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Abstract. Douglas-Rachford Splitting (DRS) methods based on the proximal point algo-
rithms for the Poisson and Gaussian log-likelihood functions are proposed for ptychography
and phase retrieval.

Fixed point analysis shows that the DRS iterated sequences are always bounded explic-
itly in terms of the step size and that the fixed points are attracting if and only if the
fixed points are regular solutions. This alleviates two major drawbacks of the classical
Douglas-Rachford algorithm: slow convergence when the feasibility problem is consistent
and divergent behavior when the feasibility problem is inconsistent.

Fixed point analysis also leads to a simple, explicit expression for the optimal step size
in terms of the spectral gap of an underlying matrix.

When applied to the challenging problem of blind ptychography, which seeks to recover
both the object and the probe simultaneously, Alternating Minimization with the DRS inner
loops, even with a far from optimal step size, converges geometrically under the nearly
minimum conditions established in the uniqueness theory.

1. Introduction

Phase retrieval may be posed as an inverse problem in which an object vector with certain
properties is to be reconstructed from the intensities of its Fourier transform. By encoding
the properties and the Fourier intensities as constraint sets, phase retrieval can be cast as a
feasibility problem, i.e. the problem of finding a point in the intersection of the constraint
sets. The challenge is that the intensities of the Fourier transform results in a non-convex
constraint set (a high dimensional torus of variable radii).

Projection algorithms comprise a general class of iterative methods for solving feasibility
problems by projecting onto each of the constraint sets at each step [1]. The most basic
projection algorithm is von Neumann’s Alternating Projections (AP) (aka Error Reduction
in phase retrieval [23]). However, AP tends to stagnate when applied to phase retrieval,
resulting in poor performance.

A better method than AP is the classical Douglas-Rachford algorithm (a.k.a. Averaged Al-
ternating Reflections (AAR)) [13,25,25,35], which apparently can avoid the stagnation prob-
lem in many non-convex problems. When applied to phase retrieval, the classical Douglas-
Rachford algorithm is a special case of Fienup’s Hybrid-Input-Output algorithm [3,23].
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In addition to the standard phase retrieval, AAR has been applied to ptychography under
the name of difference map [50,51,54]. Ptychography uses a localized coherent probe to illu-
minate different parts of a unknown extended object and collect multiple diffraction patterns
as measurement data (Figure 1). The redundant information in the overlap between adja-
cent illuminated spots is then exploited to improve phase retrieval methods [44,47]. Recently
ptychography has been extended to the Fourier domain [45, 57]. In Fourier ptychography,
illumination angles are scanned sequentially with a programmable array source with the
diffraction pattern measured at each angle [32, 53]. Tilted illumination samples different
regions of Fourier space, as in synthetic-aperture and structured-illumination imaging.

Local, linear convergence of AAR as applied to phase retrieval as well as ptychography
was recently proved in [9, 10]. Conditions for global convergence, however, are not known.
Numerical evidence points to sub-linear rate when convergence happens. On the other hand,
for inconsistent feasibility problems, AAR iteration is known to diverge to infinity even in
the convex case (see Proposition 2.1(ii)). This poses a great challenge to AAR when the
data contain noise because in phase retrieval the dimension of the measurement data is much
higher than that of the unknown object (an over-determined system).

The purpose of this work is to develop reconstruction schemes based on more general Douglas-
Rachford splitting (DRS) with adjustable step sizes, perform the fixed point analysis and
demonstrate numerical convergence. AAR is the limiting case of DRS.

The DRS method is an optimization method based on proximal operators, a natural ex-
tension of projections, and is closely related to the Alternating Direction Method of Multi-
pliers (ADMM). The performance of DRS and ADMM in the non-convex setting depends
sensitively on the choice of the loss functions as well as the step sizes. Typically, global
convergence of DRS requires a loss function possessing a uniformly Lipschitz gradient and
sufficiently large step sizes [9,30,33], both of which, however, tend to hinder the performance
of DRS.

In this paper, the loss functions are based on the log-likelihood function for the most im-
portant Poisson noise, which does not have a uniformly Lipschitz gradient, with an optimal
step size, which is necessarily quite large.

We show by a fixed point analysis that the DRS method is well behaved in the sense that
the DRS iterated sequences are always bounded (explicitly in terms of the step size) and
that the fixed points are attracting if and only if the fixed points are regular solutions. In
other words, the DRS methods remove AAR’s two major drawbacks: slow convergence when
the feasibility problem is consistent and divergent behavior when the feasibility problem is
inconsistent.

Moreover, the fixed point analysis leads to the determination of the optimal step size and,
along with it, simple and efficient algorithms with no tuning parameter (Averaged Projection-
Reflection). The main application considered is the more challenging form of ptychography
called blind ptychography which seeks to recover both the unknown object and the probe
function simultaneously. When properly initialized, the DRS algorithms with the optimal
step size converge globally and geometrically to the true solution modulo the inherent am-
biguities.
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Proposition 2.1. [5] Suppose X and Y are closed and convex sets of a finite-dimensional
vector space E. Let {uk} be an AAR-iterated sequence for any u1 ∈ E. Then one of the
following alternatives holds:

(i) X ∩ Y 6= ∅ and (uk) converges to a point u such that PXu ∈ X ∩ Y ;
(ii) X ∩ Y = ∅ and ‖uk‖ → ∞.

In the consistent case (i), the limit point u is a fixed point of the AAR map (2), which after
projection is in X ∩ Y . However, the convergence rate of AAR is in general sublinear [2,29].
The inconsistent case (ii) arises from noisy data or modeling errors resulting in divergent
AAR iterated sequences, a major drawback of AAR since the inconsistent case is prevalent
with noisy data because of the higher dimension of data compared to the object.

The AAR map (2) is often written in the following form

uk+1 = uk + PYRXuk − PXuk(3)

which is equivalent to the 3-step iteration

yk = PXuk;(4)

zk = PY (2yk − uk) = PYRXuk(5)

uk+1 = uk + zk − yk(6)

2.1. Phase retrieval as feasibility. For any finite dimensional vector u, define its modulus
vector |u| as |u|[j] = |u[j]| and its phase vector sgn(u) as

sgn(u)[j] =

{
1 if u[j] = 0

u[j]/|u[j]| else.

where j is the index for the vector component. Because of the value of sgn(u) where u[j] = 0
is arbitrarily selected, such points are points of discontinuity of the sgn function.

In phase retrieval including ptychography, we can write the given data b as

b = |u| with u = Af(7)

for some measurement matrix A and unknown object f . For phase retrieval and ptychog-
raphy, A has some special features described in Appendix A. For most of the subsequent
analysis, however, these special features are not relevant.

Let O be the object space, typically a finite-dimensional complex vector space, and X = AO.
Since the object is a two dimensional, complex-valued image, we let O = Cn2

where n is the
number of pixels in each dimension.

Let N be the total number of data. The data manifold

Y := {u ∈ C
N : |u| = b}

is a N (real) dimensional torus. For phase retrieval it is necessary that N > 2n2. Without
loss of generality we assume that A has a full rank.
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The problem of phase retrieval and ptychography can be formulated as the feasibility prob-
lem

Find u ∈ X ∩ Y,(8)

in the transform domain CN instead of the object domain Cn2

.

Let us clarify the meaning of solution in the transform domain since A is overdetermining.
Let ⊙ denotes the component-wise (Hadamard) product and we can write

PXu = AA+u, PY u = b⊙ sgn(u)(9)

RX = 2PX − I, RY = 2PY − I

where A+ := (A∗A)−1A∗ is the pseudo-inverse of A.

We refer to u = eiαAf, α ∈ R, as the true solution (in the transform domain), up to a
constant phase factor eiα. We say that u is a generalized solution (in the transform domain)
if

|û| = b, û := PXu.

Accordingly, the alternative (i) in Proposition 2.1 means that if a convex feasibility problem
is consistent then every AAR iterated sequence converges to a generalized solution and hence
every fixed point is a generalized solution.

Typically a generalized solution u is neither a feasible solution (since |u| may not equal b)
nor unique (since A is overdetermining) and, if PXz = 0, u+ z is also a generalized solution.
We call u a regular solution if u is a generalized solution and PXu = u.

Let û = PXu for a generalized solution u. Since PX û = û and |û| = b, û is a regular solution.
Let us state this simple fact for easy reference.

Proposition 2.2. If u is a generalized solution, then PXu is a regular solution.

The goal of the inverse problem (7) is the unique determination of f , up to a constant phase
factor, from the given data b. In other words, uniqueness holds if, and only if, all regular
solutions û have the form

û = eiαAf(10)

or equivalently, any generalized solution u is an element of the (2N − 2n2)-dimensional
manifold

{eiαAf − z : PXz = 0, z ∈ C
N , α ∈ R}.(11)

In the transform domain, the uniqueness is characterized by the uniqueness of the regular so-
lution, up to a constant phase factor. Geometrically, uniqueness means that the intersection
X ∩ Y is a circle (parametrized eiα times Af).

As proved in [9], when the uniqueness (11) holds, the fixed point set of the AAR map (2) is
exactly the continuum set

{u = eiαAf − z : PXz = 0, sgn(u) = α + sgn(Af), z ∈ C
N , α ∈ R}.(12)
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In (12), the phase relation sgn(u) = α+sgn(Af) implies that z = η⊙sgn(u), η ∈ RN , b+η ≥ 0.
So the set (12) can be written as

{eiα(b− η)⊙ sgn(Af) : PX(η ⊙ sgn(Af)) = 0, b+ η ≥ 0, η ∈ R
N , α ∈ R},(13)

which is an (N−2n2) real-dimensional set, a much larger set than the circle {eiαAf : α ∈ R}
for a given f . On the other hand, the fixed point set (13) is N -dimension lower than the
set (11) of generalized solutions.

A more intuitive characterization of the fixed points can be obtained by applying RX to the
set (13). Since

RX [e
iα(b− η)⊙ sgn(Af)] = eiα(b+ η)⊙ sgn(Af)

amounting to the sign change in front of η, the image set of (13) under the map RX is

{eiα(b+ η)⊙ sgn(Af) : PX(η ⊙ sgn(Af)) = 0, b+ η ≥ 0, η ∈ R
N , α ∈ R}.(14)

The set (14) is the fixed point set of the alternative form of AAR:

xk+1 =
1

2
xk +

1

2
RXRY xk(15)

in terms of xk := RXuk. The expression (14) says that the fixed points of (15) are generalized
solutions with the “correct” Fourier phase.

However, the boundary points of the fixed point set (14) are degenerate in the sense that they
have vanishing components, i.e. (b+η)[j] = 0 for some j and can slow down convergence [24].
Such points are points of discontinuity of the AAR map (15) because they are points of
discontinuity of PY = b ⊙ sgn(·) (see also the comment below (30)). Indeed, even though
AAR converges linearly in the vicinity of the true solution, numerical evidence suggests
that globally (starting with a random initial guess) AAR converges sub-linearly (cf. [2,29]).
Due to the non-uniformity of convergence, the additional step of applying PX (Proposition
2.1(i)) at the “right timing” of the iterated process can jumpstart the geometric convergence
regime [9].

3. Douglas-Rachford Splitting (DRS)

Douglas-Rachford Splitting (DRS) is an optimization method for solving the following min-
imization problem:

(16) min
u

K(u) + L(u)

where the loss functions L and K represent the data constraint Y and the object constraint
X, respectively.

To deal with the divergence behavior of AAR (Proposition 2.1 (ii)) in the case of, e.g. noisy
data, we consider the Poisson log-likelihood cost functions [6, 52]

Poisson: L(u) =
∑

i

|u[i]|2 − b2[i] ln |u[i]|2(17)

based on the maximum likelihood principle for the Poisson noise model. The Poisson noise
is the most prevalent noise in X-ray coherent diffraction. There is, however, a disadvantage
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of working with (17), i.e. it has a divergent derivative where u(i) vanishes but b(i) does not.
This roughness can be softened by considering an asymptotic form

Gaussian: L(u) =
1

2
‖|u| − b‖2(18)

In Appendix B, we show that the Poisson log-likelihood function (17) is asymptotically
reducible to (18).

With the constraint u = Ag, g is a stationary point in the object domain if and only if

g = A∗ [sgn(Ag)⊙ b] .

In the noiseless case, |Af | = b and hence f is a stationary point by the isometry of A. On
the other hand, with noisy data there is no regular solution to |Ax| = b with high probability
(since A has many more rows than columns) and f is unlikely to be a stationary point (since
the stationarity equation imposes extra constraints on noise).

Moreover, the Hessian of (18) at u = Af is positive semi-definite and has one-dimensional
eigenspace spanned by if associated with eigenvalue zero [9–11].

Expanding the loss function (18)

L(u) =
1

2
‖u‖2 −

∑

j

b[j]|u[j]|+ 1

2
‖b‖2(19)

we see that L has a bounded sub-differential where u[j] vanishes but b[j] does not. There are
various tricks to further smooth out (18) e.g. by introducing an additional regularization
parameter as

L(u) =
1

2
‖
√
|u|2 + ǫ−

√
b2 + ǫ‖2, ǫ > 0(20)

(see e.g. [8]).

Besides the Poisson noise, a type of noise due to interference from multiple scattering can be
modeled as complex circularly-symmetric Gaussian noise, resulting in the signal model

b = |Af + η|(21)

where η is a complex circularly-symmetric Gaussian noise. Squaring the expression, we
obtain

b2 = |Af |2 + |η|2 + 2ℜ(η ⊙ Af)

Suppose |η| ≪ |Af | so that |η|2 ≪ 2ℜ(η ⊙ Af). Then

b2 ≈ |Af |2 + 2ℜ(η ⊙ Af).(22)

Eq. (22) says that at the photon counting level, the noise appears additive and Gaussian but
with variance proportional to |Af |2, the Poisson noise in the asymptotic regime discussed in
Appendix B. Therefore the loss function (18) is suitable for this case too.

The maximum likelihood scheme is a variance stabilization scheme which uniformizes the
probability distribution for every pixel regardless of the measured intensity value [31]. See
[28, 56] for more choices of loss functions.
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The amplitude-based Gaussian loss function (18) is well known to outperforms the intensity-
based loss function 1

2
‖|u|2 − b2‖2, even though the latter is more smooth [55]. Due to the

non-differentiability of both K and L, the global convergence property of the proposed DRS
optimization is beyond the current framework of analysis [33]. The ptychographic iterative
engines, PIE [21,22,48], ePIE [40] and rPIE [38], are also related to the mini-batch gradient
method for the amplitude-based cost function (18).

For K, we letK(u) be the indicator function of the range of A, i.e. a “hard” constraint.

When the corresponding feasibility problem is consistent (feasible), there exist u ∈ CN such

that |u| = b and u = Ag for some g ∈ Cn2

, which are exactly the global minimizers of (16),
realizing the minimum value 0, as well as the regular solutions defined in Section 2.1.

When the corresponding feasibility problem is inconsistent (infeasible), the minimum value
of (16) is unknown and the global minimizers are harder to characterize.

DRS is based on the proximal operator which is a generalization of projection. The proximal
point relative to a function G is given by

proxG(u) := argmin
x

G(x) +
1

2
‖x− u‖2.

With the loss functions (17) or (18), PX is replaced by PK/ρ and PY by PL/ρ, respectively,
with the step size γ = 1/ρ. The 3-step procedure (4)-(6) is replaced by

vl = proxK/ρ(ul);(23)

wl = proxL/ρ(2vl − ul)(24)

ul+1 = ul + wl − vl(25)

for l = 1, 2, 3 . . ..

For convex optimization, DRS (23)-(25) is equivalent to the Alternating Direction Method
of Multipliers (ADMM) applied to the dual problem to (16). In Appendix C, we show that
for phase retrieval they are essentially equivalent to each other.

For our choice of K, proxK/ρ(u) = PXu = AA+u is independent of ρ. This should be
contrasted with the choice of the more smooth distance function adopted in [33] for the
tractability of convergence analysis (see more discussion in Section 10).

If we define the reflector RY corresponding to proxL/ρ(u) as

RY u := 2 proxL/ρ(u)− u,(26)

then we can write the system (23)-(25) as

uk+1 =
1

2
uk +

1

2
RYRXuk(27)

which is equivalent to

xk+1 =
1

2
xk +

1

2
RXRY xk(28)

in terms of xk := RXuk. In other words, the order of carrying out proxL/ρ and proxK/ρ does
not matter in the current DRS set-up.
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For the Gaussian loss function (18), the proximal point can be explicitly derived

proxL/ρ(u) =
1

ρ+ 1
b⊙ sgn(u) +

ρ

ρ+ 1
u

=
1

ρ+ 1
(b+ ρ|u|)⊙ sgn(u),

an averaged projection with the relaxation parameter ρ. Now we are ready to give the most
compact and explicit representation of the Gaussian DRS map:

uk+1 =
uk

ρ+ 1
+

ρ− 1

ρ+ 1
PXuk +

1

ρ+ 1
PYRXuk(29)

:= Γ(uk)

which can be compared with AAR in the form (3).

For the Poisson case the DRS map has a more complicated form

uk+1 =
1

2
uk −

1

ρ+ 2
RXuk +

ρ

2(ρ+ 2)

[
|RXuk|2 +

8(2 + ρ)

ρ2
b2
]1/2

⊙ sgn
(
RXuk

)
(30)

:= Π(uk)

where b2 is the vector with component b2[j] = (b[j])2 for all j.

Note that Γ(u) and Π(u) are continuous except where RXu vanishes but b does not due to
arbitrariness of the value of the sgn function at zero.

After the iteration is terminated with the terminal vector u∗, the object estimate is obtained
by

f∗ = A+u∗.(31)

We shall refer to DRS with the Poisson log-likelihood function (30) and the Gaussian ver-
sion (29) by Poisson-DRS and Gaussian-DRS, respectively. The computation involved in
Gaussian-DRS and Poisson-DRS are mostly pixel-wise operations (hence efficient) except for
the pseudo-inverse A+ which can be computed efficiently (see Appendix A).

In the limiting case of ρ = 0, both Gaussian-DRS and Poisson-DRS become the AAR
algorithm.

4. Fixed points

For simplicity of presentation, we shall focus on the case of the Gaussian DRS.

By definition, all fixed points u satisfy the equation

u = Γ(u)(32)

and hence after some algebra by (29)

PXu+ ρP⊥
Xu = b⊙ sgn(RXu).(33)
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The main result of this section is that the iteration of Γ always produces a sequence bounded
in norm by

‖b‖
min{ρ, 1} for ρ > 0

(Theorem 4.6) with slightly better bounds on the fixed points (Corollary 4.7). Therefore,
Gaussian-DRS is free of the divergence problem associated with AAR in the infeasible
case.

It is often convenient to perform the analysis in terms of the pair of variables u and x := RXu.
Here are some basic relations between u and x.

Proposition 4.1. For any u ∈ CN , x := RXu satisfies

u = RXx, PXu = PXx, P⊥
Xu = −P⊥

Xx.

Proof. First note that

RXx = 2PXx− x = 2PXu− (2PXu− u) = u.

Moreover,

PXx = PXRXu = PX(2PXu− u) = 2PXu− PXu = PXu.

and

P⊥
Xx = x− PXx = 2PXu− u− PXx = 2PXu− u− PXu = PXu− u = −P⊥

Xu.

�

Proposition 4.2. Any u ∈ CN is a generalized solution if and only if x := RXu is a
generalized solution.

Proof. If u is a generalized solution, then PXu = PXx by Proposition 4.1. Now that x is a
generalized solution, the converse is also true by the same argument.

�

Proposition 4.3. If u is a generalized solution, then PXu is a regular solution and a fixed
point.

Proof. Let û = PXu. By Proposition 2.2 û is a regular solution. Moreover Γ(u) becomes

1

2
û+

ρ− 1

2(ρ+ 1)
û+

1

ρ+ 1
b⊙ sgn(û) =

1

2
û+

ρ− 1

2(ρ+ 1)
û+

1

ρ+ 1
û

which equals û. Therefore û is a fixed point. �

Proposition 4.4. Suppose PXu = u. Then u is a regular solution if, and only if, u is a
fixed point.

Proof. Under the assumption PXu = u, u = RXu and Γ(u) becomes

1

2
u+

ρ− 1

2(ρ+ 1)
u+

1

ρ+ 1
b⊙ sgn

(
u) =

ρ

1 + ρ
u+

1

ρ+ 1
b⊙ sgn

(
u).(34)
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Therefore, if u is a fixed point, then (33) implies

u = b⊙ sgn(u)

and hence |u| = b, i.e. u is a regular solution.

On the other hand, if |u| = b, then the right hand side of (34) becomes

ρ

1 + ρ
u+

1

ρ+ 1
b⊙ sgn

(
u) =

ρ

1 + ρ
u+

1

ρ+ 1
u = u

implying that u is a fixed point.

�

Writing
I = PX + P⊥

X and RX = PX − P⊥
X ,

and using Proposition 4.1 we can put the Gaussian-DRS map and the fixed point equation
in the following forms.

Proposition 4.5. The Gaussian-DRS map Γ is equivalent to

PXuk+1 =
ρ

ρ+ 1
PXuk +

1

ρ+ 1
PXPY xk(35)

P⊥
Xuk+1 =

1

ρ+ 1
P⊥
Xuk +

1

ρ+ 1
P⊥
XPY xk(36)

where xk := RXuk. Therefore any fixed point u satisfies

PXx = PXPY x(37)

−ρP⊥
Xx = P⊥

XPY x,(38)

where x := RXu, or equivalently

PXx− ρP⊥
Xx = b⊙ sgn(x)(39)

PXx+ ρP⊥
Xx = RX (b⊙ sgn(x)) .(40)

Next we show that the Gaussian-DRS map Γ with ρ > 0 always produces a bounded iterated
sequence, in contrast to the divergence behavior of AAR given in Proposition 2.1 (ii).

Theorem 4.6. Let uk+1 := Γ(uk), k ∈ N, and xk := RXuk. Then, for ρ > 0, {uk} and {xk}
are bounded sequences. Moreover,

lim sup
k→∞

‖uk‖ = lim sup
k→∞

‖xk‖ ≤ ‖b‖
min{ρ, 1} for ρ > 0(41)

and hence all fixed points u satisfy

‖u‖ ≤ ‖b‖
min{ρ, 1} for ρ > 0.(42)

Proof. Since PX is an orthogonal projection, we have

‖xk‖ = ‖uk‖ =
√
‖PXxk‖2 + ‖P⊥

Xxk‖2.
11



By Proposition 4.5 we then have the estimates

‖uk+1‖ ≤ ‖ 1

ρ+ 1
P⊥
Xuk +

ρ

ρ+ 1
PXuk‖+

1

ρ+ 1
‖PY xk‖(43)

=

[
1

(ρ+ 1)2
‖P⊥

Xuk‖2 +
ρ2

(ρ+ 1)2
‖PXuk‖2

]1/2
+

1

ρ+ 1
‖PY xk‖

≤ max{ρ, 1}
ρ+ 1

‖uk‖+
1

ρ+ 1
‖b‖.

Hence, iterating (43) for ρ ≥ 1 we obtain

‖uk+1‖ ≤ ρk

(ρ+ 1)k
‖u1‖+

‖b‖
ρ+ 1

k−1∑

j=0

ρj

(1 + ρ)j

and, after passing to the limit, the upper bound (41).

On the other hand, for ρ < 1,

‖uk+1‖ ≤ 1

(ρ+ 1)k
‖u1‖+ ‖b‖

k∑

j=1

1

(ρ+ 1)j

implying (41). �

We can improve (42) slightly by Proposition 4.5.

Corollary 4.7. For any fixed point u, let x := RXu. Then

‖u‖ = ‖x‖ < ‖b‖ if ρ > 1(44)

and

‖b‖ < ‖u‖ = ‖x‖ ≤ ‖b‖/ρ if ρ ∈ (0, 1)(45)

unless PXx = x (or equivalently PXu = u), in which case u = x is a regular solution.

On the other hand, for ρ = 1, ‖u‖ = ‖x‖ = ‖b‖ for any fixed point u.

Proof. By (39) and that PX is an orthogonal projection, we have

‖PXx‖2 + ρ‖P⊥
Xx‖2 = ‖b‖2(46)

which implies

‖u‖ = ‖x‖
{
< ‖b‖ for ρ > 1
> ‖b‖ for ρ < 1

if ‖P⊥
Xx‖ 6= 0.(47)

If ‖P⊥
Xx‖ = 0, then x = PXx and (39) becomes x = b⊙ sgn(x), implying |x| = b. Likewise,

x = PXx implies that u = x.

Moreover, by (42), ‖u‖ = ‖x‖ ≤ ‖b‖/ρ for ρ ∈ (0, 1). Hence (47) can be further strengthened
to the statement (44)-(45).

For ρ = 1, (46) implies that ‖x‖ = ‖b‖. �
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In Appendix D we give a perturbation analysis for the similar result in the Poisson case with
small ρ.

5. Stability analysis

When the uniqueness (11) holds, the fixed point set of AAR (ρ = 0) is explicitly given in
(12). For ρ > 0, the fixed point set is much harder to characterize explicitly. Instead, we
show that the desirable fixed points (i.e. regular solutions) are automatically distinguished
from the other non-solutional fixed points by their stability type.

We say that a fixed point is attracting if the spectral radius of the sub-differential map is
at most 1 and non-attracting if otherwise. Because a constant phase factor is an inherent
ambiguity, any reasonable iterative map has at least one-dimensional center manifold. We
say that a fixed point is strictly attracting if the center manifold is one-dimensional, i.e. a
positive spectral gap between the second singular value of the sub-differential map and 1
(see Section 6).

Roughly speaking, we shall prove that for ρ ≥ 1 all attracting fixed points must be regular
solutions (Theorem 5.2) and that for ρ ≥ 0 all regular solutions are attracting (Theorem
5.4). In other words, for ρ ≥ 1, we need not concern with the problem of stagnation near a
fixed point that is not a regular solution (a common problem with AP). Moreover, we know
that the regular solutions are strictly attracting under additional mild conditions (Corollary
6.2). On the other hand, the problem of divergence (associated with AAR) when the data
constraint is infeasible does not arise for Gaussian-DRS in view of Theorem 4.6.

Proposition 5.1. Let x := RXu and assume |x| > 0. Set

Ω = diag(sgn(x)), P̃X = Ω∗PXΩ, R̃X = Ω∗RXΩ.(48)

Then

lim
ǫ→0

Ω∗(Γ(u+ ǫv)− Γ(u))/ǫ = JA(η), η = Ω∗v

where

JA(η) =
1

2
η +

ρ− 1

2(ρ+ 1)
R̃Xη +

i

ρ+ 1

b

|x| ⊙ ℑ
[
R̃Xη

]
.(49)

Proof. The key observation is that the derivative of sgn(c) = c/|c| ∈ C, c 6= 0, is given by

lim
ǫ→0

1

ǫ

[
c+ ǫa

|c+ ǫa| −
c

|c|

]
= lim

ǫ→0

sgn(c)

ǫ

[
1 + ǫa/c

|1 + ǫa/c| − 1

]

= iℑ [a/c] sgn(c)

= iℑ [sgn(c̄)a]
sgn(c)

|c|
for any a ∈ C where ℑ denotes the imaginary part. So we have

lim
ǫ→0

1

ǫ
(Γ(u+ ǫv)− Γ(u)) =

1

2
v +

ρ− 1

2(ρ+ 1)
RXv +

i

ρ+ 1

b

|x| ⊙ Ωℑ [Ω∗RXv]

which, in terms of η = Ω∗v and the notation (48), becomes Ω times JA in (49).
13
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The following result says that for ρ ≥ 1 all the non-solution fixed points are non-attracting.

Theorem 5.2. Let ρ ≥ 1. Let u be a fixed point such that x := RXu has no vanishing
components. Suppose

‖JA(η)‖ ≤ ‖η‖, ∀η ∈ C
N .(50)

Then

x = PXx = b⊙ sgn(x),(51)

implying u = x is a regular solution.

Remark 5.3. Previous results [9] suggest that when the regular solution is unique up to a
constant factor, all AAR fixed points in (14) are attracting in the sense (50). In other words,
Theorem 5.2 is likely false for ρ = 0.

Proof. In view of Proposition 4.5, it suffices to show that P⊥
Xx = 0.

We prove the statement by contradiction. Suppose P⊥
Xx 6= 0.

By (39) and the Pythogoras theorem we have

‖PXx‖22 + ρ2‖P⊥
Xx‖2 = ‖b‖2(52)

and hence ‖b‖ ≥ ‖x‖ for ρ ≥ 1. Applying Ω∗ we rewrite (40) as

P̃X |x|+ ρ(|x| − P̃X |x|) = R̃Xb(53)

On the other hand, applying P̃X on (53) we have

P̃X |x| = P̃Xb

and hence by (53)

P̃X |x| = P̃Xb =
ρ|x|
1 + ρ

+
b

1 + ρ
.(54)

We now show that ‖JA(η)‖ > ‖η‖ for any η such that

R̃Xη = iP̃Xb =
iρ

1 + ρ
|x|+ i

1 + ρ
b.(55)

To this end, it is more convenient to write JA in (49) in terms ξ := R̃Xη. With a slight abuse
of notation we write

JA(ξ) = P̃Xξ −
ξ

ρ+ 1
+

i

ρ+ 1

b

|x| ⊙ ℑ(ξ)(56)

where we have used the properties in Proposition 4.1.

Since ‖ξ‖ = ‖η‖, our goal is to show ‖JA(ξ)‖ > ‖ξ‖.
First we make an observation that will be useful later. We claim that

ρ‖x‖2 = ‖b‖2 + (ρ− 1)|x| · b(57)
14



where “·” denote the (real) scalar product between two vectors. By (54),

P̃⊥
X b = b− P̃Xb =

ρ
1+ρ

(|b| − |x|)
and hence by the Pythogoras theorem

‖b‖2 = ‖P̃Xb‖2 + ‖P̃⊥
X b‖2

=

∥∥∥∥
ρ|x|
1 + ρ

+
b

1 + ρ

∥∥∥∥
2

+

∥∥∥∥
ρ

1 + ρ
(|b| − |x|)

∥∥∥∥
2

=
2ρ2

(ρ+ 1)2
‖x‖2 + 2ρ(1− ρ)

(ρ+ 1)2
|x| · b+ ρ2 + 1

(ρ+ 1)2
‖b‖2

which becomes (57) after rearrangement.

Next, note that by (55)

P̃Xξ = P̃Xη = iP̃Xb = ξ,

which is purely imaginary, and hence

JA(ξ) =
ρ

ρ+ 1
ξ +

i

ρ+ 1

b

|x| ⊙ ξ(58)

by (56).

After some tedious but straightforward algebra with (55) and (58), we see that ‖JA(ξ)‖ > ‖ξ‖
is equivalent to the inequality

0 < (5ρ2 − 2ρ− 1)‖b‖2 + (2ρ3 − 4ρ2 − 2ρ)|x| · b+ 4ρ
b

|x| · b
2 +

∥∥∥∥
b2

|x|

∥∥∥∥
2

− ρ2(2ρ+ 1)‖x‖2

which by (57) reduces to

0 < (3ρ2 − 3ρ− 1)‖b‖2 − (3ρ2 + ρ)|x| · b+ 4ρ
b

|x| · b
2 +

∥∥∥∥
b2

|x|

∥∥∥∥
2

.(59)

To proceed, we note that the assumption P̃⊥
Xx 6= 0 implies |x| 6= b, ‖x‖ < ‖b‖ and moreover

|x|, b are not a multiple of each other. So by the Cauchy-Schwarz inequality we have
∥∥∥∥
b2

|x|

∥∥∥∥ >
‖b‖2
‖x‖

b

|x| · b
2 =

∥∥∥∥
b3/2

|x|1/2
∥∥∥∥
2

>
‖b‖4

‖|x|1/2 ⊙ b1/2‖2 =
‖b‖4
|x| · b.

and hence the last two terms on the right hand side of (59) have the strict lower bound

4ρ
b

|x| · b
2 +

∥∥∥∥
b2

|x|

∥∥∥∥
2

> 4ρ
‖b‖4
|x| · b +

‖b‖4
‖x‖2(60)

> (1 + 4ρ)‖b‖2

where we have used the fact ‖b‖ ≥ ‖x‖ due to ρ ≥ 1.

In view of (60) the right hand side of (59) is strictly greater than

(3ρ2 − 3ρ− 1)‖b‖2 − (3ρ2 + ρ)‖b‖2 + (1 + 4ρ)‖b‖2 = 0.
15



In other words, (59) holds indeed and the proof for ‖JA(ξ)‖ > ‖ξ‖ is complete.

This clearly contradicts the assumption (50). Therefore, P⊥
Xx = 0 and the desired result

(51) follows from Propositions 4.4 and 4.5.

�

The next result says that for any ρ ≥ 0, all regular solutions are attracting fixed points.

Theorem 5.4. Let ρ ≥ 0. Let u be a nonvanishing regular solution. Then

‖JA(η)‖ ≤ ‖η‖(61)

for all η ∈ CN and the equality holds in the direction ±ib (and possibly elsewhere on the unit
sphere).

Proof. By Proposition 4.4, x := RXu = u is a fixed point. By Proposition 4.5,

u = b⊙ sgn(u) = Ag for some g.

Rewriting JA(η) in (49) as

JA(η) = P̃Xη −
1

ρ+ 1
R̃Xη +

i

1 + ρ

b

|x| ⊙ ℑ
(
R̃Xη

)

and using |x| = b we obtain

JA(η) = P̃Xη −
1

1 + ρ
ℜ
(
R̃Xη

)

where ℜ denotes the real part. We now show that ‖JA(η)‖ ≤ ‖η‖ for all η.

To proceed, we shall write P̃X = HH∗ where H is an isometry. This can be done for the
matrix C := Ω∗A via the QR decomposition. In our setting, the measurement matrix of
each diffraction pattern has orthogonal columns and so does the total measurement matrix.
Hence the R factor of C is a diagonal matrix with the norms of the columns of C on the
diagonal (see Appendix A). For ease of notation, we may assume that Ω∗A = H.

Note that [
ℜ[H] −ℑ[H]
ℑ[H] ℜ[H]

]
(62)

is real isometric because H is complex isometric. Define

(63) H :=
[
ℜ[H] ℑ[H]

]
∈ R

N×2n2

.

As in the set-up detailed in Appendix A let the object be a n× n square image and Cn2

the
object domain.

By Proposition E.4 in Appendix E, HH∗ can be block-diagonalized into one (N − 2n2) ×
(N − 2n2) zero-block and 2n2 2× 2 blocks of the form

[
λ2
k λkλ2n2+1−k

λkλ2n2+1−k λ2
2n2+1−k

]
, k = 1, 2, . . . , 2n2(64)
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in the orthonormal basis {ηk, iη2n2+1−k : k = 1, 2, . . . , 2n2} where ηk ∈ RN are the right
singular vectors, corresponding to the singular values λk, of H.

Moreover, the complete set of singular values satisfy

1 = λ1 ≥ λ2 ≥ . . . ≥ λ2n2 = λ2n2+1 = . . . = λN = 0(65)

λ2
k + λ2

2n2+1−k = 1.(66)

In view of the block-diagonal nature of HH∗, we shall analyze JA(η) in the 2-dim spaces
spanned by the orthonormal basis {ηk, iη2n2+1−k} one k at a time.

For any fixed k and any z1, z2 ∈ C let

η = z1ηk + iz2η2n2+1−k

= ℜ[z1]ηk + ℜ[z2]iη2n2+1−k + ℑ[z1]iηk −ℑ[z2]η2n2+1−k.

We shall use the basis {ηk, iη2n2+1−k, iηk,−η2n2+1−k} for expressing η and JA(η).

We obtain

JA(η) =
(
λ2
kz1 + λkλ2n2+1−kz2

)
ηk +

(
λkλ2n2+1−kz1 + λ2

2n2+1−kz2
)
iη2n2+1−k(67)

+
1

1 + ρ

[
(1− 2λ2

k)ℜ(z1)− 2λkλ2n2+1−kℜ(z2)
]
ηk

+
1

1 + ρ

[
2λkλ2n2+1−kℑ(z1)− (1− 2λ2

2n2+1−k)ℑ(z2)
]
η2n2+1−k.

Next we treat (67) as a linear function of ℜ(z1),ℜ(z2),ℑ(z1),ℑ(z2) with real coefficients in
the basis {ηk, iη2n2+1−k, iηk,−η2n2+1−k} and represent JA by a 4 × 4 matrix which is block-
diagonalized into two 2× 2 blocks:

[
1

1+ρ
+ ρ−1

ρ+1
λ2
k

ρ−1
ρ+1

λkλ2n2+1−k

λkλ2n2+1−k λ2
2n2+1−k

]
,

[
λ2
k λkλ2n2+1−k

ρ−1
ρ+1

λkλ2n2+1−k
1

ρ+1
+ ρ−1

ρ+1
λ2
2n2+1−k

]
.(68)

with the former of (68) acting on ℜ(z1),ℜ(z2) and the latter acting on ℑ(z1),ℑ(z2).

The eigenvalues of the matrices in (68) are, respectively

1

2(ρ+ 1)

[
ρ+ 2λ2

2n2+1−k ±
√

ρ2 − 4λ2
kλ

2
2n2+1−k

]
(69)

1

2(ρ+ 1)

[
ρ+ 2λ2

k ±
√

ρ2 − 4λ2
kλ

2
2n2+1−k

]
.(70)

Because the two expressions are symmetrical with respect to the exchange of index (k ↔
2n2 + 1− k), it suffices to analyze (69), which, with the + sign, equals 1 at k = 2n2 (recall
λ2n2 = 0). Next we show that 1 is the largest eigenvalue among all k and ρ ∈ [0,∞).

Note that (69) is real-valued for any λk ∈ [0, 1] if and only if ρ ≥ 1. Hence, for ρ ≥ 1, the
maximum eigenvalue is 1 and occurs at k = 2n2.
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For ρ < 1 and ρ2 − 4λ2
k + 4λ4

k ≥ 0, the maximum value of (69) can be bounded as

1

2(ρ+ 1)

[
ρ+ 2(1− λ2

k) +
√
ρ2 − 4λ2

k(1− λ2
k)

]
(71)

≤ 1

2(ρ+ 1)

[
ρ+ 2(1− λ2

k) + ρ
]

= 1− λ2
k

ρ+ 1
≤ 1

since 4λ2
k(1− λ2

k) ≥ 0. Hence the expression (69) achieves the maximum value 1 at k = 2n2.

For ρ < 1 and ρ2 − 4λ2
k + 4λ4

k ≤ 0, the modulus of (69) equals
√

1− λ2
k

1 + ρ
≤ 1.(72)

By Proposition E.1, η1 = b, P̃X(ib) = ib, R̃X(ib) = ib and hence JA(ib) = ib. However,
argmax‖η‖=1 |JA(η)| may contain points other than ±ib/‖b‖ since we do not know if λ2 < 1
without additional conditions (see Section 6). The proof is complete.

�

6. Spectral gap

To derive a positive spectral gap (λ2 < λ1 = 1), we need some details of the ptychographic
set-up (Appendix A).

Let T be the set of all shifts, including (0, 0), involved in the ptychographic measurement.
Denote by µt the t-shifted probe for all t ∈ T and Mt the domain of µt. Let f t the object
restricted to Mt. For convenience, we assume the periodic boundary condition on the whole
object domain M = ∪t∈T Mt when µt crosses over the boundary of M.

Two blocks Mt and Mt
′

are said to be connected if the minimum overlap condition

#{Mt ∩Mt
′ ∩ supp(f)} ≥ 2

is satisfied. Let G be the undirected graph with the nodes corresponding to {Mt : t ∈ T }
and the edges between any pair of connected nodes (see Figure 2).

Now we recall the following spectral gap theorem [10] (Proposition 3.5 and the subsequent
remark).

Proposition 6.1. [10] In addition to the above assumptions, suppose supp(f) is not a
subset of a line. Let u (and hence x := RXu) be a regular solution. Let λ2 be the second
largest singular value of H defined in (63). If the graph G is connected, then λ2 < 1.

Some theoretical bounds for λ2 can be found in [10].

Using Proposition 6.1, we can sharpen the result of Theorem 5.4 as follows.
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For ρ = 1, (69) becomes

1

4

[
1 + 2(1− λ2

k)± |1− 2λ2
k|
]

which achieves the second largest value

1− λ2
2n2−1 = λ2

2 < 1(75)

at k = 2n2 − 1 by (66).

The case of ρ < 1 requires more analysis since the eigenvalue (69) may be real or complex.
Analyzing as in (71) and (72) we conclude that the second largest value is

1

2(ρ+ 1)

[
ρ+ 2λ2

2 +
√

ρ2 − 4λ2
2(1− λ2

2)

]
if ρ ≥ ρ∗ = 2λ2

√
1− λ2

2(76)

and

λ2√
1 + ρ

if ρ ≤ ρ∗(77)

While the expression in (77) is a decreasing function of ρ and less than λ2, (76) is an increasing
function of ρ and less than (75) for ρ = 1.

Also, for ρ > 1, the expression (74), as a function of ρ, has the derivative

1

2(ρ+ 1)2

[
1− 2λ2

2 +
ρ+ 4λ2

2(1− λ2
2)√

ρ2 − 4λ2
2(1− λ2

2)

]
>

1

2(ρ+ 1)2
[
2− 2λ2

2

]
> 0

and hence achieves the minimum at ρ = 1. In other words, Gaussian-DRS with ρ = 1
converges faster than Gaussian-DRS with ρ > 1.

From the preceding analysis, the second largest singular value achieves the minimum at the
crossover value ρ∗ of the two expression in (76). Substituting ρ∗ in (76) we arrive at (73).

Although it is not immediately obvious, it can be verified by elementary (but somewhat
tedious) calculus that (73) is less than λ2

2 (for ρ = 1).

�

For comparison with AAR, we note that, for ρ = 0, (77) is exactly λ2 and hence greater
than λ2

2 in (75), the convergence rate for ρ = 1, which coincides with the convergence rate
of Alternating Projections (AP) [11]. We state this observation as a corollary.

Corollary 6.4. For the Gaussian-DRS with ρ = 1, the local convergence rate is given by λ2
2

which is smaller than the convergence rate λ2 for ρ = 0.

With a positive spectral gap, this largest eigenvalue 1 in Theorem 5.4 corresponds to the
global phase factor and Corollary 6.2 can be used to prove local, linear convergence for
Gaussian-DRS with ρ ≥ 0. The proof is analogous to that in [10] for phase retrieval (Theorem
5.1) and in [9] (Theorem 3.4) for ptychography for AAR (ρ = 0). But the argument is
technical in nature and omitted here for the sake of space.
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7. Selection of parameter

A goal of the present work is to circumvent the divergence behavior of AAR (as stated in
Proposition 2.1 (ii) for the convex case) when the feasibility problem is inconsistent and has
no (generalized or regular) solution.

Let us first examine how this problem manifests in the fixed point equation (33) reproduced
here for the convenience of the reader:

PXu+ ρP⊥
Xu = b⊙ sgn(RXu).

For ρ = 0, PXu = b⊙ sgn(RXu) and, in particular, |PXu| = b, i.e. every fixed point of AAR
is a generalized solution. So if the problem is inconsistent, then no solution (generalized or
regular) exists, implying the fixed point set is empty.

The case with ρ > 0 is harder to analyze. For ρ ≥ 1, however, Theorem 5.2 says that
all attracting fixed points are regular solutions and hence in the inconsistent case all fixed
points are repelling in some directions (likely partially hyperbolic with a center manifold
containing at least a circle corresponding to an arbitrary constant phase factor). In other
words convergence to a fixed point is almost impossible in the inconsistent case with ρ ≥
1. From this perspective, Theorem 5.2 is a pessimistic result in the traditional sense of
convergence analysis.

But all hope is not lost. First of all, let us recall the earlier observation that in the inconsistent
case f is probably not a stationary point of the loss function. Hence a convergent iterative
scheme to a stationary point may not be a good idea after all. A good iterative scheme
need not converge as long as it produces a good outcome when properly terminated, i.e. its
iterates stay in the true solution’s vicinity of size comparable to the noise level.

Second, Theorem 4.6 implies that every Gaussian-DRS sequence is bounded and has a con-
vergent subsequence {ukj}∞j=1 with the limit, say û. If, in addition,

lim
j→∞

(ukj − Γ(ukj)) = 0,(78)

then by taking the limit on both sides of the fixed point equation (33), one can conclude that
û is a fixed point. The preceding analysis tells us that in the inconsistent case (78) is false
for ρ ≥ 1 (The case with ρ ∈ (0, 1) is open), suggesting that û is part of a more complicated
attractor.

In particular, if x̂ := RX û does not vanish where b > 0, then, by the continuity of Γ
at such points, û1 := limj Γ(ukj) exists. Assuming that RXΓ

l(ukj), l ≥ 1, do not vanish

wherever b > 0, we obtain a set of cluster points ûl = limj Γ
l(ukj), l ≥ 1 which constitutes

a new iterated sequence, i.e. ûl+1 = Γ(ûl). This is the case of limit cycle in theory of
bifurcation. If, however, the non-vanishing assumption fails, then different orbits can branch
off at discontinuities.

In general, when a bounded invariant set exists (as implied by Theorem 4.6) and no fixed
point is attracting (e.g., with ρ ≥ 1 in the inconsistent case), there tend to be some nontrivial
attractors (limit cycles, strange attractors, ergodic invariant domain etc).
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which tends to 0 and ∞ as β tends to 1 and 1
2
, respectively. According to [34] the optimal β

is usually between 0.8 and 0.9, corresponding to ρ = 0.125 and 0.333 according to (82). We
set β = 0.9 in Figure 4.

In the experiments, we consider the setting of non-ptychographic phase retrieval with two
coded diffraction patterns, one is the plane wave (µ = 1) and the other is µ = exp(iθ) where
θ is independent and uniformly distributed over [0, 2π). Theory of uniqueness of solution,
up to a constant phase factor, is given in [16].

Figure 4 shows the relative error (modulo a constant phase factor) versus iteration of RAAR
(β = 0.9 round-bullet solid line), APR (blue-triangle dotted line), AAR (black-star dashed
line) and Gaussian-DRS with (a) ρ = 1.1, (b) ρ = 0.5, (c) ρ = 0.3 and (d) ρ = 0.1. Note
that the AAR, APR and RAAR lines vary slightly across different plots because of random
initialization.

The straight-line feature (in all but AAR) in the semi-log plot indicates global geometric
convergence. The case with AAR is less clear in Figure 4. But it has been shown that
the AAR sequence converges geometrically near the true object (after applying A+) but
converges in power-law (∼ k−α with α ∈ [1, 2]) from random initialization [9].

Figure 4 shows that APR outperforms AAR (consistent with the prediction of Corollary
6.4) but underperforms RAAR. By decreasing ρ to either 0.5 or 0.1, the performance of
Gaussian-DRS closely matches that of RAAR. The optimal parameter appears to lie between
0.1 and 0.5. For example, with ρ = 0.3, Gaussian-DRS significantly outperforms RAAR.
The oscillatory behavior of Gaussian-DRS in (d) is due to the dominant complex eigenvalue
of JA.

8. Blind ptychography algorithm

In the next two sections we apply the DRS methods to the more challenging problem of
blind ptychography. In blind ptychography, we do not assume the full knowledge of the
probe which is to be recovered simultaneously with the unknown object.

Let ν0 and g = ∨tg
t be any pair of the probe and the object estimates producing the same

ptychography data as µ0 and f , i.e. the diffraction pattern of νt ⊙ gt is identical to that of
µt ⊙ f t where νt is the t-shift of ν0 and gt is the restriction of g to Mt. We refer to the
pair (ν0, g) as a blind-ptychographic solution (in the object domain) and (µ0, f) as the true
solution.

We can write the total measurement data as b = |F(µ0, f)| where F is the concatenated
oversampled Fourier transform acting on {µt⊙ f t : t ∈ T } (see Appendix A), i.e. a bi-linear
transformation in the direct product of the probe space and the object space. By definition,
a blind-ptychographic solution (ν0, g) satisfies |F(ν0, g)| = b.

There are two ambiguities inherent to any blind ptychography.

The first is the affine phase ambiguity. Consider the probe and object estimates

ν0(n) = µ0(n) exp(−ia− iw · n), n ∈ M0(83)

g(n) = f(n) exp(ib+ iw · n), n ∈ Z
2
n(84)
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for any a, b ∈ R and w ∈ R2. For any t, we have the following calculation

νt(n) = ν0(n− t)

= µ0(n− t) exp(−iw · (n− t)) exp(−ia)

= µt(n) exp(−iw · (n− t)) exp(−ia)

and hence for all n ∈ Mt, t ∈ T
νt(n)gt(n) = µt(n)f t(n) exp(i(b− a)) exp(iw · t).(85)

Clearly, (85) implies that g and ν0 produce the same ptychographic data as f and µ0 since for
each t, νt⊙gt is a constant phase factor times µt⊙f t where ⊙ is the entry-wise (Hadamard)
product. It is also clear that the above statement holds true regardless of the set T of shifts
and the type of probe.

In addition to the affine phase ambiguity (83)-(84), a scaling factor (g = cf, ν0 = c−1µ0, c >
0) is inherent to any blind ptychography. Note that when the probe is exactly known (i.e.
ν0 = µ0), neither ambiguity can occur.

Besides the inherent ambiguities, blind ptychography imposes extra demands on the scanning
scheme. For example, there are many other ambiguities inherent to the regular raster scan:
T = {tkl = τ(k, l) : k, l ∈ Z} unless the step size τ = 1. Blind ptychography with a raster
scan produces τ -periodic ambiguities called the raster scan pathology as well as non-periodic
ambiguities associated with block phase drift. The reader to referred to [17] for a complete
analysis of ambiguities associated with the raster scan.

A conceptually simple (though not necessarily the most practical) way to remove these
ambiguities is introducing small irregular perturbations to the raster scan with τ > m/2,
i.e. the overlap ratio greater than 50% (see (92) and (93)). For a thorough analysis of the
conditions for blind ptychography, we refer the reader to [17, 18].

The basic strategy for blind ptychographic reconstruction is to alternately update the object
and probe estimates starting from an initial guess as outlined in Algorithm 1 [19, 50, 51].

Algorithm 1: Alternating minimization (AM)

1: Input: initial probe guess µ1 and object guess f1.
2: Update the object estimate fk+1 = argminL(Akg) s.t. g ∈ Cn×n.
3: Update the probe estimate µk+1 = argminL(Bkν) s.t. ν ∈ Cm×m.
4: Terminate if ‖|Bkµk+1| − b‖ stagnates or is less than tolerance; otherwise, go back to

step 2 with k → k + 1.

We solve the inner loops (step 2 and 3 in Algorithm 1) and update the object and probe

estimates by the DRS methods where Akh := F(µk, h), ∀h ∈ Cn2

, defines a matrix Ak for the

k-th probe estimate µk and Bkη := F(η, fk+1), ∀η ∈ Cm2

, for the (k + 1)-st image estimate
fk+1.

For ease of reference, we denote Algorithm 1 with Gaussian-DRS and Poisson-DRS by
Gaussian-DRSAM and Poisson-DRSAM, respectively.
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9.8. Poisson noise. For noisy measurement, the level of noise is measured in terms of the
noise-to-signal ratio (NSR).

NSR =
‖b− |Af |‖

‖Af‖
where A is the true measurement matrix and f the true object. Because the noise dimension
N is roughly 16 times that of the object dimension, the feasibility problem is inconsistent
with high probability.

Figure 12 shows RE versus NSR for CiB by Poisson-DRS and Gaussian-DRS with the pe-
riodic boundary condition, i.i.d. probe and the full-rank scheme. The maximum number
of epoch in DRSAM is limited to 100. The RR stabilizes usually after 30 epochs. The
(blue) reference straight line has slope = 1. We see that the Gaussian-DRS outperforms the
Poisson-DRS, especially when the Poisson RE becomes unstable for NSR ≥ 35%. As noted
in [11,38,58] fast convergence (with the Poisson log-likelihood function) may introduce noisy
artifacts and reduce reconstruction quality.

Most important, Figure 12 confirms that though provably non-convergent in the inconsistent
case, Gaussian-DRSAM with ρ = 1 can yield reasonable solutions under practical termina-
tion rules.

10. Conclusion and discussion

We have presented and performed fixed point analysis for DRS methods of phase retrieval
and ptychography based on the proximal relaxation of AAR with the relaxation parameter
ρ.

For Gaussian-DRS, we have proved that for ρ ≥ 1 all attracting fixed points must be regular
solutions (Theorem 5.2) and that for ρ ≥ 0 all regular solutions are attracting (Theorem
5.4). In other words, for ρ ≥ 1, the problem of stagnation near a non-solutional fixed point,
a common problem with AP, is precluded. On the other hand, the problem of divergence
(associated with AAR) in the inconsistent case does not arise in view of Theorem 4.6.

In addition, we have given an explicit formula for the optimal parameter ρ∗ and the optimal
rate of convergence in terms of the spectral gap (Corollary 6.2).

When applied to standard phase retrieval with two coded diffraction patterns, Gaussian-DRS
converges geometrically from random initialization. When applied to blind ptychography,
DRSAM, even with a far from optimal step size, converges geometrically under the nearly
minimum conditions established in the uniqueness theory [18]. Our Python codes are posted
on https://github.com/AnotherdayBeaux/Blind−Ptychography−GUI.

The holy grail of optimization approach has been finding a globally convergent algorithm
whose underlying attractors are fixed points. It is worthwhile then to reflect on our results
from the global convergence perspective of [33].

We have already pointed out that the analysis in [33] is not applicable to non-differentiable
loss functions. As discussed in Section 7, this technical issue has a profound effect on the
convergence behavior in the inconsistent case: Gaussian-DRS with ρ ≥ 1 does not converge,
globally or locally. This is an unexpected consequence of Theorem 5.2.
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Our numerical experiments with noisy data, however, suggest that non-convergent DRS
sequences are nevertheless well-behaved (probably due to hitherto unknown well-controlled
attractors) and produce noise-amplification factor of about 1

2
when terminated. Analysis of

such (possibly strange) attractors and their impacts on numerics is an interesting topic for
future research and at the frontier of numerical analysis.

Moreover, the global convergence framework is typically based on the construction of a
non-increasing merit function along the iterated sequence (i.e. Lyapunov-like function) that
requires the step size (reciprocal of ρ) to be sufficiently small, resulting in slow convergence
in practice.

Nice as it is, perhaps algorithmic convergence should not be our fixation in the case of noisy
data. It may be more useful, for numerical purposes, to solve noisy phase retrieval problem by
algorithms with non-trivial (non-point-like) attractors which are necessarily non-convergent
in the traditional sense.

Appendix A. Measurement matrices

Let Z2
n = J0, n − 1K2 be the object domain containing the support of the discrete object f

where Jk, lK denotes the integers between, and including, k ≤ l ∈ Z. Let M0 := Z2
m,m <

n, be the initial probe area, i.e. the support of the probe µ0 describing the illumination
field.

Let T be the set of all shifts, including (0, 0), involved in the ptychographic measurement.
Denote by µt the t-shifted probe for all t ∈ T and Mt the domain of µt. Let f t the object
restricted to Mt. We refer to each f t as a part of f and write f = ∨tf

t where ∨ is the
“union” of functions consistent over their common support set. In ptychography, the original
object is broken up into a set of overlapping object parts, each of which produces a µt-coded
diffraction pattern. The totality of the coded diffraction patterns is called the ptychographic
measurement data. For convenience, we assume the value zero for µt, f t outside of Mt and
the periodic boundary condition on Z2

n when µt crosses over the boundary of Z2
n.

Let the µ-Fourier transform of f 0 be written as

F 0(w) =
∑

k∈M0

e−i2πk·wµ0(k)f 0(k), w = (w1, w2) ∈ [0, 1]2.

and the µ-coded diffraction pattern as

|F 0(w)|2 =
∑

k∈M̃0

{
∑

k′∈M0

µ0(k+ k′)f 0(k′ + k)µ0(k′)f 0(k′)

}
e−i2πk·w(95)

where

M̃0 = {(k1, k2) ∈ Z
2 : −m+ 1 ≤ k1 ≤ m− 1,−m+ 1 ≤ k2 ≤ m− 1}.

Here and below the over-line notation means complex conjugacy. In view of (96), we sample
the coded diffraction pattern on the grid

L =
{
(w1, w2) | wj = 0,

1

2m− 1
,

2

2m− 1
, . . . ,

2m− 2

2m− 1

}
.(96)
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in the Poisson distribution, we obtain

P (n) ∼ λλ(1+ǫ)e−λ

√
2πe−λ(1+ǫ)[λ(1 + ǫ)]λ(1+ǫ)+1/2

∼ 1√
2πλe−λǫ(1 + ǫ)λ(1+ǫ)+1/2

.

By the asymptotic

(1 + ǫ)λ(1+ǫ)+1/2 ∼ eλǫ+λǫ2/2

we have

P (n) ∼ e−λǫ2/2

√
2πλ

=
e−(n−λ)2/(2λ)

√
2πλ

.(97)

Namely in the low noise limit the Poisson noise is equivalent to the Gaussian noise of the
mean |Af |2 and the variance equal to the intensity of the diffraction pattern. The overall
SNR can be tuned by varying the signal energy ‖Af‖2.
The negative log-likelihood function for the right hand side of (97) is

∑

j

ln |u[j]|+ 1

2

∣∣∣∣
b[j]

|u[j]| − |u[j]|
∣∣∣∣
2

, b = noisy diffraction pattern.(98)

For small NSR and in the vicinity of b, we make the substitution
√

b[j]

|u[j]| → 1, ln |u[j]| → ln
√
b[j]

to obtain

const. +
1

2

∑

j

∣∣∣
√

b[j]− |u[j]|
∣∣∣
2

.(99)

Appendix C. Equivalence between DRS and ADMM

We show that ADMM applied to the augmented Lagrangian

L(y, z) = K(y) + L(z) + λ∗(z − y) +
ρ

2
‖z − y‖2(100)

in the order alternatively as

zk+1 = argmin
z

L(yk+1, z, λk)(101)

yk+1 = argmin
x

L(y, zk, λk)(102)

λk+1 = λk + ρ(zk+1 − yk+1).(103)

is equivalent to DRS.

Let

zk+1 = argmin
z

L(yk, z, λk) = proxL/ρ(yk − λk/ρ)(104)

yk+1 = argmin
x

L(y, zk+1, λk) = proxK/ρ(zk+1 + λk/ρ)(105)
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and consider the new variable
uk := zk + λk−1/ρ.

We have from (103) that

uk+1 = yk+1 + λk+1/ρ.

By (105), we also have
yk+1 = PX(zk+1 + λk/ρ) = PXuk+1

and

yk − λk/ρ = 2yk − uk = RXuk.

So (104) becomes

zk+1 = proxL/ρ(RXuk).(106)

Note also that by (103)

uk − PXuk = λk/ρ

and hence

uk+1 = zk+1 + λk/ρ = uk − PXuk + proxL/ρ(RXuk)

which is exactly the DRS scheme (29) after rearrangement.

Appendix D. Perturbation analysis of Poisson-DRS

The full analysis of the Poisson-DRS (30) is more challenging. Instead, we give a perturba-
tive derivation of analogous result to Theorem 4.6 for the Poisson-DRS with small positive
ρ.

For small ρ, by keeping only the terms up to O(ρ) we obtain the perturbed DRS:

uk+1 =
1

2
uk −

1

2
(1− ρ

2
)RXuk + PYRXuk.(107)

Writing
I = PX + P⊥

X and RX = PX − P⊥
X ,

we then have the estimates

‖uk+1‖ ≤ ‖ρ
4
PXuk + (1− ρ

4
)P⊥

Xuk‖+ ‖PYRXuk‖

≤ (1− ρ

4
)‖uk‖+ ‖b‖

since ρ is small. Iterating this bound, we obtain

‖uk+1‖ ≤ (1− ρ

4
)k‖u1‖+ ‖b‖

k−1∑

j=0

(1− ρ

4
)j

and hence

lim sup
k→∞

‖uk‖ ≤ 4

ρ
‖b‖.(108)
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Note that the small ρ limit and the Poisson-to-Gaussian limit in Appendix B do not com-
mune, resulting in a different constant in (108) from Theorem 4.6.

Appendix E. Eigen-structure

The vector space CN = RN ⊕R iRN is isomorphic to R2N via the map

V (v) :=

[
ℜ(v)
ℑ(v)

]
, ∀v ∈ C

N

and endowed with the real inner product

〈u, v〉 := ℜ(u∗v) = V (u)⊤V (v), u, v ∈ C
N .

We have

V (Hξ) =

[
ℜ[H]ℜ[ξ] + ℑ[H]ℑ[ξ]
ℜ[H]ℑ[ξ]−ℑ[H]ℜ[ξ]

]
=

[
H⊤V (ξ)

H⊤V (−iξ)

]
, ξ ∈ C

n.(109)

Let λ1 ≥ λ2 ≥ · · · ≥ λ2n ≥ λ2n+1 = · · · = λN = 0 be the singular values of H in (63) with the
corresponding right singular vectors {ηk ∈ RN}Nk=1 and left singular vectors {ξk ∈ R2n}2nk=1.
By definition, for k = 1, . . . , 2n,

H∗ηk = λkG
−1(ξk),(110)

ℜ[HG−1(ξk)] = λkηk.(111)

Proposition E.1. We have ξ1 = V (f), ξ2n2 = V (−if), λ1 = 1, λ2n2 = 0 as well as η1 =
|Af |.

Proof. Since

Hf = Ω∗Af = |Af |
we have by (109)

ℜ[Hf ] = H⊤ξ1 = |Af |, ℑ[Hf ] = H⊤ξ2n2 = 0(112)

and hence the results. �

Corollary E.2.

λ2 = max{‖ℑ(Hu)‖ : u ∈ C
n, u ⊥ if, ‖u‖ = 1}(113)

= max{‖H⊤u‖ : u ∈ R
2n2

, u ⊥ ξ1, ‖u‖ = 1}

Proof. By (109),

ℑ[Hu] = H⊤V (−iu).

The orthogonality condition iu ⊥ f is equivalent to

V (x0) ⊥ V (−iu).

Hence, by Proposition E.1 ξ2 is the maximizer of the right hand side of (113), yielding the
desired value λ2.

�
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Proposition E.3. For k = 1, . . . , 2n2,

λ2
k + λ2

2n2+1−k = 1(114)

ξ2n2+1−k = V (−iV −1(ξk))(115)

ξk = V (iV −1(ξ2n2+1−k)).(116)

Proof. Since H is an isometry, we have ‖w‖ = ‖Hw‖, ∀w ∈ Cn. On the other hand, we have

‖Hw‖2 = ‖V (Hw)‖2 = ‖H⊤V (w)‖2 + ‖H⊤V (−iw)‖2 . . .
and hence

‖V (w)‖2 = ‖H⊤V (w)‖2 + ‖H⊤V (−iw)‖2.(117)

Now we prove (114), (115) and (116) by induction.

Recall the variational characterization of the singular values/vectors

λj = max ‖H⊤u‖, ξj = argmax ‖H⊤u‖, s.t. u ⊥ ξ1, . . . , ξj−1, ‖u‖ = 1(118)

By Proposition E.1, (114), (115) and (116) hold for k = 1. Suppose (114), (115) and (116)
hold for k = 1, . . . , j − 1 and we now show that they also hold for k = j.

Hence by (117)

λ2
j = max

‖u‖=1
‖H⊤u‖2 = 1− min

‖v‖=1
‖H⊤v‖2, s.t. u ⊥ ξ1, . . . , ξj−1, v = V (−iV −1(u)).

The condition u ⊥ ξ1, . . . , ξj−1 implies v ⊥ ξ2n2 , . . . , ξ2n2+2−j and vice versa. By the dual
variational characterization to (118)

λ2n2+1−j = min ‖H⊤u‖, ξ2n2+1−j = argmin ‖H⊤u‖, s.t. u ⊥ ξ2n2 , . . . , ξ2n2+2−j, ‖u‖ = 1,

we have
λ2
j = 1− λ2

2n2+1−j, ξ2n2+1−j = V (−iV −1(ξj)).

�

Proposition E.4. For each k = 1, . . . , 2n2,

HH∗ηk = λk(λkηk + iλ2n2+1−kη2n2+1−k),(119)

HH∗η2n2+1−k = λ2n2+1−k(λ2n2+1−kη2n2+1−k − iλkηk)(120)

implying

HH∗ =

[
λ2
k λkλ2n2+1−k

λkλ2n2+1−k λ2
2n2+1−k

]

in the basis of ηk, iη2n2+1−k.

Proof. By definition, Hηk = λkξk. Hence

H∗ηk = (ℜ[H∗] + iℑ[H∗])ηk = λk(ξ
R
k + iξIk)

where

ξk =

[
ξRk
ξIk

]
, ξRk , ξ

I
k ∈ R

n.
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On the other hand, H⊤ξk = λkηk and hence

ℜ[H]ξRk −ℑ[H]ξIk = λkηk.(121)

Now we compute HH∗ηk as follows.

HH∗ηk = λkH(ξRk + iξIk)(122)

= λk(ℜ[H] + iℑ[H])(ξRk + iξIk)

= λk(ℜ[H]ξRk −ℑ[H]ξIk) + iλk(ℜ[H]ξIk + ℑ[H]ξRk )

= λ2
kηk + iλk(ℜ[H]ξIk + ℑ[H]ξRk )

by (121).

Notice that

ℜ(H)ξIk + ℑ(H)ξRk = H⊤

[
ℜ(−iV −1(ξk))
ℑ(−iV −1(ξk))

]
(123)

= H⊤V (−iV −1(ξk))

= H⊤ξ2n2+1−k

= λ2n2+1−kη2n2+1−k

by Proposition E.3.

Putting (122) and (123) together, we have (119). Likewise, (120) follows from a similar
calculation. �

Acknowledgment

This research is supported by the US National Science Foundation grant DMS-1413373 and
SIMONS FDN 2019-24. A.F. thanks National Center for Theoretical Sciences (NCTS),
Taiwan, where the present work was carried out, for the hospitality during his visits in June
and August 2018.

References

[1] H. H. Bauschke & J. M. Borwein, On projection algorithms for solving convex feasibility problems,
SIAM Rev. 38 (1996) 367-426.

[2] H.H. Bauschkea, J.Y. B. Cruz, T.T.A. Nghia, H.M. Phan & X. Wang, The rate of linear
convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle, J.
Approx. Theory 185 (2014) 63-79.

[3] H.H. Bauschke, P.L. Combettes and D. R. Luke, Phase retrieval, error reduction algorithm,
and Fienup variants: a view from convex optimization, J. Opt. Soc. Am. A 19 (2002) 13341-1345.

[4] H.H. Bauschke, P.L. Combettes and D. R. Luke, Hybrid projection-reflection method for phase
retrieval, J. Opt. Soc. Am. A 20 (2003) 1025-1034.

[5] H. H. Bauschke, P. L. Combettes and D. R. Luke, Finding best approximation pairs relative
to two closed convex sets in Hilbert space, J. Approx. Theory 127 (2004) 178-192.

[6] L. Bian, J. Suo, J. Chung, X. Ou, C. Yang, F. Chen and Q. Dai, Fourier ptychographic
reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient, Sci. Rep. 6
(2016), 27384.

40



[7] O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti & F. Pfeiffer, Influence of the
overlap parameter on the convergence of the ptychographical iterative engine, Ultramicroscopy 108
(2008) 481-487.

[8] H. Chang, P. Enfedaque and S. Marchesini, Blind ptychographic phase retrieval via convergent
alternating direction method of multipliers, SIAM J. Imaging Sci. 12 (2019) 153-185.

[9] P. Chen and A. Fannjiang, Phase retrieval with a single mask by Douglas-Rachford algorithms,
Appl. Comput. Harmon. Anal. 44 (2018), 665-699.

[10] P. Chen and A. Fannjiang, Coded-aperture ptychography: uniqueness and reconstruction, Inverse
Problems 34 (2018) 025003.

[11] P. Chen, A. Fannjiang and G. Liu, Phase retrieval with one or two coded diffraction patterns by
alternating projection with the null initialization, J. Fourier Anal. Appl. 24 (2018), 719-758.

[12] M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk,
and F. Pfeiffer, Ptychographic x-ray computed tomography at the nanoscale, Nature 467 (2010),
436-439.

[13] J. Douglas and H.H. Rachford, On the numerical solution of heat conduction problems in two
and three space variables, Trans. Am. Math. Soc. 82 (1956), 421-439.

[14] J. Eckstein and D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal
point algorithm for maximal monotone operators, Math. Program. A 55 (1992), 293-318.

[15] V. Elser, Phase retrieval by iterated projections, J. Opt. Soc. Am. A 20 (2003), 40-55.
[16] A. Fannjiang, Absolute uniqueness of phase retrieval with random illumination, Inverse Problems

28 (2012), 075008.
[17] A. Fannjiang, Raster grid pathology and the cure, Multiscale Model. Simul. 17 (2019), 973-995.
[18] A. Fannjiang & P. Chen, Blind ptychography: uniqueness and ambiguities, Inverse Problems to

appear.
[19] A. Fannjiang and W. Liao, Fourier phasing with phase-uncertain mask, Inverse Problems 29

(2013) 125001.
[20] A. Fannjiang and Z. Zhang, Blind ptychography by Douglas-Rachford splitting, arxiv:1809.00962.
[21] H.M.L. Faulkner and J.M. Rodenburg, Movable aperture lensless transmission microscopy: A

novel phase retrieval algorithm, Phys. Rev. Lett. 93 (2004), 023903.
[22] H.M.L. Faulkner and J.M. Rodenburg, Error tolerance of an iterative phase retrieval algorithm

for moveable illumination microscopy, Ultramicroscopy 103:2 (2005), 153-164.
[23] J.R. Fienup, Phase retrieval algorithms—a comparison, Appl. Opt. 21, 2758-2769 (1982).
[24] J.R. Fienup, C.C. Wackerman, Phase-retrieval stagnation problems and solutions, J. Opt. Soc.

Am. A 3 (1986) 1897-1907.
[25] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems

via finite element approximation, Computers & Mathematics with Applications 2 (1976), 17-40.
[26] P. Giselsson and S. Boyd, Linear convergence and metric selection for Douglas-Rachford Splitting

and ADMM, IEEE Trans. Auto. Control 62:2(2017) 532-544.
[27] R. Glowinski and A. Marroco, Sur l’approximation, par éléments finis d’ordre un, et la
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