
Leveraging IoTs and Machine 

Learning for Patient Diagnosis and 

Ventilation Management in the 

Intensive Care Unit 

Gregory B. Rehm, Sang Hoon Woo, Xin Luigi Chen, 

Brooks T. Kuhn, Irene Cortes-Puch, Nicholas R. 

Anderson, Jason Y. Adams, Chen-Nee Chuah 

 

Keywords: Decision Support Systems, Clinical; 

Respiratory Distress Syndrome, Adult; Ventilators, 

Mechanical; Machine Learning; Mobile Computing 

Abstract 

Future healthcare systems will rely heavily 

on clinical decision support systems (CDSS) to 

improve the decision-making processes of clinicians. 

To explore the design of future CDSS, we developed 

a research-focused CDSS for the management of 

patients in the intensive care unit that leverages 

Internet of Things (IoT) devices capable of collecting 

streaming physiologic data from ventilators and 

other medical devices. We then created machine 

learning (ML) models that could analyze the 

collected physiologic data to determine if the 

ventilator was delivering potentially harmful therapy 

and if a deadly respiratory condition, acute 

respiratory distress syndrome (ARDS), was present. 

We also present work to aggregate these models into 

a mobile application that can provide responsive, 

real-time alerts of changes in ventilation to providers. 

As illustrated in the recent COVID-19 pandemic, 

being able to accurately predict ARDS in newly 

infected patients can assist in prioritizing care.  We 

show that CDSS may be used to analyze physiologic 

data for clinical event recognition and automated 

diagnosis, and we also highlight future research 

avenues for hospital CDSS. 

Introduction 

Clinical decision support systems (CDSS) are 

computer systems designed to digest large amounts 

of patient-generated data, and detect complications 

of care and other adverse healthcare consequences. 

When used properly, CDSS can improve quality of 

care by warning of harmful drug interactions, 

improve physician diagnoses, and reduce costs of 

care [1]. These benefits have prompted large 

amounts of research into the design and development 

of future CDSS in a variety of healthcare 

environments.  

One of the places CDSS will have a large 

impact is in the treatment of critically ill patients in 

the intensive care unit (ICU). Patients in the ICU can 

have multiple, complex ailments and must be 

continuously monitored by clinicians and multiple 

life support machines. The mechanical ventilator is 

one such machine integral to the care of patients with 

respiratory failure. When utilized properly, 

ventilators act to reduce effort required for breathing 

and allow a patient’s lungs to heal. When used 

improperly, ventilators can cause harm due to poorly 

configured settings or delivery of support 

inappropriate for a patient’s diagnosis. These issues 

can have adverse effects that include longer hospital 

stays, increased sedation requirements, lung injury, 

and even death [2], [3]. 

One way patients can receive ventilator-

induced lung injury is from a phenomena called 

patient-ventilator asynchrony (PVA). PVA occurs 

when ventilator configuration is misaligned with 

patient demands for respiration. PVA has been 

linked to increased work of breathing, patient 

discomfort, and in a small study, increased mortality 

[3]. Clinicians can detect PVAs during bedside 

examination, but PVA detection can be delayed due 

to lack of 24/7 access to appropriately trained 

clinicians. PVA detection can be performed with 

electronic algorithms, but most algorithms rely only 

on expert rules that may not generalize to broader 

patient populations seen in the ICU. 

Patients can also be harmed by misdiagnosis 

of underlying lung injury. One commonly 

misdiagnosed condition is acute respiratory distress 

syndrome (ARDS), which is a severe form of 

respiratory failure that has a mortality rate of 35-46% 

[4]. However, ARDS still remains under-recognized 

because diagnostic criteria can be subjective and the 

physiologic manifestation of ARDS can vary by 

patient. Research has attempted to automate ARDS 

diagnoses via expert-derived rules, but these efforts 

have been limited in accuracy and generalizability by 

their reliance on subjective criteria and local practice 

patterns [5]. ARDS is often a serious complication of 

various underlying conditions, including sepsis, 

pneumonia, and respiratory illness such as the 

COVID-19. The mortality rate of infected COVID-

19 patients who developed ARDS is 50% [6]. In the 

presence of a pandemic such as COVID-19 that puts 

unprecedented strain on health-care systems, early 

ARDS detection can help prioritize care delivery. 







selected a period of approximately 300 breaths where 

PVA was highly prevalent. Two ICU physicians 

independently annotated 9,719 individual breaths to 

achieve a ground truth labeled data set. Classification 

was performed via a combination of clinically guided 

heuristic rules and visual inspection, and each breath 

was labeled as one of 4 categories: normal, artifact, 

double trigger asynchrony (DTA), or breath stacking 

asynchrony (BSA). We targeted DTA and BSA 

because they are two of the most common forms of 

PVA and are thought to contribute to ventilator 

induced lung injury. Artifact breaths like suction and 

cough were identified and included in the dataset 

because they share characteristics with common 

forms of PVA that can result in false-positive PVA 

classification. All artifact and normal breaths were 

then included together and labeled as non-PVA. Any 

disagreements in breath classification were 

reconciled between the reviewing clinicians, and a 

consensus label was chosen. Using this process, we 

created one of the largest dual-adjudicated datasets 

devoted to PVA detection reported to date. In total 

our dataset contains 1,928 BSA breaths, 752 DTA 

breaths, and 7,039 non-PVA breaths.  

 After completing breath-level annotation, we 

used the ventMAP software suite to extract clinically 

relevant features from VWD [13]. In total, we 

derived 16 different features from each breath 

(Figure 2A). After features were extracted from 

VWD, we evaluated multiple supervised ML models 

to perform PVA classification. PVA classification 

was done on a per-breath basis where each breath is 

trained and classified based on a corresponding class 

label of non-PVA, BSA, or DTA. When training our 

models, we encountered a class imbalance issue 

because the number of PVA breaths were 

disproportionate to the number of non-PVA breaths 

in our dataset. Imbalanced training sets can be an 

obstacle to training accurate classifiers, resulting in 

decreased model performance when classifying DTA 

[8] in our case. We explored multiple methods to 

correct for class imbalance including: random under 

sampling (RUS) and the synthetic minority over-

sampling technique (SMOTE). We found that 

SMOTE offered the best balance of recall and 

specificity while RUS offered better recall than 

SMOTE at the cost of decreased specificity. In our 

experiments, we found that our models performed 

best when we used SMOTE to create a 1:1:1 ratio of 

non-PVA, DTA, and BSA observations for our 

training set. This ratio created the same number of 

DTA and BSA observations while keeping non-PVA 

observations static.  

In our prior work [7], we evaluated 10 ML 

algorithms: SVM, extreme learning, naïve bayes, 

multi-layer perceptron (MLP), and six tree-based 

approaches, namely decision trees, extra trees 

classifier, random forest, Adaboost, extremely 

random trees classifier (ERTC), and gradient boosted 

classifier (GBC). The performance of these 

algorithms was evaluated through k-fold validation, 

where we left one patient’s data out for testing, and 

used the rest for training. This yielded 35 training and 

testing folds, corresponding with the number of 

patients in our dataset. The performance metrics of 

interest are accuracy, recall, and specificity. 

Precision was not reported because its measurement 

would be biased because we focused on specifically 

selected regions of breath data with high PVA 

occurrence. Our explorations showed that extremely 

random trees classifier (ERTC), gradient boosted 

classifier (GBC), and multi-layer perceptron (MLP), 

achieve the best performance, but each with its own 

trade-offs [8]. ERTC achieved better accuracy for 

DTA class, while GBC and MLP performed better 

for BSA. An ensemble classifier consisting of ERTC, 

GBC, and MLP outperformed all other classifiers in 

terms of recall (sensitivity) and specificity, and the 

results are summarized in Table 1 (a). The high 

accuracy of our ensemble classifier was the result of  

 

Type Recall Specificity Accuracy 

Non-PVA 0.9674 0.9806 0.971 

DTA 0.9601 0.9754 0.9742 

BSA 0.9445 0.9879 0.9793 

(a) Per-breath multi-class classification 

 

Type Recall Specificity Precision AUC 

non-

ARDS 

0.92 0.88 0.85 N/A 

ARDS 0.88 0.92 0.91 0.88 

(b) Per-patient binary classification 

Table 1: Summary of detection results for (a): per-

breath detection of non-PVA, DTA, and BSA using 

ensemble classifier; (b): patient-level predictions of 

our Random Forest ARDS classifier model. 

Predictions are made from a majority vote using the 

number of windows classified as either non-

ARDS/ARDS within the first 24 hours of a patient’s 

ventilation data. 



numerous optimizations and DTA performance was 

especially assisted by the use of SMOTE. These 

results suggest that ML-based PVA detection 

algorithms have potential to be translated into 

clinical practice where they may improve the quality 

of care for patients receiving mechanical ventilation. 

Rapid and Accurate ARDS Detection  

ARDS is a form of severe respiratory failure that 

results from lung injury. ARDS is commonly caused 

by infections like pneumonia, sepsis, or trauma, and 

has been shown to be exacerbated by ventilator 

mismanagement [14]. The diagnosis of ARDS has 

proven to be a major barrier to proper patient 

management, in part because some ARDS diagnostic 

criteria are recognized subjectively by clinicians 

(e.g. – chest x-ray findings), while others may be 

delayed by ordering of diagnostic tests [4]. In this 

regard, it has been reported that physicians only 

diagnosed ARDS in 34% of patients with ARDS on 

the first day that diagnostic criteria were present, and 

in only 60% of patients with ARDS at any time 

during their ICU stay [4]. 

Accurate, and prompt diagnosis can be 

critical for improving an ARDS patient’s chance of 

survival. In a seminal study, it was found that ARDS 

patients who were treated with low volumes of air 

from ventilators had a significantly higher survival 

rate than those that received physiologically normal 

amounts of air [14]. However, this and other 

treatments prescribed for ARDS are associated with 

substantial side effects and discomfort, making 

accurate diagnosis critical to minimizing harms and 

optimizing chances of recovery.  

 To improve the process of diagnosing ARDS, 

we investigated applying ML methods to VWD 

collected in the ICU (as described in our system 

architecture). We selected 50 patients with moderate 

to severe ARDS and 50 patients with non-ARDS 

pathophysiology for model training and validation. 

To reduce classification errors, we required two 

clinicians to agree on each patient’s diagnosis. 

For patients diagnosed with ARDS, we 

extracted the first 24 hours of VWD available after 

ARDS diagnostic criteria were first present in the 

medical record. For patients without ARDS, we used 

the first 24 hours of VWD collected after patients 

were placed on a ventilator. We focused on 

processing the first 24 hours of data because our goal 

was to diagnose ARDS at an early enough time point 

in the syndrome when providing the information to 

clinicians might still change patient outcomes. We 

then extracted 9 features from VWD that were 

determined by expert clinicians to potentially contain 

physiologic signatures of ARDS. We avoided 

inclusion of features that might indicate that ARDS 

had already been diagnosed such as low delivered 

gas volumes or the increased ventilation pressures 

typical of ARDS treatment protocols. To construct 

individual observations for our ML model, we 

calculated the median value of these 9 features for 

sequences of 400 consecutive breath windows.  

Utilizing these long window lengths helped to 

minimize the impact of breath to breath variability. 

 We performed supervised ML by associating 

each window with the pathophysiology of its patient. 

We used supervised learning to train a Random 

Forest classifier that could classify individual 

windows as either ARDS or non-ARDS (Figure 3A). 

In testing, we performed patient-level classifications 

by aggregating all window predictions present in the 

Figure 3: A. Raw waveform data from each 400-breath “read” length is extracted from the ventilator and then 

attributed as either belonging to an ARDS patient or a non-ARDS patient based on dual clinician diagnosis. 

These data are then sent to a Random Forest classifier for training. B. Test subjects are then evaluated with the 

trained classifier. A final diagnosis is performed by the classifier by evaluating which diagnosis received a 

majority of votes across all reads evaluated by the model in a given period of analysis. 







• Alert Processing: Time taken to digest 

classification results for all patients and 

generate alerts 

For each task, we repeated the experiments 20 times 

to ensure statistical validity. We found our system 

was able to perform PVA detection in 1.047 seconds 

and perform data retrieval and all alert processing in 

0.125, and 0.107 seconds on average for 10 patients 

(Table 2). In general, data retrieval and alert 

processing time were negligible (sub-seconds) over 

different loads. Even at full ICU load (20 patients), 

the average micro-batch processing time was less 

than 2 seconds and less than 4 second 90% of the 

time. Given that most breaths on a ventilator last 2-3 

seconds, we conclude that our system is capable of 

real time data processing.  

N Task Mean 

(s) 

Std 

(s) 

90% 

(s)  

Max 

(s) 

1 Micro-

Batch 

Processing 

0.329 0.059 0.329 0.973 

 Data 

Retrieval 

0.098 0.031 0.118 0.122 

Alert 

Processing 

0.002 0.000 0.002 0.003 

10 Micro-

Batch 

Processing 

1.047 0.641 1.789 4.075 

Data 

Retrieval 

0.125 0.145 0.311 0.559 

Alert 

Processing 

0.107 0.079 0.209 0.274 

20 Micro-

Batch 

Processing 

1.942 1.347 3.457 9.512 

Data 

Retrieval 

0.272 0.220 0.346 2.045 

Alert 

Processing 

0.357 0.283 0.681 0.914 

 

Nevertheless, our prototype cannot guarantee better 

than worst case performance (9.512 seconds for 20 

patients) due to the lack of dedicated resources. 

Variations in the processing delay were due to 

competing background workloads on the same 

server. This demonstrates the potential implications 

of using cloud platform for real-time data analytics 

in an intelligent CDSS system. Future research is 

needed to further explore the advantages and 

disadvantages of dedicated edge computing 

platforms on premise versus cloud platforms, 

especially for future application scenarios where the 

data-driven analytics may be part of a closed loop 

systems controlling fluids and medication 

administration, ventilators, or other medical devices 

where low computation time variance and sub-

second latency will be critical. 

Bedside to Cloud and Back 

Future improvements in healthcare delivery 

and patient outcomes will depend heavily on the 

development of effective CDSS, which will in turn 

depend on clinical studies testing CDSS 

effectiveness. Such studies will evaluate potential 

improvements in care gained from rapidly alerting 

physicians to events such as PVA or diagnoses like 

ARDS. These trials will be a key part of future 

learning healthcare systems that will design, test, and 

implement automated CDSS, where data will be 

continuously streamed from the bedside, analyzed in 

the cloud, and returned to clinicians at the point of 

care in the form of actionable diagnostic and 

predictive alerts. In this regard, we envision a future 

where CDSS are designed specifically around IoT 

sensors, cloud computing and EHR integration, and 

mobile device-based access to CDSS feedback in a 

“provider-in-the-loop” implementation framework 

where inaccurate decisions made by ML algorithms 

can be corrected by clinicians to continuously refine 

algorithm performance over time.  

 There are several potential limitations to our 

current approach. First, this work has been 

performed at a single center and limited to a single 

data type. Second, for disease diagnosis we have yet 

to include additional data types from sources such as 

the EHR in our diagnostic algorithms, which may 

present substantial systems integration and 

informatics challenges across the highly 

heterogeneous healthcare technology landscape. 

Future CDSS research and development frameworks 

will be needed before additional clinical data can be 

used to develop real-time diagnostic and predictive 

CDSS. Finally, our current prototype is able to 

accommodate a small-medium size hospital with 10-

Table 2: A summary of the server-side processing 

delays for three tasks: Micro-Batch Processing, Data 

Retrieval, and Alert Processing under different patient 

loads. The mean, standard deviation, 90th percentile, 

and maximum delays are reported in seconds, 

rounding to 3 decimal places.  



20 ICU patients. Future work will incorporate 

software optimizations to handle scalability issues to 

cope with larger cohorts of patients. 

Conclusion  

In conclusion, we have developed an 

automated platform for collecting, monitoring, and 

performing diagnosis on physiologic data collected 

in the ICU. Our work fits broadly within emerging 

efforts in critical care medicine to improve the 

timeliness and quality of care through technology-

enabled healthcare delivery. CDSS that integrate 

IoT-based patient monitoring devices, analytics 

operating on real-time physiologic data, and ML 

algorithms stand to improve diagnosis, 

prognostication, and adverse event recognition in the 

ICU. Through ongoing multi-disciplinary research 

and development, advanced CDSS will reduce the 

cognitive burden on care providers, improve quality 

of care, reduce patient suffering, and realize greater 

value in care delivery.   
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