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ABSTRACT

Neuropathologists assess vast brain areas to identify di-
verse and subtly differentiated morphologies. Alzheimer’s
disease pathologies have different density distributions in
grey matter (GM) and white matter (WM), making the task of
separating GM and WM necessary to neuropathologic deep
phenotyping. Standard methods of segmentation typically
require manual annotations, where a trained observer traces
the boundaries of GM and WM on digitized tissue slide im-
ages using software like Aperio ImageScope or QuPath. This
method can be time-consuming and can prevent the analy-
sis of large amounts of slides in a scalable way. In this pa-
per, we propose a CNN-based approach to automatically seg-
ment GM and WM in ultra-high-resolution whole slide im-
ages (WSIs) by transforming the segmentation problem into a
classification problem. Contrary to the traditional image pro-
cessing segmentation method, our technique is flexible, ro-
bust, and efficient with the accuracy of 77.43% in GM and
79.42% in WM on our hold-out WSIs.

Index Terms— Neuropathology, Image Segmentation,
Convolutional Neural Networks, Ultra-high Resolution

1. INTRODUCTION

Neuropathologists assess postmortem brain tissue slides to
identify diverse and subtly-differentiated morphologies vital
for the diagnosis of Alzheimer’s disease [1]. The process
of using microscopes to assess slides individually and com-
pare between them can be time-consuming. Recently, with
the help of digital slide scanners, all the minute details of the
the physical tissue slides can be scanned into high-resolution
whole slide images (WSIs). Using software (such as Ape-
rio ImageScope and QuPath [2]), trained experts can make
annotations of morphologies on WSIs and assess them using
algorithmically-computed scores [3,4]. The analysis of these
brain tissue images is essential to study Alzheimer’s disease

*The first two authors contributed equally to this paper.

as it may aid in deeper phenotyping and analysis of the neu-
roanatomic progression of the disease [5].

One of the pathological hallmarks of Alzheimer’s dis-
ease is the presence extracellular neuritic plaques in the
brain [6-8]. These plaques can be found predominantly in
GM but have also been reported in WM [9, 10]. By segment-
ing GM and WM in WSIs, neuropathologists can study the
density distributions of neuritic plaques in them separately. In
fact, the need to segment GM from WM in medical imaging
has already been well-established, for example, in identifying
spinal cord GM from MRI to predict disability in multiple
sclerosis [11]. For this research, we focus on the segmenta-
tion problem of WSIs obtained using a common histological
stain (Hematoxylin and Eosin) in addition to immunohisto-
chemical stained for one of the main protein aggregates in
Alzheimer’s disease, AS. Manually segmenting these WSIs
is a time-consuming and expensive process that cannot be per-
formed on a large scale [12]. Another issue with manual seg-
mentation is that it could be subjective and have inter-rater
reliability issues, as evidenced by the two boundaries (greed
and yellow) from Figure 1 between GM and WM drawn by
two domain experts.

(a) WSI-2 (b) WSI-4
Fig. 1: WSIs Annotated by Two Trained Personnel

As such, there is a strong need to develop automated
segmentation algorithms that can run across a database of
WSIs efficiently to provide robust and unbiased annotation.
Different traditional image processing methods and deep
learning-based approaches have been studied for WSI seg-
mentation [13, 14]. However, these studies focused on tissues
primarily from breast, lymph node, rectum, tongue [13] and
skin [14], or using images obtained from Magnetic Resonance
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Imaging (MRI) or Computerized Tomography [15, 16].

Segmenting GM from WM in A3 stained WSIs is a chal-
lenging problem different from these related works. First,
there is the prevalence of unwanted artifacts in these WSIs:
for example, tissue residues, tissue folds, bubbles, dust, and
other items that may result from imperfect tissue cutting and
slide placement. Second, they are scanned at ultra-high res-
olution to retain details down to the cellular level. Typical
brain tissues WSIs can resolve down to 0.5 micrometers per
pixel, resulting in a single brain slide image with resolutions
exceeding 50, 000 by 50, 000 pixels. Current approaches ei-
ther downsample an ultra-high resolution image or crop it into
small patches for separate processing [17]. These approaches
cannot be used for our application because we need to pre-
serve the distribution and characteristics of the minute neu-
ritic plaques in our WSIs, with sizes ranging from 20 x 20
to 100 x 100. These plaques are not only the pathological
hallmarks of Alzheimer’s disease but the important features
of GM and WM.

In this paper, we investigate the application of region-
based CNN segmentation on ultra-high resolution WSIs of
immunohistochemically stained brain samples. Our goal is
to perform segmentation of GM and WM regions in WSIs
with acceptable speed and accuracy. To address the ultra-high
resolution challenge, we transform the segmentation problem
into a region-based classification problem. To the best of our
knowledge, this is the first attempt at automating the sepa-
ration of GM and WM in ultra-high resolution WSIs of im-
munohistochemically stained archival brain samples with var-
ious shapes and contrasts. The main contribution of the paper
is a novel application of deep learning based segmentation
techniques to this medical problem. Our results show that the
region-based CNN approach can segment GM, WM with the
accuracy of 77.43% and 79.42% separately. The rest of the
paper is organized as follows: Section 3 describes our pro-
posed approach, Section 4 presents our results, and Section 5
concludes the paper.

2. RELATED WORK

Tissue segmentation is an important prerequisite for diagnos-
ing diseases efficiently and accurately. Many traditional im-
age processing methods have been proposed for whole slide
images (WSI) segmentation. In [18], Hiary et al. developed
an automated algorithm based on k-means clustering using
pixel intensity, color, and texture features. In [14], Bug et
al. used global thresholding at the mean value of the Gaus-
sian blurred Laplacian of the greyscale image. These ap-
proaches are computationally efficient but the segmentation
performance is usually quite poor. In addition, these meth-
ods have only be tested on non-brain WSIs such as breast,
tongue, and skin so their applicability to A3 stained WSIs is
questionable.

In recent years, deep learning methods have been in-

creasingly applied for medical image segmentation. In [15],
Havaei et al. developed a fully automatic brain tumor segmen-
tation methods using a highly efficient Convolutional Neural
Network (CNN) architecture to simultaneously capture both
local features and global context. In [19], Milletari et al. pro-
posed Hough-CNN, a CNN architecture to perform Hough
voting to simultaneously localize and segment deep brain re-
gions in MRI and ultra-sound images. A drawback of these
works is that their deep networks are specially design for spe-
cific medical applications (tumor detection) or image modal-
ity (MRI and CT), making them difficult to transfer to our A3
stained WSIs. Unlike MRI or CT scans that capture a global
view of the whole brain, our WSIs are local representations of
one region of brain and contains subtle and gradual changes
of pathological features that can be easily missed by these
networks. Also, image artifacts including large variance in
staining color and the presence of tissue residues, dust, tears,
folds and bubbles can significantly impact the performance of
these classifiers.

Besides CNN, another type of deep neural network ar-
chitecture commonly used in medical imaging is U-Net [20].
For example, in [21], Dong et al. proposed a fully automatic
method for brain tumor segmentation. A drawback of U-net
is that it is computationally intensive and could take much
processing power with little gain in performance [22]. In ad-
dition, most of the deep-learning based approaches have only
been tested on low to medium resolution images of up to a
few megapixels, while the resolutions of our WSIs exceed
2 gigapixels. Downsampling used in [17] is not applicable
as we need to preserve minute plaque features in our WSIs.
Recently, we proposed a region-based CNN classifier robust
against gradual changes in WSI to distinguish three different
plaques [23]. In this paper, we followed a similar approach
for WM/GM segmentation so as to build a complete pipeline
in support of deeper phenotyping of the neuroanatomic pro-
gression of Alzheimer’s disease.

3. PROPOSED APPROACH

In this section, we will introduce our region-based CNN ap-
proach for classifying GM, WM, and tissue slide background
regions.

3.1. Data

Our dataset consists of 18 WSIs (approximately 60,000 x
50,000 pixels each on average) from the temporal cortex
anatomical region annotated by two trained neuropathology
personnel. These 18 WSIs are postmortem human brain tis-
sues, and all of them have been de-identified. All WSIs used
in this paper were stained with an Amyloid-beta (AS) anti-
body [24] and were digitized using Aperio AT2 at 20 X mag-
nification. All cases had a clinical-neuropathological diag-
nosis of Alzheimer’s Disease, with 10 males and 8 females,



and an average age at death of 84 4 7 years. To protect data
confidentiality, we will refer to them as WSI-1 to WSI-18 in
the rest of our paper. 5 randomly selected WSIs are used for
training and validation while the remaining WSIs are used for
hold-out testing

Considering the variations of original WSIs, we applied
color normalization to diminish the effect of slide-color [23].
As the native resolution of a WSI is too high to use as the
direct input for CNNs, we divide our WSIs into smaller fixed-
size 256 x 256 pixels image tiles for training with three la-
bels: WM, GM, and background. Damaged areas in the im-
age are excluded. The entire tile image dataset consists of
63,875 local region tiles and they are randomly split into two
sets: training (51,100) and validation (12,775). To mitigate
class imbalance, our training set includes a compatible num-
ber of tiles from three different regions: 20,100 tiles from
GM, 21,000 tiles from WM and 10,000 tiles from background
area. We apply several data augmentation methods, includ-
ing random horizontal/vertical clip, rotation, color jitter and
affine transformations, to enhance the heterogeneity of the
training dataset.

To handle the ultra-high resolution, we use the Py Vips li-
brary to build image processing pipelines on the original im-
age instead of manipulating it directly [25]. This mechanism
allows us to process WSIs without loading the entire image
into memory at once. After the full processing pipeline is
completed,the entire pipeline will execute at once by stream-
ing the image in parallel from the first pipeline to the last
pipeline simultaneously.

3.2. Architecture

There are a myriad of different CNN architectures that have
been proposed in the past few years for image classifica-
tion, including AlexNet, LeNet, VGG, ResNet, Inception,
SqueezeNet to name just a few [26]. While the designs of
different architectures have very different motivation, there
are increasing evidence that the features extracted by these
state-of-the-art architectures are quite similar and their per-
formances are starting to converge [27]. As such, we want
to experiment with a relatively simple architecture to min-
imize training and testing time while producing reasonably
good performance. We have selected ResNet-18 as our tar-
get network as it has fewer filters and lower complexity than
other architectures with similar performance [28].

We modified the ResNet-18 model by redefining the last
fully connected layer to output three classes: GM, WM, and
tissue slide background. We used pretrained parameters of
ResNet-18 except for the last layer as our initialization be-
cause the pretrained model has learned rich features from Im-
ageNet and was already able to extract useful features for nat-
ural images. We adapted the whole CNN using all training
data for 20 epochs and subsequently trained on clearly iden-
tifiable image tiles far away from the boundary of WM and

GM with more distinctive features for 10 epochs. Using the
pretrained model not only guarantees the convergence of our
model but also improves our training speed to save comput-
ing sources and energy. In the training process, we selected
Adam optimizer and the initial learning rate is 0.001. The
batch size is set to 16. We trained the whole network for 20
epochs. Our model is implemented with PyTorch and ran on
Google Colab.

While the training of ResNet-18 is fairly straightforward,
the inference process used in actual WSI segmentation is still
quite complex and not entirely suitable for interactive visual-
ization. As such, we compare the ResNet-18 with two simple
CNN models with only 3 and 5 layers respectively. These
simpler models have the advantage of far lower complexity
in both training and testing. For 3-layer model, there are two
convolutional layers with the kernel size of 5 x 5 and one max-
pooling layer with the kernel size of 2 x 2, subsequently con-
necting to the fully connected layer. For 5-layer model, there
are two convolutional layers with the kernel size of 5 x 5, one
with 3 x 3, and two max-pooling layers with the kernel size
of 2 x 2 as well as the fully connected layer. The learning rate
used here is 0.01 and the optimizer is Adam.

4. EXPERIMENTAL RESULTS

4.1. Region-based Accuracy and Segmentation

Table 1 summarizes the GM and WM classification accuracy
and the combined accuracy of the different CNN models we
studied. As expected, the models with fewer convolutional
layers (3-layer and 5-layer) do not perform well in distin-
guishing GM and background as GM is similar visually to tis-
sue slide background, which indicates the limitation of classi-
fication ability of small CNN models although they run faster.
By employing transfer learning with ResNet-18, the accuracy
increased to 81.12%. Augmenting ResNet-18 with 10-epoch
retrain further improves the performance to 90.00% in overall
accuracy and over 93% for WM classification while the ac-
curacy of GM classification (88.10%) is well-balanced com-
pared to that of WM.

CNN Model Overall GM WM Back
3-Layer 70.21% 6549% 85.32% 65.12%
5-Layer 74.00% 67.10% 86.91% 69.20%

ResNet-18 81.12% 77.99% 89.50%  80.20%

Res-Retrain = 90.00% 88.10% 93.85% 93.10%

Table 1: Accuracy of Different CNN Models

To visualize the distribution and location of GM and WM
in a broader context, we apply a sliding window approach
with the step of 128 to generate a prediction matrix of origi-
nal WSI. In essence, each element of matrix denotes the cat-
egory (GM/WM/Background) of the corresponding area of



WSI. We plot the binary image of GM and WM based on

Fig. 2: Binary Image of GM and WM based on Prediction of
WSI-16

the prediction matrix generated by CNN model, which will
be visualized from the subtile resolution up to the full WSI
view. Figure 2 is the binary image generated by our predic-
tion, which is the shape of GM and WM separately. In Figure
2, yellow pixels indicate GM in the image on the left, and
WM in the image on the right.

We also test our CNN model on the 13 hold-out WSIs
from different patients not used in the preparation of the train-
ing set (Section 3.1). Figure 3 shows the global view of
GM/WM’s shape and boundary in different WSIs after we
plot the prediction matrix where each element refers to the
individual local region tiles cropped from the original WSI.
Figure 3(a) shows the manually annotated GM/WM regions
for WSI-10, while Figure 3(b) shows the segmentation results
of our region-based CNN model. Our proposed approach
successfully segments the whole WSI into three areas: back-
ground, GM and WM, which are indicated by black, yellow,
and cyan, respectively. Our segmentation is almost the same
as annotations by trained personnel. Figure 3(c)-(f) show our
segmentation results for some of the other WSIs. Figure 3
clearly shows the inherent heterogeneity of the brain images
in the different WSIs, where the WM/GM regions have a va-
riety of shapes and sizes.

In our approach, the data preparation and training phase
consumes the most computation time. The testing phase, due
to use ResNet-18 which is light and of fewer layers, including
generating prediction matrix and recovering of the boundary,
only takes 30-45 minutes if we use Google Colab’s resource,
which is faster compared to 1-2 hours of manual annotation
[29].

4.2. WSI Evaluation

Besides using region-based accuracy and heat maps to evalu-
ate our models, we generated binary masks of GM and WM,
respectively. Using the contour line annotated by an expe-
rienced neuropathologist as the gold standard, we generated
two ground-truth masks for GM and WM. Sample masks for
one of the WSIs (WSI-18) is shown in Figure 4.

(c) WSI-8

(e) WSI-16

(f) WSI-9
Fig. 3: CNN Segmentation of GM/WM and Background

By comparing these binary masks, we calculated the true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN) for both GM masks and WM masks. Us-
ing Equation 1 below,

TP+TN TP+TN
total ~ TP+TN+ FP+ FN

ey

Accuracy =

we calculated the accuracy for both masks. The results are
summarized in Table 2 below.

From Table 2, we can see that the average accuracy for
GM masks is 77.43%, slightly lower than the accuracy for
WM masks (79.42%), which indicates that our model has al-
most the same distinguishing ability in GM and WM. Table
3 is the recall, precision and F1 score of GM and WM. Al-
though WM has relatively higher accuracy, it also has much
lower precision and F1 score.

Category Recall Precision F1 Score
GM 87.43%  79.63% 0.8335
WM 83.18%  44.54% 0.5801

Table 3: Measure the performance on 18 WSIs



(c) Our GM (d) Our WM

Fig. 4: WSI-18 GM Masks and WM Masks

| WSIID | GM Masks | WM Masks ||

WSI-1 66.77% 80.75%
WSI-2 75.04% 78.06%
WSI-3 73.12% 74.39%
WSI-4%* 84.81% 87.35%
WSI-5% 81.14% 82.58%
WSI-6* 83.01% 83.36%
WSI-7 66.60% 71.22%
WSI-8 85.87% 85.20%
WSI-9 86.24% 86.62%
WSI-10* 86.89% 86.83%
WSI-11 68.83% 71.53%
WSI-12 84.19% 85.02%
WSI-13 81.36% 80.48%
WSI-14% 42.7% 45.96%
WSI-15 78.33% 78.31%
WSI-16 84.22% 84.79%
WSI-17 79.13% 79.49%
WSI-18 85.53% 87.18%
| Average | 77.43% | 7942% |

Table 2: Accuracy for GM and WM Masks of 18 WSIs (* -
The 5 training WSIs)

5. CONCLUSION

In this paper, we present an automatic WSI segmentation
method based on convolutional neural networks. This method
is tailored to ultra-high resolution histological images and has
the potential to be more cost-effective than manual segmen-
tation. However, we only tried three light CNN architectures
to pursue a trade-off between running speed and accuracy. A

more comprehensive performance analysis on a wider range
of CNN architecture is currently underway.

Another limitation of our study is the variety of data
sources. The 18 WSIs contain images from one brain re-
gion (temporal cortex) and from one type of stain (A5) as
well as from a limited group of cases with similar diagnoses
(Alzheimer’s disease). A future direction is to investigate if
the same pipeline is applicable to a more diverse dataset from
different parts of the brains with various clinical conditions.
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