


Imaging (MRI) or Computerized Tomography [15, 16].

Segmenting GM from WM in Aβ stained WSIs is a chal-

lenging problem different from these related works. First,

there is the prevalence of unwanted artifacts in these WSIs:

for example, tissue residues, tissue folds, bubbles, dust, and

other items that may result from imperfect tissue cutting and

slide placement. Second, they are scanned at ultra-high res-

olution to retain details down to the cellular level. Typical

brain tissues WSIs can resolve down to 0.5 micrometers per

pixel, resulting in a single brain slide image with resolutions

exceeding 50, 000 by 50, 000 pixels. Current approaches ei-

ther downsample an ultra-high resolution image or crop it into

small patches for separate processing [17]. These approaches

cannot be used for our application because we need to pre-

serve the distribution and characteristics of the minute neu-

ritic plaques in our WSIs, with sizes ranging from 20 × 20

to 100 × 100. These plaques are not only the pathological

hallmarks of Alzheimer’s disease but the important features

of GM and WM.

In this paper, we investigate the application of region-

based CNN segmentation on ultra-high resolution WSIs of

immunohistochemically stained brain samples. Our goal is

to perform segmentation of GM and WM regions in WSIs

with acceptable speed and accuracy. To address the ultra-high

resolution challenge, we transform the segmentation problem

into a region-based classification problem. To the best of our

knowledge, this is the first attempt at automating the sepa-

ration of GM and WM in ultra-high resolution WSIs of im-

munohistochemically stained archival brain samples with var-

ious shapes and contrasts. The main contribution of the paper

is a novel application of deep learning based segmentation

techniques to this medical problem. Our results show that the

region-based CNN approach can segment GM, WM with the

accuracy of 77.43% and 79.42% separately. The rest of the

paper is organized as follows: Section 3 describes our pro-

posed approach, Section 4 presents our results, and Section 5

concludes the paper.

2. RELATED WORK

Tissue segmentation is an important prerequisite for diagnos-

ing diseases efficiently and accurately. Many traditional im-

age processing methods have been proposed for whole slide

images (WSI) segmentation. In [18], Hiary et al. developed

an automated algorithm based on k-means clustering using

pixel intensity, color, and texture features. In [14], Bug et

al. used global thresholding at the mean value of the Gaus-

sian blurred Laplacian of the greyscale image. These ap-

proaches are computationally efficient but the segmentation

performance is usually quite poor. In addition, these meth-

ods have only be tested on non-brain WSIs such as breast,

tongue, and skin so their applicability to Aβ stained WSIs is

questionable.

In recent years, deep learning methods have been in-

creasingly applied for medical image segmentation. In [15],

Havaei et al. developed a fully automatic brain tumor segmen-

tation methods using a highly efficient Convolutional Neural

Network (CNN) architecture to simultaneously capture both

local features and global context. In [19], Milletari et al. pro-

posed Hough-CNN, a CNN architecture to perform Hough

voting to simultaneously localize and segment deep brain re-

gions in MRI and ultra-sound images. A drawback of these

works is that their deep networks are specially design for spe-

cific medical applications (tumor detection) or image modal-

ity (MRI and CT), making them difficult to transfer to our Aβ

stained WSIs. Unlike MRI or CT scans that capture a global

view of the whole brain, our WSIs are local representations of

one region of brain and contains subtle and gradual changes

of pathological features that can be easily missed by these

networks. Also, image artifacts including large variance in

staining color and the presence of tissue residues, dust, tears,

folds and bubbles can significantly impact the performance of

these classifiers.

Besides CNN, another type of deep neural network ar-

chitecture commonly used in medical imaging is U-Net [20].

For example, in [21], Dong et al. proposed a fully automatic

method for brain tumor segmentation. A drawback of U-net

is that it is computationally intensive and could take much

processing power with little gain in performance [22]. In ad-

dition, most of the deep-learning based approaches have only

been tested on low to medium resolution images of up to a

few megapixels, while the resolutions of our WSIs exceed

2 gigapixels. Downsampling used in [17] is not applicable

as we need to preserve minute plaque features in our WSIs.

Recently, we proposed a region-based CNN classifier robust

against gradual changes in WSI to distinguish three different

plaques [23]. In this paper, we followed a similar approach

for WM/GM segmentation so as to build a complete pipeline

in support of deeper phenotyping of the neuroanatomic pro-

gression of Alzheimer’s disease.

3. PROPOSED APPROACH

In this section, we will introduce our region-based CNN ap-

proach for classifying GM, WM, and tissue slide background

regions.

3.1. Data

Our dataset consists of 18 WSIs (approximately 60, 000 ×

50, 000 pixels each on average) from the temporal cortex

anatomical region annotated by two trained neuropathology

personnel. These 18 WSIs are postmortem human brain tis-

sues, and all of them have been de-identified. All WSIs used

in this paper were stained with an Amyloid-beta (Aβ) anti-

body [24] and were digitized using Aperio AT2 at 20× mag-

nification. All cases had a clinical-neuropathological diag-

nosis of Alzheimer’s Disease, with 10 males and 8 females,
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and an average age at death of 84 ± 7 years. To protect data

confidentiality, we will refer to them as WSI-1 to WSI-18 in

the rest of our paper. 5 randomly selected WSIs are used for

training and validation while the remaining WSIs are used for

hold-out testing

Considering the variations of original WSIs, we applied

color normalization to diminish the effect of slide-color [23].

As the native resolution of a WSI is too high to use as the

direct input for CNNs, we divide our WSIs into smaller fixed-

size 256 × 256 pixels image tiles for training with three la-

bels: WM, GM, and background. Damaged areas in the im-

age are excluded. The entire tile image dataset consists of

63,875 local region tiles and they are randomly split into two

sets: training (51,100) and validation (12,775). To mitigate

class imbalance, our training set includes a compatible num-

ber of tiles from three different regions: 20,100 tiles from

GM, 21,000 tiles from WM and 10,000 tiles from background

area. We apply several data augmentation methods, includ-

ing random horizontal/vertical clip, rotation, color jitter and

affine transformations, to enhance the heterogeneity of the

training dataset.

To handle the ultra-high resolution, we use the PyVips li-

brary to build image processing pipelines on the original im-

age instead of manipulating it directly [25]. This mechanism

allows us to process WSIs without loading the entire image

into memory at once. After the full processing pipeline is

completed,the entire pipeline will execute at once by stream-

ing the image in parallel from the first pipeline to the last

pipeline simultaneously.

3.2. Architecture

There are a myriad of different CNN architectures that have

been proposed in the past few years for image classifica-

tion, including AlexNet, LeNet, VGG, ResNet, Inception,

SqueezeNet to name just a few [26]. While the designs of

different architectures have very different motivation, there

are increasing evidence that the features extracted by these

state-of-the-art architectures are quite similar and their per-

formances are starting to converge [27]. As such, we want

to experiment with a relatively simple architecture to min-

imize training and testing time while producing reasonably

good performance. We have selected ResNet-18 as our tar-

get network as it has fewer filters and lower complexity than

other architectures with similar performance [28].

We modified the ResNet-18 model by redefining the last

fully connected layer to output three classes: GM, WM, and

tissue slide background. We used pretrained parameters of

ResNet-18 except for the last layer as our initialization be-

cause the pretrained model has learned rich features from Im-

ageNet and was already able to extract useful features for nat-

ural images. We adapted the whole CNN using all training

data for 20 epochs and subsequently trained on clearly iden-

tifiable image tiles far away from the boundary of WM and

GM with more distinctive features for 10 epochs. Using the

pretrained model not only guarantees the convergence of our

model but also improves our training speed to save comput-

ing sources and energy. In the training process, we selected

Adam optimizer and the initial learning rate is 0.001. The

batch size is set to 16. We trained the whole network for 20

epochs. Our model is implemented with PyTorch and ran on

Google Colab.

While the training of ResNet-18 is fairly straightforward,

the inference process used in actual WSI segmentation is still

quite complex and not entirely suitable for interactive visual-

ization. As such, we compare the ResNet-18 with two simple

CNN models with only 3 and 5 layers respectively. These

simpler models have the advantage of far lower complexity

in both training and testing. For 3-layer model, there are two

convolutional layers with the kernel size of 5×5 and one max-

pooling layer with the kernel size of 2× 2, subsequently con-

necting to the fully connected layer. For 5-layer model, there

are two convolutional layers with the kernel size of 5×5, one

with 3 × 3, and two max-pooling layers with the kernel size

of 2×2 as well as the fully connected layer. The learning rate

used here is 0.01 and the optimizer is Adam.

4. EXPERIMENTAL RESULTS

4.1. Region-based Accuracy and Segmentation

Table 1 summarizes the GM and WM classification accuracy

and the combined accuracy of the different CNN models we

studied. As expected, the models with fewer convolutional

layers (3-layer and 5-layer) do not perform well in distin-

guishing GM and background as GM is similar visually to tis-

sue slide background, which indicates the limitation of classi-

fication ability of small CNN models although they run faster.

By employing transfer learning with ResNet-18, the accuracy

increased to 81.12%. Augmenting ResNet-18 with 10-epoch

retrain further improves the performance to 90.00% in overall

accuracy and over 93% for WM classification while the ac-

curacy of GM classification (88.10%) is well-balanced com-

pared to that of WM.

CNN Model Overall GM WM Back

3-Layer 70.21% 65.49% 85.32% 65.12%

5-Layer 74.00% 67.10% 86.91% 69.20%

ResNet-18 81.12% 77.99% 89.50% 80.20%

Res-Retrain 90.00% 88.10% 93.85% 93.10%

Table 1: Accuracy of Different CNN Models

To visualize the distribution and location of GM and WM

in a broader context, we apply a sliding window approach

with the step of 128 to generate a prediction matrix of origi-

nal WSI. In essence, each element of matrix denotes the cat-

egory (GM/WM/Background) of the corresponding area of
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