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a b s t r a c t 

Freezing is an essential step in pharmaceutical manufacturing processes for a long-term storage of thera- 

peutic proteins. However, the process itself may affect the stability of proteins. Better understanding and 

quantification of freezing dynamics and the local environment from liquid solution to the frozen state 

would help to mitigate negative impacts on the protein products during freezing and subsequent man- 

ufacturing processes. We present a phase-field approach to resolve the relevant macroscopic transport 

phenomena including multi-phase flow, heat transfer, phase transition, and freeze concentration effects 

coupled with interfacial evolution in a cylindrical vessel. The theoretical formulation and modeling results 

show good agreement with experimental data. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Degradation of therapeutic proteins can be of high risk upon

dministration, and thus protein stability is often a great con-

ern in manufacturing high-quality and high-valued pharmaceu-

ical products. Solutions of therapeutic proteins are often frozen

o prevent degradation for a long-term storage. However, freez-

ng process itself is accompanying by protein degradation, possibly

wing to ice crystal formation, low temperature, protein-protein

nteractions and aggregation at a higher concentration, changes

f pH and concentration of excipients, and possibly adsorption of

roteins on the ice/freeze-concentrate interfaces [1–5] . Similar to

ost solidification processes, the nucleation and freezing step very

uch determines the microstructure of ice crystals, distribution of

reeze concentrate among ice crystals, and the overall texture of

he frozen products. For protein biopharmaceutical solutions, stud-

es have shown that the microstructure of the frozen state is cor-

elated with protein stability [6–9] , and has impact on the sub-

equent processes including the efficiencies of primary and sec-

ndary drying, reconstitution, as well as mechanical properties of

he dried products [10–13] . 

Freezing of aqueous solutions involves phase transition from

iquid water to ice, which spans multiple spatial and temporal

cales starting from precipitation, nucleation and growth, dendrite

ormation, to the growth and interaction of ice crystals. The pro-
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E-mail address: thfan@engr.uconn.edu (T.-H. Fan). 

m  

e  

y

ttps://doi.org/10.1016/j.ijheatmasstransfer.2020.119915 

017-9310/© 2020 Elsevier Ltd. All rights reserved. 
ess is often coupled with heat, mass, interfacial and momen-

um transport in the solutions, and further complicated by the

hange of equilibrium conditions such as freezing point depres-

ion as solute concentration increases, and nonequilibrium inter-

acial kinetics at higher freezing rate. Furthermore, the relevant

hysicochemical and transport properties are likely temperature-

nd/or concentration-dependent, including thermal conductivity, 

olute diffusivity, fluid viscosity, density, latent heat, and specific

eats. A few experimental [14–18] and mesoscale theoretical anal-

ses [19,20] have demonstrated the microstructure evolution and

he composition of protein and sucrose (as a cryoprotectant) solu-

ions in a frozen state along with freeze concentration of proteins

nd excipients due to solute exclusion from ice and local trans-

ort behaviors. Macroscopic analyses that focus on simplified heat

ransfer and phase transition behaviors have shown good agree-

ents with experimental observations [21,22] . The semi-empirical

odels with ice nucleation taken into account was developed for

he prediction of average crystal size [23–25] . A relatively com-

lete quantitative investigations on freezing of protein solutions

as provided by Nakagawa et al. [24] , including empirical estima-

ion of crystal size under various nucleation temperature and cool-

ng rates, local temperature profiles, and the displacement of solid-

fication front in a cylindrical vessel under slow to fast cooling con-

itions. Roessl et al. [26] have combined fluid dynamics with heat

nd mass transfer to simulate the temperature distribution and the

acroscopic freeze concentration during the freezing process. Nev-

rtheless, still many subtle details in the freezing dynamics are not

et well understood and theoretically quantified. 

https://doi.org/10.1016/j.ijheatmasstransfer.2020.119915
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
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Nomenclature 

˙ q heat flux 

D solute diffusivity 

D 

∞ accommodation factor for solute diffusivity at inter- 

face 

S entropy functional 

v ∞ 

i 
sedimentation velocity of solutes 

g gravity acceleration 

J s entropy flux 

v velocity field 

b position of moving interface in 1D approximation 

c p specific heat 

d hydrodynamic diameter of solute molecules 

e specific internal energy 

f specific free energy 

H height of the solution 

h heat transfer coefficient 

h s � coefficient of energy barrier 

k thermal conductivity 

l 1 thickness of cover lid 

l 2 thickness of stagnant air layer on top of solution 

l 3 thickness of vessel wall 

l 4 thickness of stagnant air layer beneath the vessel 

L a latent heat of solid-liquid phase transition 

M interfacial mobility 

N solute-to-water ratio of molar volume 

n total number of solutes 

P interpolation function between solid and liquid 

phases 

p pressure 

R gas constant 

r radial coordinate 

R i inner radius of the vessel 

R o outer radius of the vessel 

s specific entropy 

T temperature 

t time 

T 0 freezing temperature of a pure water 

U characteristic velocity 

v n magnitude of normal-to-interface velocity 

W s � interfacial thickness 

z axial coordinate 

Dimensionless numbers 

�sed sedimentation number 

�s � phase-change number 

B i Biot number 

C h Cahn-Hilliard number 

G r local Grashof number 

L e Lewis number 

N u Nusselt number 

P e Peclet number 

P r Prandtl number 

R a Rayleigh number 

R e Reynolds number 

S te 1 , S te 2 Stefan number 

Greek symbols 

α thermal diffusivity 

β1 , β2 adjustable factors for solute diffusivity at interface 

ω vorticity field 

σ viscous stress 

χ Flory’s interaction parameter 
t  
˙ � entropy production rate 

η dynamic viscosity 

γ s � interfacial energy at solid-liquid interface 


 computational domain 

ω vorticity in azimuthal direction 

φ phase field variable 

ψ stream function 

ρ mass density 

τ characteristic time 

θ azimuthal direction 

ξ gradient coefficient used in entropy functional 

ζ immobilized coordinate 

Subscripts 

1 sucrose 

2 dilute protein 

� liquid phase 

c solute diffusion 

i solute species 

s solid phase 

s � solid-liquid phase transition 

0 reference property 

air air phase 

conv convection 

env environment 

eq equilibrium 

ini initial condition 

inter interface 

sed sedimentation 

side circumferential wall of the vessel 

steel steel material 

T thermal effect 

top top surface of the computational domain 

vis viscous effect 

In principle one can better design and control the cooling con-

itions, temperature distribution, solute uniformity, and desirable

icrostructure if the process dynamics can be computationally re-

olved and optimised. However, the development of high-fidelity

omputational model is only at the beginning stage due to many

hallenges encountered from protein-protein and protein-interface

nteractions to local and bulk solution behaviors, calibrations of

hermophysical properties in the supercooled regime, and the com-

utational cost. Recently we have resolved the multiphase trans-

ort and interfacial dynamics of freezing process and freeze con-

entration at the mesoscale along with growth of ice crystals in su-

rose solutions [19] . The freeze concentration effect has been inte-

rated to the transient dynamics and topological change of the ice

rystals. However, similar analysis at the macroscopic level faces

 new challenge because freeze concentration or solute segrega-

ion is intrinsically a small-scale phenomena, very difficult to be

xtended for the prediction of macroscopic behaviors in a vial or

essel. Here we propose a new coarse-grained approach to resolve

ulk phase transition, concentration polarization, heat and multi-

omponent mass transfer, thermophysical properties, bulk fluid

ow, convective and gravity effect using the phase-field method

ithout considering the dynamics of individual ice crystals. The

omputational results are side-by-side compared with the most

omplete experimental data [15] according to the cylindrical ves-

el configuration and estimated heat transfer boundary conditions.

ithout explicit interface tracking, this approach is convenient in

esolving the moving boundary with complicated morphological

hange during phase transition that possibly involves merging or

plitting of interfaces. The phase-field variables or order parame-

ers are uniform in homogeneous bulk phases, yet having a nar-
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Fig. 1. Schematic of freezing process in a cylindrical vessel. The container is made 

of steel. 
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ow and smooth transition across the interface between phases. A

igorous definition of the interfacial thickness is connected with

nterfacial energy and mobility, which can be proved asymptoti-

ally consistent with classical transport model with a sharp inter-

ace [27] . Here our theoretical derivation for the non-isothermal

rocess follows entropy analysis in nonequilibrium thermodynam-

cs, and the system dynamics is driven by the increase of en-

ropy with gradient effect due to spatial variation of the assumed

hase-field variables [28–31] . The method has been widely devel-

ped for mesoscale simulations of solidification process particu-

arly for dendritic pattern formation in pure and alloy systems [32–

1] . The theoretical framework has also been expanded for a vari-

ty of applications such as in metallic additive manufacturing pro-

esses [42,43] , and recently be adapted and modified for the anal-

sis of freezing dynamics in sucrose solutions [19,20] . 

. Theoretical analysis 

Fig. 1 shows the schematic view the problem in hand. The

ylindrical vessel has roughly three cooling surfaces from top, bot-

om, and circumferential walls ( Fig. 1 ). The initial condition is a

ell-mixed aqueous solution of sucrose excipient as the primary

olute and proteins as a secondary component stored in a cylin-

er vessel. The process starts from 10 ◦C to a supercooled liq-

id state with an assumed precipitating temperature. A typical

rowth of ice phase begins from the wall boundary and progresses

oward the center portion of the vessel. The following assump-

ions are made to simplify the theoretical analysis and computa-

ion: (i) thermal radiation and irradiation effects are neglected, (ii)

hermal expansion, elasticity and thermal stress of the ice phase

re neglected, (iii) density variation across ice/liquid water inter-

ace is neglected, and (iv) molecular events such as protein-protein

nd protein-excipient interactions, and adsorption of proteins on

ce/freeze-concentrate interfaces are not considered. The configu-

ation ( Fig. 1 ) follows the experimental setting provided by Ro-

rigues el al. [15] . 

.1. General formulation based on phase-field approach 

Because heat transport and local temperature distribution play

n important role in this multiphase moving boundary problem,

 thermodynamically consistent phase-field formulation is consid-

red to resolve the macroscopic dynamics in a cylindrical coordi-

ate system. The phase-field variables involved in our model are:

i) phase field φs � ( r, z, t ) as a non-conserved order parameter that

escribes phase transition dynamics and distinguishes liquid phase

 φs� = −1 ) from the ice or solid phase ( φs� = 1 ), with r and z in-

icating local position along the radial and axial coordinates re-

pectively on a cross-sectional plane, and t is time, (ii) φi for the

olume fraction of species dissolved in the solutions, including su-

rose as the primary component ( i = 1 ) and dilute proteins or ex-

ipients ( i = 2 , 3 , . . . , n ). Following phase-field approach based on

rreversible thermodynamic principles [30,31,38] , the entropy func-

ional in the material volume can be formulated as 

 = 

∫ 



{ 

ρs (e, φs� , φ1 , φ2 , . . . , φn ) − 1 

2 
ξ 2 

s� |∇φs� | 2 −
n ∑ 

i =1 

[ 
1 

2 
ξ 2 

i |∇φi | 2 
] } 

dV, 

(1

here ρ is mass density, s is specific entropy as a function of spe-

ific internal energy e and other phase-field variables, n is the total

umber of solutes to be traced, and coefficients ξ s � and ξ i are as-

umed constant coefficients for the gradient effects. The first term

f the integral indicates the contribution of the entropy density in

he bulk phase, the 2nd term represents spatial variation of the

hase field for the non-local or gradient effects across solid and
iquid phases, and the last term sums up the gradient contribu-

ions of species concentrations. 

Applying the Reynolds transport theorem to the entropy func-

ional, the entropy transport equation can be generalized as 

D s 

D t 
− 1 

2 

ξ 2 
s� 

D 

D t 
| ∇φs� | 2 −

n ∑ 

i =1 

1 

2 

ξ 2 
i 

D 

D t 
| ∇φi | 2 = −∇ · J s + 

˙ �, (2) 

here D / D t ≡ ∂ /∂ t + v · ∇ indicates material derivative, v is ve-

ocity, J s is entropy flux, and 

˙ � represents local entropy produc- 

ion rate. Considering the relationship between entropy and inter-

al energy, e = e (s, φs� , φ1 , φ2 , . . . , φn ) , one can express the change

f energy as 

e = T ds + 

∂e 

∂φs� 
dφs� + 

n ∑ 

i =1 

∂e 

∂φi 

dφi , (3) 

here T is temperature. Thus, the material derivative of entropy in

q. (2) becomes 

D s 

D t 
= 

1 

T 

D e 

D t 
− 1 

T 

∂e 

∂φs� 

D φs� 

D t 
−

n ∑ 

i =1 

1 

T 

∂e 

∂φi 

D φi 

D t 
. (4) 

ow, by substituting Eq. (4) into (2) and rearranging the heat flux

erm in the energy equation as 

ρ

T 

D e 

D t 
= − 1 

T 
∇ · ˙ q = −∇ ·

(
˙ q 

T 

)
+ ˙ q · ∇ 

(
1 

T 

)
, (5) 

he entropy production rate in Eq. (2) can be obtained and ex-

ressed as 

˙ = ˙ q · ∇ 

(
1 

T 

)
+ 

[
ξ 2 

s� ∇ 

2 φs� − ρ

T 

∂e 

∂φs� 

]
D φs� 

D t 

+ 

n ∑ 

i =1 

[
ξ 2 

i ∇ 

2 φi −
ρ

T 

∂e 

∂φi 

]
D φi 

D t 
≥ 0 , (6) 

here the viscous dissipation and capillary work have been ne-

lected due to relatively small dissipation energy. To accommo-

ate the second law of thermodynamics with a positive-definite

ntropy production rate, the transport equations that describe non-

sothermal multiphase dynamics including melting and freezing

rocesses can be developed, and here the corresponding phase-

eld equations are formulated as 

D φs� 

D t 
= M s� 

[
ξ 2 

s� ∇ 

2 φs� − ρ

T 

∂e 

∂φs� 

]
, (7) 
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and 

D φi 

D t 
= ∇ ·

[
M i ∇ 

(
ρ

T 

∂e 

∂φi 

− ξ 2 
i ∇ 

2 φi 

)]
for i = 1 , . . . , n, (8)

where interfacial mobility coefficients M s � and M i are assumed

positive values. Eq. (7) is non-conservative (Allan-Cahn model), de-

scribing the evolution of interfaces for the growth of ice phase,

whereas Eq. (8) is conservative (Cahn-Hilliard model) for determin-

ing species concentrations. Consider Fourier’s law on conduction

heat flux, ˙ q = −k ∇T , where k � k ( T, φs � , φ1 ) is the thermal con-

ductivity, the classical energy equitation is 

ρ
D e 

D t 
= ∇ · (k ∇T ) . (9)

2.2. Continuity and momentum equations 

During the freezing process, the fluid flow is driven by grav-

ity effect due to density variation within the flow field. The lo-

cally concentrated solution has higher density than the surround-

ing fluid, and naturally tends to sediment to lower portion of the

vessel. This effect is estimated by the Boussinesq approximation.

The density ρ that takes phase transition and solute concentration

effect into account can be formulated as 

ρ(T , φs� , φ1 , φ2 , . . . , φn ) = ρ0 ̃  ρ

� ρ0 

{∑ n 
i =1 φi ̃  ρi + (1 − ∑ n 

i =1 φi ) 
[ 

P ̃  ρ� (T , φi ) + (1 − P ) ̃  ρs (T ) 
] }

,

(10)

where the scaled density of ice ˜ ρs and water ˜ ρ� are tempera-

ture dependent, the reference density ρ0 is defined as ρ� ( φi → 0,

T → T 0 ) with T 0 indicating equilibrium freezing temperature of

a pure water, and P = P (φs� ) is an interpolation function from

the liquid ( P = 1 , φs� = −1 ) to solid ( P = 0 , φs� = 1 ) phases, defined

later on by Eq. (20) . In this study, we consider all properties are φ1 

(sucrose) dependent, but can be further extended to include multi-

component effect. 

The system is quasi-incompressible in all phases with neglected

density variation at the interfaces. The fluid flow continuity equa-

tion is 

∇ · v = 0 . (11)

The Navier-Stokes momentum equation with Boussinesq approxi-

mation for the buoyant effect is given by 

ρ

(
∂ v 

∂t 
+ v · ∇ v 

)
= −∇p + ∇ · σ + ( ρ − ρ0 ) g , (12)

where g is gravity acceleration, p is pressure, and the viscous stress

σ for the assumed Newtonian fluid is given by 

σ = η
(∇ v + ∇ v T 

)
, (13)

where the dynamic viscosity η across phases can be defined as 

η � η(T , φs� , φ1 ) = η0 ̃  η � η0 

[ 
P ̃  η� (T , φ1 ) + (1 − P ) ̃  ηs 

] 
, (14)

with an assumed constant viscosity for the crystal phase ˜ ηs 
 ˜ η� 

and a reference value η0 = η� (φ1 → 0 , T → T 0 ) . 

Furthermore, in a 3D axisymmetric system with coordinates in

radial ( r ), axial ( z ), and azimuthal ( θ ) directions, the momentum

equation can be solved by the vorticity-stream function method. By

taking curl of the above momentum equation, the vorticity equa-

tion can be formulated as 

ρ
D ω 

D t 
= η∇ 

2 ω + ∇η × ∇ 

2 v + ∇ ×
[∇η ·

(∇ v + ∇ v T 
)]

+ ∇ × [ ( ρ − ρ0 ) g ] , (15)
here ω = (ω r , ω z , ω θ ) = (0 , 0 , ω) is the vorticity field with non-

ero value appears in the azimuthal direction, which is perpen-

icular to the axisymmetric velocity field. Here the corresponding

tream function ψ in the cylindrical coordinate system is defined

s 

 = 

(
−1 

r 

∂ψ 

∂z 
, 

1 

r 

∂ψ 

∂r 
, 0 

)
. (16)

onsidering vorticity ω = ∇ × v , the stream function equation re-

uces to 

∂ 2 ψ 

∂z 2 
+ 

∂ 2 ψ 

∂r 2 
− 1 

r 

∂ψ 

∂r 
= −ωr. (17)

he flow field is established by solving the above vorticity and

tream function equations in a cylindrical coordinate system. 

.3. Energy equation 

The specific internal energy of this multi-component system

an be approximated by 

 (T , φs� , φ1 , φ2 , . . . , φn ) = e s� (T , φs� ) + 

n ∑ 

i =1 

RT 〈 χi 〉 φi (1 − φi ) , (18)

here e s � represents the internal energy of water in both solid to

iquid phases, R is gas constant, and 〈 χi 〉 = 〈 χi (φs� ) 〉 is an apparent

r coarse-grained Flory’s interaction parameter for a regular solu-

ion. The summation term in the internal energy indicates the in-

rease of internal energy due to mixing of ice or liquid water with

olutes. At the macroscopic level, the 〈 χ i 〉 value is a phenomeno-

ogical parameter that controls the partition effect in an average

ense. To accommodate the phase transition, the internal energy

 s � as a smooth function across ice and liquid water can be ex-

ressed as 

 s� (T , φs� ) = e s (T ) + P (φs� ) L a 

= e � (T ) + [ P (φs� ) − 1] L a , (19)

here the subscript s and � indicate homogeneous solid and liquid

hases, respectively, L a is the latent heat of solid-liquid phase tran-

ition based on the reference equilibrium freezing temperature of

ure water T 0 . Here we assume that the latent heat is independent

f temperature for a small shift of freezing temperature due to

reezing point depression. And P ( φs � ) is an interpolation function

or a smooth transition of internal energy from the liquid to solid

hases [31] , indicated as a dash line in Fig. 2 . Here the P function

s a 5th-order polynomial that satisfies P ′ = P ′′ = 0 at φs� = ±1 , ex-

ressed as 

 (φs� ) = 

1 

2 

− 15 

16 

(
1 

5 

φ5 
s� −

2 

3 

φ3 
s� + φs� 

)
, (20)

nd thus P (1) = 0 and P (−1) = 1 , so that in the solid phase

 s� (T , 1) = e s (T ) , and in the liquid phase e s� (T , −1) = e � (T ) . By ap-

lying the interpolation function P , the continuous Flory’s parame-

er can be defined as a similar form across the interface: 

 χi 〉 = P χi,� + (1 − P ) 〈 χi,s 〉 , (21)

here 〈 χ i,s 〉 > χ i , � , in which a higher value of the Flory’s parame-

er implies a higher mixing energy in the ice phase than in liquid

ater so that the solutes are soluble, within the solubility limit,

n the liquid phase and mostly excluded from ice. Although a part

f the excluded solutes are trapped in between ice crystals, the

mall scale phenomena is not resolved in this simplified macro-

copic model and therefore a phenomenological 〈 χ i,s 〉 value is pro-

osed in this study. In principle, the phenomenological value may

e estimated by the mesoscale analysis by considering crystal mor-

hology and segregation pattern under various cooling conditions,

r to be adjusted based on empirical results. 
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From Eqs. (18) and (19) , the left-hand side of the energy equa-

ion ( Eq. (9) ) can be further expanded from the interpolation of

nternal energy across each phase using the P function along with

he material derivative, expressed as 

D e 

D t 
� P 

D e � 

D t 
+ (1 − P ) 

D e s 

D t 
+ RT 

n ∑ 

i =1 

〈 χi 〉 (1 − 2 φi ) 
D φi 

D t 

+ 

[ 
L a P 

′ + RT 

n ∑ 

i =1 

〈 χi 〉 ′ φi (1 − φi ) 
] 

D φs� 

D t 
. (22) 

y introducing heat conduction flux and specific heat, c p � c p ( T,

s � , φ1 ) for both solid and liquid phases, into the energy equation,

he temperature equation becomes 

c p 
D T 

D t 
� ∇ ·

(
k ∇T 

)
− ρRT 

n ∑ 

i =1 

〈 χi 〉 (1 − 2 φi ) 
D φi 

D t 

−ρ
[ 

L a P 
′ + RT 

n ∑ 

i =1 

〈 χi 〉 ′ φi (1 − φi ) 
] 

D φs� 

D t 
. (23) 

ssuming that the proteins at low concentration does not influ-

nce thermophysical properties of the solution, the local values

f specific heat c p and thermal conductivity k are temperature-

ependent and only adjusted by the sucrose (as the primary solute,

 = 1 ) content according to 

 p (T , φs� , φ1 ) = c p 0 ̃  c p 

� c p 0 

[ 
P ̃  c p � (T , φ1 ) + (1 − P ) ̃  c p s (T ) 

] 
, (24) 

nd 

 (T , φs� , φ1 ) = k 0 ̃
 k 

� k 0 
[
P ̃  k � (T , φ1 ) + (1 − P ) ̃  k s (T ) 

]
, (25) 

here c p 0 = c p s (T → T 0 ) and k 0 = k s (T → T 0 ) are reference values

t equilibrium freezing temperature of pure water. 

.4. Free energy and phase-field equations 

The derivatives of the internal energy appeared in the phase-

eld Eqs. (7) and (8) can be obtained by the corresponding deriva-

ives of the free energy density as 

∂e 

∂φs� 
) s,φ1 ,φ2 , ... ,φn 

= 

∂ f 

∂φs� 
) T,φ1 ,φ2 , ... ,φn 

(26) 

nd 

∂e 

∂φi 

) s,φs� ,φ j, j � = i = 

∂ f 

∂φi 

) T,φs� ,φ j, j � = i for i, j = 1 , 2 , . . . , n. (27) 

ere the continuous free energy density includes the free energy

f ice and liquid phases, adjusted by solute and mixing effects. By

uperposing the contributions of pure solid and liquid water, su-

rose and proteins, and the mixing entropy and enthalpy effects,

he mean-field approximation of the free energy can be estimated

y 

f (T , φs� , φ1 , φ2 , . . . , φn ) � 

(
1 − ∑ n 

i =1 φi 

)
f s� + 

∑ n 
i =1 

{
φi f i 

+ RT 
[

1 
N i 

φi ln (φi ) + (1 − φi ) ln (1 − φi ) + 〈 χi 〉 φi (1 − φi ) 
]}

, 

(28) 

here f s � represents the free energy of water in ice to liquid phase,

 i is the free energy of solutes, N i accommodates the size ef-

ect based on solute-to-water partial molar volume ratio, and the

oarse-grained Flory’s parameters 〈 χ 〉 control the energy barriers
i 
n the mixing enthalpy terms for different solutes under dilute ap-

roximation. From the Gibbs-Helmholtz relation the free energy f s � 
ncluding the latent heat effect can be expressed as 

f s� (T , φs� ) = −T 

∫ T 

T eq 

e s� 

T ′ 2 dT ′ + 

T f s� (T eq , φs� ) 

T eq 
, (29) 

here the first term on the right-hand side presents the ther-

odynamic driving force on freezing. The driving force increases

s the temperature is lowered, compared to the equilibrium tem-

erature T eq = T eq (φ1 ) , with freezing point depression taken into

ccount. The 2nd term accommodates the free energy at equilib-

ium temperature, which is approximated by a double-well poten-

ial ( Fig. 2 ) as 

f s� (T eq , φs� ) = 

1 

4 

h s� T eq (1 − φ2 
s� ) 

2 , (30)

here the coefficient of the energy barrier h s � is associated with

nterfacial thickness W s � and energy coefficient ξ s � as 

2 
s� = ρ0 h s� W 

2 
s� . (31) 

he free energy of the solution f s � has minima at φs� = −1 (liquid)

nd φs� = 1 (solid) at equilibrium freezing temperature T eq . 

From the internal and free energies provided above and the

ssumed constant latent heat L a , the phase-field formulations,

qs. (7) and (8) , can be further expanded and written as 

D φs� 

D t 
� M s� 

{
ξ 2 

s� ∇ 

2 φs� − ρR 

∑ n 
i =1 〈 χi 〉 ′ φi (1 − φi ) 

+(1 − ∑ n 
i =1 φi ) 

[
ρP ′ L a 

T − T eq 

T T eq 
+ ρh sl (φs� − φ3 

s� ) 

]}
, 

(32) 

nd 

D φi 

D t 
= −∇ ·

[
M i ∇ 

(
ξ 2 

i 
∇ 

2 φi 

)]
+ ∇ ·

{
M i ∇ 

[
ρR 

(
ln φi 

N i 
− ln (1 − φi ) + 〈 χi 〉 (1 − 2 φi ) 

)]}
, 

(33) 

or i = 1 , 2 , . . . , n, respectively. 

Due to the sedimentation of solutes in the liquid solution, an

dditional convective term is applied to the material derivative of
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Table 1 

Parameters and properties used in the test cases. The model protein is assumed 

bovine serum albumin (BSA) since it is commonly used in protein solutions to 

stabilize therapeutic biologics. 

Parameters Value, SI 

length scale R i (inner radius of vessel) 0.025 m 

interfacial thickness W s � 0.001 m 

characteristic subcooled temperature � T 10 K 

initial temperature T ini 283.15 K 

fixed environmental temperature T env 253.15 K 

latent heat L a 3.4 × 10 5 J/kg 

Flory’s parameters of sucrose 〈 χ 1, s 〉 , χ 1, � 0.6, 0.5 

Flory’s parameters of protein 〈 χ 2, s 〉 , χ 2, � 0.501, 0.5 

solute-to-water ratio of molar volume for sucrose N 1 ~ 11.5 

solute-to-water ratio of molar volume for protein N 2 ~ 2300 

interfacial energy γ s � [44] 0.041 J/m 

2 

energy barrier coefficient h s � 0.064 J/(kg · K) 

characteristic density variation � ρ 5 kg/m 

3 

characteriatic velocity U 6 . 0 × 10 −3 m/s 

diameter of sucrose d 1 10 −9 m 

diameter of protein d 2 7 . 0 × 10 −9 m 

thermal conductivity of steel k steel 15.06 W/(m · K) 

thermal conductivity of air k air 0.0223 W/(m · K) 

T  

t  

l  

m  

fi

τ  

r  

s  

s  

S

U  

w

b  

s  

t

T̃  

T  

r  

U  

t

i  

w  

m  

s  

T  

m  

a

 

a

 

the solute concentration equations. The rate of sedimentation is

simplified by applying the Stokes’ Law for a spherical particle as 

v ∞ 

i = 

d 2 
i 
(ρi − ρ� ) g 

18 η
, (34)

where d i is the hydrodynamic diameter of the solute molecule,

η = η(T , φs� , φ1 ) is the local dynamic viscosity, and g is gravity ac-

celeration. Therefore, the concentration equation becomes 

∂φi 

∂t 
+ v · ∇φi + ∇ ·

(
v ∞ 

i φi 

)
= −∇ ·

[
M i ∇ 

(
ξ 2 

i ∇ 

2 φi 

)]
+ ∇ ·

{
M i ∇ 

[
ρR 

(
ln φi 

N i 

− ln ( 1 − φi ) + 〈 χi 〉 ( 1 − 2 φi ) 

)]} (35)

for i = 1 , 2 , . . . , n . 

Finally, the gradient coefficient ξ s � is associated with interfa-

cial conditions of the freezing front. The interfacial energy γ s � and

thickness W s � are correlated with the coefficient as 

γs� = 

2 

√ 

2 

3 

ξ 2 
s� T 0 

W s� 
, (36)

where the factor 2 
√ 

2 / 3 is derived from the one-dimensional ap-

proximation using a hyperbolic function to describe the phase field

profiles φs � (defined from -1 to 1) across the interface at equilib-

rium, which is 

γs� = T 0 ξ
2 
s� 

∫ ∞ 

−∞ 

(
dφs� 

dx 

)
2 dx. (37)

The coefficient ξ i is assumed the same value as ξ s � for all so-

lutes. The solute distribution described by the Cahn-Hilliard equa-

tion is conserved, and the 2nd-order derivative is consistent with

the Fickian-type diffusion model by defining mobility coefficient

as 

M i = 

D i (T , φs� , φi ) 

ρR 

φi (1 − φi ) for i = 1 , 2 , . . . , n, (38)

where the diffusivity D i , assumed independent of other solutes in

the dilute regime, can be in general scaled and interpolated as 

D i (T , φs� , φi ) = D 0 ̃
 D i 

� D 0 

[ 
P ̃  D i� (T , φi ) + (1 − P ) ̃  D is + ̃

 D inter 

] 
, 

(39)

where ˜ D i� is concentration- and temperature-dependent in liquid

solution, ˜ D is is assumed constant in ice, ˜ D inter is an additional high

diffusivity at the ice/freeze-concentrate interface, and all are scaled

by a reference value D 0 = D 1 � (φ1 → 0 , T = T 0 ) , where the sub-

script 1 indicates sucrose. Here, an adjustable diffusivity at the

interface D inter is applied to accommodate solute exclusion effect

across the interface, expressed as 

D inter � D 

∞ F (φs� ) K(v n ) , (40)

where D 

∞ 
 D 0 is to accommodate equilibrium interfacial kinet-

ics, F (φs� ) = (1 − φ2 
s� ) 

β1 is used to locate D inter to the interface re-

gion with a factor β1 to adjust the area thickness, v n � | ∂ φs � / ∂ t | is
the absolute value of the normal-to-interface velocity, and K(v n ) =
(1 + β2 v n ) −1 determines the negative correlation of the solute ex-

clusion effect by taking the ice front velocity into account using a

weighting factor β2 . In this study, D 

∞ � 10 −6 m 

2 / s , and the factors

β1 = 8 and β2 = 5 . 

2.5. Scaled formulation 

To extract further insights into the quantitative analysis, all

computations are carried out based on the scaled formulation as

follows. The length scale is defined by the radius of the vessel R .
i 
he apparent interfacial thickness W s � is assumed much smaller

han R i . The system involves six characteristic time scales for solid-

iquid phase transition, solute diffusion, thermal diffusion, sedi-

entation, viscous diffusion, and bulk convection, respectively, de-

ned as 

τs� = 

1 

ρ0 h s� M s� 
, τc = 

R 

2 
i 

D 0 

, τ
T 

= 

ρ0 c p 0 R 

2 
i 

k 0 
= 

R 

2 
i 

α0 

, 

sed = 

18 η0 R i 

ρ0 d 
2 
1 
g 

, τvis = 

ρ0 R 

2 
i 

η0 

, and τconv = 

R i 

U 

, (41)

espectively, where d 1 is a reference diameter of solutes based on

ucrose molecule, α0 = k 0 / (ρ0 c p 0 ) is the reference thermal diffu-

ivity at T 0 , and U is the characteristic velocity estimated from the

tokes flow as 

 = 

2 W 

2 
s� g � ρ

9 η0 

, (42)

here � ρ is the characteristic density variation, assumed 5 kg/m 

3 

ased on one percent increase of sucrose concentration in this

tudy. The temperature is scaled by the characteristic subcooled

emperature � T as 

 

 = 

T − T 0 
� T 

. (43)

he pressure and stress are scaled by viscous effect based on the

eference viscosity. The vorticity and stream function are scaled by

 / R i and UR 2 
i 
, respectively. The phase field φs � and species concen-

ration φi are already normalized. The actual value of mobility M s � 

n the φs � equation for the macroscopic analysis is unknown, here

e speculate that the freezing process is largely controlled by ther-

al transport and thus the time scale for solid-liquid phase tran-

ition is assumed the same as the thermal diffusion time, τs� � τ
T 
.

he characteristic time scale τ
T 

is selected for all of the scaled for-

ulations. The parameters, time scales, and reference properties

re listed in Tables 1–3 for reference. 

The resulting scaled vorticity and stream-function equations

re 

˜ ρ

(
1 

P r 

∂ ̃  ω 

∂ ̃  t 
+ R e ̃  v · ˜ ∇ ̃

 ω 

)
= ̃

 η˜ ∇ 

2 ˜ ω + ̃

 ∇ ̃

 η × ˜ ∇ 

2 ˜ v 

+ ̃

 ∇ ×
[˜ ∇ ̃

 η ·
(˜ ∇ ̃

 v + ̃

 ∇ ̃

 v 
T 
)]

+ ̃

 ∇ × (G r ̂  e z ) , (44)
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Table 2 

Reference properties of pure water at ambient pressure. 

Reference properties Value, SI 

freezing temperature T 0 273.15 K 

density ρ0 999.8 kg/m 

3 

specific heat c p 0 2110 J/(kg · K) 

thermal conductivity k 0 2.15 W/(m · K) 

dynamic viscosity η0 1 . 8 × 10 −3 Pa · s 

solute diffusivity D 0 2 . 1 × 10 −10 m 

2 /s 

Table 3 

Characteristic time scales based on parameters listed in Table 1 . 

Characteristic times Value, SI 

thermal diffusion τ
T 

616.11 s 

phase transition τ s � 616.11 s 

solute diffusion τ c 2.98 × 10 6 s 

bulk convection τ conv 4.17 s 

viscous diffusion τ vis 347.15 s 

sedimentation τ sed 8.26 × 10 10 s 

a

r  

P  

s  

f  

s

P

r

 

 

a

f  

t  

l  

h  

t  

�  

t  

m

�

r

w  

t

r  

T

2

 

s  

b  

c  

d  

b  

q  

v  

i

 

s  

t  

m  

w  

c  

f  

r  

f  

a  

Table 4 

Dimensionless groups with values based on parameters listed 

in Table 1 . 

Dimensionless groups Value 

Prandtl number P r 1.775 

Reynolds number R e 83.32 

local Grashof number G r 5 . 67 × 10 5 (1 − ˜ ρ) 

Peclet number P e 147.87 

phase-change number �s � 715.33 

Cahn-Hilliard number C h 0.04 

Lewis number L e 4830.6 

sedimentation number �sed 7 × 10 −9 

Stefan number S te 1 0.0621 

Stefan number S te 2 0.0136 
nd 

∂ 2 ˜ ψ 

∂ ̃  z 2 
+ 

∂ 2 ˜ ψ 

∂ ̃  r 2 
− 1 ˜ r 

∂ ̃  ψ 

∂ ̃  r 
= −˜ ω ̃

 r , (45) 

espectively, where ˆ e z indicates unit vector in z direction. The

randtl number P r is the ratio of the thermal to viscous time

cales, Reynolds number R e compares the inertial to viscous ef-

ects, and the local Grashof number G r depends on the local den-

ity ˜ ρ and the buoyant to viscous effect. They can be defined as 

 r = 

η0 

ρ0 α0 

= 

τ
T 

τvis 

, R e = 

ρ0 UR i 

η0 

= 

τvis 

τconv 
, 

and G r = 

ρ0 R 

2 
i 
g(1 − ˜ ρ) 

η0 U 

, (46) 

espectively. 

The scaled phase-field equations reduce to 

∂φs� 

∂ ̃  t 
+ P e ̃  v · ˜ ∇ φs� = C 2 h ̃

 ∇ 

2 φs� 

+ �s� 

( 

1 −
n ∑ 

i =1 

φi 

) 

P ′ 
{ ˜ T − ˜ T eq [

1 + (� T /T 0 ) ˜ T 
][

1 + (� T /T 0 ) ˜ T eq 

]}

+ (1 −
n ∑ 

i =1 

φi )(φs� − φ3 
s� ) −

R 

h s� 

n ∑ 

i =1 

〈 χi 〉 ′ φi (1 − φi ) , (47)

nd 

∂φi 

∂ ̃  t 
+ P e ̃  v · ˜ ∇ φi + �sed ̃

 ∇ ·
[ ˜ d 2 

i ˜ η
( ̃  ρ� − ˜ ρi ) φi ̂  e z 

]
= − C 2 

h 

L e 

h s� 

R 

˜ ∇ ·
{˜ D i (φi − φ2 

i ) ̃
 ∇ ̃

 ∇ 

2 φi 

}
+ 

1 

L e ̃

 ∇ ·
{˜ D i 

[
1 − φi 

N i 

+ φi − 2(φi − φ2 
i ) 〈 χi 〉 

]˜ ∇ φi 

}
+ 

1 

L e ̃

 ∇ ·
[˜ D i (φi − φ2 

i )(1 − 2 φi ) ̃
 ∇ 〈 χi 〉 

]
(48) 

or i = 1 , 2 , . . . , n, where the Peclet number P e measures convec-

ive to diffusive effects and applicable to mass transport of all so-

utes, phase-change number �s � measures the importance of latent

eat to interfacial energy, Cahn-Hilliard number C h is the ratio of

he interfacial thickness to the length scale, sedimentation number

sed compares the time scales of thermal diffusion to sedimen-

ation, whereas Lewis number L e compares thermal diffusivity to
ass diffusivity. These dimensionless groups are defined as 

P e = 

R i U 

α0 

= 

τ
T 

τconv 
, �s� = 

L a � T 

h s� T 2 0 

, C h = 

W s� 

R i 

, 

sed = 

ρ0 d 
2 
0 gR i 

18 η0 α0 

= 

τ
T 

τsed 

, and L e = 

α0 

D 0 

= 

τc 

τ
T 

, (49) 

espectively. 

Furthermore, the scaled thermal energy equation becomes 

˜ ρ˜ c p 

(
∂ ̃  T 

∂ ̃  t 
+ P e ̃  v · ˜ ∇ ̃

 T 

)
= 

˜ ∇ ·
(̃

 k ̃  ∇ ̃

 T 

)
− ˜ ρ

S te1 

[ 

P ′ (φs� ) + S te2 

(˜ T + 

T 0 
� T 

) n ∑ 

i =1 

〈 χi 〉 ′ φi (1 − φi ) 

] 

×
(

∂φs� 

∂ ̃  t 
+ P e ̃  v · ˜ ∇ φs� 

)
− ˜ ρS te2 

S te1 

(˜ T + 

T 0 
� T 

) n ∑ 

i =1 

〈 χi 〉 (1 − 2 φi ) 

(
∂φi 

∂ ̃  t 
+ P e ̃  v · ˜ ∇ φi 

)
, (50) 

here the Stefan numbers S te1 and S te2 compare the latent heat to

he sensible heat and the partition effect, formulated as 

S te1 = 

c p 0 � T 

L a 
and S te2 = 

R � T 

L a 
, (51) 

espectively. Values of these dimensionless groups are listed in

able 4 . 

.6. Initial and boundary conditions 

The configuration and basic dimensions of the cylindrical vessel

hown in Fig. 3 is extracted from experimental setting provided

y Rodrigues el al. [15] , so that we can side-by-side compare the

omputational results with experimental data. The computational

omain 
 is shown by the blue area with initial conditions defined

y uniform temperature T ini and uniform concentration φi ,ini in a

uiescent liquid solution. There exists no ice phase at T ini . The en-

ironmental temperature T env is assumed constant during the cool-

ng and freezing processes. 

Boundary conditions for the conserved phase fields φi are in-

ulated (zero mass flux) for all of the four boundaries, including

he top, bottom, and circumferential side wall as well as the sym-

etric axis. The stream function vanishes at all boundaries, mean-

hile the velocity satisfies no-slip conditions on top, bottom, and

ircumferential wall boundaries. The vorticity on the boundaries

ollows ω = ∇ × v . In phase-field method, the velocity in the solid

egion, φs� = 1 , vanishes across the ice/freeze-concentrate inter-

ace. In this study, we apply a smooth function for the vorticity

nd stream function to approximate the stationary solid phase, ex-
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Fig. 3. Geometry of the cylindrical vessel: inner radius R i = 0 . 025 m, outer radius 

R o = 0 . 0325 m, height of solution H = 0 . 0255 m, thickness of cover lid l 1 = 0 . 006 

m, vessel wall l 3 = 0 . 0075 m, and stagnant air layer l 2 � l 4 = 0 . 01 m. The computa- 

tional domain 
 indicates 0 ≤ r ≤ R i and 0 ≤ z ≤ H , where inner radius R i is used 

as the length scale in dimensionless formulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(  

 

 

 

 

 

(i  

 

 

 

 

 

 

 

 

 

c  

c  

r  

i

3

 

t  

i  

t  

a  

t  

a  

l  

t  

t  

c  

c

 

(  
pressed as 

˜ ω = ̃

 ω � 

[
1 

2 

− 1 

2 

tanh 

√ 

2 (φs� + 0 . 8) 

2 C h 

]
(52)

and 

˜ ψ = 

˜ ψ � 

[
1 

2 

− 1 

2 

tanh 

√ 

2 (φs� + 0 . 8) 

2 C h 

]
, (53)

respectively. The vorticity and stream function thus have a smooth

transition from liquid phase to zero in the solid phase ( ̃  ω , ˜ ψ → 0

as φs � → 1 and 

˜ ω → ̃

 ω � , 
˜ ψ → 

˜ ψ � as φs� → −1 ). 

The phase fields φs � and φi and temperature T have zero gradi-

ent value along the radial direction at r = 0 as a symmetric condi-

tion. The phase field φs � remains −1 (liquid) on top, bottom, and

circumferential wall, and only turns into 1 while the temperature

on the boundaries is lower than freezing temperature T 0 , indicating

an immediate heterogeneous nucleation of the ice phase without

supercool. 

To facilitate the computation by including more general effect

from heat transfer surfaces, we consider a reduced-order (non-

local) heat transfer resistance model [45] to the top, bottom, and

circumferential walls: 

(i) At the top surface, z = H, a stagnate air layer with thickness

l 2 and thermal conductivity k air is applied. The cover lid has

thickness l 1 , thermal conductivity k steel , and heat exchange from

natural convection to environment at temperature T env . The

boundary condition is therefore formulated as 

−k 
∂T 

∂z 
= 

T − T env 

l 1 /k steel + l 2 /k air + 1 /h top 
, (54)

where h top ( Fig. 1 ) is the heat transfer coefficient approxi-

mated by a horizontal round plate using the empirical relation-

ship [46] : 

N u , top = 

h top R i 

k 
� 0 . 559 R 

1 / 5 
a , (55)
air 
where N u , top and R a are Nusselt and Rayleigh numbers. The

corresponding dimensionless form is written as 

∂ ̃  T 

∂ ̃  z 
= 

˜ T env − ˜ T ˜ k 
[̃

 l 1 / ̃
 k steel + ̃

 l 2 / ̃
 k air + 1 / B i , top 

] at ˜ z = 

˜ H , (56)

where the Biot number B i , top is defined as 

B i , top = 

h top R i 

k 0 
, (57)

indicating the conduction-to-convection resistance on the top

surface. 

ii) For the bottom surface at z = 0 , the conduction thermal resis-

tance is based on stainless steel material with thickness l 3 and

thermal conductivity k steel , and a stagnate air layer below the

vessel with thickness l 4 and thermal conductivity k air . Thus the

resistance boundary condition can be formulated as 

k 
∂T 

∂z 
= 

T − T env 

l 3 /k steel + l 4 /k air 

, (58)

and in dimensionless form: 

∂ ̃  T 

∂ ̃  z 
= 

˜ T − ˜ T env ˜ k 
[̃

 l 3 / ̃
 k steel + ̃

 l 4 / ̃
 k air 

] at ˜ z = 0 . (59)

ii) For the circumferential wall at r = R i , conduction heat transfer

through vessel and a natural convection for the vertical wall are

considered, estimated by 

−k 
∂T 

∂r 
= 

T − T env 

R i ln (R o /R i ) /k steel + R i / (R o h side ) 
, (60)

where R i and R o are the inner and outer radii of the vessel, re-

spectively, and h side is the heat transfer coefficient estimated

by a vertical plate for a cylinder wall with large radius. An

empirical relationship for a relatively small Rayleigh number

( R a ≤ 10 9 ) can be applied to this study [45] : 

N u , side = 

h side H 

k air 

� 0 . 68 + 

0 . 67 R 

1 / 4 
a 

[ 1 + (0 . 492 / P r ) 9 / 16 ] 4 / 9 
. (61)

And the corresponding dimensionless form becomes 

∂ ̃  T 

∂ ̃  r 
= 

˜ T env − ˜ T ˜ k 
[
ln ( ̃  R o ) / ̃  k steel + 1 / 

(˜ R o B i , side 

)] at ˜ r = 1 , (62)

where the Biot number is defined as B i , side = h side H/k 0 . 

For the configuration shown in Fig. 3 , the heat transfer coeffi-

ients h top � 4.6 W/(m 

2 · K) and h side � 7.9 W/(m 

2 · K), and the

orresponding Biot numbers are B i , top � 57 . 03 and B i , side � 8 . 37 ,

espectively. A reference case with fast cooling in a ethanol bath

s simulated by h top , h side → ∞ . 

. Material properties 

Measurements of relevant thermophysical properties of pro-

ein solutions, including density, specific heat, thermal conductiv-

ty, dynamic viscosity, and solute diffusivity within the tempera-

ure range of interest are fairly limited. Here we consider sucrose

s the primary solute based on available experimental data. Al-

hough sucrose has very different properties than proteins, it is

 common excipient used as a cryoprotectant in protein formu-

ations. In this study the thermophysical properties are assumed

emperature and sucrose concentration dependent, with correla-

ions extracted from experimental data. Figs. 4 to 6 illustrate the

hanges of relevant material properties with temperature and su-

rose concentration. 

The changes of mass density in supercooled liquid water

 Fig. 4 a) and ice ( Fig. 4 b) phases are plotted against temperature.
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Fig. 4. Thermophysical properties. (a, b) Mass densities of pure water ρ� and ice ρs at different temperatures, (c, d) specific heats of sucrose solution c p � and ice c p s , and 

(e, f) thermal conductivities of sucrose solution k � and ice k s at different tem peratures. Both c p � and k � have taken solute concentration φ1 into account. All data points are 

from literature [47] , whereas solid lines are from the correlation Eqs. (63) –(68) . 
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ρ

a

ρ

r  

i  

p  

1

(

 

a

c

he temperature dependency [47] is correlated in MKS unit as 

� (T ) � −4 × 10 

−7 (T − T 0 ) 
4 + 10 

−4 (T − T 0 ) 
3 

−0 . 0105(T − T 0 ) 
2 + 0 . 1(T − T 0 ) + ρ0 , (63) 

nd 

s (T ) � 0 . 917 ρ0 + 0 . 15(T 0 − T ) , (64) 

espectively, where temperature is in degree Kelvin. The density

n supercooled liquid state decreases a few percentages as tem-
erature decreases. The sucrose density ρ1 is assumed a constant

587 kg/m 

3 , and the protein density ρ2 is assumed 1364 kg/m 

3 

based on BSA). 

The specific heat of sucrose solution is correlated with temper-

ture and sucrose concentration [18] as 

 p � (T , φ1 ) � 4180 

[ 
1 − 0 . 953 φ1 (1 − 0 . 588 φ1 ) + 10 

−3 (T − T 0 ) 
] 
, 

(65) 
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Fig. 5. Transport properties. (a) Dynamic viscosity η� and (b) diffusivity D 1 � of su- 

crose in liquid solution versus its volume fraction, obtained from Eqs. (70) and (71) , 

respectively. 

Fig. 6. Equilibrium freezing temperature T eq of sucrose solution. Data points are 

from literature [51] , whereas the solid line is based on the correlation Eq. (72) . 
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llustrated in Fig. 4 c, which monotonically increases as temperature

ncreases. The specific heat of ice ( Fig. 4 d) can be correlated with

emperature [47] as 

 p s (T ) � c p 0 + 7 . 8(T − T 0 ) . (66)

The thermal conductivity of sucrose solution (shown in Fig. 4 e)

s provided by literature [18] and expressed as 

 � (T , φ1 ) � 0 . 58 

[ 
1 − 0 . 905 φ1 (1 − 0 . 588 φ1 ) + 2 . 6 × 10 −3 (T − T 0 ) 

] 
, 

(67)

hereas the thermal conductivity of ice ( Fig. 4 f) [47] can be esti-

ated by 

 s (T ) � k 0 − 0 . 0123(T − T 0 ) , (68)

hich increases as temperature decreases. 

Furthermore, the temperature-dependent dynamic viscosity of

ater can be correlated by the Vogel-Fulcher-Tamman (VTF)

odel [48] as 

� (T ) � 4 . 442 × 10 

−5 exp 

(
2 . 288 × 168 . 9 

T − 168 . 9 

)
, (69)

here the factor 4 . 442 × 10 −5 is the viscosity at temperature

68.9 K ( > T g � 136 K). As shown in Fig. 5 a, the dynamic vis-

osity are negatively correlated with temperature. To incorporate

he solute concentration effect to the viscosity, we compose the

TF and Mooney’s viscosity models to estimate the viscosity of the

ucrose solution [19] as 

� (T , φ1 ) = η� (T 0 , φ1 ) η� (T ) � exp 

(
6 . 3 φ1 

1 − 0 . 85 φ1 

)
η� (T ) , (70)

here the concentration-dependent viscosity is estimated at T 0 =
73 . 15 K [49] . 

The diffusivity of sucrose in solution ( Fig. 5 b) can be estimated

y the proportionality based on the Stokes-Einstein relation as 

 1 � (φ1 , T ) � 

D 0 T η0 

T 0 η� (φ1 , T ) 
, (71)

here D 0 � 2 . 1 × 10 −10 m 

2 / s [14] is the solute diffusivity of su-

rose in aqueous solution at T 0 in the dilute limit. The diffusiv-

ty for the dilute BSA protein molecules is around D 2 � � 5 . 9 ×
0 −11 m 

2 / s [50] . 

Finally, the equilibrium freezing temperature of sucrose solu-

ion decreases as concentration of sucrose increases, also known

s freezing-point depression, which can be estimated from the liq-

idus line of sucrose-water phase diagram [51] as 

 eq (φ1 ) � T 0 − 50 φ2 
1 , (72)

hown in Fig. 6 . The influences of dilute proteins to all properties

re neglected in this study due to the lack of relevant measure-

ent in the supercooled regime. 

. Results and discussion 

The process simulation is carried out by the alternating-

irection implicit (ADI) finite difference scheme for the govern-

ng Eqs. (44) , (45), (47), (48) , and (50) using 100 × 102 uniform

esh on a cross section of axisymmetric vessel and scaled time

tep 2 × 10 −6 . No additional interface tracking algorithm is applied

o the phase-field model. The theoretical results and discussion

re arranged as follows. First, the developed phase-field method-

logy is validated by comparing the numerical results (shown in

ig. 7 ) of an axisymmtric heat conduction problem with the clas-

ical interface immobilization method, which is known robust in



J.-Q. Li and T.-H. Fan / International Journal of Heat and Mass Transfer 156 (2020) 119915 11 

Fig. 7. Comparisons of numerical results predicted by the phase-field method (solid lines) and interface immobilization method (dots) on transient freezing dynamics of a 

pure water in a 1D axisymmetric domain, showing the location of the ice front along the radial direction (a), temperature at the axisymmetric center point (b), the ice front 

velocity (c) versus time, and the corresponding temperature profiles along the radial direction at scaled time instants ̃  t = 30 , 40, and 50 (d). 

Fig. 8. Temperature field (top row, color contours) and mass density field overlapped with velocity vectors (bottom row, color contours for density) at scaled time instants ˜ t = 0 . 5 , 1.0, 1.2, 1.4, and 2.0 during the cooling process. The ambient temperature is at ̃  T env = −2 . The computational domain is a symmetric plane of the cylindrical vessel 

shown in Fig. 1 . 
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Fig. 9. Freezing dynamics in a cylindrical vessel at time instants ̃  t = 5 , 15, 30, and 33.8. The top row of contour maps shows scaled temperature distribution, middle row 

presents sucrose volume fraction φ1 , and the bottom row is protein fraction φ2 . The contour maps on φ1 and φ2 are overlapped with velocity vectors of the fluid flow, and 

the solid lines in all results are from the phase-field prediction, indicating the ice/freeze-concentrate interfaces. 

Fig. 10. An unstable flow pattern along with sucrose concentration within the vessel from ̃

 t = 4 . 94 to 5.04. The solid lines indicate the ice/freeze-concentrate interfaces (or 

ice fronts). 
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Fig. 11. Temperature histories at the specific locations along the symmetric axis 

and the circumferential side wall during the cooling and freezing processes under 

different scaled environment temperatures: ̃  T env = −2 , −4 , and −6 (scaled by �T = 

10 K), and with time scale τ
T 

= 616 . 12 s. 

Fig. 12. Sucrose concentration φ1 along the symmetric axis under different envi- 

ronmental temperatures: ̃  T env = −2 , −4 , and −6 . 
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a  
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t  

Fig. 13. Comparison of experimental results (data points) with the predicted tem- 

perature on the symmetric axis (solid line) and the circumferential side wall (dash 

line) during freezing of a pure water under (a) a fast cooling condition using liq- 

uid ethanol bath with approximated h top and h side → ∞ , and (b) a natural con- 

vection with cold air surrounding the vessel. The configuration is delineated in 

Section 2.6 with h top = 4 . 6 W / (m 

2 · K) and h side = 7 . 9 W / (m 

2 · K) for case (b). The 

red dots indicate the experimental data on the symmetric axis and the blue trian- 

gles for the side wall. Both datasets are extracted from literature [15] . (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

F  

p  

a  

1  

p  

e  

c  

s  

c  

T  

t  

s  

T  
olving one-dimensional Stefan problems [52] with a sharp mov-

ng interface. Second, the 3D axisymmetric thermal-fluid dynam-

cs and mass transfer characteristics resulting from the phase-field

odel are presented in detail ( Figs. 8–12 ), followed by a side-by-

ide comparison with experimental data ( Fig. 13 ). 

Formulations of the immobilized heat conduction equations

nd the boundary conditions for a moving interface are provided

n Appendix A . This interfacial immobilization method essentially

rovides the sharp (zero thickness) interface limit to validate the

hase-field approach with a thin but smooth and continuous in-

erface. The axisymmetric system has only radial dependency so

hat the coordinate transformation can be carried out analytically.
ig. 7 shows the computational results of freezing dynamics of

ure water obtained from both methods. Finite difference schemes

re applied to both approaches with a scaled time step 10 −5 and

0 0 0 uniform grid points along the radial direction. The thermo-

hysical properties are phase dependent, and the heat transfer co-

fficient is set to h = 7 . 9 W / (m 

2 K) based on a natural convection

ondition given in Section 2.6 . Fig. 7 a–c are the transient results

howing the location of the moving interface, temperature at the

enter point, and the moving velocity of the interface versus time.

he initial condition is defined by a liquid phase with uniform

emperature ˜ T ini = 1 (283.15 K), and the ice phase grows progres-

ively from the outer boundary ( ̃  b = 1 ) to the center point ( ̃  b = 0 ).

he length and time scales are based on radius of the circular do-
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main and the corresponding thermal diffusion time, R i = 0 . 25 cm,

and τ
T 

= 616 . 12 s, respectively. Overall the phase-field approach

agrees very well with the interface immobilization method at all

transient steps. Specifically, the moving speed (scaled by R i /τT 
�

40.57 μm/s) of the ice front ranges from 0 to about 6 μm/s, slightly

increases as the ice phase just starts to develop and increases

steeply as the front approaches to the center point. The relatively

fast moving front is due to an efficient removal of the thermal en-

ergy while the front is moving to the center point and the phase

transition area reduces significantly. The temperature profiles at

several time instants are demonstrated in Fig. 7 d, implying the

corresponding temperature gradient and thus the strength of heat

flux along the radial direction. Figure 7d has also demonstrated the

temporal and spatial accuracy of the phase-field approach in both

solid and liquid phases. The parameters used for interfacial en-

ergy, thickness, and mobility are feasible in simulating the macro-

scopic freezing dynamics. The maximum deviation of temperature

between these two approaches is less than 0.05 K. 

Fig. 8 shows computational results on cooling of water-sucrose-

protein mixture (liquid phase only, before ice formation) in a

cylindrical vessel. A sequence of images of temperature (top row)

and mass density overlapped with velocity vectors (bottom row)

are presented at scaled time instants ˜ t = 0 . 5 , 1.0, 1.2, 1.4, and

2.0. The initial conditions include a uniform temperature ˜ T ini = 1 . 0

(283.15 K), uniform sucrose concentration φ1 , ini = 0 . 03 , and pro-

tein concentration φ2 , ini = 0 . 005 . The ambient temperature is fixed

at ˜ T env = −2 . 0 (253.15 K) during the process. Several lumped heat

transfer boundary conditions are provided in Section 2.6 . Because

the concentration of solutes remains uniform before ice starts to

form, the local mass density of the liquid solution only varies with

temperature. As shown in the sequential plots, near the beginning

stage at time instant ̃  t = 0 . 5 , the liquid solution near the circum-

ferential side wall has lower temperature but higher density due

to higher temperature gradient or stronger cooling effect coming

from the wall boundary. The fluid flow driven by buoyancy (lower

density at higher liquid temperature) results in a downstream flow

sweeping through the side wall and circulating throughout the ves-

sel. A lower temperature is observed at the lower part of the ves-

sel at this point due to the downstream convective flow and also

because that the bottom surface has a larger cooling effect com-

paring to the top surface. As the liquid solution continuously cools

off, the highest density area appears at around temperature con-

tour ˜ T = 0 . 4 . From a closer look of the sequential plots one can

observe the area with temperature ˜ T < 0 . 4 at ̃  t = 1 . 0 , 1.2, and 1.4

is correlated with the decrease of density field. Overall the solu-

tion near the bottom and side walls has lower temperature and

lower density than in the upper part of the vessel, which drives

the fluid flow to a reverse direction from bottom back to the top.

This motion enhances temperature uniformity and mixing of so-

lutes within the vessel. Finally at ̃  t = 2 . 0 , right before ice forma-

tion, the liquid solution is thermo-solutal stable with higher mass

density near the bottom. The resulting flow reverses its direction

only once in this case before ice formation. The circulation dur-

ing this pre-ice formation period has velocity magnitude about

1 . 5 × 10 −4 m/s. 

Fig. 9 includes the transient dynamics in both liquid and solid

phases, showing a long-time freezing process after ice starts to

form. The transient results demonstrate the temperature distribu-

tion, location of ice/freeze-concentrate interface (or ice front), su-

crose and protein concentrations in terms of volume fraction, and

the velocity vectors of the fluid flow at time instants ̃  t = 5 , 15, 30,

and 33.8. The amount of supercooling and nucleation kinetics are

neglected in this macroscopic model and the freezing temperature

follows the equilibrium freezing temperature of a sucrose solution

at various concentration. In this test case, sucrose has higher ini-

tial concentration 0.03 than the model protein 0.005, and thus the
rotein’s contribution is assumed relatively small so that the corre-

ations of temperature- and concentration-dependent thermophys-

cal properties (except density that can be directly calculated) of

he mixture are determined only by the sucrose content. Near the

enter point of the vessel, a thermal-arrest region (as also shown

n Fig. 7 b) is expected as the temperature in the liquid phase al-

ost remains a value close to the equilibrium temperature. The

emperature (top row) is in general lower near the side wall than

t the top and bottom surfaces because of a stronger cooling ef-

ect from the side. As a result, the ice/freeze-concentrate inter-

ace (solid lines) appears first around the side wall, and then fol-

owed by a sporadic ice formation at top and bottom surfaces. The

ce/freeze-concentrate interface approaches towards the center line

rom the top, bottom, and side walls after all surfaces are fully cov-

red with ice at time around 

˜ t = 30 . The interface at ˜ t = 33 . 8 is

eveloped to the upper center of the vessel due to higher cool-

ng rate at the bottom comparing to the top surface, and the ice

ront moving velocity increases dramatically as the liquid phase is

urther confined to a smaller region in the middle of the vessel. 

Furthermore, in Fig. 9 , concentrations of sucrose and the model

rotein are illustrated in the middle and bottom rows, respectively.

he freeze concentration effect appears in both cases, especially

uring the early stage of the freezing process as the slow mov-

ng ice front has a speed less than a micron per second, so that

he system has sufficient time for solutes to be excluded from the

ce phase. That is, the interfacial partition effect is near equilib-

ium. However, at the later stage as the moving speed of the ice

ront increases, the interfacial condition is no longer at equilib-

ium, and therefore solutes are largely left behind the interface

nd entrapped in the ice phase. Without more information about

he microstructure and morphology of the ice crystals, this macro-

copic prediction of non-equilibrium partition effect remains phe-

omenological. In the macroscopic process simulation, the freeze

oncentrate changes its local mass density on the liquid side of the

olution, and thus its redistribution is further coupled with sedi-

entation and natural convection effects in the fluid flow. Near the

eginning of ice formation at ̃  t = 5 , both temperature and protein

istributions are quite uniform, so that the downward flow only

orrelates with sucrose concentration, as a solute plume oberved

n the figure. This indicates that the local flow instability is likely

ontrolled by the segregated sucrose from sporadic patches of the

ce phase initiated from the top surface. As the ice phase grows to
 

 = 15 and 30, the overall concentration within the liquid domain

ncreases more significantly, and the fluid flow becomes more sta-

le due to less inertia in a confined region. Meanwhile, convec-

ion and sedimentation effects accumulate both types of solutes to

he bottom portion of liquid phase, and the solute exclusion effect

s weakened as ice front velocity increases. At ̃  t = 33 . 8 , a signifi-

ant amount of sucrose is left behind by a faster moving ice front,

nd entrapped by ice in the center/bottom portion of the vessel.

he concentration of the model protein, however, shows accumu-

ation at the top and bottom parts of the solution, and the effect

s more significant along the symmetry axis. This is due to much

arger molecular weight and an assumed smaller Flory’s interaction

arameter. For both types of solutes, local concentration varies sig-

ificantly, but overall the center/bottom portion of the cylindrical

essel has more freeze concentrate introduced by the freezing pro-

ess as expected from experimental observation [15] . 

Fig. 10 provides a closer look of the onset of flow instability

ear the top surface. The sequential plots show sucrose concen-

ration and the velocity field at time instants around 

˜ t = 5 . The

poradic ice patches appeared at the top surface along with the

reeze concentration effect increase local sucrose concentration, re-

ulting in a Rayleigh-Taylor instability from the locally increased

ass density. The higher concentration pocket of solution moves

ownward under the gravity effect, and the surrounding portion
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f the solution with lower concentration is displaced upward in

his bounded domain. Later on the flow instability is weakened

s sucrose diffuses into the bulk. Because the temperature field

s quite uniform in the liquid solution during the freezing pro-

ess, the Rayleigh-Bernard and double-diffusive instability can be

eglected. 

Fig. 11 shows temperature histories for specific locations along

he symmetric axis and side wall in the vessel under different

nvironmental temperatures. Following temperature contour maps

hown in Figs. 8 and 9 , the temperature distributions at these rep-

esentative points for ˜ T env = −2 (253.15 K) have only a small varia-

ion before the ice formation, and the uniform temperature distri-

ution in the liquid phase is the signature of thermal-arrest phe-

omenon. The temperature uniformity is further enhanced by the

onvective effect. A closer look at the transient result, tempera-

ures at 20 mm depth are slightly lower than the temperatures at

0 mm depth at the beginning of the process. This is simply due

o a stronger cooling rate at the bottom than at the top surface.

owever, the same location at 20 mm depth has slightly higher

emperature than at 10 mm as the direction of fluid flow reverses

t about ˜ T � 0 . 4 . The ice formation appears at about ̃  t = 2 . 2 . Dur-

ng freezing the temperature at the side wall gradually decreases

ue to strong heat flux out of the vessel, whereas the tempera-

ure along the symmetric line maintains its value near the equi-

ibrium temperature T eq (in a thermal-arrest region) until the ice

ront reaches the center part. During the freezing/exothermic pro-

ess, the amount of latent heat that can be released relies on the

emperature gradient established in the ice phase, which is influ-

nced by the thermal resistance determined by the heat trans-

er boundary conditions. The time required to freeze the solu-

ion at 20 mm depth is shorter than that at 10 mm depth, re-

ealing the trend of axial freezing direction from bottom to top

n this test case that closely mimics the experimental conditions.

t the final stage ( ̃  T env = −2 , ˜ t > 34 ), the temperatures at these

ocations are quite uniform because of higher thermal diffusivity

n the ice phase, about 10 −6 m 

2 / s , corresponding to lower char-

cteristic thermal diffusion time about 570 s, than in the liquid

hase ( 10 −7 m 

2 / s , diffusion time about 4700 s). The temperature

f the whole computational domain gradually decays to the ambi-

nt temperature at 253.15 K. The temperature profiles under differ-

nt environmental settings are qualitatively similar. At a lower en-

ironmental temperature a steeper profile or stronger cooling rate

eads to shorter cooling and freezing process time as expected. For

he case of ˜ T env = −4 , the process time is about one half of the

ase ˜ T env = −2 under the same heat transfer coefficient, and for
 

 env = −6 , the processing time reduces to one third of the process

ime for ˜ T env = −2 . These results are consistent with a lumped ap-

roximation. 

Following up test cases shown in Fig. 11 , Fig. 12 further illus-

rates the corresponding sucrose concentration profiles φ1 along

he symmetric axis at the end of the freezing process. All of

he results show significant accumulations of sucrose at the bot-

om/center part of the vessel due to sedimentation and buoyant ef-

ects, and solute partition at the ice/freeze concentrate interface as

he ice front moves towards the inner region of the vessel. For the

ase ˜ T env = −2 , the maximum accumulated sucrose concentration,

rapped in the ice phase near the center/bottom part of the ves-

el, is about ten times higher than its initial concentration (under

he assumed kinetics model and coefficients proposed in eq. (40)).

ecause the partition effect is weaken as the moving speed of ice

ront increases, the location that has the highest solute concen-

ration is not necessary the last point to freeze. That is, the freez-

ng front may well enclose the freeze concentrate at higher moving

peed. This is demonstrated on the sucrose concentration map in

ig. 9 at time instance at ˜ t = 33 . 8 . In case of lower environmen-

al temperatures, stronger cooling leads to faster ice front veloc-
ty. The interfacial kinetics at a faster moving front results in less

reeze concentration and thus a more uniform concentration pro-

le, and in the end with maximum accumulation about five times

igher than the initial value in this test case. 

In Fig. 13 we compare the computational results with an excel-

ent experimental study with relatively complete data and rigorous

eat and mass transfer analysis developed by Rodrigues et al. [15] .

he experiment used a 50 mL stainless steel vessel with 5 cm

nner diameter and 7.5 mm wall thickness, covered by a 6 mm

hickness lid. The vessel was cooled by either a circulating air (for

 slow cooling) or liquid ethanol (fast cooling). The whole con-

ainer was lifted up by three stoppers to avoid direct contact with

he freezer. During the freezing process, temperature profiles were

easured by thermocouples placed at various depths and radial lo-

ations within the vessel. The solute concentration was measured

y UV spectroscopy on ice samples and assisted by protein staining

or direct visualization. Measurements of solute concentration and

he apparent freezing rate have uncertainty around 2 to 15%. Here

e compare the computational results with experimental data for

he pure water case within the vessel under fast ( Fig. 13 a) and

low ( Fig. 13 b) cooling conditions, in which the data points at

0 mm depth into the solution phase are extracted here for the

alidation. The initial temperature is set to ˜ T ini = 1 (283.15 K), and

he ambient temperature for both fast and slow cooling cases is
 

 env = −2 (253.15 K). For the fast cooling case ( Fig. 13 a) with ves-

el in a liquid ethanol bath we assume h top and h side → ∞ , and

he pure water is supercooled to about 263.15 K. Upon ice nucle-

tion the temperature of the metastable liquid raises abruptly to

he equilibrium freezing point around T 0 at time ̃  t about 0.3 (time

cale 616 s). This is due to the fast release of latent heat. Without

ny fitting parameter, the numerical result very well predicts the

ooling, temperature recovering, and freezing dynamics from the

ocal measurements in experiments. The representative tempera-

ure on the side wall decreases quickly during the freezing process

s ice starts to form, while the temperature on the symmetric axis

aintains its value near freezing temperature in the thermal-arrest

egion until water at 20 mm depth is frozen. A good agreement

s found between modeling and experimental results in terms of

ynamic temperature distribution and characteristic time scales at

ach stages of the process under the fast cooling condition. Simi-

arly, in Fig. 13 b we compare the temperature profiles with exper-

mental results under air cooling condition. The processing time

s much longer due to smaller heat convection coefficients, esti-

ated as h top = 4 . 6 W / (m 

2 · K) and h side = 7 . 9 W / (m 

2 · K) using

he lumped resistance models. Both experimental and numerical

esults agree well in the cooling stage and show similar tendency

s in the case under fast cooling condition. However, in the ther-

al arrest regime, our prediction on the process time is almost

wo times longer than the reported experimental observation. As a

ough approximation using water properties one can estimate that

he release of heat content during freezing of this amount of water

s about five times longer than cooling under natural convection,

hich is consistent with the modeling result rather than the much

horter process time reported in experiment. Additional tests are

uggested to clarify this contradiction during the freezing stage of

 slow air cooling process. 

. Conclusion 

A phase-field model is developed to describe the macroscopic

reezing dynamics by coupling heat transfer, fluid flow, phase tran-

ition, interfacial kinetics and mass transfer of sucrose and model

rotein in a cylindrical vessel. The methodology agrees with the

nterface immobilization method often used in solving Stefan prob-

ems. The 3D axisymmetric results demonstrate the characteris-

ic behaviors in freezing of water-sucrose-protein solutions par-
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ticularly on the formation of freeze concentrate as the freezing

front evolves during the process. Due to gravity effect, the thermo-

solutal contribution plays a significant role in temperature and

concentration distributions, which are coupled with the evolu-

tion of ice/freeze-concentrate interface. Rayleigh-Taylor instability

is observed briefly during the cooling/freezing process as several

sporadic ice patches appeared at the top surface. The full pro-

cess simulation including freeze concentration and thermal ar-

rest behaviors are resolved by taking freezing point depression

and temperature- and concentration-dependent properties into ac-

count. Although sucrose-protein association is neglected in this

model, the multi-component mass transfer is demonstrated in this

phase-field model including various degrees of solute exclusion

across ice and liquid solution phases. A trapping of sucrose at the

center/bottom part of the vessel and bipolarization distribution of

a model protein are revealed in the test case. Overall the numeri-

cal results show good agreement with available experimental data

except a contradictory point regarding the freezing process time

under air cooling condition. The phase-field approach provides a

great opportunity to model, investigate, predict, and design the

freezing process for biopharmaceutical applications. 
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Appendix A. Interface immobilization method 

In the quasi-1D approximation of phase change in a cylindri-

cal configuration, the heat conduction equations in both liquid and

solid domains can be formulated as 

1 

α� 

∂T � 

∂t 
= 

1 

r 

∂ 

∂r 

(
r 
∂T � 

∂r 

)
for 0 ≤ r ≤ b(t) , (A.1)

and 

1 

αs 

∂T s 

∂t 
= 

1 

r 

∂ 

∂r 

(
r 
∂T s 

∂r 

)
for b(t) ≤ r ≤ R i , (A.2)

where αs and α� are thermal diffusivities of solid and liquid

phases, respectively, r is the radial coordinate, and the transient lo-

cation of the solid-liquid interface at r = b(t) is not known a priori ,

which needs to be determined as a part of the solution. The sharp

interface boundary condition based on energy balance [52] is 

k s 
∂T s 

∂r 
− k � 

∂T � 

∂r 
= ρL a 

db 

dt 
, (A.3)

where k � and k s are thermal conductivities corresponding to the

liquid and solid phases. All properties are constants in the test

case, and the density for solid and liquid phase are the same in

this simplified model. For the short-time cooling process, a liq-

uid with a constant temperature T ini is confined within the region

0 ≤ r ≤ R i , where r = 0 indicates the symmetric axis and r = R i has

a convective boundary condition defined as 

−k � 
∂T � = h (T − T env ) , (A.4)

∂r 
here h and T env are the heat transfer coefficient and the envi-

onmental temperature. For the long-time freezing process, sepa-

ated domains are applied to simulate the liquid and solid phases.

he temperature at the interface r = b(t) remains freezing temper-

ture T 0 on both solid and liquid sides during the freezing pro-

ess. Meanwhile, the temperature boundary condition on r = R i be-

omes 

k s 
∂T s 

∂r 
= h (T − T env ) . (A.5)

The moving interface can be immobilized using a spatial coor-

inate transformation [53,54] in both liquid and solid domains as 

= 

r 

b(t) 
for 0 ≤ r ≤ b(t) and 0 ≤ ζ ≤ 1 , (A.6)

nd 

= 1 + 

r − b(t) 

R i − b(t) 
for b(t) ≤ r ≤ R i and 1 ≤ ζ ≤ 2 . (A.7)

y defining characteristic temperature difference �T , length scale

 i , and time scale τ = R 2 
i 
/αs , the corresponding scaled governing

quations can be written as 

∂ ̃  T � 

∂ ̃  t 
= 

ζ˜ b 

d ̃  b 

d ̃  t 

∂ ̃  T � 

∂ζ
+ 

α� /αs ˜ b 2 

(
∂ 2 ˜ T � 

∂ζ 2 
+ 

1 

ζ

∂ ̃  T � 

∂ζ

)
(A.8)

or 0 ≤ ζ ≤ 1, 

∂ ̃  T s 

∂ ̃  t 
= 

2 − ζ

1 −˜ b 

d ̃  b 

d ̃  t 

∂T s 

∂ζ
+ 

1 

(1 −˜ b ) 2 

(
∂ 2 ˜ T s 

∂ζ 2 
+ 

1 

ζ − 1 + ̃

 b / (1 −˜ b ) 

∂ ̃  T s 

∂ζ

)
(A.9)

or 1 ≤ ζ ≤ 2. And the interfacial boundary condition is 

d ̃  b 

d ̃  t 
= S te 

(
1 

1 −˜ b 

∂ ̃  T s 

∂ζ
− k � /k s ˜ b 

∂ ̃  T � 

∂ζ

)
(A.10)

t ζ = 1 , where the Stefan number S te = c p �T /L a . The correspond-

ng boundary conditions in liquid phase are scaled as 

∂ ̃  T � 

∂ζ
= 0 at ζ = 0 , (A.11)

nd 

∂ ̃  T � 

∂ζ
= − k s 

k � 
B i ( ̃  T − ˜ T env ) at ζ = 1 , (A.12)

uring the cooling process, where the Biot number is defined as

 i = hR i /k s . Whereas during the freezing process the boundary

onditions are scaled as 

∂ ̃  T � 

∂ζ
= 0 at ζ = 0 , (A.13)

˜ 

 � = ̃

 T s = 0 at ζ = 1 , (A.14)

nd 

∂ ̃  T s 

∂ζ
= −B i (1 −˜ b )( ̃  T − ˜ T env ) at ζ = 2 . (A.15)

his method requires a time integration of the interface

q. (A.10) to locate the transformed interfacial position ̃

 b . 
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