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Abstract

This paper tackles one of the most fundamental goals in functional time series

analysis which is to provide reliable predictions for functions. Existing functional

time series methods seek to predict a complete future functional observation based

on a set of observed complete trajectories. The problem of interest discussed

here is how to advance prediction methodology to cases where partial informa-

tion on the next trajectory is available, with the aim of improving prediction

accuracy. To solve this problem, we propose a new method “partial functional

prediction (PFP)”. The proposed method combines “next-interval” prediction

and fully functional regression prediction, so that the partially observed part of

the trajectory can aid in producing a better prediction for the unobserved part of
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the future curve. In PFP, we include automatic selection criterion for tuning pa-

rameters based on minimizing the prediction error. Simulations indicate that the

proposed method can outperform existing methods with respect to mean-square

prediction error and its practical utility is illustrated in an analysis of environ-

mental and traffic flow data.

Keywords: Dimension reduction, Functional principal component analysis, Fi-

nal prediction error, Functional time series prediction, Intra-day fully functional

linear regression model, Long-term and short-term dynamics, Updating predic-

tion.

1 Introduction

Functional data is collected in many sociological, environmental, biological and clinical

research. Of prime interest in this paper is to analyze the daily trajectories of the

pollutant PM10 (which are fine particulate matter with diameter less than 10 microm-

eters) in Graz, Austria, which is displayed in Figure 1. The task in this paper is to

develop a new method that can predict the trajectory on Sunday using all the past daily

trajectories plus the partially observed trajectory on Sunday. We first review some of

the existing approaches to analyzing functional time series data. As noted, functional

data are often collected over many natural consecutive time intervals. For the PM10

data discussed above, the dataset consists of many daily curves. One of the interest-

ing aspects of functional time series is that the many trajectories may share similar

behavior. The collected functions may be described by a time series (Yk : k ∈ Z), Z

denoting the integers, with observations in the sequence being random functions Yk(t)

for t taking values in some domain U , here taken to be the unit interval [0, 1]. The

object (Yk : k ∈ Z) will be referred to as a functional time series. Interest in this new

method arises from the consideration of the dynamic features of functional time series
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Figure 1: Plot of daily trajectories of the PM10 concentration over one week. The
dotted grey line represents the unobserved part of Sunday’s trajectory.

data.

Complete curve prediction has been discussed in recent decades. However, these exist-

ing methods are not tailored for the specific case where there is partially observed data

that is available for predicting a new trajectory. The existing methods focus often on

the Functional AutoRegressive model of order p, FAR(p), model. Bosq (2000) derived

one-step ahead predictors based on a functional form of the Yule–Walker equations for

FAR(1) processes. Besse, Cardot and Stephenson (2000) proposed non-parametric ker-

nel predictors. Antoniadis and Sapatinas (2003) studied FAR(1) curve prediction based

on linear wavelet methods. Kargin and Onatski (2008) introduced the predictive factor

method, which seeks to replace functional principal components with directions most

relevant for predictions. Didericksen, Kokoszka and Zhang (2012) evaluated several

competing prediction models in a comparative simulation study, finding Bosq’s (2000)

method to have the best overall prediction performance based on mean squared error

and averaged distance. Aue, Dubart Norinho and Hörmann (2015) proposed a method
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that deals with functional time series prediction in a multivariate way, together with

a final prediction error criterion to select the order of FAR process and the dimension

of the auxiliary VAR model. Existing full-curve prediction method for functional time

series, only incorporate the dynamics across functions, but not the intra-function infor-

mation. Thus partial observation is not utilized to improve the prediction. To overcome

this limitation, we incorporate the information both across and within curves.

In contrast to complete curve prediction, PFP aims to give predictions based on a

partially observed trajectory. Fully functionally regression method has been considered

in providing updated time series prediction in Chiou (2012), who proposed a functional

mixture method for predicting traffic flow. The proposed method is a combination of

fully functional regression with functional clustering and discrimination. Shang (2017)

also considered the fully functional regression method, together with moving block

method, to update functional time series predictions. However, these papers have some

limitations: Moving block method does not incorporate the intra-curve information,

and fully functional regression does not take the cross-curve information into account,

which would be a problem when there existed strong cross-curve correlation. More

details will be discussed in this paper.

Our prediction method uses all available data – both complete trajectories and partial

trajectories. Compared with the complete curve prediction, PFP adds flexibility, since

it can update the prediction according to different times of day, and the prediction error

over the forecasting time interval should then be smaller. The ability to update will

have advantages including reduced prediction error. In practical terms, the decay of

the eigenvalues will constrain the starting part of the predicted trajectory to be “close”

to the ending part of the partially observed data.

The proposed prediction algorithm is a stepwise procedure and can be summarized as
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follows. For smoothed trajectories, we decompose the observations into two parts:

Yk(t) = Sk(t) + ǫk(t), k = 1, 2, . . . ,

where Sk(t) is the signal function, and ǫk(t) is the i.i.d innovation function. For

τ ∈ [0, 1], assume that the sub-function over interval [0, τ ], denoted by Yn+1|[0,τ ], has

already been observed and that the goal is to predict Yn+1|(τ,1]. To do this, we first

use functional time series methodology to calculate the fitted functions Ŷk(t) for all

t ∈ [0, 1], and obtain the residual functions ǫ̂k(t) = Yk(t) − Ŷk(t). We then separate

the residual functions into two segments ǫ̂k|[0,τ ] and ǫ̂k|(τ,1] at the current time τ , and

fully functionally regress ǫ̂k|(τ,1] on ǫ̂k|[0,τ ]. The fitted function ˆ̂ǫn+1|(τ,1] is then used to

update the prediction of the unobserved part of the innovation function of the current

curve. The final prediction

Ŷ u
n+1|(τ,1] = Ŷn+1|(τ,1] + ˆ̂ǫn+1|(τ,1]

is proposed to be the summation of predictions at each step, where Ŷn+1 is the full-curve

prediction.

In the noisy case, we further decompose the observations into three parts:

Yk(t) = Sk(t) + ǫk(t) + ek(t), k = 1, . . . , n,

In addition to the two aforementioned stages, we propose one more step to extract

the time series information in the random error ek(t) on the first two moments, which

represents short-term dynamics. In this article, we will discuss the following: (1) How

well does PFP perform, compared with “next interval” prediction method and fully

functional regression method? (2) How to select the tuning parameters? (3) How to

adjust the method such that it will still produce decent and reasonable prediction for
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noisy data?

The remainder of the paper is organized as follows. In Section 2, we describe the func-

tional time series prediction methodology proposed by Aue et al. (2015), and discuss

the fully functional linear model, and its application to intra-day prediction. We also

propose a data-driven criterion of parameter selection for the prediction by fully func-

tional regression model. Section 3 gives the prediction algorithm for both smooth and

noisy functional time series. Section 4 shows simulation results, including the prediction

MSEs of various methods, the result of order and dimension selection, and nonparamet-

ric bootstrap prediction intervals. Real data analyses on PM10 concentration curves

and traffic flow trajectories are shown in Section 5.

2 Functional Autoregressive Model and Fully Func-

tional Regression Model

The two popular classes of models for analyzing functional data are functional autore-

gressive models (FAR) and fully functional regression models. FAR models are used for

analyzing a series of correlated functional data (a time series of curves, or a time series

of functions). Fully functional regression models are utilized to find the linear relation

between two sets of functions. In this paper, we develop a prediction method using

principles that are inspired by these two approaches. Before giving the introduction of

these two models, we first introduce the following assumptions.

2.1 Preliminaries

Let (Yk : k ∈ Z) be an arbitrary stationary functional time series satisfying the following

assumptions:
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(A.1) All random functions are defined on some common probability space (Ω,A,P).

The notation Y ∈ Lp
H = Lp

H(Ω,A,P) is used to indicate that, for some p > 0,

E[‖Y ‖p] < ∞. We assume the observations Yk are elements of the Hilbert space

H = L2([0, 1]) equipped with the inner product 〈x, y〉 =
∫ 1

0
x(t)y(t)dt. Each Yk is

a square integrable function satisfying ‖Yk‖2 =
∫ 1

0
Y 2(t)dt <∞.

(A.2) Any Y ∈ L1
H possesses a mean curve µ = (E[Y (t)] : t ∈ [0, 1]), and any Y ∈

L2
H possess a covariance operator C, defined by C(x) = E[〈Y − µ, x〉(Y − µ)],

equivalently, C(x)(t) =
∫ 1

0
c(t, s)x(s)ds, c(t, s) = cov(Y (t), Y (s)). By spectral

decomposition, we have the following expression of C,

C(x) =
∞∑

j=1

λj〈vj, x〉vj,

where (λj : j ∈ N) are the eigenvalues (in strictly descending order) and (vj : j ∈

N) the corresponding normalized eigenfunctions (fPC), so that C(vj) = λjvj and

‖vj‖ = 1.

(A.3) The (vj : j ∈ N) form an orthonormal basis of L2([0, 1]). Then by the statement

of Karhunen–Loève theorem, Yk allows for the representation

Yk = µ+
∞∑

j=1

〈Yk − µ, vj〉vj, k ∈ Z.

The coefficients 〈Yk − µ, vj〉 in this expansion are called the fPC scores of Yk.

Suppose now that we have observed Y1, . . . , Yn. In practice µ as well as C and

its spectral decomposition should be unknown and need to be estimated from the

sample. We estimate µ pointwise by

µ̂n(t) =
1

n

n∑

k=1

Yk(t), t ∈ [0, 1],
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and the covariance operator by

Ĉn(x) =
1

n

n∑

k=1

〈Yk − µ̂n, x〉(Yk − µ̂n), x ∈ H.

Remark. In (A.1), all functions are defined in the same probability space so that we

can extract the common information of the functional time series. Each function is

constrained with proper values so that the covariance operator is well defined. The

eigenfunctions (νj : j ∈ N) in Assumption (A.2) form a series of orthonormal basis

for the space H, and comparing with other orthonormal basis, the eigenfunctions will

give the best approximation of functions with the same number of basis. Assumption

(A.3) presents the Karhunen-Loéve expansion which is fundamental for the prediction

of functional time series. More specifically, in PFP, the prediction of functional time

series is done in the subspace spanned by the first few eigenfunctions, and the predicted

function is represented by truncated Karhunen-Loéve expansion.

2.2 Multivariate technique of predicting FAR(p) process

There are existing methods for prediction of functional time series. Among them, Aue

et al. (2015) proposed a dimension-reduction method for prediction of stationary func-

tional time series which can be easily implemented and provides competitive prediction

results. To determine the order of the FAR model and the dimension of the auxiliary

projected eigenspace, the functional final prediction error criterion was proposed. The

FAR(p) process is defined by the stochastic recursion

Yk − µ =

p∑

j=1

Φj(Yk−j − µ) + ǫk,

where (ǫk : k ∈ Z) are centered, independent and identically distributed innovations

in L2
H and Φj : H → H are bounded linear operators. The FAR(p) process can be
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represented in the state space form (Bosq, 2000),




Yk

Yk−1

...

Yk−p+1




=




Φ1 · · · Φp−1 Φp

Id 0

. . .
...

Id 0







Yk−1

Yk−2

...

Yk−p




+




ǫk

0

...

0




. (2-1)

The operator matrix in Equation 2-1 is represented by Φ∗, and the elements Id and 0

mean the identity operators and zero operators on H, respectively. Then Φ∗ should

satisfy ‖(Φ∗)k0‖L < 1 for some k0 ≥ 1. This condition ensures that the time series

process has a strictly stationary and causal solution in L2
H .

The prediction algorithm in Aue et al. (2015) proceeds in three steps.

Step 1. Select the number of principal components d for the observed curves. With

the sample eigenfunctions, empirical fPC scores yek,j = 〈Yk − µ, v̂j〉 can now be

computed for each observation Yk, k = 1, . . . , n. Then we have the fPC score

vectors for the kth observation

Ye
k = (yek,1, . . . , y

e
k,d)

′.

By nature of fPCA, the vector Y e
k contains most of the information on the curve

Yk.

Step 2. Fix the prediction lag h. Then find a multi-dimensional time series model

Yk =
∑p

j=1 ΦjYk−j + Ek for the eigenscore vectors to produce the h-step ahead

prediction

Ŷe
n+1 = (ŷen+1,1, . . . , ŷ

e
n+1,d)

′.

Durbin–Levinson and innovations algorithm can be readily applied here, given

the vectors Ye
1, . . . ,Y

e
n.
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Step 3. The multivariate predictions are retransformed to functional trajectories. This

retransformation is achieved by defining the truncated Karhunen–Loève represen-

tation

Ŷn+1 = µ̂+ ŷen+1,1v̂1 + · · ·+ ŷen+1,dv̂d.

Based on the predicted fPC scores yek,j and the estimated eigenfunctions v̂j, the resulting

Ŷn+1 is then used as the h-step ahead functional prediction of Yn+1.

2.3 Fully Functional Regression Model

In a fully functional regression model, both the explanatory “variables” (or functions)

and responses are functions. Here we use multivariate technique after projection to

do the estimation for the regression model. Suppose we have random explanatory

functions X(s) and independent response functions Y (t). Denote their mean func-

tions by µX(s) = E[X(s)] and µY (t) = E[Y (t)], and their covariance functions by

CX(s1, s2) = cov(X(s1), X(s2)), CY (t1, t2) = cov(Y (t1), Y (t2)). The Karhunen–Loève

expansions for the trajectories X and Y are

X(s) = µX(s) +
∞∑

i=1

ξiφi(s) and Y (t) = µY (t) +
∞∑

j=1

ζjψj(t),

where ξj’s and φj’s (ζj’s and ψj’s) are the fPC scores and eigenfunctions of CX (CY ).

The fully functional linear regression model with response function Y and predictor

function X can be written as

Y (t) = µY (t) +

∫
β(s, t)(X(s)− µX(s))ds+ ǫ(t),

where ǫ(t)’s are independent error functions, and the bivariate regression kernel β(s, t)

is assumed to be continuous and square integrable, and thus,
∫ ∫

|β(s, t)|dsdt <∞.
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The kernel function above indicates which parts of the predictor trajectory have positive

vs. negative contribution to the response function Y (t). Under the given assumptions,

β(s, t) has the basis representation

β(s, t) =
∞∑

j=1

∞∑

i=1

βijφi(s)ψj(t).

For simplicity we will assume the mean function ofX’s and Y ’s are both zero. Replacing

Y (t) and X(s) with their Karhunen Loéve representation, we have

∞∑

j=1

ζjψj(t) =
∞∑

j=1

∞∑

i=1

βijξiψj(t) + ǫ(t).

For arbitrary k ∈ Z
+, taking the inner product with ψk(t) on both sides, we have

ζj =
∞∑

i=1

βijξi + uj,

where uj = 〈ǫ, ψj〉. In practice, we only adopt the first dx fPCs of predictors, so we

consider the following equation

ζj =
dx∑

i=1

βijξi + νj, (2-2)

where νj = uj +
∑

i>dx
βijξi. Equation 2-2 resembles a multivariate regression model.

Therefore, the estimation of βij can be obtained by fitting a regression model to the dy-

dimensional eigenscore vectors of the responses against the dx-dimensional eigenscore

vectors of the explanatory functions as presented in Equation 2-2. Thus, we first esti-

mate the eigenscores ξ’s and ζ’s and then estimate βij’s by fitting multiple multivariate

linear regression models. From prediction perspective, we can first predict the eigen-

scores of Y , and obtain the predicted curve Ŷ by truncated Karhunen-Loève expansion

Ŷ = µ̂Y +
∑dy

j=1 ζ̂jψ̂j.
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2.3.1 Intra-day prediction with functional regression

Without loss of generality, let Z denote a random function in L2[0, 1] with mean zero. In

a regression setting for intra-day prediction, the sub-curve Z(s)|[0,τ ] = (Z(s) : s ∈ [0, τ ])

serves as the explanatory function, and the sub-curve Z(t)|(τ,1] = (Z(t) : t ∈ (τ, 1])

serves as response function. The Karhunen–Loève expansions of the two functional

variables are

Z(s)|[0,τ ] =
∞∑

i=1

ξ
(τ)
i φi(s) and Z(t)|(τ,1] =

∞∑

j=1

ζ
(τ)
j ψj(t),

where the notation ξi, φi, ζj and ψj are defined analogously to those on the entire

domain [0, 1], but they correspond to the sub-domains [0, τ ] or (τ, 1].

We consider a fully functional linear regression model

Z(t)|(τ,1] =
∫ τ

0

βτ (s, t)Z(s)|[0,τ ]ds+ ǫ(t).

Here, given a fixed value of τ , assume the bivariate regression function βτ (s, t) to

be continuous and square integrable, consequently,
∫ 1

τ

∫ τ

0
βτ (s, t)dsdt < ∞. By the

discussion in section 2.3, the functional regression model can be expressed as

Z(t)|(τ,1] =
∞∑

j=1

∞∑

i=1

βτ,ijξ
(τ)
i ψj(t) + ǫ(t),

where βτ,ij are the regression parameters to be estimated. Under the continuity as-

sumption on βτ (s, t) along with τ , it follows that βτ,ij is also continuous in τ for all

i and j. In the following section, we will introduce a novel criterion that allow us to

jointly select the number of principal components for predictors and responses.
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2.3.2 Dimension selection for fully functional regression model

Typically, we will project the functional objects into a finite dimensional space spanned

by the first few principal components. The number of principal components are selected

such that the proportion of variance explained exceeds a prespecified threshold (say,

90%). However, our purpose is prediction, so it is not always appropriate to select

principal components that explain a large portion of variance. So we consider a new

criterion for selecting the best dimensions of eigenfunction spaces of predictors and

responses. Here, we propose to choose the dimensions by minimizing the mean square

error of prediction.

Without loss of generality, assume predictors X’s and responses Y ’s be elements in L2
H

with mean function zero and covariance operator CX resp. CY . Suppose the dimension

of eigenfunction space of the predictors is dx, that of the responses is dy, and Ŷ is the

prediction of Y by the regression model, then by orthonormality of eigenfunctions, the

MSE of prediction can be decomposed as

E[‖Yn+1 − Ŷn+1‖2] = E[‖Yn+1 − Ŷn+1‖2] +
∑

l>dy

λYl ,

where Yk = (ζk1, . . . , ζkdy)
′ is the truncated eigenscore vector of the curve to be pre-

dicted, Ŷk = (ζ̂k1, . . . , ζ̂kdy)
′ is the prediction of Y, and λYl is the lth eigenvalue of CY ,

and ‖ · ‖ denotes the Euclidean norm.

Let Xk = (ξk1, . . . , ξkdx)
′ be the truncated eigenscore vector of the predictors, then by

the discussion above, there exists a dy × dx matrix B = {βij}dx,dyi,j=1, such that Yk =

BXk+Zk, where Zk = (zk1, . . . , zkdy)
′ with zkj =

∑
i>dx

βijξki+〈ǫk, ψj〉, where ψj is the

13



jth eigen-function of CY . We assume the covariance matrix of Zk to be Σz. Therefore,

E[‖Yn+1 − Ŷn+1‖2] = E[‖Yn+1 − B̂Xn+1‖2] (2-3)

= E[‖(B − B̂)Xn+1‖2] + E[‖Zn+1‖2] (2-4)

= E[‖(X′
n+1 ⊗ Idy)(β − β̂)‖2] + E[‖Zn+1‖2]. (2-5)

Let Ỹ = (Y1, . . . ,Yn), X̃ = (X1, . . . ,Xn), Z̃ = (Z1, . . . ,Zn), β = vec(B), and β̂ =

vec(B̂) be its least squares estimator. Then we have Ỹ = BX̃ + Z̃, or equivalently,

ỹ = (X̃ ′ ⊗ Idy)β + z̃,

where ỹ = vec(Ỹ ) and z̃ = vec(Z̃). The least squares estimator of β is

β̂ = ((X̃X̃ ′)−1X̃ ⊗ Idy)ỹ,

and we also have

β̂ − β = ((X̃X̃ ′)−1X̃ ⊗ Idy)z̃.

Our next task is to study the asymptotic property of β̂. Following the above equation,

√
N(β̂ − β) =

√
N((X̃X̃ ′)−1X̃ ⊗ Idy)z̃

=

((
1

N
X̃X̃ ′

)−1

⊗ Idy

)
1√
N

(
X̃ ⊗ Idy

)
z̃.

By the weak law of large number, we have
(

1
N
X̃X̃ ′

)−1

⊗ Idy
p→ Σ−1

x ⊗ Idy , where Σx is

the covariance matrix of Xn’s. By the central limit theorem,

1√
N

(
X̃ ⊗ Idy

)
z̃ =

1√
N
vec(Z̃X̃ ′)

d→ N (0,Σx ⊗ Σz) .
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Finally, by Slutsky’s theorem,

√
N
(
β̂ − β

)
d→ N

(
0,Σ−1

x ⊗ Σz

)
. (2-6)

As for the first term in Equation 2-5, it is reasonable to assume that β̂ and Xn+1 are

independent since asymptotically the sample size will go to infinity, and β̂ is based on

the whole sample, so the dependence between β̂ and Xn+1 is negligible for large sample

sizes. Then by the independence and Equation 2-6,

E[‖(X′
n+1 ⊗ Idy)(β − β̂)‖2] = tr{E[(Xn+1X

′
n+1 ⊗ Idy)(β − β̂)(β − β̂)′]}

= tr{(Σx ⊗ Idy)E[(β − β̂)(β − β̂)′]}

=
1

n
tr{(Σx ⊗ Idy)(Σ

−1
x ⊗ Σz) + o(1)}

∼ 1

n
tr(Idx ⊗ Σz)

=
dx
n
tr(Σz),

where an ∼ bn means an/bn → 1. It can be shown E[‖Zn+1‖2] = tr(Σz). Therefore, we

have

E[‖Yn+1 − Ŷn+1‖2] ∼
n+ dx
n

tr(Σz) +
∑

l>dy

λYl .

Replacing λYl with λ̂Yl , and tr(Σz) with
n

n−dx
tr(Σ̂z) as E

[
1

n−dx
ẐẐ ′

]
= Σz, we have the

fFPE criterion for fully functional regression model shown as follows:

fFPEr(dx, dy) =
n+ dx
n− dx

tr(Σ̂z) +
∑

l>dy

λ̂Yl .

Then it is natural to propose to choose dx and dy by minimizing the above objective

function. The following theorem shows the consistency of the criterion.

Theorem 1. Suppose (Xk : k ∈ N) ∈ L2[a, b] , (Yk : k ∈ N) ∈ L2[c, d] are two series of
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L4-m approximable (see Hörmann and Kokoszka (2010)) random functions satisfying

E[‖Xk‖4+ǫ] <∞ and E[‖Yk‖4+ǫ] <∞ for some ǫ > 0, serving as predictor and responses

in a fully functional regression model

Yk(t) =

∫
β(t, s)Xk(s)ds+ ǫk(t),

and Ŷn+1 is the prediction of Yn+1 based on CX and CY , and Ỹn+1 is the prediction of

Yn+1 based on ĈX and ĈY and ĉj = sign〈φj, φ̂j〉, d̂j = sign〈ψj, ψ̂j〉. Then if E[Y 4(t) ⊗

Y 4(s)] <∞ for arbitrary t, we have

E[‖Yn+1 − Ŷn+1‖2]− E[‖Yn+1 − Ỹn+1‖2] → 0, as n→ ∞.

3 Proposed Prediction Method

We know the following decomposition framework for smooth trajectories,

Yk(t) = Sk(t) + ǫk(t), t ∈ [0, 1],

where S(t) is the signal correlated to the previous curves, and ǫ(t) is the innovation

function independent with the previous curves. Further, if the observed curves are

contaminated by random noise, we can decompose the functional time series into three

parts:

Yk(tj) = Sk(tj) + ǫk(tj) + ek(tj), k = 1, . . . , n, j = 1, . . . , J,

where e(tj) represents random error. In practice, the observations are available only

at prespecified discrete grids, so here we use tj instead of t. We propose a stage-wise

procedure, where each stage corresponds to predicting one component and combine

them to obtain the final prediction.
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3.1 Smooth functions

For any function Yk(t), the trajectory over [0, τ ] is denoted by Yk|[0,τ ], and the trajectory

over (τ, 1] is denoted by Yk|(τ,1]. Suppose we have observed Y1, . . . , Yn, and Yn+1|[0,τ ].

The updated prediction of the curve over (τ, 1] is given by

Ŷ u
n+1|(τ,1] = Ŷn+1|(τ,1] + ǫ̂n+1|(τ,1],

where Ŷn+1 is the “next-interval” prediction of Yn+1 and ǫ̂n+1|(τ,1] the intraday prediction

of the (n+ 1)th innovation function over sub-domain (τ, 1].

To predict ǫn+1|(τ,1], we consider a fully functional regression model, where (ǫi(s)|[0,τ ])ni=1

serve as the “predictors” and (ǫi(t)|(τ,1])ni=1 serve as the responses,

ǫk(t)|(τ,1] =
∫ τ

0

βτ (s, t)ǫk(s)|[0,τ ]ds+ δk(t).

By the Karhunen–Loève expansion,

ǫk(s)|[0,τ ] =
∞∑

i=1

ξ
(k)
i φi(s)|[0,τ ] and ǫk(t)|(τ,1] =

∞∑

j=1

ζ
(k)
j ψj(t)|(τ,1].

The innovation function is unobserved, so we apply the functional regression model to

the residual in the first step ǫ̂i = Yi− Ŷi, where Ŷi is the full-curve prediction. Replacing

the unknown terms with the estimated values, and adopting the first dx and dy fPCs

for predictors and responses respectively, we have

ˆ̂ǫn+1(t)|(τ,1] =
dx∑

i

dy∑

j

β̂τ,ij ξ̂
(n+1)
i ψ̂j(t)|(τ,1],

where ξ̂
(n+1)
i = 〈ǫ̂n+1|[0,τ ], φ̂i〉. Then ˆ̂ǫn+1(t)|(τ,1] is the prediction of ǫn+1(t)|(τ,1] given
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ǫ̂n+1(s)|[0,τ ]. Therefore the final prediction of Yn+1|(τ,1] is

Ŷ u
n+1|(τ,1] = Ŷn+1|(τ,1] + ˆ̂ǫn+1|(τ,1].

The updated prediction Ŷ u
n+1|(τ,1] can be regarded as the complete curve prediction

Ŷn+1|(τ,1] adjusted by the intra-day prediction of the (τ, 1] block of the residual function

ˆ̂ǫn+1|(τ,1]. The prediction steps can be summarized by the following algorithm.

Step 1. Fix d, p, and apply functional time series prediction (e.g. Aue et al. (2015)),

to obtain the prediction Ŷn+1 for Yn+1.

Step 2. Obtain the prediction residual functions ǫ̂k’s for a training group {Yk}nk=n1
,

where the window size for the prediction of each curve in the training group is n1.

Step 3. Separate the prediction residual functions in Step 2 at “current time” τ . Treat

the first parts (ǫ̂k|[0,τ ])nk=n1
as the predictors, and the second parts (ǫ̂k|(τ,1])nk=n1

as

the responses. Fix dx and dy, and apply intra-day functional regression model on

the second segments (ǫ̂k|(τ,1])nk=n1
against the first segments (ǫ̂k|[0,τ ])nk=n1

, and use

the fitted model to obtain the prediction of the (τ, 1] block of the Yn+1’s residual

function ˆ̂ǫn+1|(τ,1].

Step 4. Add the (τ, 1] segment of the complete predicted curve Ŷn+1 and the pre-

dicted (τ, 1] block of the residual function to get the final prediction Ŷ u
n+1|(τ,1] =

Ŷn+1|(τ,1] + ˆ̂ǫn+1|(τ,1].

3.2 Noisy functions

In this section, we consider functional data as noisy sampled points from a collection

of consecutive trajectories. In practice, the observed functional time series is observed

at a discrete time grid, thus the observed curves can be rough. The reasons may be
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measurement errors or sparsely-spaced observation time grids. As has been discussed

by Yao et al. (2005), the rough error term will lead to biased fPC scores, so we need to

prevent the problem. In practice, we can use some smooth basis functions to smooth

the raw trajectories. However, in the random error (ek(tj), k ∈ Z, j ∈ 1, . . . , l), which

is not smooth, there could still exist short-term time series correlation, so we need one

more step to extract the information left in the pre-smoothing residuals. Because the

time dependency in the random error usually decays very fast as lag increases, we can

only expect reasonable predictions for the near future.

As has been discussed, we decompose any functional time series (Yi(t), i ∈ Z) into three

parts,

Yk(tj) = Sk(tj) + ǫk(tj) + ek(tj), k ∈ Z, j = 1, . . . , J,

where Sk(tj) is the smooth signal from the smooth part of the past time series obser-

vations, ǫk(tj) is the independent smooth innovation function, and ek(tj) is the random

error of the functional time series.

Let fk(tj) = Sk(tj)+ǫk(tj) represent the smooth part of the functional time series, which

can be predicted by functional methodology, while ek(tj) is the rough part. If there

is time series correlation in this process, it can be predicted by ARMA model. Here

we apply ARMA model to the pre-smoothing residual {rk(tj)}, defined as rk(tj) =

Ỹk(tj) − Yk(tj), where Ỹk(tj) is the original time series, and Yk(t) is the smoothed

functional time series. For noisy trajectories, we add two more steps to the previous

algorithm.

Step 5. Apply ARMA model to the pre-smoothing residuals, to predict the future

residuals r̂n+1(tj).

Step 6 Combine the prediction of the smooth part in Step 4 and pre-smoothing resid-
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uals to obtain the final prediction.

Ŷn+1(tj) = f̂n+1(tj) + r̂n+1(tj).

The final prediction for Yn+1 is Ŷn+1(tj) = f̂n+1(tj)+r̂n+1(tj), where tj = (1/l, 2/l, . . . , (l−

1)/l, 1), r̂n+1(tj) is ARMA prediction of {rn+1(tj)}. This adjustment is necessary if the

observed functional time series curves are significantly rough and time series structure

in rk(tj)’s is pronounced. The prediction of the smooth part can be also viewed as a

de-trending process. As has been shown in the appendix, the autocorrelation of the

pre-smoothing residuals decays much faster than that of the original time series, which

indicates that the long-term dynamics (e.g. seasonal trend) has been removed.

3.3 Selection of p, d, dx and dy

We develop a method for the selection of unknown parameters that is based on the

prediction error, the order and the dimension of the projected eigenspace at the first

stage will influence the covariance function of the residual functions, which will further

influence the intra-day prediction. Therefore, Σ̂δ and λ̂
ǫT (τ)

j can be regarded as functions

of p and d and thus we propose to jointly select p, d, dx and dy by minimizing the

following objective function

fFPE(p, d, dx, dy) =
n+ dx
n− dx

tr(Σ̂δ(p, d)) +
∑

l>dy

λ̂
ǫT (τ)

j (p, d),

With the use of this functional FPE criterion, PFP is fully data-driven and we do not

need additional tuning parameter adjustment.

20



4 Simulation

4.1 General setting

To analyze the finite sample properties of the new prediction method, a comparative

simulation study was conducted. PFP was tested on simulated FAR models. In each

simulation test, 400 curves were generated. Beginning from the first curve, the following

consecutive 200 trajectories were used as the training group to obtain the residual

function of the one-step ahead prediction. Then we switched the training group with

the same number of functions in a sliding window way, to obtain the prediction residual

function for the next curve. Finally we had 200 estimated prediction residual functions,

among which the first 180 functions were fitted by an intraday functional regression

model, which was used to predict the unobserved block of the rest 20 curves. The

corresponding mean square error of prediction was computed, as well as the fFPE value

for comparison. This procedure was repeated for 100 times for each simulation run.

In the simulation, we worked in a D-dimensional functional space H, which is spanned

by D Fourier basis functions v = (ν1, ν2, . . . , νD) on the unit interval [0, 1]. Any

arbitrary element in H has the representation x(t) =
∑D

j=1 cjνj(t) with coefficients

c = (c1, . . . , cD)
′. Then for any linear operator Ψ: H → H, we have

Ψ(x) =
D∑

j=1

cjΨ(νj) =
D∑

j=1

D∑

j′=1

cj〈Ψ(νj), νj′〉νj′ = c′Ψv,

whereΨ is aD×D matrix with elements (〈Ψ(νj), νj′〉)Dj,j′=1. The linear operator used to

generate FAR model then can be represented in matrix form. The innovation function

is generated by ǫk(t) =
∑D

j=1 ak,jcj, where ak,j’s are i.i.d. normal random variables with

mean zero and standard deviation σj. Two sets of standard deviations used here are

σ1 = (j−1 : j = 1, . . . , D) and σ2 = (1.2−j : j = 1, . . . , D).
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4.2 Prediction comparison for smooth curves

In this section, we show the comparison of partial functional prediction with Aue et

al. (2015)’s method and intraday functional regression method on FAR(2) processes

Yk = Ψ1Yk−1 + Ψ2Yk−2 + ǫk. We assume the (τ, 1] part of the last 20 trajectories is

unobserved and the [0, τ ] part is observed, so we only need to predict the unobserved

part of these curves.

The operators were generated such that Ψ1 = κ1Ψ and Ψ2 = κ2Ψ. (Here, note that

κ2 = 0 yields a FAR(1) process). The operator matrix Ψ is generated at random,

with each element following a normal distribution with mean zero and variance σll′ ,

and then scaled by its l2 norm. In each simulation run, the operator matrix is newly

generated. We chose σjj′ to be (σiσ
′
i)jj′ to ensure the simulated functions satisfying

Riemann-Lebesgue Lemma. We set D = 15 in our simulation.

In each simulation run, the MSE of prediction

∫ 1

τ

[Yn+1(t)− Ŷn+1(t)|(τ,1]]2dt

of PFP and the three competitor method: time series method (Aue et al. (2015)), func-

tional mixture method (Chiou 2012), and intraday functional regression are computed.

The fFPE values are also calculated for the partial functional prediction and the in-

traday regression method, which is recorded to be close to the corresponding MSE of

prediction. For the competitor time series method, we do not provide the fFPE value

since Aue et al. (2015) have shown they should be close to the MSE of prediction.

Results for five pairs of values (κ1, κ2) are provided in Table 1.

We find that when time series structure is strong, PFP will outperform the other

methods. When time series structure is weak, the performances of PFP and functional

linear regression (FLR) method are similar, and are better than full curve prediction
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σ1

κ1 κ2 fFPEPFP PMSEPFPPMSEts PMSEi fFPEr PMSEr

1.8 0.0 0.2024 0.2097 0.8442 0.6428 0.3269 0.3431
0.8 0.0 0.2003 0.2112 0.8396 0.5779 0.2664 0.2763
0.2 0.0 0.1928 0.2018 0.8286 0.4622 0.1938 0.2025
0.4 0.4 0.2038 0.2123 0.8388 0.5249 0.2309 0.2392
0.0 0.8 0.2058 0.2115 0.8419 0.5977 0.2647 0.2685

σ2

κ1 κ2 fFPEPFP PMSEPFPPMSEts PMSEi fFPEr PMSEr

1.8 0.0 0.5554 0.5801 1.2269 1.9770 1.1012 1.1668
0.8 0.0 0.5455 0.5640 1.2112 1.1966 0.7011 0.7431
0.2 0.0 0.5302 0.5561 1.1813 1.0035 0.5287 0.5536
0.4 0.4 0.5711 0.5985 1.2593 1.0634 0.6128 0.6391
0.0 0.8 0.5740 0.5907 1.2631 1.2516 0.6995 0.7127

Table 1: Average fFPE values and prediction MSEs for different pairs of κ1 and κ2 from
100 iterations of the three methods, fFPEPFP and PMSEPFP are the fFPE value and
prediction MSE of PFP, fFPEr and PMSEr are the fFPE value and prediction MSE of
intra-day regression method, and PMSEts is the prediction MSE of time series predic-
tion method. PMSEi is the prediction MSE of Chiou’s functional mixture prediction
method, and the number of clusters is 3, and we set τ = 0.5 in each case.

method and functional mixture method. The fFPE value and the prediction MSE

are always very close for different situations. This numerically approves the practical

applicability of the fFPE criterion.

4.2.1 Empirical validity of the fFPE criterion

In this section, p, d, dx, and dy are selected jointly by the new fFPE criterion. We

simulated 100 times for each setting and then took the average of fFPE value and

prediction MSE for comparison. In Table 2, we show the selected order and dimensions

and the minimal fFPE value (denoted by fFPEa), the minimal prediction MSE (denoted

by PMSEb), the fFPE value corresponding to the minimal prediction MSE (denoted

by fFPEb), and the prediction MSE corresponding to minimal fFPE value (denoted by

PMSEa).

It is clear that the fFPEa and fFPEb values are very close, and that PMSEa and PMSEb
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σ1

κ1 κ2 p d dx dy fFPEa fFPEb PMSEa PMSEb

1.8 0.0 1 7 12 12 0.1964 0.1964 0.2021 0.2021
0.8 0.0 1 5 12 12 0.1943 0.1944 0.2016 0.2011
0.2 0.0 1 5 12 12 0.1901 0.1901 0.1979 0.1979
0.4 0.4 2 5 12 12 0.1964 0.1964 0.2036 0.2036
0.0 0.8 2 5 12 12 0.1980 0.1980 0.2035 0.2035

σ2

κ1 κ2 p d dx dy fFPEa fFPEb PMSEa PMSEb

1.8 0.0 1 10 12 12 0.5520 0.5520 0.5754 0.5754
0.8 0.0 1 8 12 12 0.5429 0.5429 0.5599 0.5599
0.2 0.0 1 2 12 12 0.5279 0.5296 0.5553 0.5526
0.4 0.4 2 6 12 12 0.5636 0.5636 0.5759 0.5759
0.0 0.8 2 8 12 12 0.5573 0.5575 0.5783 0.5768

Table 2: Selected order and dimensions for different choices of κ1 and κ2 and the average
fFPE and prediction MSE from 100 iterations. We set τ = 0.5 for each case.

are also very close. This confirms that in practice it will be sensible to jointly select

the dimensions and order by this fFPE criterion. Even though the PMSE does not

necessarily reach its minimum with the same pair of p, d with which fFPE value reaches

its minimum, the minimal PMSE and the PMSE corresponding to the minimal fFPE

value are still very close. Thus, the fFPE criterion may not always give the best order

and dimensions, but can avoid bad selection, and the selected parameters should be

close to the best ones.

4.3 Prediction comparison for noisy curves

We simulates a series of rough functional time series by adding AR(1) errors to the

smooth functional time series. We set κ1 = 1.8 and κ2 = 0. Then the simulated

functions are

Yk(tj) = Sk(tj) + ek(tj), j = 1, . . . , 48

where Sk(tj) is the smoothed curve obtained from the simulated FAR(1) process and

ek(tj) is the AR(1) error. The “current time” τ = 0.5. The average prediction error of
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the following 5 grids (1 ≤ h ≤ 5) of the last 20 curves are shown in Table 3.

φ = 0.5, σ = 0.2 φ = 0.5, σ = 0.5 φ = 0.8, σ = 0.5

h MSEc MSEn MSEa MSEi MSEc MSEn MSEa MSEi MSEc MSEn MSEa MSEi

h=1 0.2692 0.8986 0.3965 0.2950 0.4917 0.9362 0.6295 0.6665 0.4657 0.9661 0.5919 0.6468
(0.359)(0.083)(0.231)(0.327)(0.325)(0.190)(0.245)(0.240)(0.350)(0.150)(0.260)(0.240)

h=2 0.3711 0.6648 0.8446 0.4572 0.5365 0.6777 0.9872 0.8138 0.5307 0.7050 0.9745 0.8612
(0.392)(0.110)(0.159)(0.339)(0.355)(0.225)(0.175)(0.245)(0.425)(0.170)(0.170)(0.235)

h=3 0.3297 0.3159 1.3165 0.6106 0.4715 0.4275 1.3991 0.9037 0.4819 0.4280 1.4347 1.0113
(0.338)(0.363)(0.080)(0.219)(0.320)(0.395)(0.110)(0.175)(0.370)(0.370)(0.095)(0.165)

h=4 0.2189 0.4064 1.8303 0.7634 0.4083 0.4678 1.8587 0.9607 0.3645 0.4560 1.8708 1.0901
(0.565)(0.246)(0.043)(0.146)(0.450)(0.310)(0.060)(0.180)(0.455)(0.340)(0.055)(0.150)

h=5 0.1560 0.7263 2.4103 0.9459 0.4065 0.7583 2.3927 1.1331 0.3886 0.7587 2.4336 1.2443
(0.733)(0.130)(0.037)(0.100)(0.540)(0.210)(0.060)(0.190)(0.545)(0.235)(0.060)(0.160)

Table 3: Average prediction MSE of the fPFPs, and the proportions of cases where the
corresponding prediction MSE is minimum are shown in the parenthesis. MSEc is the
prediction MSE of PFP in the noisy case, MSEn is the prediction MSE of PFP in the
smooth case, MSEa is the prediction MSE of ARIMA model, MSEi is the prediction
error of PFP with the selected pre-smoothing method being linear interpolation. We
set τ = 0.5 for each case. The parameter φ is the coefficient of the AR process of the
error time series and σ2 is the variance of the error. The simulated prediction process
was repeated 200 times.

The simulation experiments indicate that the ARMA model should be the ”last-resort”

method to use for long-term prediction. Since the ARMAmodel may provide reasonable

short term prediction, one can use this approach it to predict the rough errors. However,

if we incorporate the error term into PFP in the smooth case by linear interpolation,

the prediction will deteriorate since the estimation of the actual fPC scores is biased

and this error propagates to the estimated FAR model.

4.4 Nonparametric bootstrap prediction interval

Prediction intervals are useful in practice for assessing the prediction uncertainty and

accuracy. To provide the prediction interval for Yn+1|(τ,1], we used the same bootstrap re-

sampling method in Chiou (2012) to the estimated innovation function which we briefly

describe. Suppose that each prediction residual function has the Karhunen–Loéve rep-

25



resentation ê(t) = µ̂e +
∑∞

j=1 ξ̂jφ̂j(t), and obtain ǫ̂ei (t) = êi(t)− µ̂e −
∑de

j=1 ξ̂ijφ̂j(t), 1 ≤

i ≤ n. The optimal number de is selected to be the smallest number such that the vari-

ance explained by the first de principal components exceeds a prespecified threshold

(say, 80%). Then the bootstrap sample of the fPC scores {ξ̂b1, . . . , ξ̂bn} and the residuals

ǫ̂b1(t), . . . , ǫ̂
b
n(t) are obtained by sampling with replacement from {ξ̂i, 1 ≤ i ≤ n} and

{ǫ̂ei , 1 ≤ i ≤ n}, respectively, where ξ̂i = {ξ̂i1, . . . , ξ̂ide}. The B bootstrap samples for

innovations {êb1(t), . . . , êbn(t), 1 ≤ b ≤ B} are the summation

êbi(t) =
d∑

j=1

ξ̂bijφ̂j(t) + ǫ̂bi(t), 1 ≤ i ≤ n, 1 ≤ b ≤ B.

The final bootstrap prediction is Ŷ u,b
n+1(t)|(τ,1] = Ŷn+1(t)|(τ,1] + ˆ̂ebn+1(t)|(τ,1], where

ˆ̂ebn+1(t)|(τ,1] =
∫ τ

0

β̂b(t, s)ên+1(s)|[0.τ ]ds, b = 1, . . . , B,

and β̂b(t, s) is the estimated coefficient kernel function of β(t, s) from bootstrap samples.

For the B bootstrap samples, the 100(1−α)% pointwise prediction bands are defined as

α/2×100 and (1−α/2)×100 empirical pointwise percentiles of {Ỹ 1
n+1(t), . . . , Ỹ

B
n+1(t), t ∈

T (τ)},

P
(
ξ̂l(α, t) < Y (t) < ξ̂u(α, t), for all t ∈ [0, 1]

)
≈ α.

To evaluate the interval forecast accuracy, we utilized the interval score proposed in

Gneiting & Raftery (2007), given as follows

Sα(u(t), l(t), Yn(t))

= (u(t)− l(t)) +
2

α
(Yn(t)− u(t))1{Yn(t) > u(t)}+ 2

α
(l(t)− Yn(t))1{ℓ(t) > Yn(t)},

where u(t) is the upper bound, and ℓ(t) is the lower bound of the prediction interval of

Yn(t).
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All the curves were evaluated at 48 equally-spaced grids, and we assumed the trajectory

to be predicted was observed over the partial interval [0, τ) ⊂ [0, 1], and we set α = 0.05.

Then we obtained the bootstrap prediction interval for the 20 predicted curves of PFP

and intraday prediction respectively and then averaged the scores over all grids and

days to obtain the averaged score defined by

S̄α =
1

#{tj ∈ [τ, 1]} × 20

∑

#{tj∈[τ,1]}

20∑

k=1

Sα(uk(tj), lk(tj), Yn+k,T (τ)(tj)).

The results are shown in the Table 4 (FLR represents functional linear regression), and

the average width of the prediction interval is shown in Table 5,

1

#{tj ∈ [τ, 1]} × 20

∑

tj∈[τ,1]

20∑

k=1

(
ξ̂u,k(α, tj)− ξ̂l,k(α, tj)

)
.

These results show that the bootstrap prediction bands of PFP is narrower than that

of functional regression model. After removing the time series dependency in the data,

the variation in the predicted curve was reduced which demonstrates another advantage

of PFP. The prediction bands are also provided in analysis of the pollution data and

traffic data in Section 5.

σ1 τ=0.375 τ=0.5 τ=0.625

κ1 κ2 scorePFP scoreFLR scorePFP scoreFLR scorePFP scoreFLR

1.8 0.0 13.6638 16.1626 7.9216 11.9808 11.7451 11.2181
0.8 0.0 13.7603 16.9235 7.2512 10.0672 11.1408 11.2278
0.2 0.0 13.2666 14.1214 7.1535 8.6642 11.0978 11.9593
0.4 0.4 13.8709 14.3918 7.7111 8.6484 11.6376 11.9699
0.0 0.8 13.8105 14.5196 7.7204 8.1962 12.3002 11.9588

σ2 τ=0.375 τ=0.5 τ=0.625

κ1 κ2 scorePFP scoreFLR scorePFP scoreFLR scorePFP scoreFLR

1.8 0.0 21.7463 27.0548 13.4178 23.9143 19.8813 19.5835
0.8 0.0 22.1516 24.6587 14.5521 17.7493 21.1014 20.8474
0.2 0.0 21.4360 21.6423 14.5120 15.2796 21.1205 21.2764
0.4 0.4 21.9319 21.8376 14.6626 16.0734 21.4654 21.0682
0.0 0.8 21.3932 21.3133 14.7013 16.1025 21.6377 20.1374

Table 4: Interval scores for different choices of κ1 and κ2 from 1000 bootstrap iterations
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σ1 τ=0.375 τ=0.5 τ=0.625

κ1 κ2 scorePFP scoreFLR scorePFP scoreFLR scorePFP scoreFLR

1.8 0.0 0.5318 0.8678 0.4579 0.7581 0.5036 0.6035
0.8 0.0 0.5366 0.6061 0.4491 0.5400 0.4999 0.5002
0.2 0.0 0.5163 0.5120 0.4406 0.4390 0.4859 0.4794
0.4 0.4 0.5068 0.5167 0.4399 0.4589 0.4840 0.4756
0.0 0.8 0.5132 0.5663 0.4381 0.4947 0.4858 0.4692

σ2 τ=0.375 τ=0.5 τ=0.625

κ1 κ2 scorePFP scoreFLR scorePFP scoreFLR scorePFP scoreFLR

1.8 0.0 0.7878 1.0331 0.7348 1.0428 0.8324 0.9867
0.8 0.0 0.8122 0.8565 0.7519 0.8338 0.8218 0.8461
0.2 0.0 0.7890 0.7795 0.7477 0.7346 0.7866 0.7812
0.4 0.4 0.8006 0.7913 0.7566 0.7558 0.8005 0.8037
0.0 0.8 0.8389 0.8349 0.7752 0.7974 0.8606 0.8340

Table 5: Mean width of the bootstrap prediction interval for different choices of κ1 and
κ2 from 1000 bootstrap iterations

5 Real Data Analysis

5.1 PM10 concentration

One goal of this paper is to analyze the concentration of PM10 which broadly refers

to particulate matter with an aerodynamic diameter of less than 10µm in ambient air,

measured every 30 minutes in Graz, Austria. Before applying the proposed prediction

method, we segmented the data vector according to the day of the week, then the 48

observations for each day were combined into a vector. Visual inspection of the data

revealed several extreme outliers around New Year’s Eve known to be caused by firework

activities. The corresponding week is removed from the sample. Then we transformed

the discrete vectors into functional objects with a 10-element cubic B-spline basis. Note

that, in principle, the prediction results are anticipated to be robust to the choice of

basis functions. Here, we have 175 daily functional observations. We also removed the

daily mean for each day of the week to centralize the curves. To stabilize the variance,

we performed the square root transformation. Figure 2 shows the trajectories after the

preprocessing steps.
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Figure 2: Centered square root transformed PM10 concentration curves

5.1.1 Prediction of smoothed PM10 concentration

We assumed the current time in a day is τ , where τ ∈ [0, 1]. Thus we have partial

observation of the curve (i.e., we observe only on [0, τ) and thus needed to predict the

curve over [τ, 1]. We used 87 curves to obtain the one-step ahead time series prediction

in a sliding window way. Thus, there were 88 residual functions, among which the first

79 residual functions were used for estimating a fully functional regression model to

update the prediction of the [τ, 1] part of the rest curves. The one-step ahead prediction

was conducted and the corresponding fFPE was computed. The averaged fFPE values

are shown in Table 6 according to different values of p and d. Figure 3 shows the

updated prediction of two randomly selected curve for various values of τ = 1/3, 1/2, 2/3

respectively. In contrast to time series prediction methods and intraday regression

method, PFP is superior with respect to the ℓ2 prediction error of the unobserved part.

Note that the prediction residual functions are not necessarily centered at zero, and

thus the mean has to be adjusted when computing the intraday prediction. The final
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prediction is

Ŷn+1|(τ,1] ≈ µ̂|(τ,1]+ µ̂e|(τ,1]+
∑

h

(Φ̂h(Yn+1−h− µ̂))|(τ,1]+ β̂(Yn+1|[0,τ ]− Ŷn+1|[0,τ ]− µ̂e|[0,τ ]),

where µ̂e is the estimated mean function of the prediction residual functions.

τ = 0.375 fFPE

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8
p = 0 0.5993 0.5993 0.5993 0.5993 0.5993 0.5993 0.5993 0.5993

p = 1 0.6278 0.6380 0.6330 0.6494 0.6459 0.6452 0.6462 0.6635
p = 2 0.6349 0.6591 0.6568 0.6695 0.6742 0.6965 0.7659 0.7933
p = 3 0.6357 0.6739 0.6412 0.6520 0.6542 0.7130 0.7966 0.8346

τ = 0.500 fFPE

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8
p = 0 0.4184 0.4184 0.4184 0.4184 0.4184 0.4184 0.4184 0.4184

p = 1 0.4274 0.4344 0.4260 0.4498 0.4655 0.4605 0.4485 0.4417
p = 2 0.4292 0.4460 0.4515 0.4691 0.4933 0.4962 0.5263 0.5441
p = 3 0.4268 0.4610 0.4385 0.4636 0.4830 0.5045 0.5657 0.5774

τ = 0.625 fFPE

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8
p = 0 0.1446 0.1446 0.1446 0.1446 0.1446 0.1446 0.1446 0.1446
p = 1 0.1517 0.1494 0.1431 0.1472 0.1444 0.1447 0.1525 0.1514
p = 2 0.1519 0.1490 0.1436 0.1494 0.1453 0.1474 0.1717 0.1744
p = 3 0.1514 0.1510 0.1535 0.1625 0.1580 0.1675 0.2004 0.1925

Table 6: The average fFPE value for different values of the order and dimension, when
τ = 0.375, dx = 6, dy = 9, p = 0; when τ = 0.5, dx = 7, dy = 8, p = 0; when τ = 0.625,
dx = 8, dy = 8, p = 1, d = 3.

5.1.2 Comparison with moving block method

Shang (2017) proposed a functional time series prediction method, called the moving

block method, to update the prediction with switching τ . Let τ to be the current time

up to which the curve to be predicted is observed, then the time support are moved

forward by τ . In other words, the [τ, 1] block of the m-th curve is combined with the

[0, τ ] block of the (m + 1)th curve to form a new function. The new functions are a

recombination of the original functional time series with the loss of the [0, τ ] part of the

first curve, which has trivial effect on the prediction. The time series method is then
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Figure 3: Updated predicted curve for different endpoints of the partially observed
curve τ . The fitted curves (solid red line), the predicted curve by time series method
(dotted red curve) and the predicted curve by PFP (dotted blue line after τ) with 95%
bootstrap prediction intervals (upper and lower bound are shown by dotted black line)
for a partially observed curve available up to τ = 1/3, 1/2, 2/3, superimposed on the
complete trajectory (gray line).

applied to the new functional time series, and the [0, τ ] block of the predicted function

is the update.

Table 7 gives the average of prediction MSE of the last 10 curves by PFP and the moving

block method. It is noted that PFP robustly outperforms the moving block method

over a broad range of values of τ . The result is not unexpected since the moving block

method actually belongs to “next-interval” prediction method, which provides complete

curve prediction, while PFP aims to produce prediction for the unobserved block, so the

prediction error of the unobserved block of the new method should be smaller than that

of the moving block method. Indeed one of the advantage of PFP over the moving block

is that it directly uses the intraday variation, that is, the partially observed trajectory is

directly treated as a part of the trajectory of interest rather than treating it artificially
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as part of the “previous” curve. A severe limitation of the moving block is that the

partially observed curve for the current trajectory is artificially forced to be a part of

the previous curve. This principle might work for some data settings but will not be

reasonable for other many biological settings where the start of the curve has a well

defined meaning (such as the onset of a stimulus presentation or a shock in biological

experiments).

τ=0.375 τ=0.5 τ=0.625

moving
block

0.56194 0.34591 0.20138

new method 0.34789 0.26852 0.10722

Table 7: Prediction MSE of the two methods.

5.1.3 Prediction of the original curves

Since the PM10 curves are not smooth and present seasonal dynamics, it is natural to

implement our method for the noisy case. The prediction result of PFP in the noisy

case is compared with ARIMA model prediction, and PFP for smooth case is also

implemented for comparison. We also applied linear interpolation when smoothing the

original trajectories to incorporate the random error, and then used PFP in smooth

case to finalize the prediction.

The current time τ was assumed to be 0.5, say the first 24 values were observed. The

prediction methods are applied to predict the h-step ahead point values for the last 25

curves, where 1 ≤ h ≤ 10. Table 8 shows the prediction error of the three methods.

Figure 4 shows part of the original time series and the corresponding pre-smoothing

residuals, and we note that after removing the smoothed functions, the residuals have

no obvious seasonal behavior compared with the original one.

From Table 8, it is clear that there is dependence across the pre-smoothing residuals.

Thus, by predicting the residuals, we expect significant improvement in the prediction.
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Figure 4: Part of the original time series and error time series

h MSEc MSEn MSEa MSEi

1 0.1508980 0.3540901 0.2307175 0.4642256
2 0.2680703 0.4757538 0.6123183 0.6500848
3 0.2309391 0.2576980 0.5273938 0.6132668
4 0.4849306 0.4972889 0.8758383 0.9419479
5 0.3512944 0.4108830 0.9005394 0.9464275
6 0.2363455 0.3411949 0.9953703 0.9732108
7 0.2317724 0.2619626 0.9681887 0.9455279
8 0.2184283 0.2406333 0.9389497 0.8657568
9 0.2376993 0.2154614 0.9931003 0.8339264
10 0.1853883 0.2210090 1.1429001 0.9116115

Table 8: Prediction MSE of the three methods. MSEc is the mean prediction MSE of
PFP in the noisy case, MSEn is the mean prediction MSE of PFP in the smooth case,
MSEa is the mean prediction MSE of ARIMA model, MSEi is the mean prediction
error of PFP in the smooth case after linear interpolation.

These results demonstrate that PFP captures both the short-term dynamics (across

pre-smoothing residuals) and long-term dynamics (across and within functions). The

ARIMA model can only give good predictions for the short-term predicted values but

will not give accurate predictions if we are interested in the long-term future. Linear

interpolation does not perform well since the random error contaminates the smooth

part and, thus, there could be bias in the principal components.
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5.2 Traffic flow trajectories

We now analyze the traffic flow data that were collected by a dual loop vehicle detector

near the Shea-San Tunnel on National Highway 5 in Taiwan in 2009 (shared by Chiou

(2012)). It refers to the vehicle count per minute over 15-min time intervals (96 ob-

servations for each day). There are 92 days of observed trajectories in total, and the

goal is to predict the unobserved block of the last 12 curves. In Figure 5, we show

the raw daily trajectories and smoothed daily trajectories. Chiou (2012) proposed a

Figure 5: Daily traffic flow trajectories near theS hea-San Tunnel on National Highway
5 in Taiwan.

functional mixture prediction method for independent trajectories. He first classified

the trajectories into several clusters, and then used fully functional regression for intra-

day prediction of the unknown block in each potential cluster. The predictions in each

cluster were combined to form the final prediction. It is obvious that the traffic flow

trajectories had some specific patterns. Here, we used the first 80 curves as the training

set to determine the cluster membership by subspace projection cluster algorithm (see

Chiou and Li (2007)), and the last 12 curves are re-classified only based on the [0, τ ]

block. Intraday prediction is also conducted for comparison.

To demonstrate the necessity of time series structure, a comparative prediction was
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conducted. First we removed the daily mean for each day of the week to remove

seasonal behavior. The window size for time series prediction is 40 curves, and the first

40 estimated innovation functions were used to predict the [τ, 1] block of the last 12

innovations.

In the test data, for a sample Yi observed up to τ , we used the mean integrated pre-

diction error (abbreviated as MIPE, see Chiou(2012)) to measure the performance of

different methods. The MIPE can be expressed as

MIPE(τ) =
1

12

12∑

i=1

1

1− τ

∫ 1

τ

{Yi+80(t)|(τ,1] − Ŷi+80(t)|(τ,1]}2dt.

Figure 6 shows the MIPE of the three methods.

Figure 6: Integrated prediction error of the three methods corresponding to different τ
ranging from 32 to 80, the index of the x-axis is τx − 31, where τx is the index of the
time grid up to which the curve is observed.

The result shows that PFP is superior compared with intraday prediction and functional

mixture prediction method. In fact, functional mixture prediction method has some

limitations. First, it requires that the curves has to be correctly classified and an

incorrect membership could lead to poor results. Furthermore, applying FLR in each

cluster actually reduces the sample size, and this will result in a larger estimation error.

Another limitation is that the method classifies the future curve only based on the
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observed part, however, when the observed part is not very representative of the whole

curve, the future curve to be predicted may be classified into a wrong cluster, which

will potentially increase the prediction error.

6 Conclusion

This article proposes a new functional prediction methodology that provides an update

on the prediction given that the curve to be predicted is partially observed. It is based

on the idea that the updated prediction should be a projection onto the σ-algebra

expanded by the past observed curves and the partial observation. The prediction

algorithm is a stage-wise procedure, and can be applied to smooth and non-smooth

functions. In non-smooth case, the functional techniques can be applied for removing

the seasonal trend, and then ARMA model can be applied to predict the pre-smoothing

residuals more effectively.

There are already a number of prediction methods for functions which we summarize

here. In the functional time series prediction method (e.g. Aue et al. (2015)), the “next-

interval” prediction only considers the big picture of the next function. In the setting

where there is available partial observation, it is most natural to use the available

data (in particular, intracurve information) to predict the unobserved part in order

to improve prediction. The primary limitation of the existing functional time series

methods is that they do not incorporate this available information. Another class of

methods, the moving block method (Shang, 2017) is essentially it is “next-interval”

prediction method, so it has the same limitations discussed above. Another limitation

of this method is that it is unnatural to arbitrarily assign starting and ending points

of a curve especially in studies where such are explicitly determined (e.g., start of the

day; start of a trial in an experiment). For the fully functional regression method (see

e.g. Ramsay and Silverman (2005)), while it is commended for incorporating intracurve
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information, its limitation is that it does not take into account the correlation across

curves. This is a serious issue when the time series correlation is strong and that past

curves are highly informative for predicting future curves. The method of Chiou et

al. (2012) is an expansion of functional regression which very smartly and intuitively

combines functional regression and clustering. The limitation of this approach is that

when the partial observation does not give a strong indication of cluster membership,

then the classification will not be reliable and this could lead to serious prediction

errors. Indeed it can be challenging to classify time series with low signal to noise ratio

and with short time series length, the classification may not be reliable. Moreover,

the sample size is potentially reduced (per cluster) as we need to do estimation for

each cluster separately. On the general approach of functional time series prediction

after smoothing the curve by linear interpolation, the main difference between the

general functional time series method is that this method smooths the curve by linear

interpolation. This is a way to jointly incorporate the information of both long-term

and short-term dynamics. But random errors will be included in the obtained curve

and that could result in bias. Besides it is still “next-interval” prediction and thus also

inherit all the limitations of the existing functional time series prediction methods.

PFP has several advantages. Since functional data are usually obtained in consecutive

time intervals, the time series structure (e.g., autocorrelation) ubiquitously exists in

functional data. PFP is the first one that takes time series into account for dynamic

prediction update of functional data. The proposed fFPE criterion provides guidance to

the user regarding whether or not the time series structure should be take into account

when analyzing data. Thus, PFP is entirely data-driven. The simulation study and

real data analysis demonstrates PFP always gives competitive prediction result.
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Appendix

Theoretical proof

Lemma 1. Suppose {Yk} ∈ L2[a, b] is an L4-m approximable sequence, let {φj(t), j ∈

Z} and {φ̂j(t), j ∈ Z} be the eigenfunction and estimated eigenfunction respec-

tively, and ĉj = sign〈φ̂j, φj〉. Then we have E[〈ĉjφ̂j, φi〉] → 0, for any pair of i 6=

j, and E[〈ĉjφ̂j, φj〉] → 1, for any j.

Proof. When i 6= j, we have

E[|〈ĉjφ̂j, φi〉|] = E[|〈ĉjφ̂j − φj, φi〉|] ≤
√
E[‖ĉjφ̂j − φj‖2]‖φi‖2. (A1)

Note that ‖φi‖ = 1, and E[‖〈ĉjφ̂j−φj〉‖2] → 0, then by Hörmann and Kokoszka (2010),

then the right hand term in (A1) should converge to 0.

When i = j, we have

E[〈ĉjφ̂j, φj〉] = E[〈ĉjφ̂j − φj, φj〉] + 1.
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Similarly by Hörmann and Kokoszka (2010),

E[|〈ĉjφ̂j − φj, φj〉|] ≤
√
E[|ĉjφ̂j − φj|2]‖φj‖2 → 0.

Thus E[〈ĉjφ̂j, φj〉] → 1.

Lemma 2. Suppose {Yk} ∈ L2[a, b] is a functional sequence satisfying the condition in

Lemma 1, with continuous covariance function, and {ξj, j ∈ Z} and {ξ̂j, j ∈ Z} be the

eigenscore and estimated eigenscore respectively, and ĉj = sign〈φ̂j, φj〉. Then we have

E[|ĉj ξ̂j − ξj|2] → 0, for any j ∈ Z.

Furthermore, we have

E[ĉj ξ̂jξi] → 0, E[ĉj ξ̂j ĉiξ̂i] → 0, E[ĉj ξ̂jξj] → λj, E[ξ̂
2
j ] → λj.

Proof. By Hölder inequality,

|ĉj ξ̂j − ξj|2 = 〈Y, ĉjφ̂j − φj〉2 ≤ ‖Y ‖2‖ĉjφ̂j − φj‖2.

We can assume that φ̂j is obtained from an independent copy of the original sample,

since correlation between the estimated covariance operator and a single functional

sample Y should be negligible. Then we have

E[|ĉj ξ̂j − ξj|2] ≤ E[‖Y ‖2]E[‖ĉjφ̂j − φj‖2].

We know that E[‖Y ‖2] =
∫ b

a
C(t, t)dt < ∞, and by Hörmann and Kokoszka (2010),

E[‖ĉjφ̂j − φj‖2] → 0, thus E[|ĉj ξ̂j − ξj|2] → 0.

Then by the Mercer’s theorem we can get E[ĉj ξ̂jξi] = E[(ĉj ξ̂j − ξj)ξi], using the result
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we have just obtained, we can get

E[|(ĉj ξ̂j − ξj)ξi|] ≤
√
E[(ĉj ξ̂j − ξj)2]E[ξ2i ] =

√
λiE[(ĉj ξ̂j − ξj)2] → 0.

Similarly, we have E[ĉj ξ̂jξj] = E[(ĉj ξ̂j−ξj)ξj]+λj, and E[|(ĉj ξ̂j−ξj)ξj|] <
√
E[(ĉj ξ̂j − ξj)2]E[ξ2j ] →

0, thus E[ĉj ξ̂jξj] → λj.

We also have E[ĉj ξ̂j ĉiξ̂i] = E[ĉj ξ̂j ĉiξ̂i − ĉj ξ̂jξi + ĉj ξ̂jξi − ξjξi], and by Cauchy-Schwarz

inequality,

E[|ĉj ξ̂j ĉiξ̂i − ĉj ξ̂jξi + ĉj ξ̂jξi − ξjξi|] ≤ E[|ĉj ξ̂j(ĉiξ̂i − ξi)|] + E[|(ĉj ξ̂j − ξj)ξi|]

≤
√
E[ξ̂2j ]E[(ĉiξ̂i − ξi)2] +

√
E[ξ2j ]E[(ĉiξ̂i − ξi)2].

(A2)

Since ĉj ξ̂j
m.s.−−→ ξj, so E[ξ̂2j ] must be bounded. Then (A2) converge to zero. Since

E[ξ̂j]
m.s.−−→ E[ξj], so E[ĉj ξ̂

2
j ] → E[ξ2j ] = λj.

Proof of Theorem 1. It is obvious that

E[‖Yn+1 − Ŷn+1‖2] = E[‖Yn+1 − Ỹn+1 + Ỹn+1 − Ŷn+1‖2]

= E[‖Yn+1 − Ỹn+1‖2] + E[‖Ỹn+1 − Ŷn+1‖2] + 2E[〈Yn+1 − Ỹn+1, Ỹn+1 − Ŷn+1〉].

Thus it is suffice to show E[‖Ỹn+1− Ŷn+1‖2] → 0 and E[〈Yn+1− Ỹn+1, Ỹn+1− Ŷn+1〉] → 0.

First we need to show E[‖Ỹn+1− Ŷn+1‖2] → 0. Assume β̂ij is the estimation of βij based

on real eigenscores, and β̃ij is the estimation of βij based on real eigenscores. Then we

have
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E[‖Ỹn+1 − Ŷn+1‖2] = E[‖
dy∑

j=1

(
dx∑

i=1

β̃ij ĉiξ̂i

)
d̂jψ̂j(t)−

dy∑

j=1

(
dx∑

i=1

β̂ijξi

)
ψj(t)‖2]

= E[‖
dy∑

j=1

(
dx∑

i=1

β̃ij ĉiξ̂i

)
d̂jψ̂j(t)−

dy∑

j=1

(
dx∑

i=1

β̃ij ĉiξ̂i

)
ψj(t)

+

dy∑

j=1

(
dx∑

i=1

β̃ij ĉiξ̂i

)
ψj(t)−

dy∑

j=1

(
dx∑

i=1

β̂ijξi

)
ψj(t)‖2]

≤ 2E[‖
dy∑

j=1

(
dx∑

i=1

β̃ij ĉiξ̂i

)
d̂jψ̂j(t)−

dy∑

j=1

(
dx∑

i=1

β̃ij ĉiξ̂i

)
ψj(t)‖2] (A3)

+ 2E[‖
dy∑

j=1

(
dx∑

i=1

β̃ij ĉiξ̂i

)
ψj(t)−

dy∑

j=1

(
dx∑

i=1

β̂ijξi

)
ψj(t)‖2].

(A4)

First we need to (A3) converge to zero. By the inequality ‖∑m
k=1 ak‖2 ≤ m

∑m
k=1 ‖ak‖2,

we have

E

[
‖

dy∑

j=1

(
dx∑

i=1

β̃ij ĉiξ̂i

)(
d̂jψ̂j(t)− ψj(t)

)
‖2
]
≤ dy

dy∑

j=1

E



(

dx∑

i=1

β̃ij ĉiξ̂i

)2

‖d̂jψ̂j(t)− ψj(t)‖2

 .

By Theorem 1 in Aue et al. (2014), we have β̃ = β + Op(n
−1/2), so β̃

p−→ β, by Lemma

1 ĉiξ̂i
p−→ ξi and by Hörmann and Kokoszka (2010), ‖d̂jψ̂j(t) − ψj(t)‖2 p−→ 0. So by

continuous mapping theorem,

(
dx∑

i=1

β̃ij ĉiξ̂i

)2

‖d̂jψ̂j(t)− ψj(t)‖2 p−→ 0. (A5)

We have E
[
‖d̂jψ̂j(t)− ψj(t)‖4+ǫ

]
< ∞ if E[Y 4(t) ⊗ Y 4(s)] < ∞. By Hormann and

Kokoszka (2010),

‖d̂jψ̂j − ψj‖ ≤ 2
√
2

αj

‖Ĉ − C‖L ≤ 2
√
2

αj

‖Ĉ − C‖S ,
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where α1 = λ1 − λ2 and αj = min{λj−1 − λj, λj − λj+1}, j ≥ 2. In order to make

E
[
‖d̂jψ̂j(t)− ψj(t)‖4+ǫ

]
<∞ holds, we only need E‖Ĉ − C‖4+ǫ

S <∞. And we have

E‖Ĉ − C‖4+ǫ
S = E



∫ ∫ [

1

n

n∑

k=1

(Yk(t)Yk(s)− E[Yk(t)Yk(s)])

]2
dtds




2+ ǫ
2

≤ cτ



∫ ∫

E

[
1

n

n∑

k=1

(Yk(t)Yk(s)− E[Yk(t)Yk(s)])

]4
dtds




1+ ǫ
4

<∞,

where cτ is a constant that is related to τ since the integration is taken on a closed

interval.

And we can assume that β̃ij is obtained from an independent copy of X, Y ’s, then β̃ij

should be independent with ξ̂i, and E[ξ̂4+ǫ
i ] = E[

∫
Xφidt]

4+ǫ ≤ E[‖X‖4+ǫ]‖φi‖4+ǫ =

E[‖X‖4+ǫ‖] < ∞, and β̃ij is asymptoticly normal, so E[β̃4+ǫ
ij ] < ∞. Then we have

E

[(∑dx
i=1 β̃ij ĉiξ̂i

)4+ǫ
]
<∞.

By Cauchy-Schwarz inequality and the assumption that E[‖Xk‖4+ǫ] <∞ and E[‖Yk‖4+ǫ] <

∞, we have

E



(

dx∑

i=1

β̃ij ĉiξ̂i

)2

‖d̂jψ̂j(t)− ψj(t)‖2


1+ǫ′

≤

√√√√√E



(

dx∑

i=1

β̃ij ĉiξ̂i

)4+ǫ

E

[
‖d̂jψ̂j(t)− ψj(t)‖4+ǫ

]
<∞,

where ǫ′ = ǫ/4. Thus the term in (A5) is uniformly integrable, then we have

E



(

dx∑

i=1

β̃ij ĉiξ̂i

)2

‖d̂jψ̂j(t)− ψj(t)‖2

→ 0.
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As for the second term (A4), we have

E

[
‖

dy∑

j=1

(
dx∑

i=1

β̃ij ĉiξ̂i −
dx∑

i=1

β̂ijξi

)
ψj(t)‖2

]
< dxdy

dy∑

j=1

dx∑

i=1

E

[(
β̃ij ĉiξ̂i − β̂ijξi

)2]
.

We need to show E

[(
β̃ij ĉiξ̂i − β̂ijξi

)2]
converge to zero. Under the assumption that

β̃ and β̂ are obtained from an independent copy of the sample (Yk : k ∈ N), it is clear

that

E

[(
β̃ij ĉiξ̂i − β̂ijξi

)2]
= E

[(
β̃ij ĉiξ̂i − β̃ijξi + β̃ijξi − β̂ijξi

)2]

< 2

{
E

[(
β̃ij ĉiξ̂i − β̃ijξi

)2]
+ E

[(
β̃ijξi − β̂ijξi

)2]}

= 2

{
E
[
β̃2
ij

]
E

[(
ĉiξ̂i − ξi

)2]
+ E

[(
β̃ij − β̂ij

)2]
E
[
ξ2i
]}

,

which should converge to zero by Lemma 2 and Theorem 1 in Aue et al. (2014). In

fact,

E

[(
β̃ij − β̂ij

)2]
≤ 2

{
E

[(
β̃ij − βij

)2]
+ E

[(
βij − β̂ij

)2]}
,

and we have already shown the second term converge to zero. As for the first term, by

Theorem 1 in Aue et al. (2014) and Kokoszka et al. (2013) we can prove it.

To finish the proof, we only need to show that E[〈Yn+1 − Ỹn+1, Ỹn+1 − Ŷn+1〉] converges

to zero. It is clear that

E[〈Yn+1 − Ỹn+1, Ỹn+1 − Ŷn+1〉] = E[〈Yn+1 − Ŷn+1, Ỹn+1 − Ŷn+1〉] + E[‖Ỹn+1 − Ŷn+1‖2],

then it suffice to show E[〈Yn+1−Ŷn+1, Ỹn+1−Ŷn+1〉] → 0. By Cauchy-Schwarz inequality,

E[|〈Yn+1 − Ŷn+1, Ỹn+1 − Ŷn+1〉|] ≤
√
E[‖Yn+1 − Ŷn+1‖]2 × E[‖Ỹn+1 − Ŷn+1‖2].
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For a well defined regression model, expected prediction mean square error should be

finite, and by the previous result, we have E[〈Yn+1 − Ŷn+1, Ỹn+1 − Ŷn+1〉] → 0.
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Additional figures

Figure 7: The autocorrelation function and partial autocorrelation function of the pre-
smoothing residuals and the original PM10 concentration process.
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