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Freezing is an essential step in pharmaceutical manufacturing processes for a long-term storage of thera-
peutic proteins. However, the process itself may affect the stability of proteins. Better understanding and
quantification of freezing dynamics and the local environment from liquid solution to the frozen state
would help to mitigate negative impacts on the protein products during freezing and subsequent man-
ufacturing processes. We present a phase-field approach to resolve the relevant macroscopic transport
phenomena including multi-phase flow, heat transfer, phase transition, and freeze concentration effects
coupled with interfacial evolution in a cylindrical vessel. The theoretical formulation and modeling results
show good agreement with experimental data.
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1. Introduction

Degradation of therapeutic proteins can be of high risk upon
administration, and thus protein stability is often a great con-
cern in manufacturing high-quality and high-valued pharmaceu-
tical products. Solutions of therapeutic proteins are often frozen
to prevent degradation for a long-term storage. However, freez-
ing process itself is accompanying by protein degradation, possibly
owing to ice crystal formation, low temperature, protein-protein
interactions and aggregation at a higher concentration, changes
of pH and concentration of excipients, and possibly adsorption of
proteins on the ice/freeze-concentrate interfaces [1-5]. Similar to
most solidification processes, the nucleation and freezing step very
much determines the microstructure of ice crystals, distribution of
freeze concentrate among ice crystals, and the overall texture of
the frozen products. For protein biopharmaceutical solutions, stud-
ies have shown that the microstructure of the frozen state is cor-
related with protein stability [6-9], and has impact on the sub-
sequent processes including the efficiencies of primary and sec-
ondary drying, reconstitution, as well as mechanical properties of
the dried products [10-13].

Freezing of aqueous solutions involves phase transition from
liquid water to ice, which spans multiple spatial and temporal
scales starting from precipitation, nucleation and growth, dendrite
formation, to the growth and interaction of ice crystals. The pro-
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cess is often coupled with heat, mass, interfacial and momen-
tum transport in the solutions, and further complicated by the
change of equilibrium conditions such as freezing point depres-
sion as solute concentration increases, and nonequilibrium inter-
facial kinetics at higher freezing rate. Furthermore, the relevant
physicochemical and transport properties are likely temperature-
and/or concentration-dependent, including thermal conductivity,
solute diffusivity, fluid viscosity, density, latent heat, and specific
heats. A few experimental [14-18] and mesoscale theoretical anal-
yses [19,20] have demonstrated the microstructure evolution and
the composition of protein and sucrose (as a cryoprotectant) solu-
tions in a frozen state along with freeze concentration of proteins
and excipients due to solute exclusion from ice and local trans-
port behaviors. Macroscopic analyses that focus on simplified heat
transfer and phase transition behaviors have shown good agree-
ments with experimental observations [21,22]. The semi-empirical
models with ice nucleation taken into account was developed for
the prediction of average crystal size [23-25]. A relatively com-
plete quantitative investigations on freezing of protein solutions
was provided by Nakagawa et al. [24], including empirical estima-
tion of crystal size under various nucleation temperature and cool-
ing rates, local temperature profiles, and the displacement of solid-
ification front in a cylindrical vessel under slow to fast cooling con-
ditions. Roessl et al. [26] have combined fluid dynamics with heat
and mass transfer to simulate the temperature distribution and the
macroscopic freeze concentration during the freezing process. Nev-
ertheless, still many subtle details in the freezing dynamics are not
yet well understood and theoretically quantified.
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Nomenclature

q heat flux

D solute diffusivity

D> accommodation factor for solute diffusivity at inter-

face

S entropy functional

L sedimentation velocity of solutes

g gravity acceleration

Js entropy flux

v velocity field

b position of moving interface in 1D approximation
Cp specific heat

d hydrodynamic diameter of solute molecules

e specific internal energy

f specific free energy

H height of the solution

h heat transfer coefficient

hs, coefficient of energy barrier

k thermal conductivity

I thickness of cover lid

I thickness of stagnant air layer on top of solution
I3 thickness of vessel wall

Iy thickness of stagnant air layer beneath the vessel
Lq latent heat of solid-liquid phase transition

M interfacial mobility

N solute-to-water ratio of molar volume

n total number of solutes

P interpolation function between solid and liquid

phases

p pressure

R gas constant

r radial coordinate

R inner radius of the vessel

Ro outer radius of the vessel

S specific entropy

T temperature

t time

To freezing temperature of a pure water

U characteristic velocity

Vn magnitude of normal-to-interface velocity

W interfacial thickness

z axial coordinate

Dimensionless numbers

Ased
Ase
B;
Ch
Gr
Le
Nu
Pe
Pr
Ra
Re

sedimentation number
phase-change number
Biot number
Cahn-Hilliard number
local Grashof number
Lewis number
Nusselt number
Peclet number
Prandtl number
Rayleigh number
Reynolds number

Ste1, Step  Stefan number

Greek symbols

o
B1. B2
®

o
X

thermal diffusivity

adjustable factors for solute diffusivity at interface
vorticity field

viscous stress

Flory’s interaction parameter

r entropy production rate

n dynamic viscosity

Vs interfacial energy at solid-liquid interface
Q computational domain

w vorticity in azimuthal direction
[0) phase field variable

v stream function

o mass density

T characteristic time

0 azimuthal direction

& gradient coefficient used in entropy functional
¢ immobilized coordinate
Subscripts

1 sucrose

2 dilute protein

L liquid phase

c solute diffusion

i solute species

S solid phase

st solid-liquid phase transition

0 reference property

air air phase

conv convection

env environment

eq equilibrium

ini initial condition

inter interface

sed sedimentation

side circumferential wall of the vessel
steel steel material

T thermal effect

top top surface of the computational domain
vis viscous effect

In principle one can better design and control the cooling con-
ditions, temperature distribution, solute uniformity, and desirable
microstructure if the process dynamics can be computationally re-
solved and optimised. However, the development of high-fidelity
computational model is only at the beginning stage due to many
challenges encountered from protein-protein and protein-interface
interactions to local and bulk solution behaviors, calibrations of
thermophysical properties in the supercooled regime, and the com-
putational cost. Recently we have resolved the multiphase trans-
port and interfacial dynamics of freezing process and freeze con-
centration at the mesoscale along with growth of ice crystals in su-
crose solutions [19]. The freeze concentration effect has been inte-
grated to the transient dynamics and topological change of the ice
crystals. However, similar analysis at the macroscopic level faces
a new challenge because freeze concentration or solute segrega-
tion is intrinsically a small-scale phenomena, very difficult to be
extended for the prediction of macroscopic behaviors in a vial or
vessel. Here we propose a new coarse-grained approach to resolve
bulk phase transition, concentration polarization, heat and multi-
component mass transfer, thermophysical properties, bulk fluid
flow, convective and gravity effect using the phase-field method
without considering the dynamics of individual ice crystals. The
computational results are side-by-side compared with the most
complete experimental data [15] according to the cylindrical ves-
sel configuration and estimated heat transfer boundary conditions.
Without explicit interface tracking, this approach is convenient in
resolving the moving boundary with complicated morphological
change during phase transition that possibly involves merging or
splitting of interfaces. The phase-field variables or order parame-
ters are uniform in homogeneous bulk phases, yet having a nar-
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row and smooth transition across the interface between phases. A
rigorous definition of the interfacial thickness is connected with
interfacial energy and mobility, which can be proved asymptoti-
cally consistent with classical transport model with a sharp inter-
face [27]. Here our theoretical derivation for the non-isothermal
process follows entropy analysis in nonequilibrium thermodynam-
ics, and the system dynamics is driven by the increase of en-
tropy with gradient effect due to spatial variation of the assumed
phase-field variables [28-31]. The method has been widely devel-
oped for mesoscale simulations of solidification process particu-
larly for dendritic pattern formation in pure and alloy systems [32-
41]. The theoretical framework has also been expanded for a vari-
ety of applications such as in metallic additive manufacturing pro-
cesses [42,43], and recently be adapted and modified for the anal-
ysis of freezing dynamics in sucrose solutions [19,20].

2. Theoretical analysis

Fig. 1 shows the schematic view the problem in hand. The
cylindrical vessel has roughly three cooling surfaces from top, bot-
tom, and circumferential walls (Fig. 1). The initial condition is a
well-mixed aqueous solution of sucrose excipient as the primary
solute and proteins as a secondary component stored in a cylin-
der vessel. The process starts from 10 °C to a supercooled lig-
uid state with an assumed precipitating temperature. A typical
growth of ice phase begins from the wall boundary and progresses
toward the center portion of the vessel. The following assump-
tions are made to simplify the theoretical analysis and computa-
tion: (i) thermal radiation and irradiation effects are neglected, (ii)
thermal expansion, elasticity and thermal stress of the ice phase
are neglected, (iii) density variation across ice/liquid water inter-
face is neglected, and (iv) molecular events such as protein-protein
and protein-excipient interactions, and adsorption of proteins on
ice/freeze-concentrate interfaces are not considered. The configu-
ration (Fig. 1) follows the experimental setting provided by Ro-
drigues el al. [15].

2.1. General formulation based on phase-field approach

Because heat transport and local temperature distribution play
an important role in this multiphase moving boundary problem,
a thermodynamically consistent phase-field formulation is consid-
ered to resolve the macroscopic dynamics in a cylindrical coordi-
nate system. The phase-field variables involved in our model are:
(i) phase field ¢ (1, z, t) as a non-conserved order parameter that
describes phase transition dynamics and distinguishes liquid phase
(¢pse = —1) from the ice or solid phase (¢s = 1), with r and z in-
dicating local position along the radial and axial coordinates re-
spectively on a cross-sectional plane, and ¢ is time, (ii) ¢; for the
volume fraction of species dissolved in the solutions, including su-
crose as the primary component (i = 1) and dilute proteins or ex-
cipients (i =2,3,...,n). Following phase-field approach based on
irreversible thermodynamic principles [30,31,38], the entropy func-
tional in the material volume can be formulated as

s= [ {ps(e, G- 1,92, 90) — &LV - b (561960 }dv,
(1)

where p is mass density, s is specific entropy as a function of spe-
cific internal energy e and other phase-field variables, n is the total
number of solutes to be traced, and coefficients &, and &; are as-
sumed constant coefficients for the gradient effects. The first term
of the integral indicates the contribution of the entropy density in
the bulk phase, the 2nd term represents spatial variation of the
phase field for the non-local or gradient effects across solid and
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Fig. 1. Schematic of freezing process in a cylindrical vessel. The container is made
of steel.

liquid phases, and the last term sums up the gradient contribu-
tions of species concentrations.

Applying the Reynolds transport theorem to the entropy func-
tional, the entropy transport equation can be generalized as

Ds 1,,D 2 «—1.,D 3 .
’Oﬁ_i seﬁ|v¢s€| _Zigiﬁ|v¢il =-V.Js+T, (2)

i=1

where D/Dt = d/dt +v-V indicates material derivative, v is ve-
locity, J is entropy flux, and I" represents local entropy produc-
tion rate. Considering the relationship between entropy and inter-
nal energy, e = e(s, @s¢, P1, P2, ..., Pn), one can express the change
of energy as

de " e
de =Tds + ~——d¢s + ~———ddo;, 3
e =Tds-+ g5 dow+ Y 550, 3)

i

where T is temperature. Thus, the material derivative of entropy in
Eq. (2) becomes

Ds 1De 1 de Doy 2”:1 de Dg;
i1

Dt~ TDt Tagy Dt T o¢; Dt )

T 9¢; Dt °

Now, by substituting Eq. (4) into (2) and rearranging the heat flux
term in the energy equation as

pbe  1g o v (9)4q (1)

A AL b V<T>+qu’ (5)
the entropy production rate in Eq. (2) can be obtained and ex-
pressed as

S 1 p de |Dgs
f=4-9(7)+ [‘?szfvz"ﬁs» B T3¢szi| D
. p e | Do
+i§:1 [s,?vqu,- - TM,} o =0 (6)

where the viscous dissipation and capillary work have been ne-
glected due to relatively small dissipation energy. To accommo-
date the second law of thermodynamics with a positive-definite
entropy production rate, the transport equations that describe non-
isothermal multiphase dynamics including melting and freezing
processes can be developed, and here the corresponding phase-
field equations are formulated as

Ds: :Msz[ 224, P 0 } (7)

Dt T 0¢s
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and

D¢i=V.|:MiV(¥Ei;—§i2V2¢i>i| for i=1,....n, (8)

Dt

where interfacial mobility coefficients My, and M; are assumed
positive values. Eq. (7) is non-conservative (Allan-Cahn model), de-
scribing the evolution of interfaces for the growth of ice phase,
whereas Eq. (8) is conservative (Cahn-Hilliard model) for determin-
ing species concentrations. Consider Fourier’s law on conduction
heat flux, § = —kVT, where k =~ k(T, ¢, ¢1) is the thermal con-
ductivity, the classical energy equitation is

p%‘; ~ V. (kVT). 9)

2.2. Continuity and momentum equations

During the freezing process, the fluid flow is driven by grav-
ity effect due to density variation within the flow field. The lo-
cally concentrated solution has higher density than the surround-
ing fluid, and naturally tends to sediment to lower portion of the
vessel. This effect is estimated by the Boussinesq approximation.
The density p that takes phase transition and solute concentration
effect into account can be formulated as

o(T, @5, d1. 02, ..., Pn) = pop
~ ,00{ Yo+ (1 =31, ¢i)[1’,5£(1 o)+ (- P)ﬁs(T)] }
(10)

where the scaled density of ice ps and water p;, are tempera-
ture dependent, the reference density pg is defined as p,(¢; — 0,
T — Ty) with Ty indicating equilibrium freezing temperature of
a pure water, and P = P(¢s,) is an interpolation function from
the liquid (P = 1, ¢y = —1) to solid (P = 0, ¢, = 1) phases, defined
later on by Eq. (20). In this study, we consider all properties are ¢
(sucrose) dependent, but can be further extended to include multi-
component effect.

The system is quasi-incompressible in all phases with neglected
density variation at the interfaces. The fluid flow continuity equa-
tion is
V.v=0. (11)

The Navier-Stokes momentum equation with Boussinesq approxi-
mation for the buoyant effect is given by

a
p<3¥+v~Vv>=—Vp+V~a+(,o—,oo)g, (12)

where g is gravity acceleration, p is pressure, and the viscous stress
o for the assumed Newtonian fluid is given by

o =n(Vv+ V'), (13)
where the dynamic viscosity n across phases can be defined as
n = (T e p1) = ol = 10| PRAT. @) + (1= P (14)

with an assumed constant viscosity for the crystal phase s > 17,
and a reference value ng = 1,(¢)y — 0,T — Ty).

Furthermore, in a 3D axisymmetric system with coordinates in
radial (r), axial (z), and azimuthal (@) directions, the momentum
equation can be solved by the vorticity-stream function method. By
taking curl of the above momentum equation, the vorticity equa-

tion can be formulated as
Dw 2 2 T
o = MV?@+Vnx VvV x [V (Vv+ V)]

+V x [(p — po)gl. (15)

0

where w = (wr, w;, wp) = (0,0, w) is the vorticity field with non-
zero value appears in the azimuthal direction, which is perpen-
dicular to the axisymmetric velocity field. Here the corresponding
stream function i in the cylindrical coordinate system is defined
as

1oy 10y
v= <_r82’ T 0)' (1o

Considering vorticity @ = V x v, the stream function equation re-
duces to

0%y 0%y 10y
Lt — 17
072 ar2  r or a7

The flow field is established by solving the above vorticity and
stream function equations in a cylindrical coordinate system.

2.3. Energy equation

The specific internal energy of this multi-component system
can be approximated by

n
e(T, s, 1, P2, - pn) = e (T, dse) + Y RT (X)) i (1 — ¢y), (18)

i=1
where e, represents the internal energy of water in both solid to
liquid phases, R is gas constant, and (x;) = (x;(¢s¢)) is an apparent
or coarse-grained Flory’s interaction parameter for a regular solu-
tion. The summation term in the internal energy indicates the in-
crease of internal energy due to mixing of ice or liquid water with
solutes. At the macroscopic level, the (x;) value is a phenomeno-
logical parameter that controls the partition effect in an average
sense. To accommodate the phase transition, the internal energy
esc as a smooth function across ice and liquid water can be ex-
pressed as

ese(T, ¢se) = es(T) + P(¢se)Lq
= e (T) 4 [P(¢se) — 1]Lg, (19)

where the subscript s and ¢ indicate homogeneous solid and liquid
phases, respectively, L, is the latent heat of solid-liquid phase tran-
sition based on the reference equilibrium freezing temperature of
pure water Ty. Here we assume that the latent heat is independent
of temperature for a small shift of freezing temperature due to
freezing point depression. And P(¢s,) is an interpolation function
for a smooth transition of internal energy from the liquid to solid
phases [31], indicated as a dash line in Fig. 2. Here the P function
is a 5th-order polynomial that satisfies P’ = P” = 0 at ¢s = £1, ex-
pressed as

P =5 - 12 (500 - 365+ ), (20)

and thus P(1) =0 and P(-1) =1, so that in the solid phase
ese(T,1) = es(T), and in the liquid phase e (T, —1) = e,(T). By ap-
plying the interpolation function P, the continuous Flory’s parame-
ter can be defined as a similar form across the interface:

(Xi) =Pxie+ (1 = P){xis). (21)

where (x;s) > Xi, in which a higher value of the Flory’s parame-
ter implies a higher mixing energy in the ice phase than in liquid
water so that the solutes are soluble, within the solubility limit,
in the liquid phase and mostly excluded from ice. Although a part
of the excluded solutes are trapped in between ice crystals, the
small scale phenomena is not resolved in this simplified macro-
scopic model and therefore a phenomenological () value is pro-
posed in this study. In principle, the phenomenological value may
be estimated by the mesoscale analysis by considering crystal mor-
phology and segregation pattern under various cooling conditions,
or to be adjusted based on empirical results.
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From Egs. (18) and (19), the left-hand side of the energy equa-
tion (Eq. (9)) can be further expanded from the interpolation of
internal energy across each phase using the P function along with
the material derivative, expressed as

n
De . pDe: (1—)%+er<xi -2 2

7_1)7
Dt

Déps

[LaP’—i-RTZ XY di(1— o) ] (22)

By introducing heat conduction flux and specific heat, ¢, = ¢(T,
¢, ¢1) for both solid and liquid phases, into the energy equation,
the temperature equation becomes

DT - D
perg = V- (kVT) — PRT Z(x;>( - 2¢1) ¢l

[P+ RT3 ) 11— ) | St (23)

i=1

Assuming that the proteins at low concentration does not influ-
ence thermophysical properties of the solution, the local values
of specific heat ¢, and thermal conductivity k are temperature-
dependent and only adjusted by the sucrose (as the primary solute,
i =1) content according to

Cp (T, bse, $1) = CpOE;J

= oo PG, (T + (1 -PGMD]. (24)
and
K(T, ¢s, 1) = kok ~ ~

~ ko[ Pke (T, 1) + (1 = P)ks(T)], (25)

where cpy = ¢p (T — To) and kg = ks(T — Ty) are reference values
at equilibrium freezing temperature of pure water.

2.4. Free energy and phase-field equations

The derivatives of the internal energy appeared in the phase-
field Egs. (7) and (8) can be obtained by the corresponding deriva-
tives of the free energy density as

ad
3(/{ IT.g1.62....81 (26)

and

875,-)5“"5“4’/-’#" = a—q];)fvm,bj#i for i,j=1,2,...,n. (27)
Here the continuous free energy density includes the free energy
of ice and liquid phases, adjusted by solute and mixing effects. By
superposing the contributions of pure solid and liquid water, su-
crose and proteins, and the mixing entropy and enthalpy effects,
the mean-field approximation of the free energy can be estimated
by

f(T, e, b1, P2, ..., Pn) = (1 =Y ) fee + X0 {‘Pifi
+RT[ﬁ,¢ilﬂ(¢i) + (1 =¢)In(1 — ) + {(xi): (1 — ¢i)]},

(28)

where f;, represents the free energy of water in ice to liquid phase,
fi is the free energy of solutes, N; accommodates the size ef-
fect based on solute-to-water partial molar volume ratio, and the
coarse-grained Flory’s parameters ()x;) control the energy barriers

fsfz P
hs[TE) BN ] 1
4

0,

Fig. 2. Distribution of interpolation P function and the double-well potential f;(To,
¢s) at the freezing temperature of pure water. hg, is associated with the energy
barrier of the solid-liquid phase transition.

in the mixing enthalpy terms for different solutes under dilute ap-
proximation. From the Gibbs-Helmholtz relation the free energy f,
including the latent heat effect can be expressed as

€s¢ Esear o T fs (Teqs Pse)

T2 Teq (29)

fsl(T ¢s£) = *Tf
where the first term on the right-hand side presents the ther-
modynamic driving force on freezing. The driving force increases
as the temperature is lowered, compared to the equilibrium tem-
perature Teq = Teq(¢p1). with freezing point depression taken into
account. The 2nd term accommodates the free energy at equilib-
rium temperature, which is approximated by a double-well poten-
tial (Fig. 2) as

o Teq, h50) = hTeq(1 - 927 (30)

where the coefficient of the energy barrier hg, is associated with
interfacial thickness Wy, and energy coefficient &g, as

£ = pohs W, (31)

The free energy of the solution f;, has minima at ¢s, = —1 (liquid)
and ¢, = 1 (solid) at equilibrium freezing temperature Teq.

From the internal and free energies provided above and the
assumed constant latent heat L;, the phase-field formulations,
Eqgs. (7) and (8), can be further expanded and written as

hsTeq (1

Bex M {s&vzw — OREL () i1 — )
HA-XL ) [pma R+ Phad - ¢34>} }
(32)
and
% 9. (M (Eves)]
(33

+V. {MfV[pR(‘“N? —In(1 = @) + () (1= 2¢0) ] }
fori=1,2,...,n, respectively.

Due to the sedimentation of solutes in the liquid solution, an
additional convective term is applied to the material derivative of
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the solute concentration equations. The rate of sedimentation is
simplified by applying the Stokes’ Law for a spherical particle as

v G- pog
r 187 ’

where d; is the hydrodynamic diameter of the solute molecule,
1N =n(T, ¢s, $1) is the local dynamic viscosity, and g is gravity ac-
V-V + V- (v ¢) =
(35)
=In(1 - ) + (xi) (1 - 2¢i)>:| }
fori=1,2,...,n
thickness W, are correlated with the coefficient as

celeration. Therefore, the concentration equation becomes
¢
at' -V [MV(§2V3¢))]
1

4V. {M,-V[,oR( ng;

Finally, the gradient coefficient &, is associated with interfa-
cial conditions of the freezing front. The interfacial energy ys, and

2V2 82Ty
Vse = —— s
3 Wy

(34)

(36)

where the factor 2+/2/3 is derived from the one-dimensional ap-
proximation using a hyperbolic function to describe the phase field
profiles ¢, (defined from -1 to 1) across the interface at equilib-
rium, which is

Vse =T05524f (dg;:l) dx. (37)

The coefficient &; is assumed the same value as &g for all so-
lutes. The solute distribution described by the Cahn-Hilliard equa-
tion is conserved, and the 2nd-order derivative is consistent with
the Fickian-type diffusion model by defining mobility coefficient
as

= 2T 0.6

¢i(1—-¢;) for i=1,2,...,n, (38)
where the diffusivity D;, assumed independent of other solutes in
the dilute regime, can be in general scaled and interpolated as

Di(T, ¢se. ) = DoD;

= Do[PB (T, ¢ + (1 = P) By + D] )
where D,( is concentration- and temperature- dependent in liquid
solution, Dj is assumed constant in ice, Dy is an additional high
diffusivity at the ice/freeze-concentrate interface, and all are scaled
by a reference value Dy = Dy,(¢p;y — 0, T =Ty), where the sub-
script 1 indicates sucrose. Here, an adjustable diffusivity at the
interface Dj e, is applied to accommodate solute exclusion effect
across the interface, expressed as

Dinter =~ DF (¢s0) K (vp), (40)

where D> » Dy is to accommodate equilibrium interfacial kinet-
ics, F(¢se) = (1 — qbsze)ﬁl is used to locate Djye, to the interface re-
gion with a factor 8, to adjust the area thickness, v, ~ |d¢s/0t| is
the absolute value of the normal-to-interface velocity, and K(v,) =
(1+ Byvn)~! determines the negative correlation of the solute ex-
clusion effect by taking the ice front velocity into account using a
weighting factor B,. In this study, D> ~ 10-6 m?2/s, and the factors
/3] =8 and ,32=5.

2.5. Scaled formulation

To extract further insights into the quantitative analysis, all
computations are carried out based on the scaled formulation as
follows. The length scale is defined by the radius of the vessel R;.

Table 1

Parameters and properties used in the test cases. The model protein is assumed
bovine serum albumin (BSA) since it is commonly used in protein solutions to
stabilize therapeutic biologics.

Parameters Value, SI
length scale R; (inner radius of vessel) 0.025 m
interfacial thickness Wi, 0.001 m

characteristic subcooled temperature AT 10K

initial temperature Ty 283.15 K
fixed environmental temperature Tepy 253.15 K
latent heat L, 3.4 x 105 J/kg
Flory's parameters of sucrose (x1s), X1. 0.6, 0.5
Flory’s parameters of protein (xas), X2. 0.501, 0.5
solute-to-water ratio of molar volume for sucrose N; ~ 115
solute-to-water ratio of molar volume for protein N, ~ 2300
interfacial energy ys [44] 0.041 J/m?
energy barrier coefficient hy, 0.064 J/(kg - K
characteristic density variation Ap 5kg/m3
characteriatic velocity U 6.0 x 1073 m/s

diameter of sucrose d; 10°m

diameter of protein d, 7.0x10° m
thermal conductivity of steel Kgeel 15.06 W/(m - K)
thermal conductivity of air kg, 0.0223 W/(m - K)

The apparent interfacial thickness Wy, is assumed much smaller
than R;. The system involves six characteristic time scales for solid-
liquid phase transition, solute diffusion, thermal diffusion, sedi-
mentation, viscous diffusion, and bulk convection, respectively, de-
fined as

e L R PRl RE
7 pohseMy;” 2 ko ap’
Tsed = por(’;%gla Tvis = 7701 , and  Teony = UI, (41)

respectively, where d; is a reference diameter of solutes based on
sucrose molecule, o = ko/(poCp,) is the reference thermal diffu-
sivity at Ty, and U is the characteristic velocity estimated from the
Stokes flow as

2Wgghp

U=
Mo

: (42)
where Ap is the characteristic density variation, assumed 5 kg/m3
based on one percent increase of sucrose concentration in this
study. The temperature is scaled by the characteristic subcooled
temperature AT as

T-Toy

T=
AT

(43)

The pressure and stress are scaled by viscous effect based on the
reference viscosity. The vorticity and stream function are scaled by
U/R; and URiz, respectively. The phase field ¢, and species concen-
tration ¢; are already normalized. The actual value of mobility My,
in the ¢, equation for the macroscopic analysis is unknown, here
we speculate that the freezing process is largely controlled by ther-
mal transport and thus the time scale for solid-liquid phase tran-
sition is assumed the same as the thermal diffusion time, 75 ~ ;.
The characteristic time scale 7, is selected for all of the scaled for-
mulations. The parameters, time scales, and reference properties
are listed in Tables 1-3 for reference.

The resulting scaled vorticity and stream-function equations
are

,0(71r aa(f + ReV- Va))—nV2 @+ Vij x V%

+V x [Vﬁ. (5V+ %VT)] +V x (G:&,). (44)
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Table 2

Reference properties of pure water at ambient pressure.
Reference properties Value, SI
freezing temperature Ty 273.15 K
density po 999.8 kg/m3
specific heat ¢, 2110 J/(kg - K)
thermal conductivity ko 2.15 W/(m - K)

1.8x103 Pa-s
2.1 x1071° m?/s

dynamic viscosity 1o
solute diffusivity Dy

Table 3
Characteristic time scales based on parameters listed in Table 1.
Characteristic times Value, SI
thermal diffusion , 616.11 s
phase transition 616.11 s
solute diffusion . 2.98 x 10% s
bulk convection T cony 417 s
viscous diffusion ;s 347.15 s
sedimentation Teq 8.26 x 10'° s
and
Py Y 10 (45)
0z2 ~ 9rz T or ’

respectively, where &, indicates unit vector in z direction. The
Prandtl number P; is the ratio of the thermal to viscous time
scales, Reynolds number R. compares the inertial to viscous ef-
fects, and the local Grashof number G; depends on the local den-
sity p and the buoyant to viscous effect. They can be defined as

P = Mo _ T pOUR Tvns
r — - > e
Polo Ty N Teonv
PoRZg(1 - P
and G = —""—"—"——"= 46
70U (46)
respectively.
The scaled phase-field equations reduce to
P o~ ~
g? + PeV- Vb, = C2V2 g,
+ Agl| 1 zn: ) T Teg
1= . ~ =
’ = [+ @T/m) T][1 + (2T/To) T
+ (- Z‘p:)(d’sk b)) — Z<X1> ¢i(1 - ). (47)
S
and

d @ o
¢, + Pev Vd’l‘*’AsedV |:;;'(:0€ _pi)¢iezi|

_JL

{D (¢ — ¢2>vv2¢,}

o
9. [5i<¢,- 7¢3><1 — 260V (x)] (48)

for i=1,2,...,n, where the Peclet number P. measures convec-
tive to diffusive effects and applicable to mass transport of all so-
lutes, phase-change number A, measures the importance of latent
heat to interfacial energy, Cahn-Hilliard number C,, is the ratio of
the interfacial thickness to the length scale, sedimentation number
Ageq compares the time scales of thermal diffusion to sedimen-
tation, whereas Lewis number L. compares thermal diffusivity to

+¢i—2(¢; —¢3)<xi>}%¢i}

mass diffusivity. These dimensionless groups are defined as

RiU T La AT WSZ
Po = =T Ag=2"_ ¢ = ,
¢ (o)) Tconv st hge T02 h Rj
d? gR;
Ased:M: O , and £e=@=ﬁ, (49)
18noto Tsed Do [
respectively.

Furthermore, the scaled thermal energy equation becomes
(T er\ e e
,ocp(aF + PeV - VT) =V. (kVT)

_é P/(¢SZ)+St62<T+7>Z<XI ¢1(1_¢1

(8“5“ P vw)

DS (ﬂﬂ)i( 21— 2¢) (a¢’+Pev V¢,) (50)

Stet AT =

where the Stefan numbers Sie; and Se; compare the latent heat to
the sensible heat and the partition effect, formulated as
CpoAT RAT

and Sy = ,
La te2 La

Ste] = (51)
respectively. Values of these dimensionless groups are listed in
Table 4.

2.6. Initial and boundary conditions

The configuration and basic dimensions of the cylindrical vessel
shown in Fig. 3 is extracted from experimental setting provided
by Rodrigues el al. [15], so that we can side-by-side compare the
computational results with experimental data. The computational
domain €2 is shown by the blue area with initial conditions defined
by uniform temperature Tjy; and uniform concentration ¢;;,; in a
quiescent liquid solution. There exists no ice phase at Tj,;.. The en-
vironmental temperature Tepy is assumed constant during the cool-
ing and freezing processes.

Boundary conditions for the conserved phase fields ¢; are in-
sulated (zero mass flux) for all of the four boundaries, including
the top, bottom, and circumferential side wall as well as the sym-
metric axis. The stream function vanishes at all boundaries, mean-
while the velocity satisfies no-slip conditions on top, bottom, and
circumferential wall boundaries. The vorticity on the boundaries
follows @ = V x v. In phase-field method, the velocity in the solid
region, ¢s, = 1, vanishes across the ice/freeze-concentrate inter-
face. In this study, we apply a smooth function for the vorticity
and stream function to approximate the stationary solid phase, ex-

Table 4
Dimensionless groups with values based on parameters listed
in Table 1.

Dimensionless groups Value

Prandtl number P; 1.775

Reynolds number R. 83.32

local Grashof number G,
Peclet number P, 147.87
phase-change number Ag, 715.33
Cahn-Hilliard number ¢}, 0.04

5.67 x 105(1 - p)

Lewis number L. 4830.6
sedimentation number Aseq 7 x 1072
Stefan number Seq 0.0621
Stefan number Se; 0.0136




8 J-Q. Li and T.-H. Fan/International Journal of Heat and Mass Transfer 156 (2020) 119915

[y
[>

z R H

Q
T
r [y
L4

/|

[T
I

N\

Fig. 3. Geometry of the cylindrical vessel: inner radius R; = 0.025 m, outer radius
R, = 0.0325 m, height of solution H = 0.0255 m, thickness of cover lid [; = 0.006
m, vessel wall I3 = 0.0075 m, and stagnant air layer I, ~ I; = 0.01 m. The computa-
tional domain 2 indicates 0 < r < R; and 0 < z < H, where inner radius R; is used
as the length scale in dimensionless formulation.

pressed as

~ 1 1 V2(¢u+08)

C!)—(,U[|:2 - EtanhT (52)
and

~ -1 1 V2(¢se +0.8)

1# - w/[z - itanhT 5 (53)

respectively. The vorticity and stream function thus have a smooth
transition from liquid phase to zero in the solid phase (@, ¥ — 0
as ¢y — 1 and @ — @y, ¥ — Yy as P — —1).

The phase fields ¢, and ¢; and temperature T have zero gradi-
ent value along the radial direction at r = 0 as a symmetric condi-
tion. The phase field ¢, remains —1 (liquid) on top, bottom, and
circumferential wall, and only turns into 1 while the temperature
on the boundaries is lower than freezing temperature Ty, indicating
an immediate heterogeneous nucleation of the ice phase without
supercool.

To facilitate the computation by including more general effect
from heat transfer surfaces, we consider a reduced-order (non-
local) heat transfer resistance model [45] to the top, bottom, and
circumferential walls:

(i) At the top surface, z=H, a stagnate air layer with thickness
I, and thermal conductivity k.. is applied. The cover lid has
thickness Iy, thermal conductivity ke, and heat exchange from
natural convection to environment at temperature Tepy. The
boundary condition is therefore formulated as

aT _ T — Teny
0z ll/ksteel + lZ/kair + 1/htop’

where hyp (Fig. 1) is the heat transfer coefficient approxi-
mated by a horizontal round plate using the empirical relation-
ship [46]:

htopRi

kair

—k (54)

~ 0.559R}/3,

Nu,top = (55)

where ANy top and R, are Nusselt and Rayleigh numbers. The
corresponding dimensionless form is written as

af Tenv -T

e at Z=H, (56)
Z K[l /Kseel + b2/ Kair + 1/Bi1op |
where the Biot number B 1, is defined as
htopRi

B — , (57)

i,top kO
indicating the conduction-to-convection resistance on the top
surface.

For the bottom surface at z= 0, the conduction thermal resis-
tance is based on stainless steel material with thickness I3 and
thermal conductivity ke, and a stagnate air layer below the
vessel with thickness I and thermal conductivity k.. Thus the
resistance boundary condition can be formulated as

aT T — Teny

—
—
=

—

°f L — 58
0z IB/ksteel + l4/kair ( )
and in dimensionless form:
ar _ T = Teny at Z=0. (59)

(iii

—

For the circumferential wall at r = R;, conduction heat transfer
through vessel and a natural convection for the vertical wall are
considered, estimated by

—kal _ T — Tenv
Or — Riln(Ro/Ri)/Ksteel + Ri/ (Rohsige)’

where R; and R, are the inner and outer radii of the vessel, re-
spectively, and hgq4e is the heat transfer coefficient estimated
by a vertical plate for a cylinder wall with large radius. An
empirical relationship for a relatively small Rayleigh number
(Ra < 107) can be applied to this study [45]:

(60)

hgaeH 0.67R/4
ide = ~ 0.68 . 61
Nu,slde Kar + 1+ (0.492/731_)9/16]4/9 (61)
And the corresponding dimensionless form becomes
o1 Ten — T at 7=1, (62)

aF k[ln(ﬁo)/ksteel + 1/(§0 Bi,side)]
where the Biot number is defined as B; sjge = hsjgeH/ko.

For the configuration shown in Fig. 3, the heat transfer coeffi-
cients hyp = 4.6W/(m? - K) and hgge =~ 79W/(m? - K), and the
corresponding Biot numbers are B, =~ 57.03 and B sige = 8.37,
respectively. A reference case with fast cooling in a ethanol bath
is simulated by h¢op, hgige — 0.

3. Material properties

Measurements of relevant thermophysical properties of pro-
tein solutions, including density, specific heat, thermal conductiv-
ity, dynamic viscosity, and solute diffusivity within the tempera-
ture range of interest are fairly limited. Here we consider sucrose
as the primary solute based on available experimental data. Al-
though sucrose has very different properties than proteins, it is
a common excipient used as a cryoprotectant in protein formu-
lations. In this study the thermophysical properties are assumed
temperature and sucrose concentration dependent, with correla-
tions extracted from experimental data. Figs. 4 to 6 illustrate the
changes of relevant material properties with temperature and su-
crose concentration.

The changes of mass density in supercooled liquid water
(Fig. 4a) and ice (Fig. 4b) phases are plotted against temperature.
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Fig. 4. Thermophysical properties. (a, b) Mass densities of pure water p, and ice p; at different temperatures, (c, d) specific heats of sucrose solution c,, and ice cys, and
(e, f) thermal conductivities of sucrose solution k, and ice ks at different temperatures. Both ¢,, and k, have taken solute concentration ¢, into account. All data points are

from literature [47], whereas solid lines are from the correlation Eqs. (63)-(68).

The temperature dependency [47] is correlated in MKS unit as

0e(T) ~ =4 x107(T — Ty)* + 1074(T - Tp)?
~0.0105(T — Ty)?* + 0.1(T — Tp) + po. (63)

and

ps(T) ~0.917p¢ +0.15(Tp — T),

respectively, where temperature is in degree Kelvin. The density
in supercooled liquid state decreases a few percentages as tem-

(64)

perature decreases. The sucrose density p; is assumed a constant
1587 kg/m3, and the protein density p, is assumed 1364 kg/m3

(based on BSA).
The specific heat of sucrose solution is correlated with temper-

ature and sucrose concentration [18] as

Cpy (T, 1) ~ 4180[1 —0.953¢) (1 — 0.588¢;) + 10~3(T — TO)],
(65)
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Fig. 5. Transport properties. (a) Dynamic viscosity 1, and (b) diffusivity Dy, of su-
crose in liquid solution versus its volume fraction, obtained from Eqs. (70) and (71),
respectively.
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Fig. 6. Equilibrium freezing temperature Teq of sucrose solution. Data points are
from literature [51], whereas the solid line is based on the correlation Eq. (72).

illustrated in Fig. 4c, which monotonically increases as temperature
increases. The specific heat of ice (Fig. 4d) can be correlated with
temperature [47] as

Cpo(T) ~ Cpy + 7.8(T — Ty). (66)

The thermal conductivity of sucrose solution (shown in Fig. 4e)
is provided by literature [18] and expressed as

ke (T, 1) ~ 0.58[1 —0.905¢; (1 — 0.588¢)) + 2.6 x 10~3(T — To)],
(67)

whereas the thermal conductivity of ice (Fig. 4f) [47] can be esti-
mated by

ks(T) ~ kg — 0.0123(T — Tp), (68)

which increases as temperature decreases.

Furthermore, the temperature-dependent dynamic viscosity of
water can be correlated by the Vogel-Fulcher-Tamman (VTF)
model [48] as

(69)

1e(T) ~ 4.442 x 1075 exp<72'288 X 1689),

T —-168.9

where the factor 4.442 x 10> is the viscosity at temperature
168.9 K ( > Tz =~ 136K). As shown in Fig. 5a, the dynamic vis-
cosity are negatively correlated with temperature. To incorporate
the solute concentration effect to the viscosity, we compose the
VTF and Mooney’s viscosity models to estimate the viscosity of the
sucrose solution [19] as

6.3¢1

Ne(T, ¢1) = 1ne(To, d1)ne(T) ~ eXp<]_085¢1

) ne(T), (70)
where the concentration-dependent viscosity is estimated at Ty =
273.15 K [49].

The diffusivity of sucrose in solution (Fig. 5b) can be estimated
by the proportionality based on the Stokes-Einstein relation as

Do T no
To ne(1, T)

where Dy ~ 2.1 x 1071© m2/s [14] is the solute diffusivity of su-
crose in aqueous solution at Ty in the dilute limit. The diffusiv-
ity for the dilute BSA protein molecules is around D,, ~ 5.9 x
10~ m?/s [50].

Finally, the equilibrium freezing temperature of sucrose solu-
tion decreases as concentration of sucrose increases, also known
as freezing-point depression, which can be estimated from the lig-
uidus line of sucrose-water phase diagram [51] as

Teq(¢1) = To — 5047, (72)

shown in Fig. 6. The influences of dilute proteins to all properties
are neglected in this study due to the lack of relevant measure-
ment in the supercooled regime.

Dyy(¢1.T) ~ (71)

4. Results and discussion

The process simulation is carried out by the alternating-
direction implicit (ADI) finite difference scheme for the govern-
ing Eqs. (44), (45), (47), (48), and (50) using 100 x 102 uniform
mesh on a cross section of axisymmetric vessel and scaled time
step 2 x 1076. No additional interface tracking algorithm is applied
to the phase-field model. The theoretical results and discussion
are arranged as follows. First, the developed phase-field method-
ology is validated by comparing the numerical results (shown in
Fig. 7) of an axisymmitric heat conduction problem with the clas-
sical interface immobilization method, which is known robust in
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Fig. 7. Comparisons of numerical results predicted by the phase-field method (solid lines) and interface immobilization method (dots) on transient freezing dynamics of a
pure water in a 1D axisymmetric domain, showing the location of the ice front along the radial direction (a), temperature at the axisymmetric center point (b), the ice front
velocity (c) versus time, and the corresponding temperature profiles along the radial direction at scaled time instants t = 30, 40, and 50 (d).
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shown in Fig. 1.
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Fig. 9. Freezing dynamics in a cylindrical vessel at time instants £ = 5, 15, 30, and 33.8. The top row of contour maps shows scaled temperature distribution, middle row
presents sucrose volume fraction ¢, and the bottom row is protein fraction ¢,. The contour maps on ¢, and ¢, are overlapped with velocity vectors of the fluid flow, and
the solid lines in all results are from the phase-field prediction, indicating the ice/freeze-concentrate interfaces.
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Fig. 10. An unstable flow pattern along with sucrose concentration within the vessel from = 4.94 to 5.04. The solid lines indicate the ice/freeze-concentrate interfaces (or
ice fronts).
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Fig. 11. Temperature histories at the specific locations along the symmetric axis
and the circumferential side wall during the cooling and freezing processes under
different scaled environment temperatures: im, = -2, —4, and —6 (scaled by AT =
10 K), and with time scale 7, = 616.12 s.
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Fig. 12. Sucrose concentration ¢; along the symmetric axis under different envi-
ronmental temperatures: Tepy = —2, —4, and —6.

solving one-dimensional Stefan problems [52] with a sharp mov-
ing interface. Second, the 3D axisymmetric thermal-fluid dynam-
ics and mass transfer characteristics resulting from the phase-field
model are presented in detail (Figs. 8-12), followed by a side-by-
side comparison with experimental data (Fig. 13).

Formulations of the immobilized heat conduction equations
and the boundary conditions for a moving interface are provided
in Appendix A. This interfacial immobilization method essentially
provides the sharp (zero thickness) interface limit to validate the
phase-field approach with a thin but smooth and continuous in-
terface. The axisymmetric system has only radial dependency so
that the coordinate transformation can be carried out analytically.
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Fig. 13. Comparison of experimental results (data points) with the predicted tem-
perature on the symmetric axis (solid line) and the circumferential side wall (dash
line) during freezing of a pure water under (a) a fast cooling condition using lig-
uid ethanol bath with approximated hyp and hgge — oo, and (b) a natural con-
vection with cold air surrounding the vessel. The configuration is delineated in
Section 2.6 with hip = 4.6 W/(m? - K) and hg4. = 7.9 W/(m? - K) for case (b). The
red dots indicate the experimental data on the symmetric axis and the blue trian-
gles for the side wall. Both datasets are extracted from literature [15]. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 7 shows the computational results of freezing dynamics of
pure water obtained from both methods. Finite difference schemes
are applied to both approaches with a scaled time step 10~> and
1000 uniform grid points along the radial direction. The thermo-
physical properties are phase dependent, and the heat transfer co-
efficient is set to h = 7.9 W/(m2K) based on a natural convection
condition given in Section 2.6. Fig. 7a-c are the transient results
showing the location of the moving interface, temperature at the
center point, and the moving velocity of the interface versus time.
The initial condition is defined by a liquid phase with uniform
temperature Tip; = 1 (283.15 K), and the ice phase grows progres-
sively from the outer boundary (b = 1) to the center point (b = 0).
The length and time scales are based on radius of the circular do-
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main and the corresponding thermal diffusion time, R; = 0.25 cm,
and 7, =616.12 s, respectively. Overall the phase-field approach
agrees very well with the interface immobilization method at all
transient steps. Specifically, the moving speed (scaled by R;/7; ~
40.57 pm/s) of the ice front ranges from 0 to about 6 um/s, slightly
increases as the ice phase just starts to develop and increases
steeply as the front approaches to the center point. The relatively
fast moving front is due to an efficient removal of the thermal en-
ergy while the front is moving to the center point and the phase
transition area reduces significantly. The temperature profiles at
several time instants are demonstrated in Fig. 7d, implying the
corresponding temperature gradient and thus the strength of heat
flux along the radial direction. Figure 7d has also demonstrated the
temporal and spatial accuracy of the phase-field approach in both
solid and liquid phases. The parameters used for interfacial en-
ergy, thickness, and mobility are feasible in simulating the macro-
scopic freezing dynamics. The maximum deviation of temperature
between these two approaches is less than 0.05 K.

Fig. 8 shows computational results on cooling of water-sucrose-
protein mixture (liquid phase only, before ice formation) in a
cylindrical vessel. A sequence of images of temperature (top row)
and mass density overlapped with velocity vectors (bottom row)
are presented at scaled time instants t=0.5 10, 1.2, 14, and
2.0. The initial conditions include a uniform temperature Tmi =10
(283.15 K), uniform sucrose concentration ¢ jy; = 0.03, and pro-
tein concentration ¢, j,; = 0.005. The ambient temperature is fixed
at Tepy = —2.0 (253.15 K) during the process. Several lumped heat
transfer boundary conditions are provided in Section 2.6. Because
the concentration of solutes remains uniform before ice starts to
form, the local mass density of the liquid solution only varies with
temperature. As shown in the sequential plots, near the beginning
stage at time instant £ = 0.5, the liquid solution near the circum-
ferential side wall has lower temperature but higher density due
to higher temperature gradient or stronger cooling effect coming
from the wall boundary. The fluid flow driven by buoyancy (lower
density at higher liquid temperature) results in a downstream flow
sweeping through the side wall and circulating throughout the ves-
sel. A lower temperature is observed at the lower part of the ves-
sel at this point due to the downstream convective flow and also
because that the bottom surface has a larger cooling effect com-
paring to the top surface. As the liquid solution continuously cools
off, the highest density area appears at around temperature con-
tour T = 0.4. From a closer look of the sequential plots one can
observe the area with temperature T < 0.4 at £ = 1.0, 1.2, and 1.4
is correlated with the decrease of density field. Overall the solu-
tion near the bottom and side walls has lower temperature and
lower density than in the upper part of the vessel, which drives
the fluid flow to a reverse direction from bottom back to the top.
This motion enhances temperature uniformity and mixing of so-
lutes within the vessel. Finally at f = 2.0, right before ice forma-
tion, the liquid solution is thermo-solutal stable with higher mass
density near the bottom. The resulting flow reverses its direction
only once in this case before ice formation. The circulation dur-
ing this pre-ice formation period has velocity magnitude about
1.5 x 10~% m/s.

Fig. 9 includes the transient dynamics in both liquid and solid
phases, showing a long-time freezing process after ice starts to
form. The transient results demonstrate the temperature distribu-
tion, location of ice/freeze-concentrate interface (or ice front), su-
crose and protein concentrations in terms of volume fraction, and
the velocity vectors of the fluid flow at time instants t = 5, 15, 30,
and 33.8. The amount of supercooling and nucleation kinetics are
neglected in this macroscopic model and the freezing temperature
follows the equilibrium freezing temperature of a sucrose solution
at various concentration. In this test case, sucrose has higher ini-
tial concentration 0.03 than the model protein 0.005, and thus the

protein’s contribution is assumed relatively small so that the corre-
lations of temperature- and concentration-dependent thermophys-
ical properties (except density that can be directly calculated) of
the mixture are determined only by the sucrose content. Near the
center point of the vessel, a thermal-arrest region (as also shown
in Fig. 7b) is expected as the temperature in the liquid phase al-
most remains a value close to the equilibrium temperature. The
temperature (top row) is in general lower near the side wall than
at the top and bottom surfaces because of a stronger cooling ef-
fect from the side. As a result, the ice/freeze-concentrate inter-
face (solid lines) appears first around the side wall, and then fol-
lowed by a sporadic ice formation at top and bottom surfaces. The
ice/freeze-concentrate interface approaches towards the center line
from the top, bottom, and side walls after all surfaces are fully cov-
ered with ice at time around f = 30. The interface at f = 33.8 is
developed to the upper center of the vessel due to higher cool-
ing rate at the bottom comparing to the top surface, and the ice
front moving velocity increases dramatically as the liquid phase is
further confined to a smaller region in the middle of the vessel.

Furthermore, in Fig. 9, concentrations of sucrose and the model
protein are illustrated in the middle and bottom rows, respectively.
The freeze concentration effect appears in both cases, especially
during the early stage of the freezing process as the slow mov-
ing ice front has a speed less than a micron per second, so that
the system has sufficient time for solutes to be excluded from the
ice phase. That is, the interfacial partition effect is near equilib-
rium. However, at the later stage as the moving speed of the ice
front increases, the interfacial condition is no longer at equilib-
rium, and therefore solutes are largely left behind the interface
and entrapped in the ice phase. Without more information about
the microstructure and morphology of the ice crystals, this macro-
scopic prediction of non-equilibrium partition effect remains phe-
nomenological. In the macroscopic process simulation, the freeze
concentrate changes its local mass density on the liquid side of the
solution, and thus its redistribution is further coupled with sedi-
mentation and natural convection effects in the fluid flow. Near the
beginning of ice formation at t = 5, both temperature and protein
distributions are quite uniform, so that the downward flow only
correlates with sucrose concentration, as a solute plume oberved
in the figure. This indicates that the local flow instability is likely
controlled by the segregated sucrose from sporadic patches of the
ice phase initiated from the top surface. As the ice phase grows to
t'=15 and 30, the overall concentration within the liquid domain
increases more significantly, and the fluid flow becomes more sta-
ble due to less inertia in a confined region. Meanwhile, convec-
tion and sedimentation effects accumulate both types of solutes to
the bottom portion of liquid phase, and the solute exclusion effect
is weakened as ice front velocity increases. At t = 33.8, a signifi-
cant amount of sucrose is left behind by a faster moving ice front,
and entrapped by ice in the center/bottom portion of the vessel.
The concentration of the model protein, however, shows accumu-
lation at the top and bottom parts of the solution, and the effect
is more significant along the symmetry axis. This is due to much
larger molecular weight and an assumed smaller Flory’s interaction
parameter. For both types of solutes, local concentration varies sig-
nificantly, but overall the center/bottom portion of the cylindrical
vessel has more freeze concentrate introduced by the freezing pro-
cess as expected from experimental observation [15].

Fig. 10 provides a closer look of the onset of flow instability
near the top surface. The sequential plots show sucrose concen-
tration and the velocity field at time instants around t = 5. The
sporadic ice patches appeared at the top surface along with the
freeze concentration effect increase local sucrose concentration, re-
sulting in a Rayleigh-Taylor instability from the locally increased
mass density. The higher concentration pocket of solution moves
downward under the gravity effect, and the surrounding portion
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of the solution with lower concentration is displaced upward in
this bounded domain. Later on the flow instability is weakened
as sucrose diffuses into the bulk. Because the temperature field
is quite uniform in the liquid solution during the freezing pro-
cess, the Rayleigh-Bernard and double-diffusive instability can be
neglected.

Fig. 11 shows temperature histories for specific locations along
the symmetric axis and side wall in the vessel under different
environmental temperatures. Following temperature contour maps
shown in Figs. 8 and 9, the temperature distributions at these rep-
resentative points for Tory = =2 (253.15 K) have only a small varia-
tion before the ice formation, and the uniform temperature distri-
bution in the liquid phase is the signature of thermal-arrest phe-
nomenon. The temperature uniformity is further enhanced by the
convective effect. A closer look at the transient result, tempera-
tures at 20 mm depth are slightly lower than the temperatures at
10 mm depth at the beginning of the process. This is simply due
to a stronger cooling rate at the bottom than at the top surface.
However, the same location at 20 mm depth has slightly higher
temperature than at 10 mm as the direction of fluid flow reverses
at about T ~ 0.4. The ice formation appears at about f = 2.2, Dur-
ing freezing the temperature at the side wall gradually decreases
due to strong heat flux out of the vessel, whereas the tempera-
ture along the symmetric line maintains its value near the equi-
librium temperature Teq (in a thermal-arrest region) until the ice
front reaches the center part. During the freezing/exothermic pro-
cess, the amount of latent heat that can be released relies on the
temperature gradient established in the ice phase, which is influ-
enced by the thermal resistance determined by the heat trans-
fer boundary conditions. The time required to freeze the solu-
tion at 20 mm depth is shorter than that at 10 mm depth, re-
vealing the trend of axial freezing direction from bottom to top
in this test case that closely mimics the experimental conditions.
At the final stage (TN'em, =2, t> 34), the temperatures at these
locations are quite uniform because of higher thermal diffusivity
in the ice phase, about 10-6 m2/s, corresponding to lower char-
acteristic thermal diffusion time about 570 s, than in the liquid
phase (107 m?/s, diffusion time about 4700 s). The temperature
of the whole computational domain gradually decays to the ambi-
ent temperature at 253.15 K. The temperature profiles under differ-
ent environmental settings are qualitatively similar. At a lower en-
vironmental temperature a steeper profile or stronger cooling rate
leads to shorter cooling and freezing process time as expected. For
the case of Teny = —4, the process time is about one half of the
case inv = —2 under the same heat transfer coefficient, and for
Teny = -6, the processing time reduces to one third of the process
time for Tepy = —2. These results are consistent with a lumped ap-
proximation.

Following up test cases shown in Fig. 11, Fig. 12 further illus-
trates the corresponding sucrose concentration profiles ¢; along
the symmetric axis at the end of the freezing process. All of
the results show significant accumulations of sucrose at the bot-
tom/center part of the vessel due to sedimentation and buoyant ef-
fects, and solute partition at the ice/freeze concentrate interface as
the ice front moves towards the inner region of the vessel. For the
case Tepy = —2, the maximum accumulated sucrose concentration,
trapped in the ice phase near the center/bottom part of the ves-
sel, is about ten times higher than its initial concentration (under
the assumed kinetics model and coefficients proposed in eq. (40)).
Because the partition effect is weaken as the moving speed of ice
front increases, the location that has the highest solute concen-
tration is not necessary the last point to freeze. That is, the freez-
ing front may well enclose the freeze concentrate at higher moving
speed. This is demonstrated on the sucrose concentration map in
Fig. 9 at time instance at f = 33.8. In case of lower environmen-
tal temperatures, stronger cooling leads to faster ice front veloc-

ity. The interfacial kinetics at a faster moving front results in less
freeze concentration and thus a more uniform concentration pro-
file, and in the end with maximum accumulation about five times
higher than the initial value in this test case.

In Fig. 13 we compare the computational results with an excel-
lent experimental study with relatively complete data and rigorous
heat and mass transfer analysis developed by Rodrigues et al. [15].
The experiment used a 50 mL stainless steel vessel with 5 cm
inner diameter and 7.5 mm wall thickness, covered by a 6 mm
thickness lid. The vessel was cooled by either a circulating air (for
a slow cooling) or liquid ethanol (fast cooling). The whole con-
tainer was lifted up by three stoppers to avoid direct contact with
the freezer. During the freezing process, temperature profiles were
measured by thermocouples placed at various depths and radial lo-
cations within the vessel. The solute concentration was measured
by UV spectroscopy on ice samples and assisted by protein staining
for direct visualization. Measurements of solute concentration and
the apparent freezing rate have uncertainty around 2 to 15%. Here
we compare the computational results with experimental data for
the pure water case within the vessel under fast (Fig. 13a) and
slow (Fig. 13b) cooling conditions, in which the data points at
20 mm depth into the solution phase are extracted here for the
validation. The initial temperature is set to Tim =1 (283.15 K), and
the ambient temperature for both fast and slow cooling cases is
Tenv = —2 (253.15 K). For the fast cooling case (Fig. 13a) with ves-
sel in a liquid ethanol bath we assume hip and hgge — oo, and
the pure water is supercooled to about 263.15 K. Upon ice nucle-
ation the temperature of the metastable liquid raises abruptly to
the equilibrium freezing point around T, at time £ about 0.3 (time
scale 616 s). This is due to the fast release of latent heat. Without
any fitting parameter, the numerical result very well predicts the
cooling, temperature recovering, and freezing dynamics from the
local measurements in experiments. The representative tempera-
ture on the side wall decreases quickly during the freezing process
as ice starts to form, while the temperature on the symmetric axis
maintains its value near freezing temperature in the thermal-arrest
region until water at 20 mm depth is frozen. A good agreement
is found between modeling and experimental results in terms of
dynamic temperature distribution and characteristic time scales at
each stages of the process under the fast cooling condition. Simi-
larly, in Fig. 13b we compare the temperature profiles with exper-
imental results under air cooling condition. The processing time
is much longer due to smaller heat convection coefficients, esti-
mated as hp =4.6 W/(m? -K) and hgge = 7.9 W/(m? - K) using
the lumped resistance models. Both experimental and numerical
results agree well in the cooling stage and show similar tendency
as in the case under fast cooling condition. However, in the ther-
mal arrest regime, our prediction on the process time is almost
two times longer than the reported experimental observation. As a
rough approximation using water properties one can estimate that
the release of heat content during freezing of this amount of water
is about five times longer than cooling under natural convection,
which is consistent with the modeling result rather than the much
shorter process time reported in experiment. Additional tests are
suggested to clarify this contradiction during the freezing stage of
a slow air cooling process.

5. Conclusion

A phase-field model is developed to describe the macroscopic
freezing dynamics by coupling heat transfer, fluid flow, phase tran-
sition, interfacial kinetics and mass transfer of sucrose and model
protein in a cylindrical vessel. The methodology agrees with the
interface immobilization method often used in solving Stefan prob-
lems. The 3D axisymmetric results demonstrate the characteris-
tic behaviors in freezing of water-sucrose-protein solutions par-
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ticularly on the formation of freeze concentrate as the freezing
front evolves during the process. Due to gravity effect, the thermo-
solutal contribution plays a significant role in temperature and
concentration distributions, which are coupled with the evolu-
tion of ice/freeze-concentrate interface. Rayleigh-Taylor instability
is observed briefly during the cooling/freezing process as several
sporadic ice patches appeared at the top surface. The full pro-
cess simulation including freeze concentration and thermal ar-
rest behaviors are resolved by taking freezing point depression
and temperature- and concentration-dependent properties into ac-
count. Although sucrose-protein association is neglected in this
model, the multi-component mass transfer is demonstrated in this
phase-field model including various degrees of solute exclusion
across ice and liquid solution phases. A trapping of sucrose at the
center/bottom part of the vessel and bipolarization distribution of
a model protein are revealed in the test case. Overall the numeri-
cal results show good agreement with available experimental data
except a contradictory point regarding the freezing process time
under air cooling condition. The phase-field approach provides a
great opportunity to model, investigate, predict, and design the
freezing process for biopharmaceutical applications.
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Appendix A. Interface immobilization method

In the quasi-1D approximation of phase change in a cylindri-
cal configuration, the heat conduction equations in both liquid and
solid domains can be formulated as

19T, 10 (0T,

wM_r8r<r81’) for 0<r<bh), (A1)
and

19T, 19 (0% '
ozsat_rar<3r> for b(t) <r <R (A2)

where o5 and o, are thermal diffusivities of solid and liquid
phases, respectively, r is the radial coordinate, and the transient lo-
cation of the solid-liquid interface at r = b(t) is not known a priori,
which needs to be determined as a part of the solution. The sharp
interface boundary condition based on energy balance [52] is

L O db
ar or dt
where k, and ks are thermal conductivities corresponding to the
liquid and solid phases. All properties are constants in the test
case, and the density for solid and liquid phase are the same in
this simplified model. For the short-time cooling process, a lig-
uid with a constant temperature Tj,; is confined within the region
0 < r < R;, where r = 0 indicates the symmetric axis and r = R; has
a convective boundary condition defined as

T,
ar

ks — ke (A.3)

—kl = h(T - Tenv)s (A-4)

where h and Tepy are the heat transfer coefficient and the envi-
ronmental temperature. For the long-time freezing process, sepa-
rated domains are applied to simulate the liquid and solid phases.
The temperature at the interface r = b(t) remains freezing temper-
ature Ty on both solid and liquid sides during the freezing pro-
cess. Meanwhile, the temperature boundary condition on r = R; be-
comes

aTs

_kSW = h(T — Teny). (A.5)

The moving interface can be immobilized using a spatial coor-
dinate transformation [53,54] in both liquid and solid domains as

r
g:w for 0<r<b(t) and 0<¢ <1, (A.6)
and

_ r—b(t) - < PR

§_1.4_m for b(t)<r<R and 1<¢<2. (A7)

By defining characteristic temperature difference AT, length scale
R;, and time scale T = Riz/ocs, the corresponding scaled governing
equations can be written as

aT, ¢ dbaT, ajas (32T, 197,

A B -t A8

ot _pdtol | <a¢2+¢ac (A8

for0<¢ <1,

aT, 2-¢ dboT, 1 32T, 1 T,

-~ = ~—~F— t+t ———=— 72+ﬁ7

ot  1-pdt 3¢ (1-b)2\095? ¢—-1+b/(1-b)I¢
(A9)

for 1 < ¢ < 2. And the interfacial boundary condition is

db 1 9T kesks 0T,

e =S| = - T A0

dt te(1_bB§ b 3§> (A10)

at ¢ = 1, where the Stefan number St = cp AT/Lq. The correspond-
ing boundary conditions in liquid phase are scaled as

3T,

W_O at ¢ =0, (A11)
and

8fg_ ke &~ = _

37 = AT Tew) at £=1, (A12)

during the cooling process, where the Biot number is defined as
B;i = hR;/ks. Whereas during the freezing process the boundary
conditions are scaled as

aT,

tia 0 at ¢ =0, (A13)
T,=T,=0 at ¢=1, (A14)
and

a7, So=

i —Bi(1=b)(T - Teny) at ¢ =2. (A15)

This method requires a time integration of the interface
Eq. (A.10) to locate the transformed interfacial position b.
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