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Efficient isogeometric boundary element method for analysis
of acoustic scattering from rigid bodies

A. M. A. Alsnayyan,1,a) J. Li,1 S. Hughey,1 A. Diaz,2 and B. Shanker1
1Department of Electrical and Computer Engineering, Michigan State University, Lansing, Michigan 48824, USA
2Department of Mechanical Engineering, Michigan State University, Lansing, Michigan 48824, USA

ABSTRACT:
Boundary integral analysis of scattering from rigid bodies is well known. Analysis often proceeds along the

following lines: representation of the geometry using a collection of triangles, representation of physics using low

order ansatz functions defined on each triangle, and then solving the resulting discrete system. This prescription for

the common solution stands out in terms of the low-order approximation of both geometry and representation of

physics; specifically, both are C0. Taking inspiration from computer graphics literature, a framework wherein conti-

nuity of representation (both geometry and physics) can be as high as C2 is developed. In this paper, the steps neces-

sary to develop such a iso-geometric (i.e., using the same basis functions for representing both geometry and

physics) boundary integral solver are elucidated. In doing so, an efficient method based on a wideband fast multipole

method to evaluate the required inner products and matrix vector products is proposed and demonstrated. Numerous

examples are presented to highlight the benefits of the proposed approach. VC 2020 Acoustical Society of America.
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I. INTRODUCTION

Surface integral equation (SIE) methods for computing

fields scattered from piecewise homogeneous scatterers

have been well studied and understood,1–3 so much so that

they are now commonplace. As is well known, SIE formula-

tions present several benefits: (a) the Green’s function

embeds the necessary radiation condition; (b) reduction of a

volumetric problem into a surface embedded in a volume,

and therefore, the required degrees of freedom; and (c) read-

ily handle arbitrary geometries. Traditional downsides of

these methods are (a) non-uniqueness at irregular frequen-

cies4 and (b) computational complexity that scales as

OðN2
bÞ, where Nb denotes the number of degrees of freedom

used in the analysis.5 By computational complexity, we

refer to the scaling of memory required as well as execution

time of each matrix vector product required in any iterative

solver. We note that both downsides have been overcome.6

Methods have been developed to obtain a unique solution at

all frequencies and to reduce the cost to OðNb log NbÞ.7,8

Given these advances, SIE-based computational methods

are both reliable and robust.

However, despite all appearances, a number of interest-

ing challenges remain and these are not specific to acoustics.

Indeed, as will be evident in this paragraph, some of these

comments apply to all SIEs. A traditional SIE solution pro-

ceeds as follows: The surface of a candidate object is repre-

sented using a collection of discrete elements, the physical

quantity of interest is then represented using basis functions

described on these discrete elements, and a variational tech-

nique is used to reduce the continuous equations to a set of

discrete equations. Typically, the object is represented using

a collection of triangles, and low order ansatz basis func-

tions are used to represent the physical quantity of interest

on the scatterer. The resulting discrete set inherits (and

depending on the operator, exacerbates) errors due to geo-

metric approximation. It follows, then, that these challenges

can be alleviated by resorting to higher order geometric rep-

resentation and the corresponding basis functions.9 One

would imagine that resorting to higher order geometric rep-

resentation would result in fewer degrees of freedom, simply

due to the fact that one does not need as many piece-wise

flat triangles to represent the object. But one should note

that in most higher order schemes, the discretization is still

C0 and functions are higher order within one triangle. Our

approach to higher order analysis is different.

In the past, we developed a method for discretizing

SIEs that was highly flexible and adaptive called the gener-

alized method of moments (GMM).10,11 GMM is effective

and efficient, and has been used for different problems in

both acoustics and electromagnetics. It permits refinement

in the order of geometric representation and the order of

basis functions used for physics, and spatial refinement. In

GMM, geometry is constructed using a set of overlapping

patches, with physical basis functions defined on each patch.

Since each patch is constructed using a least-squares

approach, a persistent drawback of GMM is that these para-

metrizations are not watertight.

Robust higher order watertight surface representation is

indeed vogue in the computer graphics literature. Here, thea)Electronic mail: alsnayy1@msu.edu
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surface representation is watertight and approximately C2

almost everywhere (provided one uses subdivision12,13).

The higher order continuity of the surface representation

offers a number of tantalizing opportunities from both math-

ematical and engineering perspectives such as analysis of

convergence, development of Calder�on type precondi-

tioners, Laplace-Beltrami based compression, higher order

basis for physics that has the same continuity properties as

geometric basis sets, shape, and topology optimization

methods that rely on compressed systems, and so on. In this

paper, we set the stage for this body of work by asking a

more fundamental question—what should we have in our

arsenal so as to realize computationally efficient higher

order (in geometry and physics) analysis tools.

Our approach to meeting the goals alluded to earlier is

to use isogeometric analysis. Here, the basis functions used

to represent the physics are the same as basis functions used

to represent the geometry. As a result, all the geometric

modeling features that one desires, such as adaptivity,

refinement, etc., directly carry over to modeling the physics.

In a manner of speaking, in the long term such an analysis

tool would enable seamless integration of computer aided

design (CAD) and computer aided engineering (CAE). The

advent of isogeometric analysis has its genesis in early

papers by Hughes,14 and has since been adapted for a num-

ber of different types of problems15,16 in structural mechan-

ics and electromagnetics.17–19

While our earlier body of work on extending isogeo-

metric analysis based on subdivision surfaces to electromag-

netics17,18,20 demonstrated its viability, several challenges

related to computational cost, both evaluation of matrix ele-

ments as well as matrix vector products, were left unad-

dressed. It is important to note that the Green’s kernels used

for electromagnetics were all due to single layer potentials,

unlike those for acoustics.21 The latter makes evaluation sig-

nificantly more challenging. To help visualize challenges in

evaluating the necessary inner products, it should be noted

that unlike Lagrangian discretization, the domain of a subdi-

vision basis function is significantly larger; it includes all

triangles that share a node (or control point). The basis func-

tion used for geometry is a product of box-splines and there-

fore, fourth order. Since we use the same basis function for

physics as well, it implies that one needs to evaluate prod-

ucts of higher order polynomials convolved with a Green’s

function on higher order surfaces, for all pairwise interac-

tions as is dictated by an SIE formulation. Assuming that Nb

is the number of degrees of freedom, and Nq is the number

of quadrature points, the cost of evaluating the matrix ele-

ments scales as OðN2
qN2

bÞ. We note that Nq can be very high

as both the surface and the basis functions are fourth order

polynomials. Our twin objectives in this paper are to (a)

develop an isogeometric analysis technique for acoustic

scattering that is (b) computationally efficient. Specifically,

we seek to reduce the cost of evaluation of both the matrix

elements as well as a matrix vector product. To effect this

reduction, we exploit a version of the multi-level fast multi-

pole method (MLFMA) that is stable at both low and high

frequencies22,23 and has been used extensively for wideband

electromagnetic analysis. To this end, the principal contribu-

tions of this paper are as follows: We present

• isogeometric analysis (IGA) on smoothly represented

structures of arbitrary topology,
• a study of convergence properties of IGA based SIE

solvers,
• methods to linearize both the cost of evaluation of the

necessary matrices and matrix-vector products,
• a demonstration of convergence of IGA-SIE solver for

conical geometries as well as complex targets with multi-

scale features, and
• results validating the scaling and accuracy of wideband

MLFMA scheme.

The rest of the paper is organized as follows; in Sec. II,

we present the formulation, describe subdivision basis for

geometry, and discuss the resulting linear system. In Sec.

III, we present a methodology to efficiently evaluate all the

requisite inner products. This is followed by asymptotic

complexity estimates in Sec. IV, and a slew of numerical

results in Sec. V. Finally, in Sec. VI, we summarize our

contributions.

II. FORMULATION AND ANALYSIS FRAMEWORK

In what follows, we formally pose the problem under

consideration, present a subdivision representation of the

geometry, prescribe basis sets and derive a discrete matrix

system that needs to be solved.

A. Problem statement

Consider a scatter, in a homogeneous medium, with a

hard boundary X 2 R3 and a uniquely defined normal n̂ðrÞ,
where r 2 X. It is assumed that the rest of space is homoge-

neous, and that the object is at rest. Consider a velocity field

incident on this scatterer denoted by viðrÞ. This generates a

scattered velocity field given by vsðrÞ and we define the total

velocity field as vtðrÞ ¼ viðrÞ þ vsðrÞ. These fields can be

represented by equivalent potentials such that vnðrÞ
¼ rUnðrÞ, for n 2 ft; s; ig. A unique solution in UtðrÞ is

guaranteed through the Burton-Miller formulation, written

in terms of these potentials:4

LBM U;X½ �ðrÞ ¼ ViðrÞ;

LBM U;X½ �ðrÞ ¼: ð1� aÞ U
2
�D U;X½ �ðrÞ

� �

� abN U;X½ �ðrÞ;
ViðrÞ¼: ð1� aÞUiðrÞ þ abn̂ � rUiðrÞ; (1)

where 0 � a � 1, the constant weighting factor, and b, the

coupling factor, make the solution unique at all frequencies;

the optimal choice of alpha and beta has been the subject of

many studies.24–26 In the remainder of the paper we follow

the standard Burton-Miller formulation.4 Note, setting a ¼ 0

or a ¼ 1 introduces a non-trivial null space at frequencies
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that correspond to the interior resonance of the structure.

The reader is referred to Refs. 4, 27 for a theoretical expla-

nation. Insight into the null spaces of these operators for

spherical objects can be obtained using methods presented

in Ref. 28. The operators D and N are defined as

D U;X½ �ðrÞ¼:
ð

X
Uðr0Þn̂ðr0Þ � r0Gðr; r0Þdr0; (2a)

N U;X½ �ðrÞ¼: n̂ðrÞ � r
ð

X
Uðr0Þn̂ðr0Þ � r0Gðr; r0Þdr0

� �
:

(2b)

We define the kernel as the free-space Helmholtz kernel,

Gðr; r0Þ ¼ e�ik0jr�r0 j=4pjr� r0j, k0 is the wavenumber,

b ¼ i=k0. An eixt dependence is assumed and suppressed.

The solution to these equations is typically effected in a dis-

crete setting as follows; one discretizes X using a collection

of patches such that X ¼ [Np

l Xl, where Xl denotes a patch.

Then each patch Xl supports a unique, locally indexed, set

of basis functions wnðrÞ; n 2 f1;…;Nvg. In other words,

each basis function, wn, is defined over a unique collection

of patches Cn ¼ fXa;…;Xl;…;Xbg.
We can now state that UðrÞ ¼ +Nv

n¼1
anwnðrÞ, where

r 2 Cl; we provide a deeper analysis in the following sec-

tions. Using Gakerin testing, one arrives at a system of equa-

tions ZI ¼ V, where

Zmn ¼ hwmðrÞ;LBM wn;Cn½ �ðrÞi;
V ¼ v1; v2;…; vNb½ �T ;
I ¼ a1; a2;…; aNb½ �T ; (3)

where vm ¼ hwmðrÞ;V iðrÞi ¼
Ð
Cm

wmðrÞV iðrÞdr.

Evaluating the hypersingular operator N that arises

from the Galerkin Burton-Miller formulation [Eq. (3)], is

ordinarily problematic, but even more so when we consider

the difficulty of parameterizing and integration on higher

order surfaces.29–31 The usual remedy for these issues is to

employ a special numerical integration scheme, which we

will expound on later. Additionally, as shown below, this

places strict limitations on the implementation of MLFMA

when patch sizes grow to be large relative to a wavelength.

B. Description of geometry

Next, we provide a succinct overview of using subdivi-

sion surfaces for a closed surface triangular mesh in order to

detail the shape description; we shall note that this section is

provided purely for completeness and omits details that can be

found in several references.12,13,32 In particular, the flavor of

subdivision that we use is based on Loop’s seminal work.12

Consider an underlying triangular net of control points

defined as a set of vertices and a connectivity map that will

form an initial primal control mesh denoted by T 0 at level 0.

Next, we define the 0-ring of a patch (triangle) as the vertices

that belong to the patch, and the 1-ring as the set of all verti-

ces that can be reached by traversing no more than two

edges, as shown in Fig. 1. We define the regularity of the

triangle by the characterization of its vertices’ valence

(0-ring); the valence of a given vertex is the number of edges

incident on itself. A vertex is considered regular if its valence

is equal to 6, otherwise, it is called an irregular or extraordi-

nary vertex. A triangle is regular if its vertices are all regular,

and irregular otherwise.

A smooth limit surface can be generated by recursive

refinements of original mesh’s control points T0. Given T 0

where there are Kt triangles, the Loop subdivision scheme

recursively subdivides a triangle of level k into four sub-

triangles of level kþ 1 by bisecting the edge of each triangle

and adjusting their locations using a weighted information

scheme, that is based on their neighboring vertices on the

coarse mesh. It follows, that at each step we generate 4kKt

new triangular patches. After each subdivision, the position

of every vertex will be recomputed and each new triangle

patch can be reparameterized by a 1-ring of the patch; Fig. 1

shows a regular triangle, �, defined by its 1-ring vertices

indexed from 1 to 12.

Consider Fig. 1 again. Here, the true surface correspond-

ing to a regular triangular patch �, can be evaluated as

rðu; vÞ ¼ +Nv

i¼1
ciwiðu; vÞ, where (u, v) are local barycentric

coordinates, wiðrÞ is a box-spline basis function, ci are vertex

locations of the Nv ¼ 12 control points. When a triangle has

irregular vertices, the patch must be refined until the consid-

ered point lies in a regular patch such that we can reapply the

method described above.13 Accordingly, we redefine wi as a

subdivision basis set, and Nv as the total number of control

nodes defined on the 1-ring of the triangular patch.

It has been shown that the basis functions wiðrÞ has the

following properties: (a) they have compact support, (b)

they are non negative, (c) they preserve convexity, and (d)

they are C2 continuous across regular patch boundaries and

C1 at irregular vertices.

C. Isogeometric basis sets and discrete systems

In Sec. II B, we have defined effective basis functions

that act upon control vertices so as to produce a limit

FIG. 1. (Color online) Regular triangular patch defined by its 1-ring

vertices.
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surface. In what follows, we postulate that one can define

quantities at these control nodes that represent the physics

on the limit surface. To this end, one can write the potential

over any given patch as

Uðrðu; vÞÞ ¼
XNv

i¼1

aiwiðrðu; vÞÞ; (4)

where now we define ai as weights assigned to the locally

indexed ith vertex; Nv, wiðrðu; vÞÞ, and (u, v) retain the same

definition as those prescribed above. Employing Galerkin

testing with these prescribed basis sets, one obtains

ZI ¼ V; (5a)

Zmn ¼
ð

Cm

wmðrÞLBM wn;Cn½ �ðrÞdr; (5b)

where I ¼ ½a1; a2;…; aN�T ; V ¼ ½V1;V2;…;VN�T ; and

Vm ¼
ð

Cm

wmðrÞViðrÞ: (5c)

While simply stated, evaluation of these integrals is chal-

lenging from mulitple perspectives: the hypersingular nature

of these integrals needs to be carefully taken into account

when the support Cm \ Cn 62 ;. Likewise, higher order quad-

rature poses significant bottlenecks. These issues are

addressed in Sec. III.

III. EVALUATION OF INNER PRODUCTS

As alluded to earlier, the principal challenge is the eval-

uation of matrix element Zmn. The order of the basis function

(for both geometry and physics) is fourth order. Naively, the

order of the integration rule for evaluating the inner products

scale as Nq / 16 per triangle, giving an effective scaling as

N2
q / 256N2

D, where ND is the number of patches associated

with the control vertices m and n; note that using ND is an

abuse of notation, as ND can differ for wm and wn. As is

apparent, this cost quickly dominates the overall cost. Note

that if the two nodes are in proximity to each other, one

needs additional structure to evaluate the hypersingular inte-

grals, this interaction is illustrated in Fig. 2. The approach

we espouse is to construct an adaptive quadrature scheme

that can be accelerated via wideband MLFMA. To set the

stage for the computation, assume that each triangle in the

domain Cn of the nth basis function is partitioned recur-

sively into 4l subpatches where l 2N. The domain of each

of these partitions is now denoted by Cc
n for c ¼ 1;…; 4lND.

It follows that any matrix element can be computed in terms

of its partial contributions such that

Zmn ¼
X

f

X
c

ð
Cf

m

wmðrÞL
c
BM wnðrÞ;Cc

n

� �
dS

¼
X

c

X
c

Zfc
mn; (6)

where Lc
BM denotes the evaluation of the operator over the

domain Cc
m, and the summations are over the number of

source and observation subpatches. In our implementation

we have fixed the depth of recursion l. We note the

following.

• The size of each sub-patch is typically sub-wavelength;

often less than a tenth of a wavelength.
• If the interaction is a self interaction, i.e., m ¼ n, and

Cf
m ¼ Cc

n, one needs to use Hadamard finite part

integration.2

Next, we prescribe a methodology to ameliorate the

cost of evaluating Eq. (6).

A. Amelioration of matrix vector product costs

To reduce the cost above, we take recourse to a tree

based algorithm that is robust at small length scales. Fast

multipole methods have long been in vogue in both acous-

tics and electromagnetics,33 their use has been to reduce the

cost of evaluating a matrix vector product. As has been

shown in Chew et al.34 the manner which this approach has

been used is to first enclose the entire object in a cubical

domain (henceforth, called the root node), and recursively

subdivide until one reaches a prescribed size of the smallest

box (henceforth, termed the leaf node). Then at each level

one partitions interactions between all boxes at that level as

being in each other’s near or far field via the following rules:

(a) any two boxes are in each other’s near field provided

they share a geometrical region in space (node/edge/face),

(b) boxes are denoted as far field pairs if they are in each

other’s far field and their parents are in each other’s near

field. This partition of interactions ensures that near field

interactions are done at the leaf level, and all other interac-

tions are accounted for using far field operators at different

levels in the tree; Fig. 3 illustrates this computational infra-

structure. In effect, using the above computational proce-

dure one computes a matrix vector product by partitioning

Z ¼ Znear þ Zfar. The matrix Znear is explicitly computed

and stored, and Zfar is never explicitly computed. The prod-

uct ZfarI is effected via five tree operations; charge to mul-

tipole (C2M), multipole to multipole (M2M), multipole to

local (M2L), local to local (L2L), and local to observer

(L2O). These denote operations mapping radiation of

FIG. 2. (Color online) Interaction between two nodes wherein the black

subpatch denotes the source, red patches are its nearfield neighbors, and all

other patches lie in its farfield region.
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sources onto a tree, traversal up and across the tree, and

finally, mapping these fields onto observers. The nuances of

these operations are discussed in several papers, but nota-

tionally consistent definitions can be found in Refs. 22, 23.

Implicit in the above discussion is that one indirectly classi-

fies interactions between basis functions.

The starting point of building a tree is to choose a leaf

box size, typically chosen to be 0:2k, where k is the wave-

length corresponding to the wavenumber k0. All basis func-

tions whose support, Cm, overlaps significantly with the

domain of a leaf box are assigned to that box. In a typical

discretization, the domain of each unknown is approxi-

mately 0:1k. As a result, each unknown can be mapped into

one leaf box. This is not the case for higher order discretiza-

tions wherein the domain of each basis function is signifi-

cantly larger.11 As a result, their domain would span

multiple leaf boxes. One alternative is to make the leaf box

size significantly larger, to say largest Cm, for m ¼ 1;…;Nb.

An alternative would be to exploit the tree infrastructure to

reduce the cost of computing each Zmn 2 Znear. It follows

that given Eq. (6), the near interactions at the leaf node may

instead be classified in terms of Cf
m and Cc

n, and one can

instead compute Zfc
mn and this collection constitutes Znear.

But we can do better than previous work,11 by choosing the

leaf box size (and correspondingly, the size of Cf
m) to be

arbitrarily small so as to achieve the optimal tradeoff

between total computational cost for both near and far field

computation; Fig. 3(b) illustrates these advantages. To

enable choosing leaf box sizes smaller than 0:2k, we use

wideband FMM22 that is stable at small lengths. With no

loss in generality, we denote boxes whose side lengths are

smaller than 0:2k as accelerated Cartesian

expansion35(ACE) boxes, and those at that size or larger, as

FMM boxes (see Fig. 4).

To this end, consider two leaf boxes that interact in the

far field of each other. The domain of these leaf boxes are

denoted using xs and xo, respectively. Assume that

Cc
n \ xs 6¼ ;. Analogously, Cf

m \ xo 6¼ ;. Let rc
o and rc

s

denote the centers of xo and xs. Then, using the notation

introduced in Refs. 22, 35,

ð
Cf

m

wmðrÞL
c
BM wnðrÞ;Cc

n

� �
¼ LA � T A �MA; (7a)

where the operators are defined as

MA¼: Mð0Þ;…;MðPÞ
� 	

;

MðpÞ ¼ ð�1Þp
ð

Cc
n

dr0n̂0 � r0 ðr
0 � rc

sÞ
ðpÞ

p!
wnðr0Þ; (7b)

T A �MA¼: Lð0Þ;…;LðPÞ
� 	

LðpÞ ¼
XP

n¼p

rðnÞGðrc
o; r

c
sÞ � ðn� pÞ �Mðn�pÞ; (7c)

and

LA � �f g ¼ �
XP

p¼0

ð1� aÞ þ abn̂ � r½ �ðr� rc
oÞ
ðpÞ � p �LðpÞ:

(7d)

Equations (7b) and (7c) define C2M, M2L, and L2O opera-

tions. In the above expressions, AðnÞ and rðnÞ [whose compo-

nent can be expressed in compressed form as rðnÞðn1; n2; n3Þ
¼ xn1 yn2 zn3 ] denote an nth rank tensor and Cðn�mÞ ¼ AðnÞ � m
�BðmÞ denotes an m-fold contraction between tensors of rank

n and m. It is apparent that Eq. (7c) depends only on centers

of leafs boxes and not on either source or observation sub-

triangles. As a result, using Eq. (7c) for all source subtrian-

gles in xs and observation subtriangles in xo enables cost

savings. While these equations describe a 1-level setting, it

can be extended to a multi-level wideband setting by nesting

these operations;22 note, details of these operators, proofs of

convergence, cost complexity, etc., can be obtained from

Refs. 22, 35.

B. Implementation details

In what follows, we lay out the algorithmic structure

necessary to implement the formulation that has been out-

lined. Specifically, we will assume that one has an available

geometric description comprising of control points, and a

connectivity map regarding the neighborhood of each con-

trol point. In addition, we assume that one has the available

FIG. 3. (Color online) Comparison of interactions between FMM and wide-

band MLFMA. (a) Limit on traditional leaf box size means that interactions

between large patches must be computed directly. (b) For wideband

MLFMA, interactions between large patches may be split between nearfield

and farfield such that favorable scaling is maintained.

FIG. 4. (Color online) Illustration of traditional and wideband MLFMA

trees. (a) Traditional: MLFMA leaf box size (and therefore tree height) is

limited by the size of the largest patch. (b) Wideband MLFMA: leaf box

size and tree height are not limited by patch size, and may be chosen for

optimal MLFMA scaling.
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necessary tools to obtain limit quantities (surface/fields),

their gradients, normals, and so on, given a barycentric coor-

dinate. Given this initial set of tools, our algorithmic proce-

dure is outlined in Fig. 5.

IV. COMPLEXITY ANALYSIS

In order to accurately analyze the complexity, we forgo

studying our system with respect to the traditional measure

Nb, total number of basis functions, and elect to cast the pre-

sent scaling discussion in terms of the total number of

unique quadrature points per patch.

We choose to do so, because Nb can obscure the true

cost of setup and execution time, for a high order system,

given the relatively large spatial extent of basis function

support that can cause potential overlap. Furthermore, while

asymptotic scaling is generally the metric of choice when

discussing fast methods, one must be more careful when

handling higher order methods as compared to lower order

methods because the constants that appear in front of the

asymptotic scalings are often significantly larger and can

have a more pronounced impact on the relative cost of dif-

ferent formulations.

A. Computational complexity

Given the prior definitions, we make some assumptions

that make asymptotic analysis tractable: these are (a) all

basis functions are associated with the same number of

patches �, (b) the number of patches that share a nodal ver-

tex is l, (c) the average size of the patch used is approxi-

mately 0:2k, and (d) the number of quadrature points used in

any patch is Nq. The overall costs comprises three distinct

portions; (a) costs to evaluate Znear, (b) cost to evaluate a

matrix vector product with Znear, and (c) with Zfar.

Traditionally, the cost for filling Z costs OðN2
bN2

q�
2Þ The

cost of a matrix vector product with Z is OðN2
bÞ.

To analyze costs associated the above scheme, let us

start with traditional MLFMA. Assume that the leaf box size

is 0:2k, and one assigns patches (and not basis) to each leaf

FIG. 5. Algorithm 1: A description of the overall algorithm.
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box. This implies that there are Oð1Þ patches per leaf box

or, equivalently, �Np leaf boxes. This manner of construct-

ing the tree implicitly assumes that some of the interaction

between basis functions whose domain overlap, like that

shown in Fig. 2, are constructed via MLFMA whereas other

portions are constructed via direct integration. From these

arguments, it follows that the cost of constructing Znear

scales as OðNpN2
qÞ. The cost for each of the MLFMA steps

scales as follows: OðNpNqÞ for C2M and L2O operations,

and OðNp log NpÞ for the rest of the tree operations. It is evi-

dent that both computing the near field as well as mapping

on to the leaf level in a traditional MLFMA tree are the

bottlenecks.

The story is slightly different for wideband MLFMA.

For simplicity assume that each patch is divided into Nq sub-

patches, and the size of each leaf box is such that one has

Oð1Þ subpatches. This implies that there are approximately

NpNq leaf boxes. The cost of evaluating Znear scales as

OðNpNqÞ. The cost of C2M and L2O scales as OðNpNqÞ and

traversal up and down the tree as approximately

OðNpNq log ðNpNqÞÞ. As is apparent, the key difference

between the two methods is a factor of Nq in the cost for

near field. This is significant as Nq needs to be high enough

to integrate a higher order function.

V. RESULTS

In this section, we present a number of results validat-

ing our isoBEM with respect to accuracy, efficiency, and

computational complexity. Furthermore, we present solu-

tions to scattering from conical and non-conical scatters and

make the appropriate comparisons against analytic solutions

and flatBEM; note, flatBEM is used to denoted a solution

methodology that uses piecewise flat tesselations to repre-

sent the geometry, and constant basis functions to represent

the potentials. For all examples in the proceeding, we note

that the incident field propagates along k̂ ¼ �ẑ direction.

The scattering cross (SCS) section36 is used to as a metric to

compare simulations, unless it is specified otherwise. All the

cases demonstrated below assume that the test objects are

sound-hard and are immersed in a homogeneous medium.

The speed of sound in the ambient medium is assumed to be

343 m/s, and the dimensions of all objects analyzed in this

paper are normalized with respect to the wavelength of the

incident field. Finally, when errors are reported, they are the

L2 norm between computed and reference quantities.

A. Accuracy of wideband MLFMA for nearfield
computations

As the rationale for using wideband MLFMA is to alle-

viate the computational complexity associated with nearfield

computations, in what follows we examine the accuracy and

efficacy of the proposed approach. The numerical experi-

ments to evaluate the accuracy are conducted on a uniformly

discretized sphere. As is done in traditional MLFMA, we

first choose the largest size of the leaf box to be greater than

the support of any basis function. Next, we choose the

height of the tree such that all basis functions that share a

supporting patch interact in the nearfield of each other. To

fix the integration rule necessary to evaluate inner products,

we choose the number of subdivisions per-patch and use

low-order quadrature on each sub-patch. Specifically, we

assume that each patch is sub-divided into 16 sub-patches.

The resulting matrix or matrix-vector product (with any ran-

dom vector) forms the benchmark for our subsequent tests.

Next, we increase the height of the tree. Now, we would

have contributions to the matrix vector product from both

near and “far” interactions via ACE/MLFMA. Note, as ACE

is low-frequency stable, it may be tempting to arbitrarily

choose a very small leaf box. The optimal size of the leaf

box is approximately the size of the largest sub-patch. Note,

division of each patch is tantamount to defining a quadrature

rule for each patch. This said, there are obvious tradeoffs. A

very small leaf box implies that most of the computation is

done in the farfield, i.e., numerically. This is inadvisable for

hypersingular integrals as regularization within the FMM

algorithm is not possible. Our scheme relies on the order of

polynomials we need to evaluate over the surface (geometry

and basis order), defining a quadrature rule, using a division

of patches to achieve that rule, and then defining a leaf box

size such that that number of near interactions are approxi-

mately Oð1Þ. On the finest division of a patch, we use a 3-

point rule.

In our experiment, we choose a sphere of radius 2:63k
and a tree with leaf box of size Dx0 ¼ 0:4k; we note that

each patch consists of 16 subpatches. We truncate the tree at

the leaf level, level L and compute all nearfield interactions.

Next, we choose the leaf box at Dx0 ¼ 0:2k, which trans-

lates to roughly 4 subpatches per leaf box. We then compute

all the nearfield interactions and one level of MLFMA far-

field. Again, we adjust the leaf box size to Dx0 ¼ 0:1k,

which allows 1 subpatch per leaf box and introduces two

levels of MLFMA farfield. As all the tree computations

using ACE, the number of terms in the expansion, P controls

the accuracy. Figure 6 demonstrates the computational

speedup and Fig. 7 describes the controllable accuracy as a

FIG. 6. (Color online) Comparison of isoBEM nearfield timings against the

OðN2
pN2

bN2
qÞ direct fill algorithm on a 2:63k sphere, where P is the expan-

sion coefficient.
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function of P. As is evident from these figures, one can con-

trol the accuracy and the corresponding speedup.

B. Computational complexity and storage of MFLMA
BIE-subdivision

This section verifies the theoretical scaling for both

complexity and storage, Figs. 8 and 9, in terms of total num-

ber of number of quadrature points per patch or NpNq; both

experiments are conducted on a series of boxes of size

1:151k� 9:212k.

In Fig. 8, we demonstrate the scaling of the timing of a

single matrix-vector product. The scaling is OðNpNq

log ðNpNqÞÞ, as expected. In our careful analysis, we find that

it is evident that the scaling is primarily from the farfield con-

tributions and in particular dominated by the M2M and L2L

stages; this results is as expected due to our system being

higher order, thus demanding a high level integration rule.

Scaling in storage for the near and far fields are shown

in Fig. 9. As expected, the nearfield memory scales linearly

with respect to NpNq. The farfield memory, for our given

experiment, is mostly dominated by the precomputation of

the aggregation/disaggregation and translation operator and

as a result we find scaling to be OðNpNq log ðNpNqÞÞ.

C. Accuracy of isogeometric analysis

To validate and demonstrate the accuracy of the pro-

posed approach, we consider scattering from a sphere dis-

cretized at multiple resolutions. To this end, we consider a

sphere with radius of 1.0 m that is modeled using an initial

control mesh comprised of 642 vertices and 1280 faces.

Starting from this control mesh and performing two levels

of Loop subdivision results in two meshes; the coarser mesh

with 2562 vertices and 5120 faces, and finer mesh having

10 242 vertices and 20 480 faces, respectively. All three

meshes have the same limit surface. This implies that an

increase in the number of control points is equivalent to h-

refinement as the support of the basis function changes and

therefore, the approximation of the continuous operator

LBM �f g. The number of degrees of freedom (DoF) in

isoBEM is equivalent to the number of vertices; conse-

quently, the three tests have 642, 2562, and 10 242 DOFs,

respectively. By comparing those obtained using isoBEM

with analytic series approach, the relative L2 errors in sur-

face pressure are 0.0591, 0.0180, and 0.00750, respectively,

for these three different discretizations. As is evident, the

accuracy in the potential in the L2 norm is excellent and it is

convergent.

Finally, Fig. 10 makes a direct comparison between far-

field data obtained using isoBEM, on the sphere of one level

of refinement corresponding to 5120 unknowns, and

flatBEM on the sphere of two level of refinement corre-

sponding to 20 480 unknowns, and analytical solutions. We

find there to be excellent agreement between all three data

sets.

D. Analysis of non-conical geometries

Next, to demonstrate the viability of using isoBEM we

compare results obtained using this method against those

obtained using flatBEM. In all cases analyzed here, the

FIG. 7. (Color online) Convergence in relative L2 error of matrix using

isoBEM versus the OðN2
pN2

bN2
qÞ direct fill algorithm on a 2:63k sphere,

where P is the expansion coefficient.

FIG. 8. (Color online) Scaling of MLFMA matrix vector product timings

for a series of boxes of size 1:151k� 9:212k.

FIG. 9. (Color online) Scaling in nearfield and farfield memory for a series

of boxes of size 1:151k� 9:212k.
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discretization of objects used for analysis via flatBEM is

such that its surface area is approximately identical to that

used for isoBEM (within 99%). Note, to achieve this agree-

ment, one needs a higher number of flat tesselations to

mimic the higher order nature of subdivision surfaces.

Finally, we also remind the reader that the number of

degrees of freedom for flatBEM corresponds to the triangles

whereas those for isoBEM corresponds to vertices (more

precisely, control points).

We start with analyzing scatter from a torus that fits

within a box of size 8.1k by 8.1k by 2.3k. The number of

degrees of freedom for flatBEM is 61 312 whereas those for

isoBEM is 7664. As is evident from Fig. 11 the agreement

between the two is excellent.

Next, we consider a cone that fits in a 5.71k by 11.66k
by 5.71k bounding box. Again, flatBEM uses 59 424 degrees

of freedom while the isoBEM has 7430 degrees of freedom;

Fig. 12 demonstrates the agreement between the two.

Finally, we consider a warhead that fits in a 4.57k by

13.80k by 4.57k bounding box. The flatBEM uses 85 504

degrees of freedom whereas that using isoBEM uses 10 690.

As in all the previous cases, the two sets of data is shown in

Fig. 13 where we see that they agree very well with each

other.

VI. SUMMARY

In this paper, our principal contribution is the develop-

ment of an isogeometric anlaysis tool for scattering from

rigid bodies using the Burton-Miller formulation. The basis

sets we have chosen arise from subdivision representation of

the geometry; the benefits of this representation are that the

resulting representation are C2 almost everywhere.

Unfortunately, this high degree of regularity implies that

high order functions are used for representing both the

geometry and physics. This translates to high numerical

quadrature that can overwhelm overall costs. Indeed, this

has been a persistent challenge for all higher order methods.

Our secondary contribution in this paper is an extension of

the wideband multi-level fast multipole method to effi-

ciently evaluate both components of the matrices and inner

products with them. Through numerous numerical results,

we have shown the efficacy of this approach in terms of

accuracy against analytical data, comparison against

FIG. 10. (Color online) Scattering cross section of the sphere (/ ¼ 0 cut).

FIG. 11. (Color online) Scattering cross section of a 8.1k by 8.1k by 2.3k
torus (/ ¼ 0 cut).

FIG. 12. (Color online) Scattering cross section of a 5.71k by 11.66k by

5.71k cone (/ ¼ 0 cut).

FIG. 13. (Color online) Scattering cross section of a 4.57k by 13.80k by

4.57k warhead (/ ¼ 0 cut).
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piecewise flat triangulation for non-conical objects, and cost

complexity for acoustically large objects. Overall, isogeo-

metric analysis tools with the necessary mathematical aug-

mentation permit efficient analysis directly from a CAD

representation. Our future research is on using this frame-

work for design optimization and will be presented

elsewhere.
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APPENDIX

This appendix is provided to ensure this paper is self-

contained such that the reader can build upon this work. In

order to implement subdivision, we refer the reader to Refs.

37–39 for open source code and the corresponding docu-

mentation. Our method builds upon this framework.

Furthermore, details on the isogeometric boundary element

method and its implementation can be found in Refs. 39 and 40.
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