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FIXED POINT ANALYSIS OF DOUGLAS-RACHFORD SPLITTING FOR
PTYCHOGRAPHY AND PHASE RETRIEVAL

ALBERT FANNJIANG* AND ZHEQING ZHANG

ABSTRACT. Douglas-Rachford Splitting (DRS) methods based on the proximal point algo-
rithms for the Poisson and Gaussian log-likelihood functions are proposed for ptychography
and phase retrieval.

Fixed point analysis shows that the DRS iterated sequences are always bounded explic-
itly in terms of the step size and that the fixed points are attracting if and only if the
fixed points are regular solutions. This alleviates two major drawbacks of the classical
Douglas-Rachford algorithm: slow convergence when the feasibility problem is consistent
and divergent behavior when the feasibility problem is inconsistent.

Fixed point analysis also leads to a simple, explicit expression for the optimal step size
in terms of the spectral gap of an underlying matrix.

When applied to the challenging problem of blind ptychography, which seeks to recover
both the object and the probe simultaneously, Alternating Minimization with the DRS inner
loops, even with a far from optimal step size, converges geometrically under the nearly
minimum conditions established in the uniqueness theory.

1. INTRODUCTION

Phase retrieval may be posed as an inverse problem in which an object vector with certain
properties is to be reconstructed from the intensities of its Fourier transform. By encoding
the properties and the Fourier intensities as constraint sets, phase retrieval can be cast as a
feasibility problem, i.e. the problem of finding a point in the intersection of the constraint
sets. The challenge is that the intensities of the Fourier transform results in a non-convex
constraint set (a high dimensional torus of variable radii).

Projection algorithms comprise a general class of iterative methods for solving feasibility
problems by projecting onto each of the constraint sets at each step [1]. The most basic
projection algorithm is von Neumann’s Alternating Projections (AP) (aka Error Reduction
in phase retrieval [23]). However, AP tends to stagnate when applied to phase retrieval,
resulting in poor performance.

A better method than AP is the classical Douglas-Rachford algorithm (a.k.a. Averaged Al-
ternating Reflections (AAR)) [13,25,25,35], which apparently can avoid the stagnation prob-
lem in many non-convex problems. When applied to phase retrieval, the classical Douglas-
Rachford algorithm is a special case of Fienup’s Hybrid-Input-Output algorithm [3,23].
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In addition to the standard phase retrieval, AAR has been applied to ptychography under
the name of difference map [50,51,54]. Ptychography uses a localized coherent probe to illu-
minate different parts of a unknown extended object and collect multiple diffraction patterns
as measurement data (Figure 1). The redundant information in the overlap between adja-
cent illuminated spots is then exploited to improve phase retrieval methods [44,47]. Recently
ptychography has been extended to the Fourier domain [45,57]. In Fourier ptychography,
illumination angles are scanned sequentially with a programmable array source with the
diffraction pattern measured at each angle [32,53]. Tilted illumination samples different
regions of Fourier space, as in synthetic-aperture and structured-illumination imaging.

Local, linear convergence of AAR as applied to phase retrieval as well as ptychography
was recently proved in [9,10]. Conditions for global convergence, however, are not known.
Numerical evidence points to sub-linear rate when convergence happens. On the other hand,
for inconsistent feasibility problems, AAR iteration is known to diverge to infinity even in
the convex case (see Proposition 2.1(ii)). This poses a great challenge to AAR when the
data contain noise because in phase retrieval the dimension of the measurement data is much
higher than that of the unknown object (an over-determined system).

The purpose of this work is to develop reconstruction schemes based on more general Douglas-
Rachford splitting (DRS) with adjustable step sizes, perform the fixed point analysis and
demonstrate numerical convergence. AAR is the limiting case of DRS.

The DRS method is an optimization method based on proximal operators, a natural ex-
tension of projections, and is closely related to the Alternating Direction Method of Multi-
pliers (ADMM). The performance of DRS and ADMM in the non-convex setting depends
sensitively on the choice of the loss functions as well as the step sizes. Typically, global
convergence of DRS requires a loss function possessing a uniformly Lipschitz gradient and
sufficiently large step sizes [9,30,33], both of which, however, tend to hinder the performance
of DRS.

In this paper, the loss functions are based on the log-likelihood function for the most im-
portant Poisson noise, which does not have a uniformly Lipschitz gradient, with an optimal
step size, which is necessarily quite large.

We show by a fixed point analysis that the DRS method is well behaved in the sense that
the DRS iterated sequences are always bounded (explicitly in terms of the step size) and
that the fixed points are attracting if and only if the fixed points are regular solutions. In
other words, the DRS methods remove AAR’s two major drawbacks: slow convergence when
the feasibility problem is consistent and divergent behavior when the feasibility problem is
inconsistent.

Moreover, the fixed point analysis leads to the determination of the optimal step size and,
along with it, simple and efficient algorithms with no tuning parameter (Averaged Projection-
Reflection). The main application considered is the more challenging form of ptychography
called blind ptychography which seeks to recover both the unknown object and the probe
function simultaneously. When properly initialized, the DRS algorithms with the optimal
step size converge globally and geometrically to the true solution modulo the inherent am-
biguities.
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Ficure 1. Simplified ptychographic setup showing a Cartesian grid used for
the overlapping raster scan positions [43]. See Appendix A for details.

The rest of the paper is organized as follows. In Section 3, we introduce the Douglas-Rachford
splitting method as the key ingredient of our reconstruction algorithms, Gaussian-DRS and
Poisson-DRS. We give the fixed point and stability analysis in Sections 4, 5 and 6. In Section
7, we discuss the selection of the optimal step size. In Section 8, we discuss the application to
blind ptychography and in Section 9, we present numerical experiments. In Appendix A, we
discuss the structure of the measurement matrices. In Appendix B, we show that Gaussian-
DRS is an asymptotic form of Poisson-DRS. In Appendix D we give a perturbation analysis
for the Poisson DRS. In Appendix E, we analyze the eigenstructure of the measurement
matrices. We conclude in Section 10. A preliminary version of the present work is given
in [20].

2. AVERAGED ALTERNATING REFLECTIONS (AAR)

The classical Douglas-Rachford algorithm is based on the following characterization of convex
feasibility problems.

Let X and Y be the constraint sets. Let Px be the projection onto X and Rx = 2Px — I
the corresponding reflector. Py and Ry are defined likewise. Then

(1) we XNY ifand only if w= RyRxu

[26]. The latter fixed point equation motivates the Peaceman-Rachford (PR) method: For
k=0,1,2,...

U1 = Ry Rxyk.
The classical Douglas-Rachford algorithm is the averaged version of PR: For k = 0,1,2,. ..
1 1

(2) Ukt1 = 5k + §RyRXU/m
hence the name Averaged Alternating Reflections (AAR).

A standard result for AAR in the convex case is this.
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Proposition 2.1. [5] Suppose X and Y are closed and convex sets of a finite-dimensional
vector space E. Let {uy} be an AAR-iterated sequence for any uy € E. Then one of the
following alternatives holds:

(1)) X NY # 0 and (ug) converges to a point u such that Pxu € X NY;
(1)) XNY =0 and ||Jug| — oo.

In the consistent case (i), the limit point u is a fixed point of the AAR map (2), which after
projection is in X NY. However, the convergence rate of AAR is in general sublinear [2,29].
The inconsistent case (ii) arises from noisy data or modeling errors resulting in divergent
AAR iterated sequences, a major drawback of AAR since the inconsistent case is prevalent
with noisy data because of the higher dimension of data compared to the object.

The AAR map (2) is often written in the following form
(3) Ukyr1 = U + Pnyuk — quk

which is equivalent to the 3-step iteration

(4) ye = Pxug;
(5) 2 = Py(2yr —w) = Py Rxuy,
(6) Upt1 = Up+ 2 — Yk

2.1. Phase retrieval as feasibility. For any finite dimensional vector u, define its modulus
vector |u| as |u|[j] = |ulj]| and its phase vector sgn(u) as

. 1 if ufj] = 0
sen(u)ly] = {um/mw else.

where j is the index for the vector component. Because of the value of sgn(u) where u[j] =0
is arbitrarily selected, such points are points of discontinuity of the sgn function.

In phase retrieval including ptychography, we can write the given data b as
(7) b=|u| with uw=Af

for some measurement matrix A and unknown object f. For phase retrieval and ptychog-
raphy, A has some special features described in Appendix A. For most of the subsequent
analysis, however, these special features are not relevant.

Let O be the object space, typically a finite-dimensional complex vector space, and X = AO.
Since the object is a two dimensional, complex-valued image, we let O = C™* where n is the
number of pixels in each dimension.

Let N be the total number of data. The data manifold
Y :={ueC":|u =0b}

is a N (real) dimensional torus. For phase retrieval it is necessary that N > 2n?. Without

loss of generality we assume that A has a full rank.
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The problem of phase retrieval and ptychography can be formulated as the feasibility prob-
lem

(8) Find we XnNY,
in the transform domain C¥ instead of the object domain c.

Let us clarify the meaning of solution in the transform domain since A is overdetermining.
Let ® denotes the component-wise (Hadamard) product and we can write
(9) Pxu= AA"u, Pyu=0® sgn(u)

Rx =2Px —1, Ry =2Py—-1

where AT := (A*A)~'A* is the pseudo-inverse of A.

We refer to u = %A f,a € R, as the true solution (in the transform domain), up to a
constant phase factor e'*. We say that u is a generalized solution (in the transform domain)
if

|u| =b, @:= Pxu.
Accordingly, the alternative (i) in Proposition 2.1 means that if a convex feasibility problem

is consistent then every AAR iterated sequence converges to a generalized solution and hence
every fixed point is a generalized solution.

Typically a generalized solution u is neither a feasible solution (since |u| may not equal b)
nor unique (since A is overdetermining) and, if Pyz = 0, u+ z is also a generalized solution.
We call u a reqular solution if u is a generalized solution and Pxyu = u.

Let @ = Pxu for a generalized solution u. Since Pxu = 4 and |4| = b, @ is a regular solution.
Let us state this simple fact for easy reference.

Proposition 2.2. If u is a generalized solution, then Pxu is a reqular solution.

The goal of the inverse problem (7) is the unique determination of f, up to a constant phase
factor, from the given data b. In other words, uniqueness holds if, and only if, all regular
solutions 4 have the form

(10) i =e“Af

or equivalently, any generalized solution u is an element of the (2N — 2n?)-dimensional
manifold

(11) {e“Af —2:Pxz=0, zc CY, a € R}.

In the transform domain, the uniqueness is characterized by the uniqueness of the regular so-
lution, up to a constant phase factor. Geometrically, uniqueness means that the intersection
X NY is a circle (parametrized €' times Af).

As proved in [9], when the uniqueness (11) holds, the fixed point set of the AAR map (2) is
exactly the continuum set

(12) {u=¢e"Af —2: Pxz =0, sgn(u) = a+sgn(Af), 2 € C,a € R}.
5



In (12), the phase relation sgn(u) = a+sgn(Af) implies that z = n®sgn(u),n € RY, b+n > 0.
So the set (12) can be written as

(13)  {e(b—n) ®@sgn(Af): Px(n©sgn(Af)) =0, b+n>0, n€RY,a € R},

which is an (N —2n?) real-dimensional set, a much larger set than the circle {e®Af : a € R}
for a given f. On the other hand, the fixed point set (13) is N-dimension lower than the
set (11) of generalized solutions.

A more intuitive characterization of the fixed points can be obtained by applying Rx to the
set (13). Since

Rx[e(b—n) @ sgn(Af)] = €*(b+n) © sgn(Af)
amounting to the sign change in front of 7, the image set of (13) under the map Ry is
(14)  {e*(b+n) ®sgn(Af) : Px(n®sgn(Af)) =0, b+n>0, ncRY, acR}.
The set (14) is the fixed point set of the alternative form of AAR:

1 1
(15) Tpi1 = §$k+§RnyIk

in terms of xy, := Rxuy. The expression (14) says that the fixed points of (15) are generalized
solutions with the “correct” Fourier phase.

However, the boundary points of the fixed point set (14) are degenerate in the sense that they
have vanishing components, i.e. (b+n)[j] = 0 for some j and can slow down convergence [24].
Such points are points of discontinuity of the AAR map (15) because they are points of
discontinuity of Py = b @ sgn(-) (see also the comment below (30)). Indeed, even though
AAR converges linearly in the vicinity of the true solution, numerical evidence suggests
that globally (starting with a random initial guess) AAR converges sub-linearly (cf. [2,29]).
Due to the non-uniformity of convergence, the additional step of applying Px (Proposition
2.1(i)) at the “right timing” of the iterated process can jumpstart the geometric convergence
regime [9].

3. DOUGLAS-RACHFORD SPLITTING (DRS)

Douglas-Rachford Splitting (DRS) is an optimization method for solving the following min-
imization problem:

(16) min K (u) + L(u)
where the loss functions L and K represent the data constraint Y and the object constraint
X, respectively.

To deal with the divergence behavior of AAR (Proposition 2.1 (ii)) in the case of, e.g. noisy
data, we consider the Poisson log-likelihood cost functions [6, 52]

(17) Poisson: L(u) = Z|u[i]\2—b2[i]ln\u[z’]|2

based on the maximum likelihood principle for the Poisson noise model. The Poisson noise

is the most prevalent noise in X-ray coherent diffraction. There is, however, a disadvantage
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of working with (17), i.e. it has a divergent derivative where u(7) vanishes but b(z) does not.
This roughness can be softened by considering an asymptotic form

1
(18) Gaussian:  L(u) = §H\u|—bH2

In Appendix B, we show that the Poisson log-likelihood function (17) is asymptotically
reducible to (18).

With the constraint u = Ag, ¢ is a stationary point in the object domain if and only if
g = A'[sgn(Ag) ©b].

In the noiseless case, |Af| = b and hence f is a stationary point by the isometry of A. On
the other hand, with noisy data there is no regular solution to |Az| = b with high probability
(since A has many more rows than columns) and f is unlikely to be a stationary point (since
the stationarity equation imposes extra constraints on noise).

Moreover, the Hessian of (18) at u = Af is positive semi-definite and has one-dimensional
eigenspace spanned by if associated with eigenvalue zero [9-11].

Expanding the loss function (18)

(19) L) = sl = S ollulil + 1P

we see that L has a bounded sub-differential where u[j] vanishes but b[j] does not. There are
various tricks to further smooth out (18) e.g. by introducing an additional regularization
parameter as

1
(20) Lw) = SIVIP+e—VETP, >0

(see e.g. [8]).

Besides the Poisson noise, a type of noise due to interference from multiple scattering can be
modeled as complex circularly-symmetric Gaussian noise, resulting in the signal model

(21) b= |Af+1

where 77 is a complex circularly-symmetric Gaussian noise. Squaring the expression, we
obtain

b* = [AfP+ 0> +2R[© Af)

Suppose |n| < |Af| so that |n|> < 2R(7 © Af). Then
(22) V' o~ |AfP+2RM e Af).

Eq. (22) says that at the photon counting level, the noise appears additive and Gaussian but
with variance proportional to |Af|?, the Poisson noise in the asymptotic regime discussed in
Appendix B. Therefore the loss function (18) is suitable for this case too.

The maximum likelihood scheme is a variance stabilization scheme which uniformizes the
probability distribution for every pixel regardless of the measured intensity value [31]. See

[28,56] for more choices of loss functions.
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The amplitude-based Gaussian loss function (18) is well known to outperforms the intensity-
based loss function |[|ul> — b?|?, even though the latter is more smooth [55]. Due to the
non-differentiability of both K and L, the global convergence property of the proposed DRS
optimization is beyond the current framework of analysis [33]. The ptychographic iterative
engines, PIE [21,22,48], ePIE [40] and rPIE [38], are also related to the mini-batch gradient
method for the amplitude-based cost function (18).

For K, we let K (u) be the indicator function of the range of A, i.e. a “hard” constraint.

When the corresponding feasibility problem is consistent (feasible), there exist u € CV such
that |u| = b and u = Ag for some g € C**, which are exactly the global minimizers of (16),
realizing the minimum value 0, as well as the regular solutions defined in Section 2.1.

When the corresponding feasibility problem is inconsistent (infeasible), the minimum value
of (16) is unknown and the global minimizers are harder to characterize.

DRS is based on the proximal operator which is a generalization of projection. The proximal
point relative to a function G is given by

1
proxg(u) := argmin G(x) + §Hx — ul|?.

With the loss functions (17) or (18), Px is replaced by Pk, and Py by Py,, respectively,
with the step size v = 1/p. The 3-step procedure (4)-(6) is replaced by

(23) u= proxg,,(w);

(24) w; = proxp,(2u — )
(25) Ul = W +w —1
forl=1,2,3....

For convex optimization, DRS (23)-(25) is equivalent to the Alternating Direction Method
of Multipliers (ADMM) applied to the dual problem to (16). In Appendix C, we show that
for phase retrieval they are essentially equivalent to each other.

For our choice of K, proxy,,(u) = Pxu = AA%u is independent of p. This should be
contrasted with the choice of the more smooth distance function adopted in [33] for the
tractability of convergence analysis (see more discussion in Section 10).

If we define the reflector Ry corresponding to prox,, o(u) as
(26) Ryu = 2 proxy,,,(u) — u,

then we can write the system (23)-(25) as
1 1

(27) Upy1 = §uk + §RYRXuk
which is equivalent to

1 1
(28) Thy1 = 591% + §RXRYxk

in terms of z := Rxuy. In other words, the order of carrying out prox;,, and proxy,, does

not matter in the current DRS set-up.
8



For the Gaussian loss function (18), the proximal point can be explicitly derived

1
prox; ,(u) = ——b®sgn(u)+

p+1

u

p+1
1

= m(b + plul) © sgn(u),

an averaged projection with the relaxation parameter p. Now we are ready to give the most
compact and explicit representation of the Gaussian DRS map:

Uy P
29 Ukpr = + ——Pxux + ——Py Rxu
() k+1 p+1 p+1Xk p+1YXk

which can be compared with AAR in the form (3).

For the Poisson case the DRS map has a more complicated form

1 1 14 ) 82+p),]"
30 = up———R — L IR 22T <R )
( ) Uk4-1 zuk p+2 x U + 2(p+2> | Xuk| + p2 @sgn X UL

where b? is the vector with component b?[j] = (b[])? for all j.

Note that I'(u) and II(u) are continuous except where Rxu vanishes but b does not due to
arbitrariness of the value of the sgn function at zero.

After the iteration is terminated with the terminal vector u,, the object estimate is obtained
by

(31) fo = Atu,.
We shall refer to DRS with the Poisson log-likelihood function (30) and the Gaussian ver-
sion (29) by Poisson-DRS and Gaussian-DRS, respectively. The computation involved in

Gaussian-DRS and Poisson-DRS are mostly pixel-wise operations (hence efficient) except for
the pseudo-inverse AT which can be computed efficiently (see Appendix A).

In the limiting case of p = 0, both Gaussian-DRS and Poisson-DRS become the AAR
algorithm.

4. FIXED POINTS

For simplicity of presentation, we shall focus on the case of the Gaussian DRS.
By definition, all fixed points u satisfy the equation
(32) u = D(u)
and hence after some algebra by (29)
(33) Pxu + pPyu = b® sgn(Rxu).
9



The main result of this section is that the iteration of I" always produces a sequence bounded
in norm by

Il
min{p, 1}
(Theorem 4.6) with slightly better bounds on the fixed points (Corollary 4.7). Therefore,

Gaussian-DRS is free of the divergence problem associated with AAR in the infeasible
case.

for p>0

It is often convenient to perform the analysis in terms of the pair of variables v and x := Rxu.
Here are some basic relations between u and x.

Proposition 4.1. For any u € CV, x := Rxu satisfies

u= Rxx, Pxu= Pxx, P)%u = —P)%a:.

Proof. First note that
Rxx =2Pxx — 2 =2Pxu — (2Pxu — u) = u.

Moreover,
Pxxz = PxRxu = Px(2Pxu —u) = 2Pxu — Pxu = Pxu.
and
P)%x:x—PX:v:QPXu—u—PXx:2PXu—u—PXu:PXu—u: —P)%u.
U
Proposition 4.2. Any u € CV is a generalized solution if and only if v := Rxu is a

generalized solution.

Proof. If u is a generalized solution, then Pxu = Pxx by Proposition 4.1. Now that x is a
generalized solution, the converse is also true by the same argument.

O

Proposition 4.3. If u is a generalized solution, then Pxu is a reqular solution and a fized
point.

Proof. Let u = Pxu. By Proposition 2.2 4 is a regular solution. Moreover I'(u) becomes
1 p—1 1 1 p—1 1

A ~ ~

—0 + U+ bo®sgn(t) = —-u+ U+ U
20ttt @) = gt oyt

which equals 4. Therefore u is a fixed point. O

~

Proposition 4.4. Suppose Pxu = u. Then u is a reqular solution if, and only if, u is a
fixed point.

Proof. Under the assumption Pyu = u, u = Rxu and I'(u) becomes

1 p—1 1 p
34 —u+ u—+ b®sgn(u) =
(34) 2" 200+ 1) p+1 an(w) 1+p

1
U+ b®sgn(wu).
p+1 g()
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Therefore, if u is a fixed point, then (33) implies
u=0b®sgn(u)
and hence |u| = b, i.e. u is a regular solution.
On the other hand, if |u| = b, then the right hand side of (34) becomes

P S U+ ! U=1u
1+p 1+p p+1
implying that u is a fixed point.

1
U+ b®sen(u
p+1 g()

Writing
I=Px+Py and Rx = Px— Py,

and using Proposition 4.1 we can put the Gaussian-DRS map and the fixed point equation
in the following forms.

Proposition 4.5. The Gaussian-DRS map T is equivalent to

(35) Pxupy, = #quk + ﬁPXPyxk
(36) Pyup = [%P;uk + pTllp)%Pyxk
where xy, == Rxuy. Therefore any fized point u satisfies

(37) Pxx = PxPyx

(38) —pPxx = PyPyux,

where x := Rxu, or equivalently

(39) Pxx — pPyxr = b sgn(z)

(40) Pxx + pPyr = Ry (b®sgn(x)).

Next we show that the Gaussian-DRS map I" with p > 0 always produces a bounded iterated
sequence, in contrast to the divergence behavior of AAR given in Proposition 2.1 (ii).

Theorem 4.6. Let w1 = (uy), k € N, and xy := Rxuy. Then, for p >0, {uy} and {x}
are bounded sequences. Moreover,

. : 6]
41 limsup ||ug|| = limsup ||z|| < ———— or >0
(a1 msup [ = limsup | € e for
and hence all fixed points u satisfy
1]
42 < > 0.
(42) ol € s o

Proof. Since Py is an orthogonal projection, we have

[[zk]] = [luell = \/||Px96k:||2 + || Pl
11




By Proposition 4.5 we then have the estimates
1 p 1
43 u < || ——=Pyup + ——Pxw|| + —||Pra
(@3) el € o Pt Pl + B
1 0>
— PL 2
eSS

max{p, 1}||Uk|
- p+1

1/2
1
WHPXW;HQ} +m||PY$k||

1
+ ——|b|l.
[+ ol

Hence, iterating (43) for p > 1 we obtain

& k-1 A

bl < el + LS
and, after passing to the limit, the upper bound (41).
On the other hand, for p < 1,

k
el < ol + 37 _

implying (41). O
We can improve (42) slightly by Proposition 4.5.
Corollary 4.7. For any fized point u, let x := Rxu. Then
(44) Jull = Nzl <ol if  p>1
and
(45) ol < llull = llzll < loll/p i pe(0,1)

unless Pxx = x (or equivalently Pxu = u), in which case uw = x is a reqular solution.

On the other hand, for p =1, |lul| = ||z|| = ||b]| for any fized point w.

Proof. By (39) and that Px is an orthogonal projection, we have
(46) [Pxa|® + pll Pa|* = [[o]?

which implies

B <|[p]] for p>1 . n
) lull =1l {5 I for 270 it Inkal o
If | Pxz| = 0, then 2 = Pyx and (39) becomes z = b ® sgn(z), implying |z| = b. Likewise,
r = Pxx implies that u = x.

Moreover, by (42), ||u]| = ||z|| < ||b]|/p for p € (0,1). Hence (47) can be further strengthened
to the statement (44)-(45).

For p =1, (46) implies that ||z| = ||b]|. O
12



In Appendix D we give a perturbation analysis for the similar result in the Poisson case with
small p.

5. STABILITY ANALYSIS

When the uniqueness (11) holds, the fixed point set of AAR (p = 0) is explicitly given in
(12). For p > 0, the fixed point set is much harder to characterize explicitly. Instead, we
show that the desirable fixed points (i.e. regular solutions) are automatically distinguished
from the other non-solutional fixed points by their stability type.

We say that a fixed point is attracting if the spectral radius of the sub-differential map is
at most 1 and non-attracting if otherwise. Because a constant phase factor is an inherent
ambiguity, any reasonable iterative map has at least one-dimensional center manifold. We
say that a fixed point is strictly attracting if the center manifold is one-dimensional, i.e. a
positive spectral gap between the second singular value of the sub-differential map and 1
(see Section 6).

Roughly speaking, we shall prove that for p > 1 all attracting fixed points must be regular
solutions (Theorem 5.2) and that for p > 0 all regular solutions are attracting (Theorem
5.4). In other words, for p > 1, we need not concern with the problem of stagnation near a
fixed point that is not a regular solution (a common problem with AP). Moreover, we know
that the regular solutions are strictly attracting under additional mild conditions (Corollary
6.2). On the other hand, the problem of divergence (associated with AAR) when the data
constraint is infeasible does not arise for Gaussian-DRS in view of Theorem 4.6.

Proposition 5.1. Let x := Rxu and assume |z| > 0. Set
(48) Q = diag(sgn(z)), Px = Q*PxQ, Rx = Q"RxQ.
Then

li_{% 'T(u+ev)—T(u)/e = Jaln), n=Q
where

1 p—1 = i b .
49 J = p+ -2 - Rept—— C‘[R }
(49) A(n) 21+ 50,7 1) X p+1|x|®\$ X7

Proof. The key observation is that the derivative of sgn(c) = ¢/|c| € C, ¢ # 0, is given by
1[c+ea c] _ hmsgn(c)[l—l—ea/c _1}

50 € lc+eal |d| —0 € 11+ ea/c|
= iS[a/c]sgn(c)
sgn(c)

= i [sgn(c)al

c]
for any a € C where & denotes the imaginary part. So we have

.1 1 p—1 i b
lim — (T T = - —R —— O QY[R
el—{%e( (u+ ev) —T'(u)) 21}+2<p+1> XU+p+1|:L‘|® S Rxv]
which, in terms of n = Q*v and the notation (48), becomes €2 times J, in (49).
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The following result says that for p > 1 all the non-solution fixed points are non-attracting.

Theorem 5.2. Let p > 1. Let u be a fixed point such that x := Rxu has no vanishing
components. Suppose

(50) I 7a@ll < lInll,  ¥n € CV.
Then
(51) r = Pxx =b®sgn(x),

implying uw = x s a reqular solution.

Remark 5.3. Previous results [9] suggest that when the regular solution is unique up to a
constant factor, all AAR fized points in (14) are attracting in the sense (50). In other words,
Theorem 5.2 is likely false for p = 0.

Proof. In view of Proposition 4.5, it suffices to show that Pyz = 0.

We prove the statement by contradiction. Suppose Py # 0.
By (39) and the Pythogoras theorem we have

(52) 1Px |3 + ol Pxcl® = |[o])*
and hence ||b|| > ||z|| for p > 1. Applying Q* we rewrite (40) as
(53) Pxla| + p(lz| = Pxlz|) = Rxb
On the other hand, applying Px on (53) we have

Py x| = Pxb
and hence by (53)
(54) Pyla| = Pyb = ff'p %.

We now show that ||J4(n)|| > ||n]|| for any 1 such that
ip i
x|+ b.
1+ ,0| | I+p

To this end, it is more convenient to write J4 in (49) in terms & := Rxn. With a slight abuse
of notation we write

_ P § i b Y
(56) Ja(§) = Pxﬁ—ererlm@\S(ﬁ)

where we have used the properties in Proposition 4.1.

Since [|£]| = ||n]|, our goal is to show ||Ja(&)|| > [|£]|-

First we make an observation that will be useful later. We claim that

(57) plel* = [Ibl* + (p = D)l2] - b
14



where “” denote the (real) scalar product between two vectors. By (54),
Bt = b Pyb= 2 (b] — [s])
and hence by the Pythogoras theorem

2 = uﬁxbuuuﬁlbuz
2
X
_ H plel H—|b|—||>
1+p 1+p
_ el 4 220y 2L e
ST i P

which becomes (57) after rearrangement.
Next, note that by (55)

PX§:PX77:iPXb:§,
which is purely imaginary, and hence
(58) Ja(§)
by (56).

After some tedious but straightforward algebra with (55) and (58), we see that |[J4(£)]| > |||
is equivalent to the inequality

p i b
_l’_ JEE—
p—i—lg p+ 1|z

©¢&

b b2 ||?
0< (50" = 2p = DIDI* + (2p° — 4p* = 2p) 2] - b+ dp— - b* + ||
|z| ||

— 020+ 1)]|=[|*

which by (57) reduces to
2

b 2
(59) 0 < (3p° —3p—1)||b]|* = (3p° + p)|] -b+4p‘ | ]

To proceed, we note that the assumption Pyz # 0 implies |z| # b, ||| < ||b|| and moreover
|z|, b are not a multiple of each other. So by the Cauchy-Schwarz inequality we have

v+

v llo]*
2] ]
b, | (12—
ER 22| 7 (e[ b2 Jzf - b

and hence the last two terms on the right hand side of (59) have the strict lower bound

b i lel*, lloll*
(60) 4p— - b* + ’ p + s
] |z -6 [l]f?

> (L+4p)b)”

where we have used the fact ||b|| > ||z|| due to p > 1.

2

In view of (60) the right hand side of (59) is strictly greater than

(30> = 3p — DIIb]I* = (30 + p)[I6]1* + (1 + 4p)||b]|* = 0.
15



In other words, (59) holds indeed and the proof for ||Ja(&)|| > [|£]] is complete.

This clearly contradicts the assumption (50). Therefore, Pz = 0 and the desired result
(51) follows from Propositions 4.4 and 4.5.

U

The next result says that for any p > 0, all regular solutions are attracting fixed points.

Theorem 5.4. Let p > 0. Let u be a nonvanishing reqular solution. Then

(61) [Za(m)l < linl

for allm € CN and the equality holds in the direction %ib (and possibly elsewhere on the unit
sphere).

Proof. By Proposition 4.4, x := Rxu = u is a fixed point. By Proposition 4.5,
u=>bosgn(u) =Ag for some g.
Rewriting J4(n) in (49) as
. 1 - i b ~
Jatn) = Pyn— ——R +——®%<R )
a(n) xn b1 X1 1+ pla| X1
and using |z| = b we obtain

_ 1 _
Ja(n) = Pxn— m%(Rxﬁ)

where $ denotes the real part. We now show that ||J4(n)|| < ||n|| for all n.

To proceed, we shall write Py = HH* where H is an isometry. This can be done for the
matrix C' := Q*A via the QR decomposition. In our setting, the measurement matrix of
each diffraction pattern has orthogonal columns and so does the total measurement matrix.
Hence the R factor of C' is a diagonal matrix with the norms of the columns of C' on the
diagonal (see Appendix A). For ease of notation, we may assume that Q*A = H.

Note that
RH] —S[H]
(02 S i
is real isometric because H is complex isometric. Define
(63) H = [R[H] S[H]] € RV,

As in the set-up detailed in Appendix A let the object be a n x n square image and C" the
object domain.

By Proposition E.4 in Appendix E, HH* can be block-diagonalized into one (N — 2n?) x
(N — 2n?) zero-block and 2n? 2 x 2 blocks of the form
A AkA2n2 41—k

2
MeAon2 41—k Agpeyq g |
16
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in the orthonormal basis {ng, ingp2i1—x : k = 1,2,...,2n%} where n, € RY are the right
singular vectors, corresponding to the singular values Ay, of H.

Moreover, the complete set of singular values satisfy

(65) 1:/\1Z/\QZ...Z/\2n2:)\2n2+1:...:/\]\[:0
(66) A+ Agnukk =1

In view of the block-diagonal nature of HH*, we shall analyze J4(n) in the 2-dim spaces
spanned by the orthonormal basis {9, insn2,1_1} one k at a time.

For any fixed k and any z1, 25 € C let

no= ank+iznmi-g
= Rlz1]mr + Rlza]inznz 11 + Slzalimk — Slzalmznz 11

We shall use the basis {ny, 172,211k, 1Mk, —Non241-1 } for expressing n and J4(n).

We obtain
(67) JA(U) = (/\izl + >\k/\2n2+1—k22) Nk + (Ak>\2n2+1—kzl + )\gnzjqszz) i772n2+1—k
1
T, (= 20R() — e R(z)]
1
+ [2)\k)\2n2+1—k%(21) - (1= 2)\%712—1—1—]4:)%(22)} M2n2+1-k-

1+p

Next we treat (67) as a linear function of R(z;), R(z2), (z1), S(22) with real coefficients in
the basis {Ng, 1Mon241-k, Mk, —Nonz41-k} and represent J4 by a 4 x 4 matrix which is block-
diagonalized into two 2 x 2 blocks:

1 p—1y2 p—1 2
T T o1 M i AkAzn2 41—k Ak Ak A2p241-k
©) A2 B A L edz? -
EA2n2 41—k 2n2+1—k pH1 kA2 H1-k 0T T o o241k

with the former of (68) acting on R(z1), R(z2) and the latter acting on I(z1), I(z2).

The eigenvalues of the matrices in (68) are, respectively

1
(69) W+ 1) [P + 2050 g £ \/P2 - 4/\z)‘§n2+174

2
(70) 20 +1) [P +2X £ \/P2 - 4/\i/\§n2+1—kJ :
Because the two expressions are symmetrical with respect to the exchange of index (k «»
2n? + 1 — k), it suffices to analyze (69), which, with the + sign, equals 1 at k = 2n? (recall

Aopz = 0). Next we show that 1 is the largest eigenvalue among all k£ and p € [0, 00).

Note that (69) is real-valued for any A; € [0, 1] if and only if p > 1. Hence, for p > 1, the

maximum eigenvalue is 1 and occurs at k = 2n?.
17



For p < 1 and p? — 4\2 + 4X} > 0, the maximum value of (69) can be bounded as

(71) m |:,0+2(1 —/\i)—f— \/p2 —4/\z(1 —/\z)}
ﬁ [p—i—?(l—)\z)—i-p}
- 1_p>fjl§1

since 42\2(1 — A2) > 0. Hence the expression (69) achieves the maximum value 1 at k = 2n?.

For p < 1 and p? — 4A} 4+ 4X{ < 0, the modulus of (69) equals

1— A2
1+p

(72) <1.

By Proposition E.1, n, = b, Px(ib) = ib, Rx(ib) = ib and hence J,(ib) = ib. However,
arg maxjpy|=1 |-Ja(n)| may contain points other than =+ib/||b|| since we do not know if Ay < 1
without additional conditions (see Section 6). The proof is complete.

O

6. SPECTRAL GAP

To derive a positive spectral gap (A2 < A\; = 1), we need some details of the ptychographic
set-up (Appendix A).

Let T be the set of all shifts, including (0, 0), involved in the ptychographic measurement.
Denote by u* the t-shifted probe for all t € T and M* the domain of u*. Let f* the object
restricted to M®. For convenience, we assume the periodic boundary condition on the whole
object domain M = Uy M?® when p* crosses over the boundary of M.

Two blocks Mt and M? are said to be connected if the minimum overlap condition
#{ME N MY Nsupp(f)} > 2

is satisfied. Let G be the undirected graph with the nodes corresponding to {M*: t € T}
and the edges between any pair of connected nodes (see Figure 2).

Now we recall the following spectral gap theorem [10] (Proposition 3.5 and the subsequent
remark).

Proposition 6.1. [10] In addition to the above assumptions, suppose supp(f) is not a
subset of a line. Let u (and hence x := Rxu) be a reqular solution. Let Ay be the second
largest singular value of H defined in (63). If the graph G is connected, then Ay < 1.

Some theoretical bounds for Ay can be found in [10].

Using Proposition 6.1, we can sharpen the result of Theorem 5.4 as follows.
18



(a) (b)

FIGURE 2. A complete undirected graph (a) representing four connected ob-
ject parts (b) where the gray level indicates the number of coverages by the
mask in four scan positions.

Corollary 6.2. Under the assumptions of Proposition 6.1, the second largest singular value
of Ja is strictly less than 1 and achieves the minimum value

A /

Moreover, the second largest singular value of J is an increasing function of p in the range
[px, 00) and a decreasing function in the range of [0, p.].

Remark 6.3. By arithmetic-geometric-mean inequality,

1
peS2x g\ /N 1A =1

where the equality holds only when \3 = 1/2.

As )\g tends to 1, p, tends to 0 and as )\g tends to %, ps tends to 1. Recall that )\%—l—/\gnz_l =1
and hence [1/2,1] is the proper range of A\3.

Proof. Our discussion splits into several cases. By the identity A\3 = 1 — A3 , |, we have
)\g(]‘ - )\%) = )\gnQ—l(l - )\gnQ—l) and )\g > 1/2

For p > 1, the larger eigenvalue in (69) achieves the second largest value

1
74 — [p+2)] 2 —4M3(1 — A3
(74) S e - g
at k = 2n? — 1 after some algebra. The expression (74) is strictly less than
p+A3
——[2p+2)\}] = <1
2(1+,0)[p d p+1

with the spectral gap Ay < 1.
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For p =1, (69) becomes

1
1 [1+2(1 = A7) £ |1 —2X]]]

which achieves the second largest value
(75) 1-A2. =)<l
at k= 2n* — 1 by (66).

The case of p < 1 requires more analysis since the eigenvalue (69) may be real or complex.
Analyzing as in (71) and (72) we conclude that the second largest value is

1
) 557D [P+2>\3+\/p2—4A%(1—>\5)] i p>pe=20/1- N

and

Ao
77 — 22 f < p.
(77) T p<p

While the expression in (77) is a decreasing function of p and less than Ay, (76) is an increasing
function of p and less than (75) for p = 1.

Also, for p > 1, the expression (74), as a function of p, has the derivative

1—92)\2 + p+4N(1 = A9 > [
2(p + 1)2 VPRI = )| 20+ 1)?

and hence achieves the minimum at p = 1. In other words, Gaussian-DRS with p = 1
converges faster than Gaussian-DRS with p > 1.

2—2X\] >0

From the preceding analysis, the second largest singular value achieves the minimum at the
crossover value p, of the two expression in (76). Substituting p. in (76) we arrive at (73).

Although it is not immediately obvious, it can be verified by elementary (but somewhat
tedious) calculus that (73) is less than A3 (for p = 1).

O

For comparison with AAR, we note that, for p = 0, (77) is exactly Ay and hence greater
than A2 in (75), the convergence rate for p = 1, which coincides with the convergence rate
of Alternating Projections (AP) [11]. We state this observation as a corollary.

Corollary 6.4. For the Gaussian-DRS with p = 1, the local convergence rate is given by A3
which is smaller than the convergence rate Ay for p = 0.

With a positive spectral gap, this largest eigenvalue 1 in Theorem 5.4 corresponds to the
global phase factor and Corollary 6.2 can be used to prove local, linear convergence for
Gaussian-DRS with p > 0. The proof is analogous to that in [10] for phase retrieval (Theorem
5.1) and in [9] (Theorem 3.4) for ptychography for AAR (p = 0). But the argument is

technical in nature and omitted here for the sake of space.
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7. SELECTION OF PARAMETER

A goal of the present work is to circumvent the divergence behavior of AAR (as stated in
Proposition 2.1 (ii) for the convex case) when the feasibility problem is inconsistent and has
no (generalized or regular) solution.

Let us first examine how this problem manifests in the fixed point equation (33) reproduced
here for the convenience of the reader:

Pxu + pPyu = b ® sgn(Rxu).

For p =0, Pxu = b®sgn(Rxu) and, in particular, |Pxu| = b, i.e. every fixed point of AAR
is a generalized solution. So if the problem is inconsistent, then no solution (generalized or
regular) exists, implying the fixed point set is empty.

The case with p > 0 is harder to analyze. For p > 1, however, Theorem 5.2 says that
all attracting fixed points are regular solutions and hence in the inconsistent case all fixed
points are repelling in some directions (likely partially hyperbolic with a center manifold
containing at least a circle corresponding to an arbitrary constant phase factor). In other
words convergence to a fixed point is almost impossible in the inconsistent case with p >
1. From this perspective, Theorem 5.2 is a pessimistic result in the traditional sense of
convergence analysis.

But all hope is not lost. First of all, let us recall the earlier observation that in the inconsistent
case f is probably not a stationary point of the loss function. Hence a convergent iterative
scheme to a stationary point may not be a good idea after all. A good iterative scheme
need not converge as long as it produces a good outcome when properly terminated, i.e. its
iterates stay in the true solution’s vicinity of size comparable to the noise level.

Second, Theorem 4.6 implies that every Gaussian-DRS sequence is bounded and has a con-
vergent subsequence {uy; }32; with the limit, say 4. If, in addition,

(78) Jlggo(ukg - F(uk])) =0,

then by taking the limit on both sides of the fixed point equation (33), one can conclude that
@ is a fixed point. The preceding analysis tells us that in the inconsistent case (78) is false

for p > 1 (The case with p € (0,1) is open), suggesting that u is part of a more complicated
attractor.

In particular, if £ := Rxu does not vanish where b > 0, then, by the continuity of I'
at such points, 4, := lim; I'(uy,) exists. Assuming that RXFl(uk].),l > 1, do not vanish
wherever b > 0, we obtain a set of cluster points u; = lim; Fl(ukj),l > 1 which constitutes
a new iterated sequence, i.e. w41 = (7). This is the case of limit cycle in theory of
bifurcation. If, however, the non-vanishing assumption fails, then different orbits can branch
off at discontinuities.

In general, when a bounded invariant set exists (as implied by Theorem 4.6) and no fixed
point is attracting (e.g., with p > 1 in the inconsistent case), there tend to be some nontrivial

attractors (limit cycles, strange attractors, ergodic invariant domain etc).
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F1GURE 3. (a) The real part and (b) the imaginary part of the test image CiB.

Nevertheless, the non-convergent sequence controlled by the underlying attractors may still
produce a reasonable solution under a proper termination rule. Our numerical experiments
with noisy data confirms that this is indeed the case (see Figure 12). Analyzing the properties
of such attractors is at the frontier of numerical analysis and beyond the scope of the present
work.

7.1. Phase retrieval with noiseless data. We conduct a brief exploration of the optimal
parameter for Gaussian-DRS. Our test image is 256-by-256 Cameraman+ i Barbara (CiB).
The resulting test object has the phase range /2.

We use three baseline algorithms as benchmark. The first is AAR.
The second is Gaussian-DRS with p =1

1 1

(since Ry in (26) is exactly Py with p = 1) given the basic guarantee that for p > 0 the
regular solutions are attracting (Theorem 5.4), that for the range p > 1 no fixed points other
than the regular solution(s) are locally attracting (Theorem 5.2) and that Gaussian-DRS
with p = 1 produces the best convergence rate for any p > 1 (Corollary (6.2)). The contrast
between (79) and AAR (2) is noteworthy. The simplicity of the form (79) suggests the name
Awveraged Projection Reflection (APR) algorithm.

The other, the Relaxed AAR (RAAR), is one of the best performing phase retrieval algo-
rithms defined by the map

(80) uprr = PBlo(ug) + (1 - B)Pyuy, B € [%, 1],

where Iy is the Gaussian-DRS map with p = 0 (i.e. AAR). RAAR becomes AAR for § =1

(obviously) and AP for 8 = 3 (after some calculation) [36,37,41].
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FIGURE 4. Reconstruction (relative) error vs. iteration by various methods
indicated in the legend with random initialization. The straight-line feature
(in all but AAR) in the semi-log plot indicates geometric convergence.

After some rearrangement the fixed point equation for RAAR can be written as
Pxx + Pyx = BPxx + (Px + (1 — 28)Pyx) Pyx

from which it follows that

20 —1
Pxx = PxPyx, Pyr=— ( f_ 3 ) Py Pyx
and hence
1-81Y\ 51 1
(81) Px$— 25_1 PX37 = PXpy.SU—i-PXPySL’:PyJZ.

Notably this is exactly the same fixed point equation for Gaussian-DRS with the correspond-
ing parameter
1-p
82 = e [0
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which tends to 0 and oo as § tends to 1 and %, respectively. According to [34] the optimal 3
is usually between 0.8 and 0.9, corresponding to p = 0.125 and 0.333 according to (82). We
set 5 = 0.9 in Figure 4.

In the experiments, we consider the setting of non-ptychographic phase retrieval with two
coded diffraction patterns, one is the plane wave (1 = 1) and the other is 1 = exp(if) where
0 is independent and uniformly distributed over [0,27). Theory of uniqueness of solution,
up to a constant phase factor, is given in [16].

Figure 4 shows the relative error (modulo a constant phase factor) versus iteration of RAAR
(8 = 0.9 round-bullet solid line), APR (blue-triangle dotted line), AAR (black-star dashed
line) and Gaussian-DRS with (a) p = 1.1, (b) p = 0.5, (¢) p = 0.3 and (d) p = 0.1. Note
that the AAR, APR and RAAR lines vary slightly across different plots because of random
initialization.

The straight-line feature (in all but AAR) in the semi-log plot indicates global geometric
convergence. The case with AAR is less clear in Figure 4. But it has been shown that
the AAR sequence converges geometrically near the true object (after applying A1) but
converges in power-law (~ k= with « € [1,2]) from random initialization [9].

Figure 4 shows that APR outperforms AAR (consistent with the prediction of Corollary
6.4) but underperforms RAAR. By decreasing p to either 0.5 or 0.1, the performance of
Gaussian-DRS closely matches that of RAAR. The optimal parameter appears to lie between
0.1 and 0.5. For example, with p = 0.3, Gaussian-DRS significantly outperforms RAAR.
The oscillatory behavior of Gaussian-DRS in (d) is due to the dominant complex eigenvalue
of J A-

8. BLIND PTYCHOGRAPHY ALGORITHM

In the next two sections we apply the DRS methods to the more challenging problem of
blind ptychography. In blind ptychography, we do not assume the full knowledge of the
probe which is to be recovered simultaneously with the unknown object.

Let 1% and g = Vig® be any pair of the probe and the object estimates producing the same
ptychography data as p° and f, i.e. the diffraction pattern of v* ® ¢* is identical to that of
ut @ ft where vt is the t-shift of v° and ¢* is the restriction of g to M®. We refer to the
pair (¢, g) as a blind-ptychographic solution (in the object domain) and (u°, f) as the true
solution.

We can write the total measurement data as b = |F(u, f)| where F is the concatenated
oversampled Fourier transform acting on {u*® f*:t € T} (see Appendix A), i.e. a bi-linear
transformation in the direct product of the probe space and the object space. By definition,
a blind-ptychographic solution (1°, g) satisfies |F (1, g)| = b.

There are two ambiguities inherent to any blind ptychography.
The first is the affine phase ambiguity. Consider the probe and object estimates
(83) ’(n) = p°(n)exp(—ia —iw-n), ne M°

(84) gn) = f(n)exp(ib+iw-n), neZzZ2
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for any a,b € R and w € R2. For any t, we have the following calculation
v'(n) = O(n—t)
= p’(n—t)exp(—iw - (n — t)) exp(—ia)
= p'(n)exp(—iw - (n — t)) exp(—ia)
and hence for allm e Mt t € T

(85) v'(m)g*(n) = p(n)f*(n)exp(i(b — a)) exp(iw - t).

Clearly, (85) implies that g and v° produce the same ptychographic data as f and u° since for
each t, v*©¢* is a constant phase factor times p*® f* where ® is the entry-wise (Hadamard)
product. It is also clear that the above statement holds true regardless of the set T of shifts
and the type of probe.

In addition to the affine phase ambiguity (83)-(84), a scaling factor (¢ = cf,1° = ¢ 1% ¢ >
0) is inherent to any blind ptychography. Note that when the probe is exactly known (i.e.
¥ = 1), neither ambiguity can occur.

Besides the inherent ambiguities, blind ptychography imposes extra demands on the scanning
scheme. For example, there are many other ambiguities inherent to the regular raster scan:
T = {tw = 7(k,l) : k,l € Z} unless the step size 7 = 1. Blind ptychography with a raster
scan produces T-periodic ambiguities called the raster scan pathology as well as non-periodic
ambiguities associated with block phase drift. The reader to referred to [17] for a complete
analysis of ambiguities associated with the raster scan.

A conceptually simple (though not necessarily the most practical) way to remove these
ambiguities is introducing small irregular perturbations to the raster scan with 7 > m/2,
i.e. the overlap ratio greater than 50% (see (92) and (93)). For a thorough analysis of the
conditions for blind ptychography, we refer the reader to [17,18].

The basic strategy for blind ptychographic reconstruction is to alternately update the object
and probe estimates starting from an initial guess as outlined in Algorithm 1 [19, 50, 51].

Algorithm 1: Alternating minimization (AM)

Input: initial probe guess ;1 and object guess f;.

Update the object estimate  fy 1 = argmin L(Agg) s.t. g € C"*™.

Update the probe estimate  pyyq = argmin L(Bgv) s.t. v € C"™*™,

Terminate if ||| Bgpri1| — b stagnates or is less than tolerance; otherwise, go back to
step 2 with &k — k + 1.

We solve the inner loops (step 2 and 3 in Algorithm 1) and update the object and probe
estimates by the DRS methods where Aph := F(ug, h),Yh € C*°, defines a matrix Ay, for the
k-th probe estimate i, and By := F(1, frs1),¥n € C™, for the (k 4 1)-st image estimate
Jr1

For ease of reference, we denote Algorithm 1 with Gaussian-DRS and Poisson-DRS by

Gaussian-DRSAM and Poisson-DRSAM, respectively.
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|arg[’(n)/k°(n)]| < 7/2

>

FIGURE 5. 10 satisfies MPC if vo(n) and p°(n) form an acute angle for all n

8.1. Initialization. For non-convex iterative optimization, a good initial guess or some
regularization is usually crucial for convergence [6,52]. The initialization step is often glossed
over in the development of numerical schemes. This is even more so for blind ptychography
which is doubly non-convex because, in addition to the phase retrieval step, extracting the
probe and the object from their product is also non-convex.

We say that a probe estimate 1 satisfies PPC(§) (standing for the probe phase constraint)
if

(36) £ (m), 1°(n)) < o7, ¥n

where 0 € (0,1/2] is the uncertainty parameter.

PPC(0) defines an alternative measure to the standard norm-based metric. Our default case
is 0 = 0.5 with which PPC is equivalent to ®(7° ® p”) > 0 (where the bar denotes the
complex conjugate) has the intuitive meaning that at every pixel v and p° point to the
same half plane in C (Figure 5).

Our initialization method is inspired by the uniqueness theory in [18] which proves PPC
(0.5) is required to remove all other ambiguities than the inherent ones (the affine phase
factor and the constant scaling factor).

Under PPC, however, the initial probe may be significantly far away from the true probe in
norm. Even if |p;(n)| = [°(n)| = const., the probe guess with uniformly distributed ¢ in
(—m/2,7/2] has the relative error close to

\///2|el¢—1|2d(b— (1——)~08525

with high probability. We use (86) for selecting and quantifying initialization, instead of the
usual 2-norm. Non-blind ptychography gives rise to infinitesimally small 6. In practice, (86)
needs only to hold for sufficiently large number of pixels n

In summary, in our numerical experiments we use the following probe initialization denoted

by PPC
(87) p1(n) = p°(n) exp [iQWan] exp [ip(n)], n € M°

where ¢(n) are independently and uniformly distributed on (—x/2,7/2). In our numerical
experiments, PPC results in geometric convergence for any k (even though the limiting

solution may end up with a different k as allowed by linear phase ambiguity).
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(a) RPP magnitudes (b) RPP phases

FIGURE 6. (a) Magnitudes and (b) phases of RPP.

9. NUMERICAL EXPERIMENTS FOR BLIND PTYCHOGRAPHY

We test the DRS methods with p = 1 for blind ptychography and demonstrate that even
with this far from optimal parameter (cf. Corollary 6.2 and Figure 4), DRSAM converges
geometrically under the nearly minimum conditions established in the uniqueness theory [18]
(see also Section 8.1 and Section 9.4).

The inner loops of Gaussian DRSAM become

1 1
ultt = §u§§ + Eb ® sgn (Ryuy,)
vt = lvl + lb ® sgn | Syvl
and the inner loops of the Poisson DRSAM become
1 1 1
(88) ut = Ju - SR+ zsen (Rku;) © /1R 2 4 2412

1 1 1
(89) vt = 51}2 - gSkvfg + ssen (Sw,i) © /| Skv |2 + 2402,

Here Ry, = 2P, — I is the reflector corresponding to the projector P, := AyA; and Sy is
the reflector corresponding to the projector Qy := By B;i". We set up = ug®, where up® | is

the terminal value at epoch k — 1 and v} = v{°, where vy, is the terminal value at epoch
kE—1.

9.1. Test objects. In addition to CiB, our second test object is randomly-phased phantom
(RPP) defined by f = P ® ¢ where P is the standard phantom (Fig. 6(a)) and {¢(n)} are
i.i.d. uniform random variables over [0,27]. RPP has the maximal phase range because of

its noise-like phase profile. In addition to the huge phase range, RPP has loosely supported
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FIGURE 7. The phase profile of (a) the i.i.d. probe and (b)(c)(d) the correlated
probes of various correlation lengths.

parts with respect to the measurement schemes (see below) due to its thick dark margins
around the oval.

The third test object is the salted RPP, the sum of RPP and the salt noise (not shown).
The salted noise is i.i.d, binomial random variables with probability 0.02 to be a complex
constant in the form of a(1+1),a € R, and probability 0.98 to be zero. The salt noise reduces
the support looseness without significantly changing the original image making the salted
RPP more connected with respect to the ptychographic measurement.

9.2. Probe function. We use a randomly phased probe with the unknown transmission
function 1°(n) = €™ where f(n) are random variables. Randomly phased probes have
been adopted in ptychographic experiments [39,42,46,49].

We do not explore the issue of varying the probe size in the present work, which was carried
out for AAR in [10]. We fix the probe size to 60 x 60. In addition to the i.i.d. probe, we

consider also correlated probe produced by convolving the i.i.d. probe with characteristic
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F1GURE 8. Two perturbed raster scans

function of the set {(ki, k) € 72 : max{|ki|,|ks|} < c-m; c € (0,1]} where the constant c
is a measure of the correlation length in the unit of m = 60 (Fig. 7).

9.3. Error metrics for blind ptychography. We use relative error (RE) and relative
residual (RR) as the merit metrics for the recovered image f; and probe puy at the k'
epoch:

V2 oulf(n) —aem2mr/nfi(n)]?

RE(k) = min
" . aeCre? [hal
(91) RR(k) — W= lAefill
G2 —

Note that in (90) both the affine phase and the scaling factors are discounted.

9.4. Sampling schemes. The uniqueness theorem for blind ptychography [17] holds for the
following irregularly perturbed raster scans

(92) Rank-one perturbation ty = 7(k,1) + (6;,07), k,l€Z
where (5,% and (512 are small random variables relative to 7. The other is
(93) Full-rank perturbation ty = 7(k,1) + (04,65,), k,l€Z

where ¢}, and 47, are small random variables relative to 7. Here the stepsize 7 < m/2
corresponding to the overlap ratio greater than 50%. The 50% overlap ratio has been proved
to be a nearly minimum requirement for uniqueness with the perturbed raster scans.

We let 6 and 67 in the rank-one scheme (92) and d;; and 67, in the full-rank scheme (93) to
be i.i.d. uniform random variables over [—4,4]. In other words, the adjacent probes overlap

by an average of 7/m = 50%.
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FIGURE 9. Geometric convergence to CiB at various rates for (a) Four com-
binations of loss functions and scanning schemes with i.i.d. probe (rank-one
Poisson, rate = 0.8236; rank-one Gaussian, rate = 0.8258; full-rank Pois-
son, rate = 0.7205; full-rank Gaussian, rate = 0.7373) and (b) Poisson-DRS
with four probes of different correlation lengths (rate = 0.7583 for ¢ = 0.4;
rate = 0.8394 for ¢ = 0.7; rate = 0.7932 for ¢ = 1; rate = 0.7562 for iid probe)

9.5. Different combinations. First we compare performance of DRSAM with different
combinations of loss functions, scanning schemes and random probes in the case of noiseless
measurements with the periodic boundary condition. We use the stopping criteria for the
inner loops:
I Peie] = bl — [[| Prt| — b
I P, | = ]

with the maximum number of iterations capped at 60.

<10

Figure 9 shows geometric decay of RE (90) at various rates for the test object CiB. In
particular, Fig. 9(a) shows that the full-rank scheme outperforms the rank-one scheme and
that Poisson-DRS outperforms (slightly) Gaussian-DRS while Figure 9(b) shows that the
i.i.d. probe yields the smallest rate of convergence (= 0.7562) closely followed by the rate
(= 0.7583) for ¢ = 0.4.

9.6. Boundary conditions. The periodic boundary condition conveniently treats all diffrac-
tion patterns and object pixels in the same way by assuming that 7?2 is a (discrete) torus.
The periodic boundary condition generally forces the slope r in the affine phase ambiguity
to be integers. For 3D blind tomography, however, different linear phase ramps from differ-
ent projections would collectively create enormous 3D ambiguities that are difficult to make
consistent and hence it is highly desirable to remove the linear phase ambiguity early on in
the process.

To this end, we consider the non-periodic bright-field boundary conditions taking on some
nonzero value in M \ Z%2. We aim to show that the affine phase ambiguity is absent under

the bright-field boundary condition.
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We test the Poisson-DRSAM with the full-rank scheme with a more stringent error met-
ric

I =l
k) = in—————.
(84 RE2R) = 0%

We also use the less tolerant stopping rule

1P| — bll — N[l Prs™ | — bl
I Pewi| — bl

<107°

for the inner loops with the maximum number of iteration capped at 80.

Fig. 10 demonstrates the capability of the bright-field boundary condition (= 255) to elimi-
nate the linear phase ambiguity as the stronger error metric (94) decays geometrically before
settling down to the final level of accuracy. The final level of accuracy, however, depends
on how accurately the inner loops for each epoch are solved. For example, increasing the
maximum number of iteration from 80 (Figure 10(a)) to 110 (Figure 10(b)), significantly
enhances the final accuracy of reconstruction.

We also see that the bright-field condition enforcement has a better result on RPP than
CiB.

9.7. Comparison with rPIE. In this section, we compare the performance of DRSAM
in Fig. 10 (a) with that of the regularized PIE (rPIE) [38], the most up-to-date version of
ptychographic iterative engine (PIE).

Instead of using all the 64 diffraction patterns simultaneously to update the object and probe
estimates, rPIE uses one diffraction pattern at a time in a random order. As such rPIE is
analogous to minibatch gradient descent in machine learning. The potential benefits include
efficient memory use and a good speed boost by parallel computing resources. Unfortunately,

rPIE often fails to converge in the current setting.
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FIGURE 12. RE versus NSR for reconstruction of CiB.

To obtain reasonable results for rPIE, we make two adjustments. First, we reduce the phase
range of RPP from (—m, 7] to (—n/2,7/2] which is an easier object to reconstruct. Second,
for rPIE we use PPC(0.025) for the probe initialization which restricts the probe phase
uncertainty to (—0.0257,0.0257] instead of (—n/2,7/2].

There are three adjustable parameters in TPIE and we select these values oo = 0.95, v, =
0.95, Yobn; = 0.9 (see [38] for definition). The order of updating small patches is randomly
shuffled in each experiment. For each test image, we run 20 independent experiments and
present the best run in Fig. 11. For ease of comparison, Figure 11(b) shows the corresponding
results by Gaussian-DRSAM with p = 1.
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9.8. Poisson noise. For noisy measurement, the level of noise is measured in terms of the
noise-to-signal ratio (NSR).
1o — AF1

IAS]]
where A is the true measurement matrix and f the true object. Because the noise dimension
N is roughly 16 times that of the object dimension, the feasibility problem is inconsistent
with high probability.

Figure 12 shows RE versus NSR for CiB by Poisson-DRS and Gaussian-DRS with the pe-
riodic boundary condition, i.i.d. probe and the full-rank scheme. The maximum number
of epoch in DRSAM is limited to 100. The RR stabilizes usually after 30 epochs. The
(blue) reference straight line has slope = 1. We see that the Gaussian-DRS outperforms the
Poisson-DRS, especially when the Poisson RE becomes unstable for NSR > 35%. As noted
in [11,38,58] fast convergence (with the Poisson log-likelihood function) may introduce noisy
artifacts and reduce reconstruction quality.

NSR =

Most important, Figure 12 confirms that though provably non-convergent in the inconsistent
case, Gaussian-DRSAM with p = 1 can yield reasonable solutions under practical termina-
tion rules.

10. CONCLUSION AND DISCUSSION

We have presented and performed fixed point analysis for DRS methods of phase retrieval
and ptychography based on the proximal relaxation of AAR with the relaxation parameter

p-

For Gaussian-DRS, we have proved that for p > 1 all attracting fixed points must be regular
solutions (Theorem 5.2) and that for p > 0 all regular solutions are attracting (Theorem
5.4). In other words, for p > 1, the problem of stagnation near a non-solutional fixed point,
a common problem with AP, is precluded. On the other hand, the problem of divergence
(associated with AAR) in the inconsistent case does not arise in view of Theorem 4.6.

In addition, we have given an explicit formula for the optimal parameter p, and the optimal
rate of convergence in terms of the spectral gap (Corollary 6.2).

When applied to standard phase retrieval with two coded diffraction patterns, Gaussian-DRS
converges geometrically from random initialization. When applied to blind ptychography;,
DRSAM, even with a far from optimal step size, converges geometrically under the nearly
minimum conditions established in the uniqueness theory [18]. Our Python codes are posted
on https://github.com/AnotherdayBeaux/Blind_Ptychography_ GUT.

The holy grail of optimization approach has been finding a globally convergent algorithm
whose underlying attractors are fixed points. It is worthwhile then to reflect on our results
from the global convergence perspective of [33].

We have already pointed out that the analysis in [33] is not applicable to non-differentiable
loss functions. As discussed in Section 7, this technical issue has a profound effect on the
convergence behavior in the inconsistent case: Gaussian-DRS with p > 1 does not converge,

globally or locally. This is an unexpected consequence of Theorem 5.2.
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Our numerical experiments with noisy data, however, suggest that non-convergent DRS
sequences are nevertheless well-behaved (probably due to hitherto unknown well-controlled
attractors) and produce noise-amplification factor of about % when terminated. Analysis of
such (possibly strange) attractors and their impacts on numerics is an interesting topic for
future research and at the frontier of numerical analysis.

Moreover, the global convergence framework is typically based on the construction of a
non-increasing merit function along the iterated sequence (i.e. Lyapunov-like function) that
requires the step size (reciprocal of p) to be sufficiently small, resulting in slow convergence
in practice.

Nice as it is, perhaps algorithmic convergence should not be our fixation in the case of noisy
data. It may be more useful, for numerical purposes, to solve noisy phase retrieval problem by
algorithms with non-trivial (non-point-like) attractors which are necessarily non-convergent
in the traditional sense.

APPENDIX A. MEASUREMENT MATRICES

Let 72 = [0,n — 1]? be the object domain containing the support of the discrete object f
where [k, [] denotes the integers between, and including, k <1 € Z. Let M°® := 72 m <
n, be the initial probe area, i.e. the support of the probe u® describing the illumination

field.

Let T be the set of all shifts, including (0, 0), involved in the ptychographic measurement.
Denote by u® the t-shifted probe for all t € T and M* the domain of u*. Let f* the object
restricted to M*. We refer to each f* as a part of f and write f = Vf* where V is the
“union” of functions consistent over their common support set. In ptychography, the original
object is broken up into a set of overlapping object parts, each of which produces a pt-coded
diffraction pattern. The totality of the coded diffraction patterns is called the ptychographic
measurement data. For convenience, we assume the value zero for ut, f* outside of M* and
the periodic boundary condition on Z2 when u* crosses over the boundary of 72.

Let the p-Fourier transform of f° be written as
Fo(w) = 37 725w 000 (), w = (wy,w5) € [0, 1]
keMO

and the p-coded diffraction pattern as

(95) |FO(w)|? = Z { Z uo(k+k’)f0(k’+k)m} o i2mkew
keMO \k'eMmO
where -
M= {(ky, k) €Z%: —m+1<hk <m—1,—m+1<hy <m—1}.

Here and below the over-line notation means complex conjugacy. In view of (96), we sample
the coded diffraction pattern on the grid

(96) L:{(wl,wg) | w; =0 ! 2 2m—2}.

"2m—1"2m—-1"""""2m—1
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(a) Matrix A, (b) Matrix B,

FIGURE 13. (a) A, is a concatenation of shifted blocks {® diag(v*) : t € T};
(b) B, is a concatenation of unshifted blocks {® diag(¢*) : t € T}. In both
cases, each block gives rise to a coded diffraction pattern |®(v* ® g*)|.

We assume randomness in the phases 6 of the mask function °(n) = |p°|(n)e?™ where
f(n) are independent, continuous real-valued random variables over [0, 27). We also require
that |u°|(n) # 0,Yn € M.

Let (7, g) be the bilinear transformation representing the totality of the Fourier (magni-
tude and phase) data for any probe v and object g. From F (1, g) we can define two measure-
ment matrices. First, for a given 17 € C™”, let A, be defined via the relation A,g := F (10, 9)
for all ¢ € C; second, for a given g € C"°, let B, be defined via B,y = F(1°, g) for all
0 e C.

More specifically, let ® denote the L-sampled Fourier matrix. The measurement matrix A, is
a concatenation of {® diag(v*) : t € T} (Figure (13)(a)). Likewise, B, is {® diag(¢*) : t € T}
stacked on top of each other (Figure (13)(b)). Since ® has orthogonal columns, both A, and
B, have orthogonal columns and their pseudo-inverses are efficient to compute.

We simplify the notation by setting A = A, and B = By.

APPENDIX B. THE POISSON VERSUS (GAUSSIAN LOG-LIKELIHOOD FUNCTIONS

Consider the Poisson distribution

A
ol
Let n = A(1 + €) where A > 1 and € < 1. Using Stirling’s formula

n! ~V2mne "n"
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in the Poisson distribution, we obtain
PRYCERI P
dIme—A(1+e) [)\(1 + E)]>\(1+e)+1/2
1
V2 e (1 + e)Mita+1/2

P(n)

~

By the asymptotic
(1 + 6))\(1+6)+1/2 ~ 6)\6+/\62/2

we have

e*’\€2/2 —(n—X)2/(2))

e

~ V2T - V2T A

Namely in the low noise limit the Poisson noise is equivalent to the Gaussian noise of the
mean |Af|*> and the variance equal to the intensity of the diffraction pattern. The overall
SNR can be tuned by varying the signal energy || Af][?.

(97) P(n)

The negative log-likelihood function for the right hand side of (97) is

1] bl ?
(98) Z In|ulj]] + 3 ’% — |u[j]|| , b= noisy diffraction pattern.
J

For small NSR and in the vicinity of b, we make the substitution
blj]
|ul7]|

— 1, Inlulj]| = In/b[j]

to obtain

(99) const. + % Z ’m — Julj]|

‘ 2

APPENDIX C. EQUIVALENCE BETWEEN DRS AND ADMM

We show that ADMM applied to the augmented Lagrangian

(100) Lly.2) = K(y) + L) + X = y) + 5z =l

in the order alternatively as

(101) Zpy1 = arg mZin L(Ygs1, 2, k)

(102) Ypr1 = arg II%EiIl L(y, 2k, \k)

(103) Merr = A+ p(Zes1 — Yhi1)-

is equivalent to DRS.

Let

(104) 2y = argmin L(yg, 2, \y) = proxp,(Yx — Ax/p)
(105) Ypr1 = arg mmin L(Y, 241, Ae) = ProXge, (k41 + Ak /p)
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and consider the new variable
U = 2k + Ap_1/p-
We have from (103) that
Up+1 = Yrt1 + Mir1/p-
By (105), we also have
Yr+1 = Px(zkt1 + Me/p) = Pxugi
and
Yr — \e/p = 2y — up = Rxuy.
So (104) becomes
(106) Zit1 = Proxp,,(Rxuy,).
Note also that by (103)
U — PXuk = )\k:/p
and hence
U1 = 2k+1 + Ag/p = w, — Pxuy, + prox,,,(Rxus)

which is exactly the DRS scheme (29) after rearrangement.

APPENDIX D. PERTURBATION ANALYSIS OF POISSON-DRS

The full analysis of the Poisson-DRS (30) is more challenging. Instead, we give a perturba-
tive derivation of analogous result to Theorem 4.6 for the Poisson-DRS with small positive
p-
For small p, by keeping only the terms up to O(p) we obtain the perturbed DRS:

1 1 1_ p

(107) U1 = ZUE — —( 9

9 B )quk + PyRXuk.

Writing
I=Px+ Py and Rx=Px— Py,

we then have the estimates

IN

[zl 1EPus + (1= £)Pug ]| + | Py R
4 4

IN

p
(1= 5) el + o]

since p is small. Iterating this bound, we obtain

k—1
p N
Jancall < (1= 2)¥ ]l + o) 3o (1 = By

=0
and hence

. 4
(108) lim sup |lug|| < -0l

k—o00 P
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Note that the small p limit and the Poisson-to-Gaussian limit in Appendix B do not com-
mune, resulting in a different constant in (108) from Theorem 4.6.

APPENDIX E. EIGEN-STRUCTURE

The vector space CV = RN @g iRY is isomorphic to R?" via the map

V(v) = [ fgzg ]  weecy

R
and endowed with the real inner product
(u,v) := R(u*v) = V(u)'V(v), u,vecCV.

We have
_ [RHARE] + SHISE]| _ [ HTV(E) n
(109) — VIHE) = [@R[HJ%M - %[Hmm] - {HW(_@} et
Let Ay > Ao > -+ > Aoy > Aopy1 = -+ = Ay = 0 be the singular values of H in (63) with the

corresponding right singular vectors {n; € RV}, and left singular vectors {&, € R*}3",.
By definition, for £k =1,...,2n,

(110) Hne = MG (&),

(111) RIHGT(&)] = M.

Proposition E.1. We have & = V(f), oz = V(=if), M1 = 1, Aoz = 0 as well as n; =
|Afl.

Proof. Since
Hf =QAf =|Af]
we have by (109)

(112) RIHf =M & =|Afl, S[Hfl=H & =0

and hence the results. 0J
Corollary E.2.

(113) Ao = max{||S(Hu)|| :uwe C" u Lif, ||ul]| =1}

= max{|H ul :ue R ulé&,|u =1}

Proof. By (109),
S[Hu] = HV (—iu).
The orthogonality condition iu L f is equivalent to
V(zg) L V(—iu).
Hence, by Proposition E.1 &, is the maximizer of the right hand side of (113), yielding the

desired value As.

U
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Proposition E.3. Fork=1,...,2n?%,

(114) )\i + )\gn2+1—k =1

(115) Eomrr = V(=iV (&)

(116) & = VAV (&nzri-1))-

Proof. Since H is an isometry, we have ||w|| = ||[Hw||,Vw € C". On the other hand, we have

[Hw|* = [|[V(Hw)|* = K"V (w)|]> + |H "V (=iw)]]* ...
and hence
(117) IV (w)]]? = 7"V (w)]|* + [|H "V (=iw)].

Now we prove (114), (115) and (116) by induction.
Recall the variational characterization of the singular values/vectors
(118) Ny =max|H ul|, & =argmax||H ull, st.ul&,....&q, |ul=1

By Proposition E.1, (114), (115) and (116) hold for k£ = 1. Suppose (114), (115) and (116)
hold for £k =1,...,7 — 1 and we now show that they also hold for k£ = j.

Hence by (117)
M =max |[H' ul? =1— min |[H 0%, st.oulé,... &, v=V(=V"(u).

T ull= lofl=1
The condition u L &,...,&—; implies v L &op2, ..., &on240-; and vice versa. By the dual
variational characterization to (118)
Aonzy1—; = min [|[H |, Eopzi1; = argmin |[H ul, sit.u L &y, Eonzya g |lull = 1,
we have

N=1-Xpg 5 Sy =V(=VTH(E)).

O
Proposition E.4. For each k =1,...,2n2,
(119) HH*ni = Ne(Memie + iAan2g1-kM2n211-k),
(120) HH Nopz 411 = Aon2 41—k (A2n241-kM2n2 11—k — IART)
implying

Nedonzy1 kA2

2n2+1—k
in the basis of Nk, iNan211_k-

Proof. By definition, Hn, = Ax&,. Hence
H*ny = (RIH] +iS[H )m, = M (&8 +16)
where
& R I
gk: ]% ) £k7£k€an‘
33
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On the other hand, H "¢, = Ay and hence
(121) RIHES — S[HIE, = My

Now we compute H H*n as follows.

(122) HH'n, = MH(E +i&)
= Ak(%[H] +IS[H]) (& + &)
= M(RH|E — S[H]E,) + iM(R[H]g, + S[H]E)
= A+ I (RIH]E, + S[H]E)

by (121).

Notice that

(123 rungt+oung = 1|5

= H'V(=iVH&))
= HT€2n2+1—k
= )‘2n2+1—kn2n2+1—k

by Proposition E.3.

Putting (122) and (123) together, we have (119). Likewise, (120) follows from a similar
calculation. O
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