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Abstract—Integral equation based analysis of scattering (both
acoustic and electromagnetic) is well known and has been
studied for several decades. Analysis typically proceeds along the
following lines: representation of the geometry using a collection
of triangles, representation of physics using piecewise constant
basis function defined on each triangle, and then solving the
resulting discrete system. In the past few decades, this area
has seen several improvements in algorithms that reduce the
computational complexity of analysis. But, as we delve into
higher order isogeometric analysis (IGA), these algorithms are
bogged down by the cost of integration. In this paper, we seek to
address this challenge. Our candidate for modeling geometry and
physics are subdivision basis sets. The order of these basis sets is
sufficiently high to make the challenge apparent. We will present
a methodology to ameliorate the cost for both acoustic and
electromagnetic integral equations and demonstrate its efficacy.

I. INTRODUCTION

Surface integral equation (SIE) methods for computing
fields scattered from piecewise homogeneous scatterers have
been well studied and understood [1]. Their applications has
grown in a number of areas thanks to advances in algorithms
that significantly reduce the computational complexity. Over
the past couple decades, there has been advances in both
development of higher order basis sets and representation
of geometry enabling more accurate solutions to SIE with
fewer degrees of freedom. All these advancements have been
paired with fast methods resulting in reliable solutions at a
computational complexity that scales as O(N log Ny), where
N is the number of degrees of freedom. However, the constant
of proportionality hides the impeding cost of integration that
arises in higher order representations.

The cost of any integral equation method comprises of (a)
matrix evaluation and (b) evaluation of matrix-vector product
that scales as O(N2p?) and O(N2), respectively; p is the
order of the quadrature rule. Under certain assumptions, the
cost reduction for both these operations using fast multipole
method is O(N,p?) and O(N; log N;). These assumptions are
carryovers from low order analysis wherein the domain of
support of each basis is small. Unfortunately, these assump-
tions do not hold for higher geometry representation whose
objective is to better represent the geometry using fewer, but
more significant, sub-domains [2]. Therefore, higher order
analysis demands more integration points, which leads to p
quickly dominating the overall cost.

Whereas [2] developed methods to address these problems
in generalized method of moments, we take this a step
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further. While our overall goal is the same, we implement a
subdivision-based IGA; IGA enables the same basis function
(subdivision) to represent both the geometry and physics. The
resulting geometry is C? almost everywhere, and as a result
p needs to be high. To address these problems, we invoke
wideband multilevel fast multipole acceleration (MLFMA) to
ameliorate costs such that the overall cost for both operations
scales as O(N,p) and O(N, log N,), where N, = vN,, where
the constant 0 < v < 0.3. The rest of the paper, elaborates
upon this procedure and presents resuls for acoustics. Resuts
for electromagnetics will be presented at the conference.

II. FORMULATION AND DISCRETIZATION

Consider a scatter that occupies a region Q € R3, whose
surface 02 is sufficiently smooth such that one can define a
unique normal 7(r). Assume an incident plane wave, in the
case of electromagnetics, on a perfect electrically conducting
body and hard body in the case of acoustics. The induced
current/pressure may be obtained from a surface integral
equation (SIE) that is formulated using Green’s theorems,
imposing boundary condition on 02 and infinity [1]. Let
J(r) denote an equivalent electric current on 92 and ¢(r)
denote the velocity potential. Then one can prescribe either a
combined field integral equation or a Burton-Miller equation
to obtain a solution to the current/potential that is unique at
all frequencies; these are prescribed in general using

L{E(r)} = (r) (1)

for both electromagnetics and acoustics. Specifically, for elec-
tromagnetics, £ = Lcpg, £(r) = J(r), and (¢(r) = fi(r). For
acoustics, £ = Lpy, £(r) = ¢(r), and (¥(r) = fi(r); the ex-
plicit details of both can be obtained from [3], [4]. Discretiza-
tion of this system proceeds as follows: one discretizes €) using
a collection of patches such that 2 = va’” Q;, where €,, de-
notes a patch. Then each patch, €2;, supports a unique, locally
indexed, set of basis functions ¢, (r), n € {1,--- ,N,}. In
other words, each basis function, 1/, is defined over a unique
collection of patches T, = {Qq,- -+, 8y, -+, Qg}. The basis
functions for J(r) can be constructed in terms of 1, (r) as
Jn1(r) = Vb, (r), and J,, o = f1(r) x Viby (r) [3]. In what
follows, the basis functions for both acoustics and electromag-
netics are represented using ¢,,, and is to be understood in the
appropriate context. In the Galerkin framework, one obtains a
linear system of the form ZI = V), where I is a column of
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Fig. 1. Comparison of interactions between FMM and wideband MLFMA.
(a) FMM: Limit on traditional leaf box size results in large patches computed
directly. (b) Wideband MLFMA: large patches may be split between nearfield
and farfield maintaining favorable scaling.

unknowns coefficients of basis sets, V;,, € V = (p,(r), (¥(r))
and Zp, € Z = <@m(r)7£{<pn(r)}>‘

III. EVALUATION OF INNER PRODUCTS

The crux of this paper is overcome the dominating cost
of evaluating a matrix element Z,,,. We can illustrate the
cost by considering a pair of fourth order basis function
interacting; assume that the order of integration for evaluating
the inner products scale as p o< 16 per triangle, this gives an
effective scaling of p® oc 256 N3 where Na is the number
of patches associated with the basis function m and n. The
approach we espouse to handle this higher order integration
rule is to construct an adaptive quadrature scheme that can
be accelerated via wideband MLFMA. The scheme beings by
assuming that each triangle in the domain I',, of the nth basis
function is partitioned recursively into 4' subpatches where
l € N. The domain of each of these partitions is now denoted
by I') fory =1,--- ,4'Na. It follows that any matrix element
can be computed in terms of its partial contributions such that

Lo = Z; /F _em()L7 [pn(r), T7] dS = ;Zﬁf; @

where £? denotes the evaluation of the operator over the
domain I‘ﬁ, and the summations is over the number of source
and observation subpatches. We note the following:

o The size of each sub-patch is typically sub-wavelength;
often less than a tenth of a wavelength.

o If the interaction is a self interaction, i.e., m = n, and
I'? = T2, one needs an self-integration method tailored
to the order of the singularity.

Once the patches have been partitioned, we use a tree based
algorithm to reduce the cost of evaluating equation (2). The
algorithm makes use of the Accelerated Cartesian Expansions
(ACE) at leaf levels due its robustness at small length scales
[5]. This allows seamlessly transitions to MLFMA at higher
levels as illustrated in Fig. 1. The use of ACE permits leaf sizes
to be arbitrarily small, permitting population of the tree using
sub-triangles. Note, one needs a mixed potential formulation
for electromagnetic problems as elucidated in [2].
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Fig. 2. Comparison of interactions between FMM and wideband MLFMA
on a series of boxes of size 1.151A — 9.212\. (a) Scaling of matrix vector
product timings (b) Scaling in nearfield and farfield memory.

IV. RESULTS

In section we show studies of the algorithm’s scaling for
both complexity and storage in terms of total number of
number of quadrature points per patch or N, Ng; we note that
all experiments are conducted on a series of boxes of size
1.151A —9.212)\. In Fig. 2(a), we study a single matrix-vector
product, where significant contribution stems from the farfield,
allowing the scaling to behave as O(N,Nylog(N,N,)). This
results is as expected due to our system being higher order,
thus demanding a high order integration rule. Scaling in
storage for the near and far fields are shown in Fig. 2(b). As
expected, the nearfield memory scales linearly with respect
to N,N,. The farfield memory, for our given experiment,
scales as O(N,N,log(N,N,)) which is mainly attributed
to the precomputation of the aggregation/disaggregation and
translation operator.

V. CONCLUSION

In this paper, we have developed a technique to ameliorate
costs associated with evaluation of integrals in higher order
analysis for both scalar and vector integral equations. The
adaptive quadrature together with wideband MLFMA makes
this possible. We will demonstrate applications of this tech-
nique to a variety of challenging problems at the meeting.
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