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Abstract

Future healthcare systems will rely heavily
on clinical decision support systems (CDSS) to
improve the decision-making processes of clinicians.
To explore the design of future CDSS, we developed
a research-focused CDSS for the management of
patients in the intensive care unit that leverages
Internet of Things (IoT) devices capable of collecting
streaming physiologic data from ventilators and
other medical devices. We then created machine
learning (ML) models that could analyze the
collected physiologic data to determine if the
ventilator was delivering potentially harmful therapy
and if a deadly respiratory condition, acute
respiratory distress syndrome (ARDS), was present.
We also present work to aggregate these models into
a mobile application that can provide responsive,
real-time alerts of changes in ventilation to providers.
As illustrated in the recent COVID-19 pandemic,
being able to accurately predict ARDS in newly
infected patients can assist in prioritizing care. We
show that CDSS may be used to analyze physiologic
data for clinical event recognition and automated
diagnosis, and we also highlight future research
avenues for hospital CDSS.

Introduction

Clinical decision support systems (CDSS) are
computer systems designed to digest large amounts
of patient-generated data, and detect complications
of care and other adverse healthcare consequences.
When used properly, CDSS can improve quality of
care by warning of harmful drug interactions,
improve physician diagnoses, and reduce costs of
care [1]. These benefits have prompted large
amounts of research into the design and development

of future CDSS in a variety of healthcare
environments.

One of the places CDSS will have a large
impact is in the treatment of critically ill patients in
the intensive care unit (ICU). Patients in the ICU can
have multiple, complex ailments and must be
continuously monitored by clinicians and multiple
life support machines. The mechanical ventilator is
one such machine integral to the care of patients with
respiratory  failure. When utilized properly,
ventilators act to reduce effort required for breathing
and allow a patient’s lungs to heal. When used
improperly, ventilators can cause harm due to poorly
configured settings or delivery of support
inappropriate for a patient’s diagnosis. These issues
can have adverse effects that include longer hospital
stays, increased sedation requirements, lung injury,
and even death [2], [3].

One way patients can receive ventilator-
induced lung injury is from a phenomena called
patient-ventilator asynchrony (PVA). PVA occurs
when ventilator configuration is misaligned with
patient demands for respiration. PVA has been
linked to increased work of breathing, patient
discomfort, and in a small study, increased mortality
[3]. Clinicians can detect PVAs during bedside
examination, but PVA detection can be delayed due
to lack of 24/7 access to appropriately trained
clinicians. PVA detection can be performed with
electronic algorithms, but most algorithms rely only
on expert rules that may not generalize to broader
patient populations seen in the ICU.

Patients can also be harmed by misdiagnosis
of underlying lung injury. One commonly
misdiagnosed condition is acute respiratory distress
syndrome (ARDS), which is a severe form of
respiratory failure that has a mortality rate of 35-46%
[4]. However, ARDS still remains under-recognized
because diagnostic criteria can be subjective and the
physiologic manifestation of ARDS can vary by
patient. Research has attempted to automate ARDS
diagnoses via expert-derived rules, but these efforts
have been limited in accuracy and generalizability by
their reliance on subjective criteria and local practice
patterns [5]. ARDS is often a serious complication of
various underlying conditions, including sepsis,
pneumonia, and respiratory illness such as the
COVID-19. The mortality rate of infected COVID-
19 patients who developed ARDS is 50% [6]. In the
presence of a pandemic such as COVID-19 that puts
unprecedented strain on health-care systems, early
ARDS detection can help prioritize care delivery.
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Figure 1: 1. Raspberry Pi microcomputers collect data from the mechanical ventilator. 2. A doctor performs linkage
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of a patient to a Raspberry Pi. 3. Ventilator waveform data (VWD) is stored in a database with proper patient
attribution. 4. VWD is processed by analytic modules aimed at diagnostic aid and detection of abnormalities. 5.
Alerts are sent to clinicians to review and take appropriate actions to improve patient care.

In this article, we investigated ways to create
more performant analytics to detect ARDS and PVA
by utilizing machine learning (ML). ML has been
used to create data driven predictive models that have
shown to be generalizable for predicting outcomes in
major health systems across diverse patient
populations [7]-[10]. By leveraging ML and
physiologic data collected in the ICU we make the
following contributions to the literature: 1) We
created an integrated software and hardware
platform that leverages IoT devices to transmit and
store physiologic data from the ventilator and other
machines performing physiologic monitoring in the
ICU [11]. 2) We developed a ML classifier to detect
PVA in the ICU. 3) We developed a data-driven,
ML-based diagnostic system for performing real-
time disease detection of ARDS in the ICU. 4) We
designed a mobile application that enables
physicians to track real-time breathing information
for their patients and provides alerts for ARDS
disease screening and ventilator asynchronies. Our
platform (Figure 1) serves as an example of next-
generation CDSS that will enable pervasive and
intelligent monitoring of patients in the ICU, early
detection of disease, timely intervention, and
improved care of ventilated patients.

System Architecture

We developed our data collection architecture to be
capable of supporting large, multi-center, clinical
studies of patient-ventilator interactions, and [oT

based multi-sensor, multi-patient monitoring. Our
system requirements include: 1) continuous and
automated data  collection from multiple
concurrently operating mechanical ventilators; 2)
unobtrusive, non-disruptive operation so as not to
influence patient care; 3) ability to maintain
temporally accurate data and preserve correct data
linkage between patient and collected ventilator
waveform data (VWD); 4) ease of use of the data
acquisition hardware by non-technical users. 5)
database archival storage; and 6) ability to generate
alerts to and receive feedback from doctors to
improve mechanical ventilator management.

To accomplish these goals, we used a small,
unobtrusive loT device that acts as an information
aggregator by collecting data from mechanical
ventilators and other sensors or medical devices. For
our prototype architecture, we chose to use the
Raspberry Pi'™ (RPi) microcomputer, a small Linux-
based computer that, with customized software, can
be attached to a ventilator to collect and stream VWD
to a server through a wireless access point. Once
collected, VWD is attributed to a specific patient by
having physicians link VWD files to a specific
patient via mobile application. The linkage process is
performed without use of private patient information
by referencing the patient via an anonymized token.
Linkage of tokens to protected health information
extracted from the electronic health record (EHR) is
ensured with use of a secure encrypted file. To ensure
temporally accurate linkage of collected VWD to
EHR data we required the RPi’s to connect to the
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Figure 2: A. displays a normal breath and how information can be extracted from breaths in general. We define
volume inhaled (TVi) as the amount of air breathed in on a breath. Tidal volume exhaled (TVe) is the amount of air
exhaled. Positive end expiratory pressure (PEEP) is the minimum pressure setting for a ventilator. B. shows a series
of breaths that occur due to a suctioning procedure. C. shows a breath stacking event, where a patient breathes in
significantly more air than they exhale. D. shows a double trigger, which is two breaths that occur in rapid

succession.

hospital’s Network Time Protocol (NTP) servers
before commencing data collection, followed by
time stamping of VWD files.

Our data attribution and time alignment
protocol can be extended to collect other types of
medical device data. In a pilot study, we have
extended our RPi-based architecture to acquire
patient blood oxygenation (SpO2) data from wireless
pulse oximeters, allowing synchronous acquisition
and aggregation of both VWD and SpO2 data. Other
device data can be incorporated for aggregation as
well, provided they can communicate with the RPi
over Bluetooth, WiFi, or wired cable.

Once device data are collected, it is
forwarded to a database for storage. Analytic
algorithms can then be applied to the data for
anomaly detection and diagnostic purposes, with
analytic outputs subsequently accessed
retrospectively for research or in near real-time for
decision support.

As a result of our work we have been able to
collect one of the largest collections of breath-level
VWD reported to date having collected 467 patients,
and 47,990,952 recorded breaths for use in
developing clinically validated analytic algorithms to
support CDS system development [10].

Detection of Patient Ventilator

Asynchrony

There are currently no intelligent/automated
systems integrated into mechanical ventilators
capable of detecting PVAs and generating alerts to
clinicians. Current systems consist of simple
threshold-based alarms that are prone to frequent
false positive alerts, which cause clinicians to ignore
them. The only reliable way to detect PVA is via
bedside examination of patients, but this is can only
occur during scheduled clinician visits, and even
then, studies have shown that even trained clinicians
often fail to consistently recognize PVA [12].

To improve the speed and accuracy of PVA
detection, we aimed to create a system that could
compute upon VWD and automatically classify a
breath as normal or PVA (Figure 2). To
automatically distinguish different types of
breathing, PVA detection algorithms must have the
ability to extract quantitative features from breaths
instead of relying on visually subjective breath
characteristics. The analytic systems should be
capable of handling data heterogeneity and be
effective in categorizing information from any
patient [13]. We also sought to identify breaths that
were potentially confounding to our PVA
recognition system such as clinical artifact caused by
routine aspects of care or transient waveform
abnormalities.

From our repository of collected data, we
extracted VWD from 35 patients who received
ventilation at the University of California Davis
Medical Center (UCDMC). For each patient, we



selected a period of approximately 300 breaths where
PVA was highly prevalent. Two ICU physicians
independently annotated 9,719 individual breaths to
achieve a ground truth labeled data set. Classification
was performed via a combination of clinically guided
heuristic rules and visual inspection, and each breath
was labeled as one of 4 categories: normal, artifact,
double trigger asynchrony (DTA), or breath stacking
asynchrony (BSA). We targeted DTA and BSA
because they are two of the most common forms of
PVA and are thought to contribute to ventilator
induced lung injury. Artifact breaths like suction and
cough were identified and included in the dataset
because they share characteristics with common
forms of PVA that can result in false-positive PVA
classification. All artifact and normal breaths were
then included together and labeled as non-PVA. Any
disagreements in breath classification were
reconciled between the reviewing clinicians, and a
consensus label was chosen. Using this process, we
created one of the largest dual-adjudicated datasets
devoted to PVA detection reported to date. In total
our dataset contains 1,928 BSA breaths, 752 DTA
breaths, and 7,039 non-PV A breaths.

After completing breath-level annotation, we
used the ventMAP software suite to extract clinically
relevant features from VWD [13]. In total, we
derived 16 different features from each breath
(Figure 2A). After features were extracted from
VWD, we evaluated multiple supervised ML models
to perform PVA classification. PVA classification
was done on a per-breath basis where each breath is
trained and classified based on a corresponding class
label of non-PVA, BSA, or DTA. When training our
models, we encountered a class imbalance issue
because the number of PVA breaths were
disproportionate to the number of non-PVA breaths
in our dataset. Imbalanced training sets can be an
obstacle to training accurate classifiers, resulting in
decreased model performance when classifying DTA
[8] in our case. We explored multiple methods to
correct for class imbalance including: random under
sampling (RUS) and the synthetic minority over-
sampling technique (SMOTE). We found that
SMOTE offered the best balance of recall and
specificity while RUS offered better recall than
SMOTE at the cost of decreased specificity. In our
experiments, we found that our models performed
best when we used SMOTE to create a 1:1:1 ratio of
non-PVA, DTA, and BSA observations for our
training set. This ratio created the same number of

DTA and BSA observations while keeping non-PVA
observations static.

In our prior work [7], we evaluated 10 ML
algorithms: SVM, extreme learning, naive bayes,
multi-layer perceptron (MLP), and six tree-based
approaches, namely decision trees, extra trees
classifier, random forest, Adaboost, extremely
random trees classifier (ERTC), and gradient boosted
classifier (GBC). The performance of these
algorithms was evaluated through k-fold validation,
where we left one patient’s data out for testing, and
used the rest for training. This yielded 35 training and
testing folds, corresponding with the number of
patients in our dataset. The performance metrics of
interest are accuracy, recall, and specificity.
Precision was not reported because its measurement
would be biased because we focused on specifically
selected regions of breath data with high PVA
occurrence. Our explorations showed that extremely
random trees classifier (ERTC), gradient boosted
classifier (GBC), and multi-layer perceptron (MLP),
achieve the best performance, but each with its own
trade-offs [8]. ERTC achieved better accuracy for
DTA class, while GBC and MLP performed better
for BSA. An ensemble classifier consisting of ERTC,
GBC, and MLP outperformed all other classifiers in
terms of recall (sensitivity) and specificity, and the
results are summarized in Table 1 (a). The high
accuracy of our ensemble classifier was the result of

Type Recall Specificity | Accuracy

Non-PVA 0.9674 0.9806 0.971
DTA 0.9601 0.9754 0.9742
BSA 0.9445 0.9879 0.9793

(a) Per-breath multi-class classification

Type | Recall | Specificity | Precision | AUC
non- 0.92 0.88 0.85 N/A
ARDS

ARDS 0.88 0.92 091 0.88

(b) Per-patient binary classification

Table 1: Summary of detection results for (a): per-
breath detection of non-PVA, DTA, and BSA using
ensemble classifier; (b): patient-level predictions of
our Random Forest ARDS classifier model.
Predictions are made from a majority vote using the
number of windows classified as either non-
ARDS/ARDS within the first 24 hours of a patient’s
ventilation data.
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Figure 3: A. Raw waveform data from each 400-breath “read” length is extracted from the ventilator and then
attributed as either belonging to an ARDS patient or a non-ARDS patient based on dual clinician diagnosis.
These data are then sent to a Random Forest classifier for training. B. Test subjects are then evaluated with the
trained classifier. A final diagnosis is performed by the classifier by evaluating which diagnosis received a
majority of votes across all reads evaluated by the model in a given period of analysis.

numerous optimizations and DTA performance was
especially assisted by the use of SMOTE. These
results suggest that ML-based PVA detection
algorithms have potential to be translated into
clinical practice where they may improve the quality
of care for patients receiving mechanical ventilation.

Rapid and Accurate ARDS Detection

ARDS is a form of severe respiratory failure that
results from lung injury. ARDS is commonly caused
by infections like pneumonia, sepsis, or trauma, and
has been shown to be exacerbated by ventilator
mismanagement [14]. The diagnosis of ARDS has
proven to be a major barrier to proper patient
management, in part because some ARDS diagnostic
criteria are recognized subjectively by clinicians
(e.g. — chest x-ray findings), while others may be
delayed by ordering of diagnostic tests [4]. In this
regard, it has been reported that physicians only
diagnosed ARDS in 34% of patients with ARDS on
the first day that diagnostic criteria were present, and
in only 60% of patients with ARDS at any time
during their ICU stay [4].

Accurate, and prompt diagnosis can be
critical for improving an ARDS patient’s chance of
survival. In a seminal study, it was found that ARDS
patients who were treated with low volumes of air
from ventilators had a significantly higher survival
rate than those that received physiologically normal
amounts of air [14]. However, this and other
treatments prescribed for ARDS are associated with
substantial side effects and discomfort, making
accurate diagnosis critical to minimizing harms and
optimizing chances of recovery.

To improve the process of diagnosing ARDS,
we investigated applying ML methods to VWD

collected in the ICU (as described in our system
architecture). We selected 50 patients with moderate
to severe ARDS and 50 patients with non-ARDS
pathophysiology for model training and validation.
To reduce classification errors, we required two
clinicians to agree on each patient’s diagnosis.

For patients diagnosed with ARDS, we
extracted the first 24 hours of VWD available after
ARDS diagnostic criteria were first present in the
medical record. For patients without ARDS, we used
the first 24 hours of VWD collected after patients
were placed on a ventilator. We focused on
processing the first 24 hours of data because our goal
was to diagnose ARDS at an early enough time point
in the syndrome when providing the information to
clinicians might still change patient outcomes. We
then extracted 9 features from VWD that were
determined by expert clinicians to potentially contain
physiologic signatures of ARDS. We avoided
inclusion of features that might indicate that ARDS
had already been diagnosed such as low delivered
gas volumes or the increased ventilation pressures
typical of ARDS treatment protocols. To construct
individual observations for our ML model, we
calculated the median value of these 9 features for
sequences of 400 consecutive breath windows.
Utilizing these long window lengths helped to
minimize the impact of breath to breath variability.

We performed supervised ML by associating
each window with the pathophysiology of its patient.
We used supervised learning to train a Random
Forest classifier that could -classify individual
windows as either ARDS or non-ARDS (Figure 3A).
In testing, we performed patient-level classifications
by aggregating all window predictions present in the
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Figure 4: A. Mobile application displaying waveform data of one patient, with breaths labeled with detected
asynchronies and excessive tidal volumes. The area below the chart contains statistics of breaths currently being
displayed. Pinch-zoom functionality allows custom selection of time frames for waveform display, summary
statistics, and event labeling. B. Discrete look back time frames over which breath statistics can be calculated.
These options are selected via left swipe from the screen displaying patient waveform information. C. Example
result of breath statistics calculated for a 5-minute time frame. Both clinically relevant metadata and PVA statistics

are shown.

24-hour time period. The most commonly
represented physiology was then predicted for each
patient by a majority vote (Figure 3B).

For our ARDS classifier, all training and
testing of our model was performed using 5-fold
cross validation with a Random Forest classifier. Our
results for this preliminary series of experiments,
accepted for abstract presentation at the 2019
International Conference of the American Thoracic
Society, suggest that ARDS can be detected with
performance superior to that reported by ICU
physicians [15]. Table 1(b) shows that our ARDS
Random Forest classifier identified ARDS patients
with a recall of 88%, specificity of 92%, precision of
91%, and AUC of 0.88.

While our work on a patient level ARDS
classifier is in ongoing development, it demonstrates
proof of concept that learning algorithms can detect
discrete disease signatures from physiologic
monitoring data that may be integrated into future
clinical decision support systems.

Mobile Applications for Ventilator
Waveform Data

There are two major limitations of existing
mechanical ventilators that present barriers to
effective patient monitoring and limit the adoption of
ventilation-focused CDSS. First, state of the art
ventilator alarms uses simple, threshold-based rules
(e.g. — alarm for any breath with volume over ‘x’)
that lack flexibility in terms of customization, and
sophistication with regard to analytics. Second,
alarm settings cannot be configured remotely and, in
most hospitals, alerts cannot be viewed using mobile
devices. Clinicians must therefore be in a patient’s
room to directly observe how a patient is breathing,
and are forced to abandon monitoring when called
away [16]. Even when physicians are bedside,
limited alarm sophistication and configurability can
cause frequent false alerts, resulting in overly wide
alarm thresholds that can cause long periods of
asynchronous breathing and deterioration in a
patient’s physiologic state to go unnoticed. These
problems highlight the need for mobile device-based



CDSS to improve the monitoring and management
of patients requiring mechanical ventilation.

To address these problems, we have
developed an i0OS application and associated
architecture to enable research and development of
real-time monitoring and CDSS for VWD. Several
core application features were designed to address
existing deficiencies in ventilation monitoring, to
enable innovations in decision support algorithm
development, and to integrate into real-world clinical
practice workflows. First, we allow clinicians to
remotely view a patient’s waveform data in near real
time, in order to provide on-demand snapshots of
overall clinical trends in ventilation (Figure 4A).
Second, real time processing of VWD by our
computing architecture and ventMAP software
package [12] enables remote alerting of clinicians to
the presence of ventilator asynchrony and other
forms of off-target ventilation. Breaths that are
determined to be asynchronous are labeled on the
screen, enabling clinicians to get an overview of
asynchrony trends and their duration. The
application also includes the ability to compute
breathing statistics over variable, clinician-
configurable periods of time (Figure 4B, 4C). The
application’s flexibility in this regard both enables
clinicians to validate that prescribed treatment
protocols are being implemented properly and allows
greater sophistication in alarm logic including use of
event class, severity, frequency, and proportion over
configurable periods of time.

We utilized Apple™ push notifications to
directly alert clinicians to ventilation problems. Alert
settings are configurable on the mobile application,
allowing clinicians to set separate alert configuration
for each patient. This allows each clinician to receive
alerts that are relevant to his or her practice and each
patient’s physiology. In addition to more traditional
alert parameters such as respiratory rate and tidal
volume, we enable alerts for the occurrence of
asynchronies such as DTA and BSA that are derived
from our ML models [8], and we employ artifact
recognition algorithms to reduce false positive event
detection [13]. All these alerts have provider-
configurable boundaries and adjustable rolling time
windows that can be modified on the device rather
than the ventilator and turned on and off as a patient’s
condition evolves. This ability may prove useful to
individualize alert logic and to reduce the occurrence
of clinically irrelevant and false alarms.

To address the limited availability of ground truth
data sets for ML algorithm development, the
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Figure 5: A. Breaths that were classified ambiguously
by the machine learning classifier are displayed to
clinicians for clarification. B. After selecting a breath,
clinicians are presented with relevant breath-level
statistics to assist with classification, and a
configurable list of breath classes to select.

application was also designed to include a real time
breath annotation mechanism. In the case of an
uncertain prediction probability, the application can
query the clinician to classify the ambiguous breaths
(Figure 5). In doing so, the application enables the
accumulation of labeled data to improve the alert
system’s accuracy and usability.

Finally, we built a prototype of the ML-driven
ventilation management and alert system using a
client-server model with modest cloud computing
resources (2 CPUs, 4G memory, Ubuntu 14.04) on
Amazon Web Services. Our goal was to investigate
the performance of our system when implemented
using real-time data processing in a cloud computing
framework. We benchmarked the server-side
processing delays to complete the following three
key operations while simulating 1, 10, and 20
simultaneous patients (20 represents a typical full
ICU patent load):

e Micro-batch processing: Time taken to
process and store new incoming data (20-
breath batch), perform feature extraction, and
PVA detection.

e Data Retrieval: Time taken to retrieve 5
minutes of data (ventilator data, breath meta
data, and PVAs) from an iPhone application
(5 minutes was the default polling interval)



e Alert Processing: Time taken to digest
classification results for all patients and
generate alerts

For each task, we repeated the experiments 20 times
to ensure statistical validity. We found our system
was able to perform PV A detection in 1.047 seconds
and perform data retrieval and all alert processing in
0.125, and 0.107 seconds on average for 10 patients
(Table 2). In general, data retrieval and alert
processing time were negligible (sub-seconds) over
different loads. Even at full ICU load (20 patients),
the average micro-batch processing time was less
than 2 seconds and less than 4 second 90% of the
time. Given that most breaths on a ventilator last 2-3
seconds, we conclude that our system is capable of
real time data processing.

N | Task Mean | Std 90% | Max
(O] O] O] (O]
1 | Micro- 0.329 | 0.059 | 0.329 | 0.973
Batch
Processing
Data 0.098 | 0.031| 0.118 | 0.122
Retrieval
Alert 0.002 | 0.000 | 0.002 | 0.003
Processing
10 | Micro- 1.047 | 0.641 | 1.789 | 4.075
Batch
Processing
Data 0.125| 0.145| 0.311 | 0.559
Retrieval
Alert 0.107 | 0.079| 0.209 | 0.274
Processing
20 | Micro- 1.942 | 1.347| 3.457| 9.512
Batch
Processing
Data 0.272 | 0.220 | 0.346 | 2.045
Retrieval
Alert 0.357| 0.283 | 0.681 | 00914
Processing

Table 2: A summary of the server-side processing
delays for three tasks: Micro-Batch Processing, Data

Retrieval, and Alert Processing under different patient

loads. The mean, standard deviation, 90" percentile,
and maximum delays are reported in seconds,
rounding to 3 decimal places.

Nevertheless, our prototype cannot guarantee better
than worst case performance (9.512 seconds for 20
patients) due to the lack of dedicated resources.

Variations in the processing delay were due to
competing background workloads on the same
server. This demonstrates the potential implications
of using cloud platform for real-time data analytics
in an intelligent CDSS system. Future research is
needed to further explore the advantages and
disadvantages of dedicated edge computing
platforms on premise versus cloud platforms,
especially for future application scenarios where the
data-driven analytics may be part of a closed loop
systems controlling fluids and medication
administration, ventilators, or other medical devices
where low computation time variance and sub-
second latency will be critical.

Bedside to Cloud and Back

Future improvements in healthcare delivery
and patient outcomes will depend heavily on the
development of effective CDSS, which will in turn
depend on clinical studies testing CDSS
effectiveness. Such studies will evaluate potential
improvements in care gained from rapidly alerting
physicians to events such as PVA or diagnoses like
ARDS. These trials will be a key part of future
learning healthcare systems that will design, test, and
implement automated CDSS, where data will be
continuously streamed from the bedside, analyzed in
the cloud, and returned to clinicians at the point of
care in the form of actionable diagnostic and
predictive alerts. In this regard, we envision a future
where CDSS are designed specifically around IoT
sensors, cloud computing and EHR integration, and
mobile device-based access to CDSS feedback in a
“provider-in-the-loop” implementation framework
where inaccurate decisions made by ML algorithms
can be corrected by clinicians to continuously refine
algorithm performance over time.

There are several potential limitations to our
current approach. First, this work has been
performed at a single center and limited to a single
data type. Second, for disease diagnosis we have yet
to include additional data types from sources such as
the EHR in our diagnostic algorithms, which may
present substantial systems integration and
informatics  challenges  across the  highly
heterogeneous healthcare technology landscape.
Future CDSS research and development frameworks
will be needed before additional clinical data can be
used to develop real-time diagnostic and predictive
CDSS. Finally, our current prototype is able to
accommodate a small-medium size hospital with 10-



20 ICU npatients. Future work will incorporate
software optimizations to handle scalability issues to
cope with larger cohorts of patients.

Conclusion

In conclusion, we have developed an
automated platform for collecting, monitoring, and
performing diagnosis on physiologic data collected
in the ICU. Our work fits broadly within emerging
efforts in critical care medicine to improve the
timeliness and quality of care through technology-
enabled healthcare delivery. CDSS that integrate
IoT-based patient monitoring devices, analytics
operating on real-time physiologic data, and ML
algorithms  stand to  improve  diagnosis,
prognostication, and adverse event recognition in the
ICU. Through ongoing multi-disciplinary research
and development, advanced CDSS will reduce the
cognitive burden on care providers, improve quality
of care, reduce patient suffering, and realize greater
value in care delivery.
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