\Bigl( 
t2 ln

t

2

\Bigr) 
,(2.6)

H
(1)
1 (t) =  - 

2i

\pi 

1

t
+

i

\pi 
t ln

t

2
+ b1t+O

\Bigl( 
t3 ln

t

2

\Bigr) 
,(2.7)

H
(1)
2 (t) =  - 

4i

\pi 

1

t2
 - 

i

\pi 
+

i

4\pi 
t2 ln

t

2
+ b2t

2 +O
\Bigl( 
t4 ln

t

2

\Bigr) 
,(2.8)

H
(1)
3 (t) =  - 

16i

\pi 

1

t3
 - 

2i

\pi 

1

t
 - 

i

4\pi 
t+

i

24\pi 
t3 ln

t

2
+ b3t

3 +O
\Bigl( 
t5 ln

t

2

\Bigr) 
,(2.9)

where b0 = 1+ 2i
\pi \gamma , b1 = 1

2 +
i
\pi \gamma  - 

i
2\pi , b2 = \gamma i

4\pi  - 3i
16\pi + 1

8 , b3 = \gamma i
24\pi + 1

48  - 
11i
288\pi . Denote

Γn(z, \omega ) = \kappa nsH
(1)
n (\kappa s| z| ) - \kappa npH

(1)
n (\kappa p| z| ).
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Noting (2.6)–(2.9), we have from a direct calculation that the following asymptotic
expansions hold as | z| \rightarrow 0:

Γ1(z, \omega ) =
i

\pi 
| z| 

\biggl( 
\kappa 2s ln

\kappa s| z| 

2
 - \kappa 2p ln

\kappa p| z| 

2

\biggr) 
+ b1(\kappa 

2
s  - \kappa 2p)| z| +O

\Bigl( 
| z| 3 ln

| z| 

2

\Bigr) 
,(2.10)

Γ2(z, \omega ) =
i

4\pi 

\biggl( 
\kappa 4s ln

\kappa s| z| 

2
 - \kappa 4p ln

\kappa p| z| 

2

\biggr) 
| z| 2  - 

i

\pi 
(\kappa 2s  - \kappa 2p) +O(| z| 2),(2.11)

Γ3(z, \omega ) =
2i

\pi 
(\kappa 2p  - \kappa 2s )

1

| z| 
+

i

4\pi 
(\kappa 4p  - \kappa 4s )| z| +O

\Bigl( 
| z| 3 ln

| z| 

2

\Bigr) 
.(2.12)

For a large argument, i.e., as | z| \rightarrow \infty , it follows from [5, equations (9.2.7)–

(9.2.10)] and [32, equation (5.11.4)] that the Hankel function of the first kind H
(1)
n

has the asymptotics

H(1)
n (z) =

\sqrt{} 
1

z
ei(z - (n

2
+ 1

4
)\pi )

\times 
\Bigl( N\sum 

j=0

a
(n)
j z - j +O(| z|  - N - 1)

\Bigr) 
, | argz| \leq \pi  - \delta ,(2.13)

where \delta is a small positive number and the coefficients a
(n)
j = ( - 2i)j

\sqrt{} 
2
\pi (n, j) with

(n, 0) = 1, (n, j) =
(4n2  - 1)(4n2  - 32) \cdot \cdot \cdot (4n2  - (2j  - 1)2)

22jj!
.

Using the first N terms in the asymptotic of H
(1)
n (\kappa | z| ), we define

H
(1)
n,N (\kappa | z| ) =

\sqrt{} 
1

\kappa | z| 
ei(\kappa | z|  - (n

2
+ 1

4
)\pi )

N\sum 

j=0

a
(n)
j

\biggl( 
1

\kappa | z| 

\biggr) j

.(2.14)

Denoting Γn,N (\kappa | z| ) = H
(1)
n (\kappa | z| ) - H

(1)
n,N (\kappa | z| ), it is easy to show from (2.13) that

\bigm| \bigm| Γn,N (\kappa | z| )
\bigm| \bigm| \leq c

\biggl( 
1

\kappa | z| 

\biggr) N+ 3
2

.(2.15)

3. The direct scattering problem. This section aims to establish the well-
posedness of the direct scattering problem for a distributional source. Based on
Green’s theorem and the Kupradze–Sommerfeld radiation, the direct problem is equiv-
alently formulated as a Lippmann–Schwinger equation, which is shown to have a
unique solution by using the Riesz–Fredholm theory and the Sobolev embedding the-
orem.

By Lemma 2.4, we have that f \in H - \varepsilon ,p(D)2 almost surely for all \varepsilon > 0, 1 < p <
\infty if m = 2; and f \in C0,\alpha (D)2 almost surely for all \alpha \in (0, m - 2

2 ) if m \in (2, 5/2).
Therefore, it suffices to show that the scattering problem (1.1)–(1.2) has a unique
solution for such a deterministic source f \in H - \varepsilon ,p(D)2.

Introduce the Green tensor G(x, y, \omega ) \in C
2\times 2 for the Navier equation

G(x, y, \omega ) =
1

\mu 
Φ(x, y, \kappa s)I +

1

\omega 2
\nabla x\nabla 

\top 
x (Φ(x, y, \kappa s) - Φ(x, y, \kappa p)),(3.1)
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where I is the 2\times 2 identity matrix, Φ(x, y, \kappa ) = i
4H

(1)
0 (\kappa | x - y| ) is the fundamental

solution for the two-dimensional Helmholtz equation, and \nabla x\nabla 
\top 
x is defined by

\nabla x\nabla 
\top 
x \varphi =

\Biggl[ 
\partial 2x1x1

\varphi \partial 2x1x2
\varphi 

\partial 2x2x1
\varphi \partial 2x2x2

\varphi 

\Biggr] 

for some scalar function \varphi defined in R
2. It is easy to note that the Green tensor

G(x, y, \omega ) is symmetric with respect to the variables x and y.
In order to obtain the well-posedness of the scattering problem (1.1)–(1.2), we first

derive a Lippmann–Schwinger equation which is equivalent to the direct scattering
problem, and then we show that the Lippmann–Schwinger equation has a unique
solution.

Theorem 3.1. For some p \geq 2, 1
p + 1

p\prime = 1, 0 < \varepsilon < 2
p , f \in H - \varepsilon ,p\prime 

0 (D)2, if M

satisfies Assumption 1.3, then the scattering problem (1.1)–(1.2) is equivalent to the

Lippmann–Schwinger equation

u(x) +

\int 

D

G(x, y, \omega )M(y)u(y)dy =  - 

\int 

D

G(x, y, \omega )f(y)dy, x \in R
2.(3.2)

Proof. Let u \in H\varepsilon ,p
loc (R

2)2 be a solution to (3.2), and then we have

u(x) =  - 

\int 

D

G(x, y, \omega )M(y)u(y)dy  - 

\int 

D

G(x, y, \omega )f(y)dy, x \in R
2.

Since the Green tensorG(x, y, \omega ) and its derivatives satisfy the Kupradze–Sommerfeld
radiation condition, we conclude that u also satisfies the Kupradze–Sommerfeld ra-
diation condition. By (3.1), the Green tensor G(x, y, \omega ) satisfies

\mu ∆G(x, y, \omega ) + (\lambda + \mu )\nabla \nabla \cdot G(x, y, \omega ) + \omega 2G(x, y, \omega ) =  - \delta (x - y)I.(3.3)

Letting y = 0 and taking the Fourier transform with respect to x on both sides of
(3.3) yields

\bigl[ 
(4\pi 2\mu | \xi | 2  - \omega 2)I + 4\pi 2(\lambda + \mu )\xi \cdot \xi \top 

\bigr] \widehat G(\xi ) = I, \xi \in R
2.(3.4)

Note that the integral in (3.2) is a convolution since G(x, y, \omega ) is a function of
x - y. Taking the Fourier transform on both sides of (3.2) leads to

û(\xi ) =  - \widehat G(\xi )(f̂(\xi ) + \widehat Mu(\xi )).(3.5)

Multiplying (4\pi 2\mu | \xi | 2  - \omega 2)I +4\pi 2(\lambda +\mu )\xi \cdot \xi \top on both sides of (3.5) and using (3.4)
gives

\bigl[ 
(4\pi 2\mu | \xi | 2  - \omega 2)I + 4\pi 2(\lambda + \mu )\xi \cdot \xi \top 

\bigr] 
û(\xi ) + \widehat Mu(\xi ) =  - f̂(\xi ).

Taking the inverse Fourier transform yields

\mu ∆u+ (\lambda + \mu )\nabla \nabla \cdot u+ \omega 2u - Mu = f in R
2.

Hence, u is the solution of the direct scattering problem (1.1)–(1.2).
Conversely, if u is a solution of the direct scattering problem (1.1)–(1.2), we show

that u satisfies the Lippmann–Schwinger equation (3.2). It follows from (1.1) that

\mu ∆u+ (\lambda + \mu )\nabla \nabla \cdot u+ \omega 2u =Mu+ f in R
2,
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where u \in H\varepsilon ,p
loc (R

2)2 and Mij \in C1
0 (D). Noting that f \in H - \varepsilon ,p\prime 

0 (R2)2, we have that

Mu + f \in H - \varepsilon ,p\prime 

0 (R2)2. An application of Lemma 4.1 in [30] shows that for some

fixed x \in R
2, G(x, \cdot , \omega ) \in [L2

loc(R
2) \cap H1,p̂

loc (R
2)]2\times 2 for p̂ \in (1, 2). Since 0 < \varepsilon < 2

p , a

simple calculation gives that 1
p  - \varepsilon 

2 > 0. Let \widetilde \delta = 1
p  - \varepsilon 

2 and define \widetilde p := 2

1+\widetilde \delta 
< 2, and

then 1
\widetilde p  - 1

2 <
1
p  - \varepsilon 

2 . It follows from the Sobolev embedding theorem that H1,\widetilde p
loc (R

2)

is embedded into H\varepsilon ,p
loc (R

2), which implies that G(x, \cdot , \omega ) \in [H\varepsilon ,p
loc (R

2)]2\times 2. Choose a
large enough ball Br such that D \subset Br, and then we have in the sense of distributions
that

\int 

Br

G(x, y, \omega )
\bigl[ 
\mu ∆u(y) + (\lambda + \mu )\nabla \nabla \cdot u(y) + \omega 2u(y)

\bigr] 
dy

=

\int 

Br

G(x, y, \omega )[M(y)u(y) + f(y)]dy.

Denote by T the operator that maps u to the left-hand side of the above equation.
For ψ \in C\infty (R2)2, by similar arguments as those in the proof of Lemma 4.3 in [30],
we obtain

Tψ(x) =  - ψ(x) +

\int 

\partial Br

[G(x, y, \omega )Pψ(y) - PG(x, y, \omega )ψ(y)]ds(y),

where Pψ := \mu \partial ψ
\partial ν +(\lambda +\mu )(\nabla \cdot ψ)ν and ν is the unit normal vector on the boundary

\partial Br.
Approximating u with smooth functions, we get

 - u(x) +

\int 

\partial Br

[G(x, y, \omega )Pu(y) - PG(x, y, \omega )u(y)]ds(y)

=

\int 

Br

G(x, y, \omega )[M(y)u(y) + f(y)]dy.

Using the radiation condition yields

lim
r\rightarrow \infty 

\int 

\partial Br

[G(x, y, \omega )Pu(y) - PG(x, y, \omega )u(y)]ds(y) = 0.

Therefore,

u(x) +

\int 

D

G(x, y, \omega )M(y)u(y)dy =  - 

\int 

D

G(x, y, \omega )f(y)dy, x \in R
2,

which shows that u satisfies the Lippmann–Schwinger equation (3.2) and completes
the proof.

The Lippmann–Schwinger equation (3.2) can be written in the operator form

(I +K\omega )u =  - H\omega f ,(3.6)

where the operators H\omega and K\omega are defined by

(H\omega f)(x) =

\int 

D

G(x, y, \omega )f(y)dy, x \in D,(3.7)

(K\omega u)(x) =

\int 

D

G(x, y, \omega )M(y)u(y)dy, x \in D.(3.8)
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Lemma 3.2. Assume that p \geq 2, 1
p + 1

p\prime = 1, 0 < \varepsilon < 2
p , and M satisfies

Assumption 1.3. Then the operators H\omega : H - s
0 (D)2 \rightarrow Hs(D)2 and K\omega : H\varepsilon ,p(D)2 \rightarrow 

H\varepsilon ,p(D)2 are bounded for s \in (0, 1). Moreover, K\omega : H\varepsilon ,p(D)2 \rightarrow H\varepsilon ,p(D)2 is

compact.

Proof. We study the asymptotic expansion of the Green tensor G(x, y, \omega ) when
| x - y| \rightarrow 0. Recall the Green tensor,

G(x, y, \omega ) =
1

\mu 
Φ(x, y, \kappa s)I +

1

\omega 2
\nabla x\nabla 

\top 
x (Φ(x, y, \kappa s) - Φ(x, y, \kappa p)),

and the recurrence relation for the Hankel function of the first kind [32, (5.6.3)],

d

dt
[t - nH(1)

n (t)] =  - t - nH
(1)
n+1(t).

A direct calculation shows for i, j = 1, 2 that

\partial 2xixj
[Φ(x, y, \kappa s) - Φ(x, y, \kappa p)]

=  - 
i

4

1

| x - y| 
Γ1(x - y, \omega )\delta ij +

i

4

(xi  - yi)(xj  - yj)

| x - y| 2
Γ1(x - y, \omega ),(3.9)

where \delta ij is the Kronecker delta function. Substituting (2.10)–(2.11) into (3.9) gives

\partial 2xixj
[Φ(x, y, \kappa s) - Φ(x, y, \kappa p)]

=
1

4\pi 

\biggl( 
\kappa 2s ln

\kappa s| x - y| 

2
 - \kappa 2p ln

\kappa p| x - y| 

2

\biggr) 
\delta ij +O(1).(3.10)

Comparing (3.10) with (2.6), we conclude that the singularity of \nabla x\nabla 
\top 
x (Φ(x, y, \kappa s) - 

Φ(x, y, \kappa p)) is not exceeding the singularity of Φ(x, y, \kappa s)I when | x - y| \rightarrow 0. It follows
from Lemma 2.1 that H\omega : H - s

0 (D)2 \rightarrow Hs(D)2 is bounded for s \in (0, 1).

For u \in H\varepsilon ,p(D)2 and Mij \in C1
0 (D) \subset H

 - \varepsilon ,p\prime 
1

0 (D), by Lemma 2.1, we obtain

that Miju is a well-defined element of H - \varepsilon ,p\prime 

0 (D)2 and

\| Miju\| H - \varepsilon ,p\prime 

0 (D)2
\lesssim \| Mij\| 

H
 - \varepsilon ,p\prime 

1
0 (D)

\| u\| H\varepsilon ,p(D)2 .(3.11)

For some fixed \varepsilon \in (0, 2p ), we define \delta =
1
p  - 

\varepsilon 
2 \in (0, 1) and s = 1 - \delta \in (0, 1). It is clear

to note that 1
2  - s

2 <
1
p  - \varepsilon 

2 . The Sobolev embedding theorem implies that Hs(D)

is embedded compactly into H\varepsilon ,p(D) and H - \varepsilon ,p\prime 

0 (D) is embedded compactly into

H - s
0 (D). Noting that K\omega u = H\omega (Mu) and Mu \in H - \varepsilon ,p\prime 

0 (D)2, which is embedded
compactly into H - s

0 (D)2, and that H\omega : H - s
0 (D)2 \rightarrow Hs(D)2 is bounded, we claim

from (3.11) that K\omega : H\varepsilon ,p(D)2 \rightarrow H\varepsilon ,p(D)2 is bounded and compact.

Now we present the existence of a unique solution of the direct scattering problem
(1.1)–(1.2).

Theorem 3.3. Let f \in H - \varepsilon ,p\prime 

0 (D)2 with 0 < \varepsilon < 2
p and M satisfy Assump-

tion 1.3. Then the Lippmann–Schwinger equation (3.6) has a unique solution u \in 
H\varepsilon ,p

loc (R
2)2, which implies that the scattering problem (1.1)–(1.2) has a unique solu-

tion u \in H\varepsilon ,p
loc (R

2)2 which satisfies the stability estimate

\| u\| H\varepsilon ,p

loc
(R2)2 \lesssim \| f\| 

H - \varepsilon ,p\prime 

0 (R2)2
.
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Proof. For the Lippmann–Schwinger equation (I + K\omega )u =  - H\omega f , by Lemma

3.2, we obtain that H\omega f \in H\varepsilon ,p(D)2 for f \in H - \varepsilon ,p\prime 

0 (D)2 and I +K\omega : H\varepsilon ,p(D)2 \rightarrow 
H\varepsilon ,p(D)2 is a Fredholm operator. Thus, by the Fredholm alternative, it suffices to
show that (I +K\omega )u = 0 has only the trivial solution u = 0.

For (I +K\omega )u = 0, we have

u(x) =  - 

\int 

D

G(x, y, \omega )M(y)u(y)dy, x \in R
2,

which implies that u is smooth in R
2 \setminus D and

û(\xi ) =  - \widehat G(\xi )\widehat Mu(\xi ).(3.12)

Multiplying (4\pi 2\mu | \xi | 2 - \omega 2)I+4\pi 2(\lambda +\mu )\xi \cdot \xi \top on both sides of (3.12) and using (3.4)
gives

\bigl[ 
4\pi 2\mu | \xi | 2 + 4\pi 2(\lambda + \mu )\xi \cdot \xi \top  - \omega 2

\bigr] 
û(\xi ) =  - \widehat Mu(\xi ).

Taking the inverse Fourier transform of the above equation yields

\mu ∆u+ (\lambda + \mu )\nabla \nabla \top \cdot u+ \omega 2u =Mu in R
2.(3.13)

By the Helmholtz decomposition, there exists two scalar potential functions \psi 1 and
\psi 2 such that

u = \nabla \psi 1 + curl\psi 2 = (\partial x1
\psi 1, \partial x2

\psi 1)
\top + (\partial x2

\psi 2, - \partial x1
\psi 2)

\top .(3.14)

Substituting (3.14) into (3.13) gives that

\nabla [(\lambda + 2\mu )∆\psi 1 + \omega 2\psi 1] + curl[\mu ∆\psi 2 + \omega 2\psi 2] =M\nabla \psi 1 +Mcurl\psi 2 in R
2,

which implies that

(\lambda + 2\mu )∆(\nabla \psi 1) + \omega 2(\nabla \psi 1) =M\nabla \psi 1,

\mu ∆(curl\psi 2) + \omega 2(curl\psi 2) =Mcurl\psi 2.

Letting up = \nabla \psi 1 and us = curl\psi 2, we obtain that

(3.15)

\Biggl\{ 
∆up + \kappa 2pup = 1

\lambda +2\mu Mup in R
2,

lim
r\rightarrow \infty 

r
1
2 (\partial rup  - i\kappa pup) = 0

and

(3.16)

\Biggl\{ 
∆us + \kappa 2sus =

1
\mu Mus in R

2,

lim
r\rightarrow \infty 

r
1
2 (\partial rus  - i\kappa sus) = 0.

Since suppMij \subset D, it follows from (3.15)–(3.16) that up and us satisfy the homoge-
neous Helmholtz equation in R

2 \setminus D and the Sommerfeld radiation condition. Hence,
up and us admit the following asymptotic expansions:

up(x) =
ei\kappa p| x| 

4\pi | x| 
1
2

up,\infty (x̂) + o(| x| 
1
2 ), us(x) =

ei\kappa s| x| 

4\pi | x| 
1
2

us,\infty (x̂) + o(| x| 
1
2 ).(3.17)
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Noting that up satisfies the Sommerfeld radiation condition, when r \rightarrow \infty , we have
\int 

\partial Br

| \partial rup  - i\kappa pup| 
2
ds =

\int 

\partial Br

(| \partial rup| 
2 + \kappa 2p| up| 

2)ds+ 2\kappa pIm

\int 

\partial Br

up\partial \nu upds\rightarrow 0.

Combining the second Green theorem and (3.15)–(3.16), we get
\int 

\partial Br

up\partial \nu upds =

\int 

Br

| \nabla up| 
2dx - \kappa 2p

\int 

Br

| up| 
2dx

+
1

\lambda + 2\mu 

\int 

Br

\bigl( 
M11| up,1| 

2 +M22| up,2| 
2 +M12up,1up,2 +M21up,1up,2

\bigr) 
dx,

where up,1 and up,2 are the components of up. SinceM is real-valued and symmetric,
taking the imaginary part of the above equation leads to Im

\int 
\partial Br

up\partial \nu upds = 0,

which yields limr\rightarrow \infty 

\int 
\partial Br

| up| 
2dx = 0. Using (3.17), we obtain

\int 
\partial B1

| up,\infty | 2ds = 0,

which implies up,\infty = 0, so up(x) = 0 in R
2 \setminus D. Similarly, we can obtain us = 0

in R
2 \setminus D. Thus, we have u = 0 in R

2 \setminus D. Since Mij \in C1
0 (D), it follows from the

unique continuation (e.g., [4]) that u = 0 in R
2, which shows that I +K\omega is injective

and completes the proof.

4. Born approximation. As shown in the previous section, the direct scatter-
ing problem is equivalent to the Lippmann–Schwinger equation

u(x) +

\int 

D

G(x, y, \omega )M(y)u(y)dy =  - 

\int 

D

G(x, y, \omega )f(y)dy, x \in R
2.

Consider the Born sequence of the Lippmann–Schwinger equation

un(x) := ( - K\omega un - 1)(x), n = 1, 2, . . . ,(4.1)

where the initial guess is given by

u0(x) := ( - H\omega f)(x),

which is called the Born approximation to the solution of the Lippmann–Schwinger
equation. Here, K\omega and H\omega are operators given by (3.7) and (3.8), respectively.

We aim to show that for sufficiently large \omega and x \in U , the Born series
\sum \infty 

n=0 un(x)
converges to the solution u(x) and the higher order terms decay in an appropriate
way.

Lemma 4.1. For any 1 \leq p \leq 2 \leq r \leq \infty , s \in (0, 1), and \omega \geq 1, the following

estimates hold:

\| H\omega \| H - s,p
0 (D)2\rightarrow Hs,r(D)2 \lesssim \omega  - 1+2[s+( 1

p
 - 1

r
)],

\| K\omega \| Hs,2p(D)2\rightarrow Hs,2p(D)2 \lesssim \omega  - 1+2[s+(1 - 1
p
)],

\| K\omega \| Hs,2p(D)2\rightarrow L\infty (U)2 \lesssim \omega 1+2s - 1
p ,

where the constant c = c(\̂omega ) in the inequalities is finite almost surely.

The proof of Lemma 4.1 can be found in [33, Lemma 5]. By Lemma 4.1, we have
for large enough \omega that

(I +K\omega )
N\sum 

n=0

un = u0 + ( - 1)NKN+1
\omega u0 \rightarrow u0 as N \rightarrow \infty .(4.2)
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Since (I +K\omega )
 - 1u0 = u, taking the inverse of the operator I +K\omega in (4.2) leads to

u(x, \omega ) = u0(x, \omega ) + u1(x, \omega ) + b(x, \omega ),(4.3)

where b(x, \omega ) :=
\sum \infty 

n=2 un(x, \omega ). With the convergence of the Born approximation
(4.3), we can analyze each term in the Born approximation. For the leading term u0,
we have the following result [30, Theorem 4.6].

Theorem 4.2. Let f satisfy Assumption 1.1. For all x \in U , it holds almost

surely that

lim
Q\rightarrow \infty 

1

Q - 1

\int Q

1

\omega m+1| u0(x, \omega )| 
2d\omega = a

\int 

R2

1

| x - y| 
\phi (y)dy,

where a is a constant given in Theorem 1.4.

Now we analyze the term b(x, \omega ). For n \geq 2, by Lemma 4.1, we get

\| un(x, \omega )\| L\infty (U)2 = \| Kn
\omega u0\| L\infty (U)2

\leq \| K\omega \| H\varepsilon ,p(D)2\rightarrow L\infty (U)2\| K\omega \| 
n - 1
H\varepsilon ,p(D)2\rightarrow H\varepsilon ,p(D)2

\times \| H\omega \| H - \varepsilon ,p\prime 

0 (D)2\rightarrow H\varepsilon ,p(D)2
\| f\| 

H - \varepsilon ,p\prime 

0 (D)2

\lesssim \omega 1+2\varepsilon  - 2
p\omega (n - 1)[ - 1+2(\varepsilon +1 - 2

p
)]\omega 

 - 1+2[\varepsilon + 1

p\prime 
 - 1

p
]

\lesssim \omega 4\varepsilon +2 - 6
p\omega 

(n - 1)[ - 1+2(\varepsilon + 1

p\prime 
 - 1

p
)]
,

which gives

\infty \sum 

n=2

\| un\| L\infty (U)2 \lesssim \omega 4\varepsilon +2 - 6
p

\omega  - 1+2(\varepsilon +1 - 2
p
)

1 - \omega  - 1+2(\varepsilon +1 - 2
p
)
\lesssim \omega 6\varepsilon +3 - 10

p .

Since 0 < \varepsilon < 2
p and p > 2, we can choose suitable \varepsilon , p such that \varepsilon \prime = 6\varepsilon + 5  - 10

p is
small enough and

\infty \sum 

n=2

| | un| | L\infty (U)2 \lesssim \omega  - 2+\varepsilon \prime .(4.4)

Hence, when Q\rightarrow \infty ,

1

Q - 1

\int Q

1

\omega m+1| b(x, \omega )| 2d\omega \lesssim 
1

Q - 1

\int Q

1

\omega \alpha d\omega =
1

\alpha + 1

Q\alpha +1  - 1

Q - 1
\rightarrow 0,(4.5)

where \alpha = m+ 2\varepsilon \prime  - 3. Noting that m \in [2, 5/2), we have \alpha \in ( - 1, 0), which is used
in (4.5).

5. The analysis of u1(x, ω). In this section, we consider the term u1(x, \omega ) in
the Born series (4.1), which is given by

u1(x, \omega ) =

\int 

D

\int 

D

G(x, y, \omega )M(y)G(y, z, \omega )f(z)dydz, x \in U.(5.1)

It turns out the term u1(x, \omega ) is very difficult to analyze. Fortunately, after tedious
calculations, we find out that the contribution of u1 can be ignored. We present the
main result of this section.
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Theorem 5.1. Let f , U , and M satisfy Assumptions 1.1, 1.2, and 1.3, respec-
tively. Then for x \in U , it holds almost surely that

lim
Q\rightarrow \infty 

1

Q - 1

\int Q

1

\omega m+1| u1(x, \omega )| 
2d\omega = 0.(5.2)

The proof of Theorem 5.1 requires the asymptotic expansions of Green’s tensor
and microlocal analysis of integral operators. Since the whole proof is lengthy, we
split it into several parts, and which consist of Lemmas 5.2, 5.3, and 5.6.

Recalling the Green tensor in (3.1), a direct computation shows

G(x, y, \omega ) =

\biggl( 
i

4\mu 
H

(1)
0 (\kappa s| x - y| ) - 

i

4\omega 2

1

| x - y| 
Γ1(x - y, \omega )

\biggr) 
I

+
i

4\omega 2

1

| x - y| 2
Γ2(x - y, \omega )(x - y) \cdot (x - y)\top ,(5.3)

where x  - y = (x1  - y1, x2  - y2)
\top and Γ1,Γ2 are given in (2.10), (2.11). Noting

the definition of H
(1)
n,N in (2.14), we define the notation Θn(z, \omega ) := \kappa nsH

(1)
n,0(\kappa s| z| )  - 

\kappa npH
(1)
n,0(\kappa p| z| ),

G0(x, y, \omega ) =

\biggl( 
i

4\mu 
H

(1)
0,0 (\kappa s| x - y| ) - 

i

4\omega 2

1

| x - y| 
Θ1(x - y, \omega )

\biggr) 
I

+
i

4\omega 2

1

| x - y| 2
Θ2(x - y, \omega )(x - y) \cdot (x - y)\top ,(5.4)

and

u1,l(x, \omega ) :=

\int 

D

\int 

D

G0(x, y, \omega )M(y)G(y, z, \omega )f(z)dydz, x \in U.(5.5)

Now we estimate the order of the difference u1  - u1,l with respect to the angular
frequency \omega .

Lemma 5.2. For u1(x, \omega ) and u1,l(x, \omega ) given by (5.1) and (5.5), respectively, we
have

| u1(x, \omega ) - u1,l(x, \omega )| \lesssim \omega  - 5
2
+\varepsilon l , x \in U,(5.6)

where \varepsilon l is a sufficient small positive number.

Proof. A simple calculation yields

| u1(x, \omega ) - u1,l(x, \omega )| 

=

\bigm| \bigm| \bigm| \bigm| 
\int 

D

(G(x, y, \omega ) - G0(x, y, \omega ))M(y)

\int 

D

G(y, z, \omega )f(z)dzdy

\bigm| \bigm| \bigm| \bigm| 
\lesssim \| G(x, y, \omega ) - G0(x, y, \omega )\| Lp\prime (D)2\times 2\| H\omega f\| Lp(D)2 .

Since x \in U , y \in D, there exists c1, c2 > 0 such that c1 < | x - y| < c2. By (2.15), we
have

\| Γn,0(\kappa | x - \cdot | )\| Lp\prime (D) \lesssim \kappa  - 
3
2 .(5.7)

A direct computation shows that \nabla Γn,0(\kappa | x - \cdot | ) \lesssim \kappa  - 
1
2 . Hence

\| \nabla Γn,0(\kappa | x - \cdot | )\| Lp\prime (D) \lesssim \kappa  - 
1
2 .(5.8)
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By (5.7) and (5.8), we get

\| Γn,0(\kappa | x - \cdot | )\| H\varepsilon ,p\prime (D) \lesssim \kappa  - 
3
2
+\varepsilon .

Therefore,

\| G(x, \cdot , \omega ) - G0(x, \cdot , \omega )\| H\varepsilon ,p\prime (D)2\times 2 \lesssim \omega  - 3
2
+\varepsilon .(5.9)

It follows from Lemma 4.1 that we obtain

(5.10) \| H\omega f\| H\varepsilon ,p(D)2 \leq \| H\omega \| H - \varepsilon ,p\prime 

0 (D)2\rightarrow H\varepsilon ,p(D)2
\| f\| 

H - \varepsilon ,p\prime 

0 (D)2
\lesssim \omega  - 1+2(\varepsilon +1 - 2

p
),

where we use the fact that \| f\| 
H - \varepsilon ,p\prime 

0 (D)2
is bounded almost surely. Denoting \varepsilon l =

3\varepsilon + 2(1  - 2
p ) which can be sufficient small for suitably chosen \varepsilon and p due to p \geq 2

and 0 < \varepsilon < 2
p , we conclude the result from (5.9) and (5.10).

In order to analyze the term u1,l, we replace the Green tensor G(y, z, \omega ) in u1,l

by G0(y, z, \omega ) and define

u1,r(x, \omega ) =

\int 

D

\int 

D

G0(x, y, \omega )M(y)G0(y, z, \omega )f(z)dydz, x \in U.(5.11)

Lemma 5.3. For u1,l(x, \omega ) and u1,r(x, \omega ) given by (5.5) and (5.11), respectively,
the estimate

| u1,l(x, \omega ) - u1,r(x, \omega )| \lesssim \omega  - 2+\varepsilon , x \in U,(5.12)

holds for any \varepsilon \in (0, 15 ).

Proof. By (5.5) and (5.11), a direct calculation shows that

u1,l(x, \omega ) - u1,r(x, \omega ) =

\int 

D

\int 

D

G0(x, y, \omega )M(y) (G(y, z, \omega ) - G0(y, z, \omega ))f(z)dydz

=

\biggl( 2\sum 

j,k,l=1

I
(1)
jkl ,

2\sum 

j,k,l=1

I
(2)
jkl

\biggr) \top 

,

where

I
(i)
jkl :=

\int 

D

\int 

D

G0,ij(x, y, \omega )Mjk(y) (Gkl(y, z, \omega ) - G0,kl(y, z, \omega )) fl(z)dydz

for i, j, k, l = 1, 2. Here, Gij and G0,ij represent the elements of the matrix G and
G0, respectively.

Now we only focus on the analysis of the term I
(1)
111 and show the details; the other

terms can be analyzed in a similar way. In the dual sense, we have

I
(1)
111 = \langle G11(y, z, \omega ) - G0,11(y, z, \omega ),

G0,11(x, y, \omega )M11(y)f1(z)\rangle (H\varepsilon ,p̃(D\times D),H - \varepsilon ,p̃\prime 

0 (D\times D))
.(5.13)

By (5.3) and (5.4), we can split G11(y, z, \omega ) - G0,11(y, z, \omega ) into three terms:

G11(y, z, \omega ) - G0,11(y, z, \omega ) = g0(y  - z, \omega ) + g1(y  - z, \omega ) + g2(y  - z, \omega ),
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where

g0(y  - z, \omega ) =
i

4\mu 
Γ0,0(\kappa s| y  - z| ),

g1(y  - z, \omega ) =  - 
i

4\omega 2

1

| y  - z| 
[\kappa sΓ1,0(\kappa s| y  - z| ) - \kappa pΓ1,0(\kappa p| y  - z| )],

g2(y  - z, \omega ) =
i

4\omega 2

(y1  - z1)
2

| y  - z| 2
[\kappa 2sΓ2,0(\kappa s| y  - z| ) - \kappa 2pΓ2,0(\kappa p| y  - z| )].

Note y, z \in D andD is a bounded domain. Next is to estimate the term \| G11(y, z, \omega ) - 
G0,11(y, z, \omega )\| H\varepsilon ,p̃(D\times D), which requires estimating \| gj(z, \omega )\| H\varepsilon ,p̃(B), j = 0, 1, 2 for
some bounded domain containing the origin.

We analyze the three terms one by one. For large \kappa s| z| , it is easy to note from
(2.15) that

| g0(z, \omega )| \lesssim (\kappa s| z| )
 - 3

2 .(5.14)

For small \kappa s| z| , using (2.6) and (2.14) gives that

| g0(z, \omega )| \lesssim (\kappa s| z| )
 - 1

2 = (\kappa s| z| )
 - 3

2 (\kappa s| z| ) \lesssim (\kappa s| z| )
 - 3

2 .(5.15)

By (5.14) and (5.15), we obtain that

\| g0(z, \omega )\| 
p̃
Lp̃(B)

\lesssim 

\int 

B

\omega  - 3
2
p̃| z|  - 

3
2
p̃dz \lesssim \omega  - 3

2
p̃

\int R

0

r1 - 
3
2
p̃dr \lesssim \omega  - 3

2
p̃(5.16)

holds for p̃ < 4
3 , where R = max\{ | z| , z \in B\} . Since

\nabla g0(z, \omega ) =
i

4\mu 
\nabla 

\Biggl( 
H

(1)
0 (\kappa s| z| ) - a

(0)
0

\sqrt{} 
1

\kappa s| z| 
ei(\kappa s| z|  - 

\pi 
4
)

\Biggr) 

=
i

4\mu 

z

| z| 

\biggl( 
 - \kappa sH

(1)
1 (\kappa s| z| ) +

1

2
a
(0)
0 \kappa 

 - 1
2

s | z|  - 
3
2 ei(\kappa s| z|  - 

\pi 
4
)  - ia

(0)
0 \kappa 

1
2
s | z| 

 - 1
2 ei(\kappa s| z|  - 

\pi 
4
)

\biggr) 
,

we have for large \kappa s| z| that

| \nabla g0(z, \omega )| \lesssim \kappa 
1
2
s | z| 

 - 1
2 + \kappa 

 - 1
2

s | z|  - 
3
2 + \kappa 

1
2
s | z| 

 - 1
2 \lesssim \kappa 

1
2
s | z| 

 - 1
2 .(5.17)

For small \kappa s| z| , we get

| \nabla g0(z, \omega )| \lesssim \kappa s(\kappa s| z| )
 - 1 + \kappa 

 - 1
2

s | z|  - 
3
2 + \kappa 

1
2
s | z| 

 - 1
2 \lesssim \kappa 

 - 1
2

s | z|  - 
3
2 .(5.18)

By (5.17) and (5.18), we conclude for p̃ < 4
3 that

\| \nabla g0(z, \omega )\| 
p̃
Lp̃(B)

\lesssim 

\int 

B

\omega 
1
2
p̃| z|  - 

1
2
p̃dz +

\int 

B

\omega  - 1
2
p̃| z|  - 

3
2
p̃dz \lesssim \omega 

1
2
p̃.(5.19)

Using (5.16) and (5.19), we have for p̃ < 4
3 that

| | g0(z, \omega )| | 
p̃
H1,p̃(B)

\lesssim \omega  - 3
2
p̃ + \omega 

1
2
p̃ \lesssim \omega 

1
2
p̃.(5.20)

From (2.1), we have

H\varepsilon ,p̃(B) := [Lp̃(B), H1,p̃(B)]\varepsilon .(5.21)
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Using (5.16) and (5.20)–(5.21), we arrive at

\| g0(z, \omega )\| H\varepsilon ,p̃(B) \lesssim \| g0(z, \omega )\| 
1 - \varepsilon 
Lp̃(B)

\| g0(z, \omega )\| 
\varepsilon 
H1,p̃(B) \lesssim \omega  - 3

2
+2\varepsilon .(5.22)

Now we analyze the term g1(z, \omega ) which is given by

g1(z, \omega ) =  - 
i

4\omega 2

1

| z| 
[\kappa sΓ1,0(\kappa s| z| ) - \kappa pΓ1,0(\kappa p| z| )].

For large \omega | z| , it follows from (2.15) that

| g1(z, \omega )| \lesssim \omega  - 2| z|  - 1[\omega (\omega | z| ) - 
3
2 ] \lesssim \omega  - 5/2| z|  - 5/2

=
(\omega | z| ) - 

3
2

\omega | z| 
\lesssim (\omega | z| ) - 

3
2 .(5.23)

For small \omega | z| , by (2.5) and (2.8), we have

| g1(z, \omega )| \lesssim (\omega | z| ) - 
3
2 .(5.24)

Combining (5.23) and (5.24) implies for p̃ < 4
3 that

\| g1(z, \omega )\| 
p̃
Lp̃(B)

\lesssim 

\int 

B

\omega  - 3
2
p̃| z|  - 

3
2
p̃dz \lesssim \omega  - 3

2
p̃

\int R

0

r1 - 
3
2
p̃dr \lesssim \omega  - 3

2
p̃.

For convenience, we split g1 into two parts by g1(z, \omega ) = g11(z, \omega ) + g12(z, \omega ) with

g11(z, \omega ) =  - 
i

4\omega 2

1

| z| 
Γ1(z, \omega ),

g12(z, \omega ) =
i

4\omega 2

1

| z| 
Θ1(z, \omega ) =  - 

i

4
a
(1)
0 e - 

3
4
\pi i(c

1
2
p e

i\kappa p| z|  - c
1
2
s e

i\kappa s| z| )\omega  - 3
2 | z|  - 

3
2 .

For large \omega | z| , by (2.7), we have

| g11(x, \omega )| \lesssim \omega  - 3
2 | z|  - 

3
2 .(5.25)

For small \omega | z| , by (2.5), we have

| g11(x, \omega )| \lesssim 

\bigm| \bigm| \bigm| \bigm| ln
\omega | z| 

2

\bigm| \bigm| \bigm| \bigm| \lesssim \omega  - 3
2 | z|  - 

3
2 .(5.26)

Combining (5.25) and (5.26) yields for p̃ < 4
3 that

| | g11(z, \omega )| | 
p̃
Lp̃(B)

\lesssim 

\int 

B

\omega  - 3
2
p̃| z|  - 

3
2
p̃dz \lesssim \omega  - 3

2
p̃

\int R

0

r1 - 
3
2
p̃dr \lesssim \omega  - 3

2
p̃.(5.27)

For \nabla g11(z, \omega ), we have

\nabla g11(z, \omega ) =
i

4\omega 2

z

| z| 2
Γ2(z, \omega ).

For large \omega | z| , (2.7) implies

| \nabla g11(z, \omega )| \lesssim \omega  - 1
2 | z|  - 

3
2 .(5.28)
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For small \omega | z| , (2.6) implies

| \nabla g11(z, \omega )| \lesssim | z|  - 1 \lesssim \omega  - 1
2 | z|  - 

3
2 .(5.29)

Following (5.28) and (5.29), we get for p̃ < 4
3 that

\| \nabla g11(z, \omega )\| 
p̃
Lp̃(B)

\lesssim 

\int 

B

\omega  - 1
2
p̃| z|  - 

3
2
p̃dz \lesssim \omega  - 1

2
p̃

\int R

0

r1 - 
3
2
p̃dr \lesssim \omega  - 1

2
p̃.(5.30)

Using (5.27) and (5.30), we have that

| | g11(z, \omega )| | 
p̃
H1,p̃(B)

\lesssim \omega  - 3
2
p̃ + \omega  - 1

2
p̃ \lesssim \omega  - 1

2
p̃,(5.31)

which gives after combining (5.21) and (5.27) that

\| g11(z, \omega )\| H\varepsilon ,p̃(B) \lesssim \| g11(z, \omega )\| 
1 - \varepsilon 
Lp̃(B)

\| g11(z, \omega )\| 
\varepsilon 
H1,p̃(B) \lesssim \omega  - 3

2
+\varepsilon .(5.32)

Since

g12(z, \omega ) =  - 
i

4
a
(1)
0 e - 

3
4
\pi i(c

1
2
p e

i\kappa p| z|  - c
1
2
s e

i\kappa s| z| )\omega  - 3
2 | z|  - 

3
2 ,

it suffices to prove that \omega  - 3
2 | z|  - 

3
2 \in H\varepsilon ,p̃(B). By the Slobodeckij seminorm, we need

to prove

| \omega  - 3
2 | z|  - 

3
2 | p̃\varepsilon ,p̃,B = \omega  - 3

2
p̃

\int 

B

\int 

B

| | z|  - 
3
2  - | z\prime |  - 

3
2 | p̃

| z  - z\prime | 2+\varepsilon p̃
dzdz\prime <\infty ,

which requires showing the following two lemmas: one is the integrability criterion
and the other is Young’s inequality for convolutions [2, Theorem 2.24].

Lemma 5.4. For the n-dimensional space, we have

\int 

| x| \leq 1

1

| x| \rho 
dx <\infty if and only if \rho < n.

This lemma is fundamental and can be easily proved by using the polar coordi-
nates.

Lemma 5.5. Let s1, s2, s3 \geq 1 and suppose that 1
s1

+ 1
s2

+ 1
s3

= 2. It holds that

\bigm| \bigm| \bigm| \bigm| 
\int 

Rn

\int 

Rn

h1(x)h2(x - y)h3(y)dxdy

\bigm| \bigm| \bigm| \bigm| \leq \| h1\| s1\| h2\| s2\| h3\| s3

for any h1 \in Ls1(Rn), h2 \in Ls2(Rn), h3 \in Ls3(Rn).

Since

| | z|  - 
3
2  - | z\prime |  - 

3
2 | =

\bigm| \bigm| \bigm| \bigm| \bigm| 
(| z\prime | 

1
2  - | z| 

1
2 )(| z\prime | + | z\prime | 

1
2 | z| 

1
2 + | z| )

| z| 
3
2 | z\prime | 

3
2

\bigm| \bigm| \bigm| \bigm| \bigm| 

\leq 

\bigm| \bigm| \bigm| \bigm| \bigm| 
(| z\prime |  - | z| )(| z\prime | 

1
2 + | z| 

1
2 )2

| z| 
3
2 | z\prime | 

3
2 (| z\prime | 

1
2 + | z| 

1
2 )

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
| z\prime  - z| (| z\prime | 

1
2 + | z| 

1
2 )

| z| 
3
2 | z\prime | 

3
2

,
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we have

\int 

B

\int 

B

| | z|  - 
3
2  - | z\prime |  - 

3
2 | p̃

| z  - z\prime | 2+\varepsilon p̃
dzdz\prime \leq 

\int 

B

\int 

B

(| z\prime | 
1
2 + | z| 

1
2 )p̃

| z| 
3
2
p̃| z\prime | 

3
2
p̃| z  - z\prime | 2+\varepsilon p̃ - p̃

dzdz\prime 

\lesssim 

\int 

B

\int 

B

1

| z| p̃| z\prime | 
3
2
p̃| z  - z\prime | 2+\varepsilon p̃ - p̃

dzdz\prime +

\int 

B

\int 

B

1

| z| 
3
2
p̃| z\prime | p̃| z  - z\prime | 2+\varepsilon p̃ - p̃

dzdz\prime 

:= I1 + I2.

We choose p̃ = 10
9 , \varepsilon = 1

5 , s1 = 89
50 , s2 = 59

50 , and s3 = 5251
3102 , and then we have

1
s1

+ 1
s2

+ 1
s3

= 2 and p̃s1 < 2, 3
2 p̃s2 < 2, (2 + \varepsilon p̃  - p̃)s3 < 2. A direct application of

Lemmas 5.4 and 5.5 leads to

I1 =

\int 

R2

\int 

R2

\chi B(z)| z| 
 - p̃\chi B(z

\prime )| z\prime |  - 
3
2
p̃\chi B2R

(z  - z\prime )| z  - z\prime |  - (2+\varepsilon p̃ - p̃)dzdz\prime 

\leq \| | z|  - p̃\| s1\| | z| 
 - 3

2
p̃\| s2\| | z| 

 - (2+\varepsilon p̃ - p̃)\| s3 <\infty ,

where B2R is the ball with radius 2R and center at the origin, and \chi B is the charac-
teristic function of the domain B which equals to 1 in B and vanishes outside of B.
We can prove I2 <\infty by a similar argument. Therefore,

\| g12(z, \omega )\| 
H

1
5
, 10

9 (B)
\lesssim \omega  - 3

2 .(5.33)

Next we analyze the term g2(z, \omega ), which is given by

g2(z, \omega ) =
i

4\omega 2

z21
| z| 2

[\kappa 2sΓ2,0(\kappa s| z| ) - \kappa 2pΓ2,0(\kappa p| z| )].

For large \omega | z| , (2.15) shows that

| g2(z, \omega )| \lesssim 
1

\omega 2

\Bigl( 
\kappa 2s (\kappa s| z| )

 - 3
2 + \kappa 2p(\kappa p| z| )

 - 3
2

\Bigr) 
\lesssim (\omega | z| ) - 

3
2 .(5.34)

For small \omega | z| , we have from (2.11) that

| g2(z, \omega )| \lesssim (\kappa s| z| )
 - 1

2 + (\kappa p| z| )
 - 1

2 \lesssim (\omega | z| ) - 
1
2 \lesssim (\omega | z| ) - 

3
2 .(5.35)

Thus, (5.34) and (5.35) implies for p̃ < 4
3 that

\| g2(z, \omega )\| 
p̃
Lp̃(B)

\lesssim 

\int 

B

\omega  - 3
2
p̃| z|  - 

3
2
p̃dz \lesssim \omega  - 3

2
p̃

\int R

0

r1 - 
3
2
p̃dr \lesssim \omega  - 3

2
p̃.(5.36)

A direct computation shows that

\nabla g2(z, \omega ) =
i

2\omega 2
z1e1a

(2)
0 | z|  - 

5
2 e - 

5
4
\pi i
\Bigl[ 
\kappa 

3
2
p e

i\kappa p| z|  - \kappa 
3
2
s e

i\kappa s| z| 
\Bigr] 

+
i

2\omega 2

z1
| z| 2

e1Γ2(z, \omega ) - 
i

4\omega 2

z

| z| 

z21
| z| 2

Γ3(z, \omega ) +
i

4\omega 2
a
(2)
0

z21
| z| 2

z

| z| 
e - 

5
4
\pi i \times 

\biggl[ \biggl( 
5

2
\kappa 

3
2
s | z| 

 - 3
2  - i\kappa 

5
2
s | z| 

 - 1
2

\biggr) 
ei\kappa s| z|  - 

\biggl( 
5

2
\kappa 

3
2
p | z| 

 - 3
2  - i\kappa 

5
2
p | z| 

 - 1
2

\biggr) 
ei\kappa p| z| 

\biggr] 
.

For large \omega | z| , we know from (2.7) that

| \nabla g2(z, \omega )| \lesssim \omega  - 1
2 | z|  - 

3
2 + \omega 

1
2 | z|  - 

1
2 \lesssim \omega 

1
2 | z|  - 

1
2 .(5.37)
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For small \omega | z| , we obtain from (2.11) and (2.12) that

| \nabla g2(z, \omega )| \lesssim \omega  - 1
2 | z|  - 

3
2 + \omega 

1
2 | z|  - 

1
2 + | z|  - 1 \lesssim \omega  - 1

2 | z|  - 
3
2 .(5.38)

By (5.37) and (5.38), we conclude for p̃ < 4
3 that

\| \nabla g2(z, \omega )\| 
p̃
Lp̃(B)

\lesssim 

\int 

B

\omega 
1
2
p̃| z|  - 

1
2
p̃dz +

\int 

B

\omega  - 1
2
p̃| z|  - 

3
2
p̃dz \lesssim \omega 

1
2
p̃.(5.39)

Using (5.36) and (5.39), we get

\| g2(z, \omega )\| 
p̃
H1,p̃(B)

\lesssim \omega  - 3
2
p̃ + \omega 

1
2
p̃ \lesssim \omega 

1
2
p̃.(5.40)

It follows from (5.21), (5.36), and (5.40) that

\| g2(z, \omega )\| H\varepsilon ,p̃(B) \lesssim \| g2(z, \omega )\| 
1 - \varepsilon 
Lp̃(B)

\| g2(z, \omega )\| 
\varepsilon 
H1,p̃(B) \lesssim \omega  - 3

2
+2\varepsilon .(5.41)

Noting that D is a bounded domain, and combining (5.22), (5.32), (5.33), and
(5.41), we obtain for any \varepsilon \in (0, 15 ] and p̃ \in [1, 109 ] that

\| G11(y, z, \omega ) - G0,11(y, z, \omega )\| H\varepsilon ,p̃(D\times D) \lesssim \omega  - 3
2
+2\varepsilon .

Since G0,11(x, y, \omega ) is smooth for x \in U and y \in D, M11(y) \in C1
0 (D), and f1(z) \in 

H - \varepsilon ,p̃(D) for any \varepsilon > 0 and 1 < p̃ < \infty , we have G0,11(x, y, \omega )M11(y)f1(z) \in 

H - \varepsilon ,p̃
0 (D \times D). Moreover,

G0,11(x, y, \omega ) =
i

4\mu 

e - 
\pi 
4
i

| x - y| 
1
2

a
(0)
0 c

 - 1
2

s ei\kappa s| x - y| \omega  - 1
2  - 

i

4

e - 
3
4
\pi i

| x - y| 
3
2

a
(1)
0

\times 
\Bigl( 
c

1
2
s e

i\kappa s| x - y|  - c
1
2
p e

i\kappa p| x - y| 
\Bigr) 
\omega  - 3

2

+
i

4

e - 
5
4
\pi i(x1  - y1)

2

| x - y| 5/2
a
(2)
0

\Bigl( 
c

3
2
s e

i\kappa s| x - y|  - c
3
2
p e

i\kappa p| x - y| 
\Bigr) 
\omega  - 1

2 .

Thus, we obtain for sufficient large \omega that

\| G0,11(x, y, \omega )M11(y)f1(z)\| H - \varepsilon ,p̃
0 (D\times D) \lesssim \omega  - 1

2 .(5.42)

Substituting (5.41) and (5.42) into (5.13) yields that | I
(1)
111| \lesssim \omega  - 2+\varepsilon holds for any

\varepsilon \in (0, 15 ].

Repeating a similar proof, we can obtain estimates for I
(1)
112, . . . , I

(2)
222 and get (5.12).

The details are omitted for brevity.

Noting (5.6), we have

| u1(x, \omega ) - u1,r(x, \omega )| \lesssim \omega  - 2+\varepsilon ,

which gives

1

Q - 1

\int Q

1

\omega m+1| u1(x, \omega )| 
2d\omega \lesssim 

2

Q - 1

\int Q

1

\omega m+1| u1,r(x, \omega )| 
2d\omega 

+
2

Q - 1

\int Q

1

\omega m - 3+2\varepsilon d\omega .

It is easy to verify that
2

Q - 1

\int Q

1

\omega m - 3+2\varepsilon d\omega \rightarrow 0

for m \in [2, 5/2) and small enough \varepsilon . To prove (5.2), it is sufficient to prove the
following result.
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Lemma 5.6. For the item u1,r(x, \omega ) given by (5.11), we have

lim
Q\rightarrow \infty 

1

Q - 1

\int Q

1

\omega m+1| u1,r(x, \omega )| 
2d\omega = 0, x \in U.(5.43)

Proof. It follows from a straightforward but tedious calculation that the vector
u1,r(x, \omega ) can be decomposed into three parts according to the order of \omega in the
following form:

u1,r(x, \omega ) = v1(x, \omega )\omega 
 - 1 + v2(x, \omega )\omega 

 - 2 + v3(x, \omega )\omega 
 - 3,(5.44)

where

v1(x, \omega ) =  - 
e - 

\pi 
2
i

16\mu 2cs
a
(0)
0

2
\int 

D

\int 

D

ei\kappa s(| x - y| +| y - z| ) M(y)f(z)

| x - y| 
1
2 | y  - z| 

1
2

dydz  - 
e - 

3
2
\pi i

16\mu 
a
(0)
0 a

(2)
0

\times 

\biggl[ \int 

D

\int 

D

\Bigl( 
cse

i\kappa s(| x - y| +| y - z| )  - c
3
2
p c

 - 1
2

s ei(\kappa s| x - y| +\kappa p| y - z| )
\Bigr) M(y)J(y  - z)f(z)

| x - y| 
1
2 | y  - z| 

5
2

dydz

+

\int 

D

\int 

D

\Bigl( 
cse

i\kappa s(| x - y| +| y - z| )  - c
3
2
p c

 - 1
2

s ei(\kappa s| y - z| +\kappa p| x - y| )
\Bigr) J(x - y)M(y)f(z)

| x - y| 
5
2 | y  - z| 

1
2

dydz

\biggr] 

+
e - 

5
2
\pi i

16
a
(2)
0

2
\int 

D

\int 

D

\biggl( 
 - c3se

i\kappa s(| x - y| +| y - z| ) + c
3
2
s c

3
2
p e

i(\kappa s| x - y| +\kappa p| y - z| )

+ c
3
2
s c

3
2
p e

i(\kappa p| x - y| +\kappa s| y - z| )  - c3pe
i\kappa p(| x - y| +| y - z| )

\biggr) 
J(x - y)M(y)J(y  - z)f(z)

| x - y| 
5
2 | y  - z| 

5
2

dydz,

v2(x, \omega ) =
e - \pi i

16\mu 
a
(0)
0 a

(1)
0

\int 

D

\int 

D

\biggl( 
ei\kappa s(| x - y| +| y - z| )  - c

1
2
p c

 - 1
2

s ei(\kappa s| x - y| +\kappa p| y - z| )

\biggr) 

\times 
M(y)f(z)

| x - y| 
1
2 | y  - z| 

3
2

dydz +
e - \pi i

16\mu 
a
(0)
0 a

(1)
0

\int 

D

\int 

D

\biggl( 
ei\kappa s(| x - y| +| y - z| )

 - c
1
2
p c

 - 1
2

s ei(\kappa p| x - y| +\kappa s| y - z| )

\biggr) 
M(y)f(z)

| x - y| 
3
2 | y  - z| 

1
2

dydz +
e - 2\pi i

16
a
(1)
0 a

(2)
0

\times 

\int 

D

\int 

D

\biggl( 
c2se

i\kappa s(| x - y| +| y - z| )  - c
1
2
s c

3
2
p e

i(\kappa s| x - y| +\kappa p| y - z| )

 - c
1
2
p c

3
2
s e

i(\kappa p| x - y| +\kappa s| y - z| ) + c2pe
i\kappa p(| x - y| +| y - z| )

\biggr) 
M(y)J(y  - z)f(z)

| x - y| 
3
2 | y  - z| 

5
2

dydz

+
e - 2\pi i

16
a
(1)
0 a

(2)
0

\int 

D

\int 

D

\biggl( 
c2se

i\kappa s(| x - y| +| y - z| )  - c
1
2
s c

3
2
p e

i(\kappa p| x - y| +\kappa s| y - z| )

 - c
1
2
p c

3
2
s e

i(\kappa s| x - y| +\kappa p| y - z| ) + c2pe
i\kappa p(| x - y| +| y - z| )

\biggr) 
J(x - y)M(y)f(z)

| x - y| 
5
2 | y  - z| 

3
2

dydz,

v3(x, \omega ) =
e - 

3
2
\pi i

16
a
(1)
0

2
\int 

D

\int 

D

\biggl( 
 - cse

i\kappa s(| x - y| +| y - z| ) + c
1
2
s c

1
2
p e

i(\kappa s| x - y| +\kappa p| y - z| )

+ c
1
2
s c

1
2
p e

i(\kappa p| x - y| +\kappa s| y - z| )  - cpe
i\kappa p(| x - y| +| y - z| )

\biggr) 
M(y)f(z)

| x - y| 
3
2 | y  - z| 

3
2

dydz.

Here J(x - y) = (x - y)(x - y)\top and J(y  - z) = (y  - z)(y  - z)\top .
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By (5.44) and the Cauchy–Schwarz inequality, we have

\int Q

1

\omega m+1| u1,r(x, \omega )| 
2d\omega \lesssim 

\int Q

1

\bigl( 
\omega m - 1| v1(x, \omega )| 

2

+ \omega m - 3| v2(x, \omega )| 
2 + \omega m - 5| v3(x, \omega )| 

2
\bigr) 
d\omega .

Noting the facts that | x  - y| has a positive lower bound for x \in U , y \in D, \| | y  - 

z|  - 
3
2 \| 

H
1
5
, 10

9 (D\times D)
is bounded from the above,Mij(y) \in C1

0 (D), and \| fj(z)\| 
H - 1

5
,10(D)

is bounded from the assumption, we conclude that

| v2(x, \omega )| <\infty , | v3(x, \omega )| <\infty , x \in U, \omega \geq 1.

Hence, we have as \omega \rightarrow \infty that

1

Q - 1

\int Q

1

\omega m - 3| v2(x, \omega )| 
2d\omega \lesssim 

1

Q - 1

\int Q

1

\omega m - 3d\omega \rightarrow 0,

1

Q - 1

\int Q

1

\omega m - 5| v3(x, \omega )| 
2d\omega \lesssim 

1

Q - 1

\int Q

1

\omega m - 5d\omega \rightarrow 0.

To prove (5.43), it suffices to prove that

lim
Q\rightarrow \infty 

1

Q - 1

\int Q

1

\omega m - 1| v1(x, \omega )| 
2d\omega = 0.(5.45)

We claim that in order to prove (5.45), it will be enough to show that

\int \infty 

1

\omega m - 2| v1(x, \omega )| 
2d\omega <\infty , almost surely.(5.46)

To show this, we notice that

1

Q

\int Q

1

\omega m - 1| v1(x, \omega )| 
2d\omega \leq 

\int Q

1

\omega 

Q
\omega m - 2| v1(x, \omega )| 

2d\omega 

\leq 

\int \infty 

1

min

\biggl( 
1,
\omega 

Q

\biggr) 
\omega m - 2| v1(x, \omega )| 

2d\omega .

From the dominated convergence theorem, the last integral in the above inequality
converges almost surely to zero as Q\rightarrow \infty , so the claim follows. The remaining part
of the proof will focus on (5.46). To this end, we define

g(x, \omega ) =

\int 

D

\int 

D

ei\omega (c1| x - y| +c2| y - z| )

(x1  - y1)
p1(x2  - y2)

p2(y1  - z1)
p3(y2  - z2)

p4

| x - y| l1 | y  - z| l2
q(y)f̃(z)dydz,(5.47)

where c1, c2 > 0, p1, . . . , l2 \geq 0, f̃ denotes a generalized Gaussian random field
which equals to f1 or f2, and q(y) \in C1

0 (D) stands for Mij(y). From the formu-
lation of v1(x, \omega ), we know that it is a linear combination of g(x, \omega ) for different
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(l1, l2, p1, p2, p3, p4) \in S which is given by

S =
\Bigl\{ \Bigl( 1

2
,
1

2
, 0, 0, 0, 0

\Bigr) 
,
\Bigl( 1
2
,
5

2
, 0, 0, 2, 0

\Bigr) 
,
\Bigl( 1
2
,
5

2
, 0, 0, 1, 1

\Bigr) 
,
\Bigl( 1
2
,
5

2
, 0, 0, 0, 2

\Bigr) 
,

\Bigl( 5
2
,
1

2
, 2, 0, 0, 0

\Bigr) 
,
\Bigl( 5
2
,
1

2
, 0, 2, 0, 0

\Bigr) 
,
\Bigl( 5
2
,
1

2
, 1, 1, 0, 0

\Bigr) 
,
\Bigl( 5
2
,
5

2
, 2, 0, 2, 0

\Bigr) 
,

\Bigl( 5
2
,
5

2
, 1, 1, 1, 1

\Bigr) 
,
\Bigl( 5
2
,
5

2
, 2, 0, 1, 1

\Bigr) 
,
\Bigl( 5
2
,
5

2
, 1, 1, 0, 2

\Bigr) 
,
\Bigl( 5
2
,
5

2
, 2, 0, 0, 2

\Bigr) 
,

\Bigl( 5
2
,
5

2
, 1, 1, 2, 0

\Bigr) 
,
\Bigl( 5
2
,
5

2
, 0, 2, 2, 0

\Bigr) 
,
\Bigl( 5
2
,
5

2
, 0, 2, 1, 1

\Bigr) 
,
\Bigl( 5
2
,
5

2
, 0, 2, 0, 2

\Bigr) \Bigr\} 
.

To prove (5.46), it is enough to show that

\int \infty 

1

\omega m - 2| g(x, \omega )| 2d\omega <\infty , almost surely.(5.48)

In the following, we consider two cases.
Case 1. m = 2. In this case, Lemma 2.4 claims that f̃ \in H - \varepsilon ,p(D) almost

surely for any \varepsilon > 0 and 1 < p < \infty . In order to avoid the distribution dualities, we
introduce the mollification f̃\delta := f̃ \ast \rho \delta , where \rho \delta := \delta  - 2\rho 

\bigl( 
x
\delta 

\bigr) 
,\rho \in C\infty 

0 (R2) is a radially

symmetric function satisfying
\int 
R2 \rho (x)dx = 1. We denote g\delta by replacing f̃ by the

standard mollification f̃\delta in (5.47). Let M\delta f̃ := f̃\delta be the mollification operator and
C\delta be the covariance operator of f̃\delta . Then it is easy to verify that C\delta =M\delta Cf̃M\delta and
g\delta (x, \omega ) \rightarrow g(x, \omega ) as \delta \rightarrow 0. To prove (5.48), we claim that it is enough to show that

sup
\delta \in (0,1)

\int \infty 

1

E| g\delta (x, \omega )| 
2d\omega <\infty .(5.49)

If (5.49) holds, then it follows from the Fubini theorem and Fatou’s lemma that

E

\biggl( \int \infty 

1

| g(x, \omega )| 2d\omega 

\biggr) 
<\infty ,

which shows that (5.48) holds immediately. So, we focus on proving (5.49) for this
case. We look at the phase function A(y, z) = c1| x  - y| + c2| y  - z| for some fixed
x \in U . It is easy to see that A(y, z) is smooth on D\times D apart from the subset where
y = z. Since the phase function A(y, z) is not smooth at y = z, a stationary phase
approach cannot be used in the analysis of A(y, z). A direct computation shows

\nabla yA(y, z) = c1
y  - x

| y  - x| 
+ c2

y  - z

| y  - z| 
, \nabla zA(y, z) = c2

z  - y

| z  - y| 
.

Hence,

| \nabla yA(y, z)| \leq c1 + c2, | \nabla zA(y, z)| \leq c2 \forall (y, z) \in D \times D and y \not = z.

Since

(y, z) \cdot \nabla A(y, z) = c1
y \cdot (y  - x)

| y  - x| 
+ c2| y  - z| 

= c1| y| cos \theta + c2| y  - z| \geq c0 > 0,(5.50)
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where \theta denotes the angle between y and y - x, noting the facts that the origin belongs
to U and U is convex, we have that (y, z) \cdot \nabla A(y, z) has a positive lower bound for
(y, z) \in D \times D and y \not = z. So

0 < c\prime 1 \leq | \nabla A(y, z)| \leq c\prime 2 <\infty \forall (y, z) \in D \times D and y \not = z.(5.51)

Our aim is to express g\delta (x, \omega ) as a one-dimensional Fourier transform and get rid
of the variable \omega . Now, we define the following surface:

Γ\prime 
t := \{ (y, z) \in D \times D| A(y, z) = t\} , t > 0.

It is easy to see that there exists smallest and largest values T0 = T0(x) and T1 = T1(x)
such that Γ\prime 

t is nonempty only for t \in [T0, T1]. Now we fix a t̃ \in [T0, T1], and then
there exists \eta = \eta (t̃) and an open cone K = K(t̃) \subset R

4 with center at the origin such
that for t0 = t̃ - \eta and t1 = t̃+ \eta , we have

D \times D \cap \{ t0 < A(y, z) < t1\} \subset K \cap \{ t0 < A(y, z) < t1\} := Γ.

Moreover, since D has a positive distance to the origin we may also choose \eta and K
such that

| y| , | z| \geq c\prime 3 > 0 \forall (y, z) \in Γ.

Denote Γt = Γ \cap \{ (y, z) : A(y, z) = t\} . We obtain Γ = \cup t0\leq t\leq t1Γt. By (5.50)
and (5.51), we deduce that there is a radial stretch Bt yielding a bi-Lipschitz chart
Bt : F \rightarrow Γt over a subdomain F of the unit ball. The bi-Lipschitz constant of Bt is
uniform over t0 < t < t1 and each Bt is actually a local diffeomorphism apart from
y = z. By (5.50) and (5.51), we may write Bt in the following form:

Bt(w1, w2) = \sigma (t, w1, w2)(w1, w2),

where the dependence (w1, w2) \rightarrow \sigma (t, w1, w2) is Lipschitz with respect to t with a
uniform Lipschitz constant with respect to w1, w2.

Letting h be a integrable Borel function on Γ and noting that Γ = \cup t0\leq t\leq t1Γt, we
get

\int 

Γ

h(y, z)dydz =

\int t1

t0

\int 

Γt

h(y, z)
1

| \nabla A(y, z)| 
d\scrH 3(y, z)dt,(5.52)

where the inner integral is with respect to the three-dimensional Hausdorff measure
on Γt. Using a change of variables, we have

\int 

Γt

h(y, z)d\scrH 3(y, z) =

\int 

F

h(Bt(w1, w2))Et(w1, w2)d\scrH 
3(w1, w2).(5.53)

By (5.50) and (5.51), the Jacobian Et in (5.53) satisfies

0 < c\prime 4 \leq Et(w1, w2) :=
| Bt(w1, w2)| 

3| \nabla A(Bt(w1, w2))| 

| (w1, w2) \cdot \nabla A(Bt(w1, w2))| 
\leq c\prime 5 <\infty .

Since Bt(w1, w2) is Lipschitz with respect to t, for our later purpose, we claim that
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the dependence t\rightarrow Et(w1, w2) is uniformly Lipschitz with respect to t. Using (5.52),

g\delta (x, \omega ) =

\int 

D

\int 

D

ei\omega (c1| x - y| +c2| y - z| ) (x1  - y1)
p1(x2  - y2)

p2(y1  - z1)
p3(y2  - z2)

p4

| x - y| l1 | y  - z| l2

\times q(y)f̃\delta (z)dydz

=

\int 

Γ

ei\omega (c1| x - y| +c2| y - z| ) (x1  - y1)
p1(x2  - y2)

p2(y1  - z1)
p3(y2  - z2)

p4

| x - y| l1 | y  - z| l2

\times q(y)f̃\delta (z)dydz

=

\int t1

t0

ei\omega tS\delta (t)dt = [\scrF  - 1S\delta ]( - \omega ),

where S\delta is given by

S\delta (t) =

\int 

Γt

(x1  - y1)
p1(x2  - y2)

p2(y1  - z1)
p3(y2  - z2)

p4

| x - y| l1 | y  - z| l2

\times 
1

| \nabla A(y, z)| 
q(y)f̃\delta (z)d\scrH 

3(y, z).

Since Γt is only nonempty for t \in [T0, T1], S\delta (t) is compactly supported inside [T0, T1].

For fixed x \in U , let L(x, y) be a smooth cutoff of the function (x1 - y1)
p1 (x2 - y2)

p2

| x - y| l1
that

vanishes outside D, and hence, L(x, \cdot ) \in C\infty 
0 (R2). Thus, we can rewrite S\delta (t) as

S\delta (t) =

\int 

Γt

(y1  - z1)
p3(y2  - z2)

p4

| y  - z| l2
L(x, y)

| \nabla A(y, z)| 
q(y)f̃\delta (z)d\scrH 

3(y, z).(5.54)

Recall that our aim is to prove sup\delta \in (0,1)

\int \infty 

1
E| g\delta (x, \omega )| 

2d\omega < \infty . It is sufficient to

show that for each t̃ \in [T0, T1], there exists a finite constant M = M(t̃) < \infty such
that

E| S\delta (t)| 
2 \leq M \forall \delta \in (0, 1) and t \in [t0(t̃), t1(t̃)].(5.55)

This can be seen by the following facts: by compactness, we can choose finitely many
t̃ \in [T0, T1] such that the union set of [t0(t̃), t1(t̃)] for these t̃ can cover [T0, T1]. Hence,
for any t \in [T0, T1], we have E| S\delta (t)| 

2 \leq M \prime . The Parseval formula yields

sup
\delta \in (0,1)

\int \infty 

1

E| g\delta (x, \omega )| 
2d\omega \lesssim sup

\delta \in (0,1)

\int T1

T0

E| S\delta (t)| 
2dt \leq M \prime (T1  - T0) <\infty .

It remains to show (5.55). By (5.54), we have

E| S\delta (t)| 
2 =

\int 

Γt\times Γt

(y1  - z1)
p3(y2  - z2)

p4

| y  - z| l2
(y\prime 1  - z\prime 1)

p3(y\prime 2  - z\prime 2)
p4

| y\prime  - z\prime | l2

\times 
L(x, y)

| \nabla A(y, z)| 

L(x, y\prime )

| \nabla A(y\prime , z\prime )| 
q(y)q(y\prime )E(f̃\delta (z)f̃\delta (z

\prime ))d\scrH 3(y, z)d\scrH 3(y\prime , z\prime ).

Noting that E(f̃\delta (z)f̃\delta (z
\prime )) = C\delta (z, z

\prime ) and C\delta =M\delta Cf̃M\delta , we obtain from Lemma 2.5

that for any given \beta > 0, there is a finite constant C \prime 
\beta such that C\delta (z, z

\prime ) \leq C \prime 
\beta | z - z

\prime |  - \beta 

for any \delta \in (0, 1) and (z, z\prime ) \in D \times D. Since q \in C1
0 (D), an application of Hölder’s
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inequality arrives at

sup
\delta \in (0,1)

E| S\delta (t)| 
2 \lesssim 

\int 

Γt\times Γt

| z  - z\prime |  - \beta (| y  - z| | y\prime  - z\prime | ) - (l2 - p3 - p4)d\scrH 3(y, z)d\scrH 3(y\prime , z\prime )

\lesssim 

\biggl[ \int 

Γt\times Γt

| z  - z\prime |  - 2\beta d\scrH 3(y, z)d\scrH 3(y\prime , z\prime )

\biggr] 1
2

\times 

\biggl[ \int 

Γt

| y  - z|  - 1d\scrH 3(y, z)

\int 

Γt

| y\prime  - z\prime |  - 1d\scrH 3(y\prime , z\prime )

\biggr] 1
2

,

where we use the fact l2 - p3 - p4 = 1
2 for (l1, l2, p1, p2, p3, p4) \in S. To show the integral

in the right-hand side of the above inequality is bounded, we need the following
result [33, Lemma 6]).

Lemma 5.7. Given \gamma \in (0, 2), there is a finite constant c such that for every

t \in [t0, t1] we have

\int 

Γt

| y  - z|  - \gamma d\scrH 3(y, z) \leq c,

\int 

Γt\times Γt

| ỹ  - z̃|  - \gamma d\scrH 3(y, z)d\scrH 3(y\prime , z\prime ) \leq c

for (ỹ, z̃) = (y, y\prime ), (y, z\prime ), (z, y\prime ), (z, z\prime ).

Choosing \beta = 1
2 and applying Lemma 5.7 gives (5.55). So Theorem 5.1 holds for

the case m = 2.
Case 2. m \in (2, 5/2). By Lemma 2.4, we know that in this case the realizations

of f̃ are Hölder continuous with probability one. So it is not necessary to introduce
the mollification, and we define

S(t) =

\int 

Γt

(y1  - z1)
p3(y2  - z2)

p4

| y  - z| l2
L(x, y)

| \nabla A(y, z)| 
q(y)f̃(z)d\scrH 3(y, z).

In order to prove (5.48), i.e.,
\int \infty 

1
\omega m - 2| g(x, \omega )| 2d\omega < \infty , by g(x, \omega ) = [\scrF  - 1S]( - \omega ),

it suffices to prove that S(t) \in H
m - 2

2

homog(R), which denotes the homogeneous Sobolev

space. By compactness, it is enough to show that S(t) \in H
m - 2

2

homog(t0(t̃), t1(t̃)) for each

t̃ \in [T0, T1]. According to the Besov characterization of the homogeneous Sobolev
space, it is sufficient to show

E

\int t1

t0

\int t1

t0

| S(t) - S(t\prime )| 2

| t - t\prime | m - 1
dtdt\prime <\infty .(5.56)

The Fubini theorem shows that (5.56) holds if there exists a positive constantM such
that the following estimate holds:

E| S(t) - S(t\prime )| 2 \leq M | t - t\prime | 
m - 1

2 \forall t, t\prime \in [t0(t̃), t1(t̃)].(5.57)

We can rewrite S(t) by

S(t) =

\int 

Γt

N(y, z)L(x, y)
1

| \nabla A(y, z)| 
q(y)f̃(z)d\scrH 3(y, z).(5.58)

Recall that the bi-Lipschitz chart Bt : F \rightarrow Γt is given by

Bt(w1, w2) = \sigma (t, w1, w2)(w1, w2) := (yt(w1, w2), zt(w1, w2)).



INVERSE ELASTIC SCATTERING FOR A RANDOM SOURCE 4597

Denote

Nt(y, z) =
(y1  - z1)

p3(y2  - z2)
p4

| y  - z| l2
.

By (5.58), we can rewrite S(t) as

S(t) =

\int 

F

Nt(yt, zt)Tt(w1, w2)q(yt)f̃(zt)d\scrH 
3(w1, w2),

where the function

Tt(w1, w2) = Et(w1, w2)
L(x, yt)

| \nabla A(yt, zt)| 

is uniformly bounded and Lipschitz continuous with respect to t. Since

S(t) - S(t\prime ) = S1(t) - S1(t
\prime )

+

\int 

F

Nt\prime (yt\prime , zt\prime )[Tt(w1, w2) - Tt\prime (w1, w2)]q(yt)f̃(zt)d\scrH 
3(w1, w2),

where

S1(t) =

\int 

F

Nt(yt, zt)T (w1, w2)q(yt)f̃(zt)d\scrH 
3(w1, w2), T (w1, w2) = Tt(w1, w2),

we have

\| S(t) - S(t\prime )\| L2(Ω) \lesssim \| S1(t) - S1(t
\prime )\| L2(Ω)

+ | t - t\prime | 

\int 

F

| q(yt\prime )| \| f̃(zt\prime )\| L2(Ω)| Nt\prime (yt\prime , zt\prime )| d\scrH 
3(w1, w2)

\lesssim \| S1(t) - S1(t
\prime )\| L2(Ω) + | t - t\prime | .

Since | t  - t\prime | = | t  - t\prime | 
m - 1

2 | t  - t\prime | 
3 - m

2 \lesssim | t  - t\prime | 
m - 1

2 , it suffices to estimate \| S1(t)  - 
S1(t

\prime )\| L2(Ω). Similarly, we have

S1(t) - S1(t
\prime ) = S2(t) - S2(t

\prime )

+

\int 

F

[Nt(yt, zt) - Nt\prime (yt\prime , zt\prime )]T (w1, w2)q(yt)f̃(zt)d\scrH 
3(w1, w2),

where

S2(t) =

\int 

F

N(w1, w2)T (w1, w2)q(yt)f̃(zt)d\scrH 
3(w1, w2), N(w1, w2) = Nt(w1, w2).

Note that

| Nt(yt, zt) - Nt\prime (yt\prime , zt\prime )| 

=

\bigm| \bigm| \bigm| \bigm| 
(y1(t) - z1(t))

p3(y2(t) - z2(t))
p4

| y(t) - z(t)| l2
 - 

(y1(t
\prime ) - z1(t

\prime ))p3(y2(t
\prime ) - z2(t

\prime ))p4

| y(t\prime ) - z(t\prime )| l2

\bigm| \bigm| \bigm| \bigm| 

=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\sigma p3

t (w
(1)
1  - w

(1)
2 )p3\sigma p4

t (w
(2)
1  - w

(2)
2 )p4

\sigma l2
t | w1  - w2| l2

 - 
\sigma p3

t\prime (w
(1)
1  - w

(1)
2 )p3\sigma p4

t\prime (w
(2)
1  - w

(2)
2 )p4

\sigma l2
t\prime | w1  - w2| l2

\bigm| \bigm| \bigm| \bigm| \bigm| 

\leq | \sigma 
 - 1

2

t  - \sigma 
 - 1

2

t\prime | | w1  - w2| 
 - 1

2 \lesssim | t - t\prime | | w1  - w2| 
 - 1

2 .



4598 JIANLIANG LI AND PEIJUN LI

Hence

\| S1(t) - S1(t
\prime )\| L2(Ω) \lesssim \| S2(t) - S2(t

\prime )\| L2(Ω) + | t - t\prime | .

Now we estimate \| S2(t) - S2(t
\prime )\| L2(Ω), which can be rewritten in a double integral as

\| S2(t) - S2(t
\prime )| L2(Ω) = E

\int 

F

[q(yt)f̃(zt) - q(yt\prime )f̃(zt\prime )]R(w1, w2)d\scrH 
3(w1, w2)

\times 

\int 

F

[q(st)f̃(ut) - q(st\prime )f̃(ut\prime )]R(v1, v2)d\scrH 
3(v1, v2)

=

\int 

F\times F

G(w1, w2, v1, v2)R(w1, w2)R(v1, v2)d\scrH 
3(w1, w2)d\scrH 

3(v1, v2),

where (yt, zt) = \sigma t(w1, w2), (yt\prime , zt\prime ) = \sigma t\prime (w1, w2), (st, ut) = \sigma t(v1, v2), (st\prime , ut\prime ) =
\sigma t\prime (v1, v2),

R(w1, w2) = N(w1, w2)T (w1, w2), R(v1, v2) = N(v1, v2)T (v1, v2),

and

G(w1, w2, v1, v2) = E[q(yt)f̃(zt) - q(yt\prime )f̃(zt\prime )][q(st)f̃(ut) - q(st\prime )f̃(ut\prime )]

= q(yt)q(st)Cf̃ (zt, ut) - q(yt)q(st\prime )Cf̃ (zt, ut\prime )

 - q(yt\prime )q(st)Cf̃ (zt\prime , ut) + q(yt\prime )q(st\prime )Cf̃ (zt\prime , ut\prime )

= q(yt)q(st)[Cf̃ (zt, ut) - Cf̃ (zt, ut\prime )] + q(yt)[q(st) - q(st\prime )]Cf̃ (zt, ut\prime )

+ q(yt\prime )q(st\prime )[Cf̃ (zt\prime , ut\prime ) - Cf̃ (zt\prime , ut)] + q(yt\prime )[q(st\prime ) - q(st)]Cf̃ (zt\prime , ut).

Recall that the covariance function has the form

Cf̃ (y, z) = c0(y, z)| y  - z| m - 2 + r1(y, z),

where c0 \in C\infty 
0 (D \times D) and r1 \in C\alpha 

0 (D \times D) for any \alpha < 1. Combining the fact
q \in C1

0 (D) yields immediately that

| G(w1, w2, v1, v2)| \lesssim | t - t\prime | m - 2.(5.59)

Denoting d = | zt  - ut| = | \sigma t(w2  - v2)| and \delta = | ut  - ut\prime | = | (\sigma t  - \sigma t\prime )v2| , if
\delta 
d < 1, we

have

\bigm| \bigm| | zt  - ut| 
m - 2  - | zt  - ut\prime | 

m - 2
\bigm| \bigm| \leq 

\bigm| \bigm| (d+ \delta )m - 2  - dm - 2
\bigm| \bigm| = dm - 2

\bigm| \bigm| \bigm| \bigm| 
\Bigl( 
1 +

\delta 

d

\Bigr) m - 2

 - 1

\bigm| \bigm| \bigm| \bigm| 

\leq dm - 2(m - 2)
\delta 

d
= (m - 2)dm - 3\delta \lesssim \delta 

m - 1
2 \lesssim | t - t\prime | 

m - 1
2 .

Hence, if | t - t\prime | < c| w2  - v2| for some small enough c > 0, we have

\bigm| \bigm| | zt  - ut| 
m - 2  - | zt  - ut\prime | 

m - 2
\bigm| \bigm| \lesssim | t - t\prime | 

m - 1
2 .

Similarly, we have that

\bigm| \bigm| | zt\prime  - ut\prime | 
m - 2  - | zt\prime  - ut| 

m - 2
\bigm| \bigm| \lesssim | t - t\prime | 

m - 1
2

holds if | t - t\prime | < c| w2  - v2| for some small enough c > 0. Thus, if we define a set

P := \{ (w1, w2, v1, v2) \in F \times F : | w2  - v2| \leq C| t - t\prime | for some large enough C > 0\} ,
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then we have

| G(w1, w2, v1, v2)| \lesssim | t - t\prime | 
m - 1

2 for (w1, w2, v1, v2) \in F \times F \setminus P.(5.60)

Dividing integration on F \times F over the sets P \cap F \times F and (F \times F ) \setminus P , we obtain

\| S2(t) - S2(t
\prime )\| L2(Ω)

=

\int 

F\times F\cap P

G(w1, w2, v1, v2)R(w1, w2)R(v1, v2)d\scrH 
3(w1, w2)d\scrH 

3(v1, v2)

+

\int 

(F\times F )\setminus P

G(w1, w2, v1, v2)R(w1, w2)R(v1, v2)d\scrH 
3(w1, w2)d\scrH 

3(v1, v2)

:= I1 + I2.

Observing that | R(w1, w2)| \lesssim | w1 - w2| 
 - 1

2 and | R(v1, v2)| \lesssim | v1 - v2| 
 - 1

2 , using (5.59),
the Hölder inequality, and Lemma 5.7, we have

I1 \lesssim | t - t\prime | m - 2

\int 

F\times F\cap P

| w1  - w2| 
 - 1

2 | v1  - v2| 
 - 1

2 d\scrH 3(w1, w2)d\scrH 
3(v1, v2)

\lesssim | t - t\prime | m - 2

\int 

F\times F\cap P

| w2  - v2| 
1
2 | w2  - v2| 

 - 1
2 | w1  - w2| 

 - 1
2

\times | v1  - v2| 
 - 1

2 d\scrH 3(w1, w2)d\scrH 
3(v1, v2)

\lesssim | t - t\prime | m - 3
2

\int 

F\times F\cap P

| w2  - v2| 
 - 1

2 | w1  - w2| 
 - 1

2 | v1  - v2| 
 - 1

2 d\scrH 3(w1, w2)d\scrH 
3(v1, v2)

\lesssim | t - t\prime | 
m - 1

2
+m - 2

2

\biggl( \int 

F\times F\cap P

| w2  - v2| 
 - 3

2 d\scrH 3(w1, w2)d\scrH 
3(v1, v2)

\biggr) 1
3

\times 

\biggl( \int 

F\times F\cap P

| w1  - w2| 
 - 3

2 d\scrH 3(w1, w2)

\biggr) 1
3
\biggl( \int 

F\times F\cap P

| v1  - v2| 
 - 3

2 d\scrH 3(v1, v2)

\biggr) 1
3

\lesssim | t - t\prime | 
m - 1

2 .

For I2, we have from (5.60) that

I2 \lesssim | t - t\prime | 
m - 1

2

\int 

(F\times F )\setminus P

| w1  - w2| 
 - 1

2 | v1  - v2| 
 - 1

2 d\scrH 3(w1, w2)d\scrH 
3(v1, v2)

\lesssim | t - t\prime | 
m - 1

2

\Biggl( \int 

(F\times F )\setminus P

| w1  - w2| 
 - 1d\scrH 3(w1, w2)

\Biggr) 1
2

\times 

\Biggl( \int 

(F\times F )\setminus P

| v1  - v2| 
 - 1d\scrH 3(v1, v2)

\Biggr) 1
2

\lesssim | t - t\prime | 
m - 1

2 ,

where we use the Hölder inequality along with Lemma 5.7. Hence, we arrive at

\| S2(t) - S2(t
\prime )\| L2(Ω) \lesssim | t - t\prime | 

m - 1
2 ,

which shows that (5.57) holds true. By the previous argument we have that (5.48)
holds for this case. The proof is completed.
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With Lemmas 5.2, 5.3, and 5.6, we are able to prove Theorem 5.1.

Proof. Noting Lemmas 5.2 and 5.3, we have

| u1(x, \omega ) - u1,r(x, \omega )| \lesssim \omega  - 2+\varepsilon ,

which gives

1

Q - 1

\int Q

1

\omega m+1| u1(x, \omega )| 
2d\omega \lesssim 

2

Q - 1

\int Q

1

\omega m+1| u1,r(x, \omega )| 
2d\omega 

+
2

Q - 1

\int Q

1

\omega m - 3+2\varepsilon d\omega .

It is easy to note that
2

Q - 1

\int Q

1

\omega m - 3+2\varepsilon d\omega \rightarrow 0

for m \in [2, 5/2) and small enough \varepsilon . By Lemma 5.6, we get

lim
Q\rightarrow \infty 

1

Q - 1

\int Q

1

\omega m+1| u1,r(x, \omega )| 
2d\omega = 0, x \in U.

Hence

lim
Q\rightarrow \infty 

1

Q - 1

\int Q

1

\omega m+1| u1(x, \omega )| 
2d\omega = 0, x \in U.

The proof is completed.

In the proof of Theorem 5.1, (5.2) corresponding to u1 involves u1,l,u1,r, I
(i)
jkl,

\{ g0, g1, g2\} , \{ g11, g12\} ,\{ v1,v2,v3\} , g(x, \omega ), g\delta (x, \omega ), S\delta (t), \{ S1, S2\} , and \{ I1, I2\} . In
the following, we present a chart to summarize the major steps of the proof.

Step 1: u1
replace the left G in u1 by G0
 -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - \rightarrow u1,l

replace the right G in u1,l by G0

 -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - \rightarrow u1,r.

Step 2: u1,l(x, \omega ) - u1,r(x, \omega ) =
\Bigl( \sum 2

j,k,l=1 I
(1)
jkl ,

\sum 2
j,k,l=1 I

(2)
jkl

\Bigr) \top 
.

Step 3: I
(1)
111 :=

\int 
D

\int 
D
G0,11(x, y, \omega )M11(y) (G11(y, z, \omega ) - G0,11(y, z, \omega )) f1(z)dydz.

Step 4: G11  - G0,11 = g0 + g1 + g2, g1 = g11 + g12.
Step 5: u1,r = \omega  - 1v1 + \omega  - 2v2 + \omega  - 3v3.
Step 6: v1 is a linear combination of g with

g(x, \omega ) =

\int 

D

\int 

D

ei\omega (c1| x - y| +c2| y - z| )

\times 
(x1  - y1)

p1(x2  - y2)
p2(y1  - z1)

p3(y2  - z2)
p4

| x - y| l1 | y  - z| l2
q(y)f̃(z)dydz.

Case 1: m = 2, g
mollification
 -  -  -  -  -  -  -  -  - \rightarrow g\delta 

Fourier transform
 -  -  -  -  -  -  -  -  -  -  -  -  - \rightarrow S\delta ;

Case 2: m \in (2, 52 ), g
Fourier transform
 -  -  -  -  -  -  -  -  -  -  -  -  - \rightarrow S

replace Tt by T
 -  -  -  -  -  -  -  -  -  - \rightarrow S1

replace Nt by N
 -  -  -  -  -  -  -  -  -  - \rightarrow S2.

Step 7: \| S2(t) - S2(t
\prime )\| L2(Ω) = I1 + I2.

With the convergence of the Born approximation, using Theorems 4.2 and 5.1,
we are ready to show the proof of Theorem 1.4.

Proof. Recall the convergence of the Born approximation

u(x, \omega ) = u0(x, \omega ) + u1(x, \omega ) + b(x, \omega ),
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where b(x, \omega ) =
\sum \infty 

n=2 un(x, \omega ). It follows from (4.4) that

\| b(x, \omega )\| L\infty (U)2 \lesssim \omega  - 2+\varepsilon \prime 

for some small enough \varepsilon \prime > 0. So

1

Q - 1

\int Q

1

\omega m+1| b(x, \omega )| 2d\omega \lesssim 
1

Q - 1

\int Q

1

\omega m - 3+2\varepsilon \prime d\omega \rightarrow 0(5.61)

as Q \rightarrow \infty , where we use the fact m \in (2, 5/2). Recalling Theorems 4.2 and 5.1, we
have

lim
Q\rightarrow \infty 

1

Q - 1

\int Q

1

\omega m+1| u0(x, \omega )| 
2d\omega = a

\int 

R2

1

| x - y| 
\phi (y)dy,(5.62)

lim
Q\rightarrow \infty 

1

Q - 1

\int Q

1

\omega m+1| u1(x, \omega )| 
2d\omega = 0(5.63)

hold almost surely, where a is a constant given in Theorem 1.4. Since

| u(x, \omega )| 2 = | u0(x, \omega )| 
2 + | u1(x, \omega )| 

2 + | b(x, \omega )| 2

+ 2\Re [u0(x, \omega )u1(x, \omega )] + 2\Re [u0(x, \omega )b(x, \omega )] + 2\Re [u1(x, \omega )b(x, \omega )],

along with (5.61)–(5.63) and the Cauchy–Schwartz inequality, it is to easy to verify
that

lim
Q\rightarrow \infty 

1

Q - 1

\int Q

1

\omega m+1| u(x, \omega )| 2d\omega = a

\int 

R2

1

| x - y| 
\phi (y)dy.

By Lemma 3.8 in [30], we know that the integral
\int 
R2

1
| x - y| \phi (y)dy for all x \in U can

uniquely determine the function \phi . The proof is completed.

6. Conclusion. We have studied the inverse random source scattering prob-
lem for the two-dimensional elastic wave equation with a linear load. The source
is modeled as a generalized Gaussian random function and its covariance operator
is described as a classical pseudodifferential operator. Both the direct and the in-
verse problems are considered. The direct problem is equivalently formulated as a
Lippmann–Schwinger integral equation which is shown to have a unique solution.
Combining the Born approximation and microlocal analysis, we deduce a relationship
between the principal symbol of the covariance operator for the random source and
the amplitude of the displacement generated from a single realization of the random
source. Based on this connection, we obtain the uniqueness for the reconstruction of
the principal symbol of the random source. In this paper, the linear load is consid-
ered to be a smooth deterministic matrix. An ongoing project is to study the direct
and inverse scattering problems when both the source and the linear load are random.
Another challenging problem is to study the random source scattering problem for the
three-dimensional elastic wave equation. We hope to be able to report the progress
elsewhere in the future.
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