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Abstract— Robotic manipulation problems are inherently
continuous, but typically have underlying discrete structure, e.g.,
whether or not an object is grasped. This means many problems
are multi-modal and in particular have a continuous infinity of
modes. For example, in a pick-and-place manipulation domain,
every grasp and placement of an object is a mode. Usually
manipulation problems require the robot to transition into
different modes, e.g., going from a mode with an object placed
to another mode with the object grasped. To successfully
find a manipulation plan, a planner must find a sequence of
valid single-mode motions as well as valid transitions between
these modes. Many manipulation planners have been proposed
to solve tasks with multi-modal structure. However, these
methods require mode-specific planners and fail to scale to very
cluttered environments or to tasks that require long sequences
of transitions. This paper presents a general layered planning
approach to multi-modal planning that uses a discrete “lead”
to bias search towards useful mode transitions. The difficulty of
achieving specific mode transitions is captured online and used
to bias search towards more promising sequences of modes.
We demonstrate our planner on complex scenes and show that
significant performance improvements are tied to both our
discrete “lead” and our continuous representation.

I. INTRODUCTION

Many manipulation problems are multi-modal [1]. That is,

the inherently continuous manipulation problem has some

underlying discrete structure. Specifically, there is a finite

set of high-level actions (e.g., picking up or placing an

object) that each have a continuous infinity of instantiations

(e.g., placing an object at some point on a table). Every

specific instantiation is a mode that constrains the robot’s

motion differently (e.g., adding an end-effector constraint,

or constraining where the robot can place a second object).

Transitioning between modes is an essential component of

manipulation planning—for example, arranging objects may

require many grasps and placements. To solve manipulation

problems automatically, a manipulation planner must reason

over the sequence of modes the system must traverse. The

planner needs to find feasible motions in each mode, as well

as valid transitions from one mode to the next.

Many sampling-based multi-modal motion planners have

been proposed [1]–[3], which can scale to high-dimensional

problems. These are general solvers for manipulation plan-

ning problems, but they require specialized samplers or plan-

ners for each mode and cannot scale to problems that require
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many transitions. There are other manipulation planners [4]–

[6], that are layered planning approaches; a “higher-level”

planner finds what transitions to take, which then informs

a “lower-level” planner that searches for feasible motions.

These approaches are typically limited to specific problem

domains such as pick-and-place problems.

This work proposes a method for highly general and

efficient multi-modal planning, using insights from layered

planning while avoiding unnecessary discretization. Inspired

by SYCLOP [7], we propose a synergistic layered planner

based on prior work in multi-modal motion planning [1].

This planner uses a novel weighting scheme in each iteration

of planning: first, a discrete planner provides a candidate

sequence of mode transitions (a “lead”). A continuous planner

follows the “lead”, estimating the difficulty of transitioning

between modes. If a transition succeeds or fails, weights are

updated to inform future discrete planning and bias search

towards promising avenues of exploration.

In contrast to prior work, our approach does not require

specialized samplers or planners. Instead we use a general

formulation of modes as manifold constraints and leverage a

general single-mode planning framework [8]. This formula-

tion captures pick-and-place manipulation as well as a broader

set of scenarios, e.g., handrail climbing. We demonstrate

our planner on a variety of complex scenes and show that

significant performance improvements are tied to both our

discrete “lead” and our continuous representation.

II. RELATED WORK

Manipulation planning is a core problem in robotics [9],

[10] and has been studied for decades [11]–[14]. We focus

on approaches that use sampling-based planning, a powerful

probabilistically-complete paradigm for motion planning able

to scale to high-dimensional problems [15]–[17].

Planning in a single mode requires planning under con-

straints; we focus on geometric planning problems with

manifold constraints. There are many approaches for plan-

ning under manifold constraints (e.g., trajectory optimization-

based [18], [19] or sampling-based [20]). A survey of

sampling-based techniques is given in [21]. For this paper,

we use the constrained planning framework presented in [8].

Frequently manipulation planners use layered planning: a

combination of planners that inform each others’ searches.

Layered planning is a heuristic to speed-up search by solving

the problem at different levels of abstraction [7], [22]. One

abstraction is to introduce a symbolic or discrete representa-

tion, e.g., PDDL [23] or workspace discretizations [7]. Many

planners (e.g., [23], [24]) discretize continuous problems.
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Common discretizations include choosing from a finite set

of placement locations or grasps.

A common abstraction used in manipulation planning is

a mode graph [11]—a discrete structure encoding possible

transitions between modes. In task planning, mode graphs

are implicitly defined by what actions are possible given

the current symbolic state (e.g., [6]). For problems with

finite modes, mode graphs have been successfully applied

to high-dimensional problems [25]–[27] and dynamic en-

vironments [28]. However, manipulation problems have a

continuous infinity of modes, e.g., an object can be placed at

any valid location on the plane of the table. For problems with

a continuous infinity of modes, transition graphs [1] capture

what transitions between which “classes” of modes are pos-

sible. Our planner uses an abstraction similar to a transition

graph to capture allowable transitions (see Sec. IV-B).

Some planners discretize continuously infinite modes

(e.g, [4], [24]), but if the discretization is not fine enough

a plan will not be found. With an offline discretization, [4]

used a “fuzzy” PRM over the mode graph to determine what

transitions to take, with edge weights proportional to the

time spent solving the single-mode planning problem from

one transition to another, biasing search towards “easier”

planning problems. Manipulation RRT [26], [27] also weights

transitions between modes online, but is limited to a finite set

of modes. Our approach uses a similar idea for biasing search,

but works for continuous infinities of modes (see Sec. IV-B).

Similarly, online adaptation has been used to bias search, e.g.,

approximating collisions [29], [30]. Our method estimates

online the feasibility of transitions between modes.

Another approach is online discretization via sampling.

Manipulation PRM [5], [31], [32] and ASYMOV [6], [33], [34]

build a PRM over the transition manifold. Other planners [1],

[35] build a tree of transitions in the continuous mode

space, similar to how sampling-based planners discretize a

continuous space. In the case of navigation among movable

obstacles, a probabilistically-complete tree-based planner has

been proposed [35]. These works require specialized samplers

or only work for finite sets of modes. As a more general

approach, [1] proposes a probabilistically-complete tree-based

planner for multi-modal problems, which our work draws

inspiration from. “Utility tables” are used by [1] to capture

valuable transitions in multi-modal search, but these are

computed offline and require specialized domain knowledge.

Our approach estimates the value of transitions online (see

Sec. IV-C). DARRTH [2], [36], [37] is multi-modal planning

approach that takes a layered planning approach, but uses a

simplified continuous planning domain rather than a discrete

layer. In a similar vein, [3] proposed an asymptotically opti-

mal multi-modal planner. These approaches utilize specialized

samplers for transitioning between modes.

Task and Motion Planning (TMP) algorithms generally have

hierarchical layers of planning, such as in [23], [38]–[40].

Our approach differs twofold: symbolic representation of

geometry and bias towards short task plans. TMP algorithms

generally reason over “actions”: actions cause a transition

into a new mode. However, many TMP algorithms use

discretization to create a finite representation amenable to a

task planner (e.g., [23]). Even without a fixed discretization,

TMP algorithms plan for geometric values represented sym-

bolically, such as with sampling (e.g., [40]) or optimization

(e.g., [41]–[43]). Tied to this symbolic representation, TMP

algorithms usually bias search towards short symbolic task

plans. However, there may not be a solution corresponding to

a short symbolic plan, e.g., moving an object through a tight

passage requiring many regrasps (see Fig. 5). Our approach

deals with the geometry directly, avoiding this bias.

Our approach takes inspiration from SYCLOP, a general

framework which uses a “lead” path through a discretization

of the workspace [7]. In SYCLOP, planning is informed

of promising avenues of exploration via discrete search,

while discrete search is informed by feedback from motion

planning. Our approach uses discrete leads through possible

mode transitions to inform planning; successes and failures

in planning inform the discrete layer. Notably, our framework

and other manipulation planners based on SYCLOP can avoid

the backtracking found in most TMP frameworks [44], but

we do not address tasks with temporal goals, e.g., [45].

III. PRELIMINARIES

In this work, we consider manipulation planning problems

that are multi-modal. These are composed of a finite set

of mode families, each containing a continuous infinity of

modes (as in [1]). Solving these problems requires balance

between planning in a single mode and planning transitions

between modes. Single-mode planning, where each mode

defines constraints on the motion of the robot, is discussed in

Sec. III-A. Transitioning between modes, e.g., going from not

having an object grasped to grasping the object, is discussed

in Sec. III-B. Finally, Sec. III-C presents mode families and

the multi-modal planning problem.

A. Motion Planning in a Mode

Consider a robot with a configuration space Q. A mode

imposes constraints on a robot’s motion. We consider modes

defined by manifold constraints, shortened to “constraints”.

See [8] for more on planning under manifold constraints.

Consider a robot in a mode ξ. A mode ξ is defined by a

constraint function F ξ : Rn → R
kξ (1 ≤ kξ < n) which is

C2-smooth and is adhered to when F ξ(q) = 0. Planning in

a mode requires finding a path in the mode manifold Mξ , an

(n− kξ)-dimensional smooth submanifold of Rn (Fig. 1a):

Mξ = {q ∈ Q | F ξ(q) = 0}.

Thus, the single-mode motion planning problem is finding

a path from a point qstart ∈ Mξ to some region of interest

Qgoal ⊂ Mξ such that the path is collision-free and satisfies

mode constraints.

B. Mode Transitions

Transitioning between modes is an essential component of

manipulation planning. Consider two modes ξ and ξ′ of a

robot. To transition between ξ and ξ′, a path in Mξ must be

found that ends at a configuration q′ ∈ Mξ ∩Mξ′ . Mξ ∩
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Fig. 1. In a, the lower-dimensional manifold Mξ in a configuration space
Q is shown. A valid path in mode ξ lies on the surface of this manifold. b

shows two mode manifolds, Mξ and Mξ′ , and a path that transitions modes
at a transition configuration q′. c shows a foliation FΞ for a mode family
Ξ, with a transverse manifold ΘΞ. Leaves are shown along the transverse,
including Lθ , which is determined by the configuration q. Although shown
here as planes, leaf manifolds are not necessarily Euclidean. d shows a multi-
modal path over two mode families with foliations FΞ1

and FΞ2
. Here,

transitions occur at the configurations q1, q2, and q3. Each configuration
determines the leaf of the mode family.

Mξ′ is the transition manifold between ξ and ξ′, with q′

being a transition configuration (Fig. 1b). Transitions must

simultaneously satisfy the constraints of mode ξ and ξ′, and

thus are an intersection of manifolds, and are of zero volume

relative to Mξ and Mξ′ :

Mξ∩ξ′ = {q ∈ Q | F ξ(q) = 0 ∧ F ξ′(q) = 0}.

Mξ∩ξ′ can also be empty if no configuration satisfies both

modes (i.e., transitioning is impossible between ξ and ξ′). A

key challenge in multi-modal planning is selecting a mode

that can be transitioned to, as well as finding transition

configurations. To address this challenge, our approach uses

discrete “leads” to inform transition selection, described

in Sec. IV-D. In our approach, we use projection-based

sampling of transition regions to generate candidate transition

configurations, which has a non-zero probability of sampling

the entire transition manifold [8].

C. Multi-Modal Motion Planning

Manipulation problems are inherently continuous, and thus

have a continuous infinity of modes. Consider Ξ, the set of

all modes, which can be partitioned into m disjoint mode

families Ξ1, . . . ,Ξm, each of which defines a foliation.

DEFINITION III.1: Foliation [46]

An n-dimensional manifold M is a foliation if there is

a smooth fiber bundle FM = (Θ,L, π). FM contains a

transverse manifold Θ of dimension k, a set of disjoint,

connected (n− k)-dimensional leaf manifolds Lθ for all θ ∈

Θ, and a smooth surjective bundle projection π : M → Θ.

The union of all leaves
⋃

θ∈Θ
Lθ = M.

A mode family is a foliation following their definition by

a constraint function FΞi and co-parameters θ ∈ ΘΞi , where

ΘΞi is the transverse manifold of dimension kΞi
. Furthermore,

we assume the co-parameters are Euclidean, ΘΞi ⊂ R
kΞi , and

can be modeled as θ ∈ [0, 1]kΞi (this is leveraged in Sec. IV-B

for weighting transitions). A mode ξ in the mode family is

defined by the constraint function and a specific co-parameter

θ, FΞi(q) = θ, also written 〈Ξi, θ〉. A mode corresponds to

a leaf manifold Lθ:

Mξ = Lθ = {q ∈ Q | FΞi(q) = θ}.

Defining mode families as foliations puts manifold constraints

and the definition of modes under one umbrella, enabling

use of the general constrained planning framework presented

in [8]. An example of a foliation is shown in Fig. 1c.

Mode families are intuitively the “classes” of modes. For

example, a mode family could correspond to all placements

of an object on a table: the object could be placed anywhere

on the table, the co-parameter in this case being a two-

dimensional coordinate of the objects placement on the table,

defining the particular mode. Co-parameters are essential to

the efficiency of our method—they enable us to succinctly

encode complicated geometric state of the problem.

Note, transitions are only possible between different mode

families, and not within the mode family itself. For example,

a robot can typically not instantaneously change its grasp; it

will have to perform a regrasp, which corresponds to at least

two mode transitions. The multi-modal planning problem is

thus to find a continuous sequence of collision-free paths,

each of which is a valid path in some mode ending in a valid

transition to the subsequent mode. An example multi-modal

path is shown in Fig. 1d.

IV. OUR MULTI-MODAL MOTION PLANNER

Our algorithm is able to handle problems that interleave

complex discrete structures with difficult continuous single-

mode planning. This discrete structure (e.g., information

about which objects are grasped by which grippers) is

captured by a mode transition graph which we augment with

information from single-mode planning (Sec. IV-B). Based

on this graph, we compute leads—promising sequences of

modes to reach the goal (Sec. IV-D). Leads are used to

guide the search of a lower-level motion planner, which then

informs edge weights (Sec. IV-C). We combine these layers

of planning synergistically to better inform the overall search.

A. Baseline Method

Our algorithm builds on concepts from [1], which plans

given a similar model of a multi-modal problem. The algo-

rithm presented in [1] transitions between modes by choosing

the next mode using an RRT-like extension scheme, extending

at random. Our approach modifies the extension step by

informing search with a discrete lead, described in Sec. IV-D.

Additionally, [1] uses a “utility-centered expansion strategy,”
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Fig. 2. Visualization of transition graph weights. a) A transition graph for
the “simple monkey” domain. The transition from grasping bar 1 with the
right limb (“Right Bar1”) to grasping bar 2 with the left limb (“Left Bar2”)
is highlighted. b) A contour map of the weights for the highlighted transition
(gathered offline). The co-parameter for grasping bar 1 with the right limb
is plotted on the X-axis, while the co-parameter of grasping bar 2 with the
left limb is plotted on the Y-axis. Darker shading represent higher-weight
(transitions we expect to be difficult). A slice for a specific X-axis co-
parameter (i.e., initial placement of the right gripper) is marked in black, and
shown in c). c) The “simple monkey” domain, with the weights of the slice
from b) visualized over bar 2. The left arm of the robot is shown grasping
bar 2 (highlighted by the arrow), and thus is a transition configuration. The
transition is marked at its co-parameters by a purple point in b). The robot
must grasp bar 2 to eventually reach “Base Goal”, visualized as an orange
region for the base and an example satisfying configuration.

where promising transitions are taken based on a precom-

puted “utility.” Our approach also approximates how likely a

transition is to succeed, but does so online (Sec. IV-C). This

is similar to the weighting done in [4], but for continuously

infinite modes.

Moreover, we use a very general formulation of mode

families: a constraint function FΞ (recall Sec. III). For

example, in Fig. 2c, the constraint that defines the mode family

for grasping the handrail is given as a function of the robot’s

kinematics, requiring the end-effector to be positioned along

the rail. We leverage the general constrained sampling-based

planning framework described in [8] to enable single-mode

planning given general mode constraints (using a manifold-

constrained PRM, which is reused). Mode transitions are

sampled using projection-based sampling over the intersection

of the leaf manifold and destination manifold.

B. Mode Transition Graphs

Key to multi-modal planning is transitioning between

modes. Recall from Sec. III-C there exist a set of mode

families Ξ1, . . . ,Ξm. In addition to it being impossible to

transition between modes within a family, there are potentially

mode families that cannot transition to each other. Consider

a pick-and-place domain with two objects. One encoding has

mode families for picking up either object: Ξobj1 and Ξobj2.

But, the robot’s gripper can only pick up one object at a time.

We encapsulate this encoding as a mode transition graph,

similar to [1]. A mode transition graph G is composed of

vertices V = Ξ1, . . . ,Ξm, where each vertex corresponds to

a mode family. There exist directed edges 〈Ξi,Ξj〉 ∈ E ⊆
V ×V that denote possible valid directed transitions between

mode families (shown in Fig. 2a).

In addition, the transition graph contains statistics on what

transitions are likely to succeed. Attached to every directed

edge 〈Ξsrc,Ξdst〉 are transition weights DΞsrc,Ξdst(θsrc, θdst).
The transition weights DΞsrc,Ξdst(θsrc, θdst) are a distribution

with support over the transverse manifolds for the source and

destination mode families,

DΞsrc,Ξdst(θsrc, θdst) : Θ
Ξsrc ×ΘΞdst → R.

Informally, DΞsrc,Ξdst(θsrc, θdst) captures the difficulty of the

single-mode motion planning problem of transitioning to the

mode ξdst ∈ Ξdst (where ξdst is the mode determined by the

co-parameter θdst ∈ ΘΞdst ) to the mode ξsrc ∈ Ξsrc (where ξsrc

is the mode determined by the co-parameter θsrc ∈ ΘΞsrc ).

Specifically the weights are inversely proportional to the

probability of single-mode motion planning to succeed within

a fixed time budget on the leaf manifold Lθsrc
, θsrc ∈ ΘΞsrc

to any transition configuration that may or may not exist on

the leaf manifold Lθdst
, θdst ∈ ΘΞdst .

Recall from Def. III.1 that the transverse manifolds for a fo-

liation are Euclidean. The transverse weights are maintained

over a Euclidean hypercube, [0, 1]kΞsrc+kΞdst . An example of

these weights is visualized in Fig. 2b. However, these distri-

butions are not known a priori. Estimating these distributions

online is key to effective multi-modal planning. We cover

estimating these distributions in Sec. IV-C.

Consider the example shown in Fig. 2. A robot with two

end-effectors that can climb by grasping bars must position

its base in a goal region above bar 2 (“Base Goal”). The

graph contains all possible transitions; there is no transition

from “{Left, Right} Bar1” to “Base Goal” because it is out

of reach, and none between the same end-effector on a bar as

the robot must always be grasping a bar. The obstacle on one

side of the bar makes movement more difficult, corresponding

to a higher weight (seen in the distribution in Fig. 2b and c).

Intuitively, this shows that if the robot is trying to transition

from “Right Bar1” at the grasped location to “Left Bar2”,

then it is important to consider where it grasps Bar2. Note that

the weights for Fig. 2b were generated by many offline runs,

while our experiments approximate this distribution online

without precomputation.

C. Informing the Transition Graph

As mentioned, the transition weights are meant to capture

the likelyhood that single-mode planning will be successful

in moving from one 〈mode family, co-parameter〉 pair to the

next. We update the weights using a simple weighting scheme,
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based on information gathered during the search. There are

three events that we can use to update the information, given

a single-mode planning instance of 〈Ξsrc, θsrc〉 to 〈Ξdst, θdst〉.

• Planning is Successful: We add a small penalty to the

weight to encourage exploration of alternate routes.

• Planning is Unsuccessful: We add a larger penalty to the

weight to discourage attempting this transition again.

• No Transition Found: That is, no transition configuration

was sampled from 〈Ξsrc, θsrc〉 to 〈Ξdst, θdst〉. We add the

largest penalty to the weight.

Moreover, we add the penalty to all “nearby” co-parameters.

To distribute the weight over nearby co-parameters, the

penalty is applied to all adjacent co-parameter pairs with an

exponential drop off. Thus, search is biased not only against

attempting this transition again, but also nearby “similar”

transitions, as nearby co-parameter pairs will have similar

planning conditions due to continuity. We conjecture this

weighting scheme maintains probabilistic completeness as

we never rule out a possible transition.

Our experiments show that this simple weighting scheme

can dramatically improve runtime on a variety of scenes. We

used fixed weights for all experiments of 3, 5, and 10 respec-

tively for the three weights. Other weighting approaches are

possible, but this simple scheme gave us excellent results.

D. Building Leads

Given a mode family transition graph with suitable weights,

we compute leads to bias our search. Essentially, the idea of a

lead is to suggest the most likely sequence of mode transitions

to reach a destination. In our algorithm, a destination is a

sample at random or from the goal, and the source is an

existing configuration in the search tree. Formally, we have:

DEFINITION IV.1: Augmented Shortest Path Problem

Given a transition graph G, a starting mode specified by a

mode family and co-parameter 〈Ξsrc, θsrc〉, and destination

mode 〈Ξdst, θdst〉, find the lowest cumulative weight path,

〈Ξ1, θ1〉 . . . 〈Ξk, θk〉, that minimizes the total cost:

k−1∑

i=1

DΞi,Ξi+1(θi, θi+1)

Thus, a lead is a sequence of 〈mode family, co-parameter〉
pairs, realized in sequence by single-mode planning. In

practice, we do not produce enough samples to make exact

computations of this shortest path worthwhile. Instead, we

approximate the continuous distribution by discretizing the

co-parameter for each mode family into intervals, tracking

weights over transitions from interval to interval. We use

Dijkstra’s shortest path algorithm over the discretized mode

family transition graph to solve Def. IV.1, generating a lead.

In an iteration of planning, a random configuration and

mode or goal configuration is sampled with some bias. Using

an RRT-like scheme, a node from the existing tree is selected

to expand from. A lead is generated from this node to the

sample, guiding single-mode search to extend the search tree.

Fig. 3. Timing results for three “long monkey” domains. On the right the
“12 Bars” version of the environment is shown, along with the swept volume
of by an example multi-modal plan. On the left, timing results for “6 Bars,”
“9 Bars,” and “12 Bars” are shown for the uniform, Dijkstra, and augmented
methods. Each dot corresponds one of the 30 trials done for each scenario
and planner. Note that as the problems become more challenging (i.e., there
are more bars and thus a longer sequence of transitions needed), the benefits
of using the discrete leads become more pronounced. In this scenario the
extra computation and specificity of the augmented method has no benefits
over the Dijkstra-based method, but the overhead is not significant.

V. EXPERIMENTS

Our experiments are chosen to measure the importance

of the discrete component (building leads) and continuous

component (updating transition weights) of our algorithm in

various scenarios. We compare three algorithms:

1) Uniform, which chooses mode transitions uniformly at

random from the neighboring modes (essentially, an

emulation of [1] by our planner).

2) Dijkstra, which searches for a sequence of mode family

transitions, but does not select suitable co-parameters.

3) Augmented, our proposed method which searches for a

sequence of mode family transitions as well as suitable

co-parameters.

Uniform is the baseline. Many manipulation problems have

challenging discrete structure, in that many transitions are

necessary to achieve the task. Intuitively, Dijkstra should per-

form well when this discrete structure is important, because

good choices of which mode to transition to make the search

much more efficient (e.g., Fig. 3). Augmented should perform

well relative to Dijkstra when the continuous co-parameters

are relatively important (e.g., Fig. 4). Using the augmented

transition graph also allows us solve difficult manipulation

problems (see Fig. 5) more efficiently.

Fig. 3 shows results for the “long monkey” domains. Here,

a “monkey” robot with two end-effectors grasps handrails

to move through the environment (similar to Fig. 2). The

“monkey” has nine degrees of freedom (three for each arm

and three for the pose of the base). There are two mode

families for each bar, corresponding to grasping the bar
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Fig. 4. Timing results for “lateral monkey” domains. On top, the swept volume of an example multi-modal plan is shown for each of the domains.
Obstacles are shown as dark rectangles, and the graspable handrails are shown in green. On bottom, timing results for each environment are shown: each
dot corresponds one of the 30 trials done for each scenario and planner. As the problems become more challenging (i.e., the clutter in the scene increases),
the benefits of the augmented heuristic become more pronounced. This happens because as the weighting scheme helps bias away from known failure
regions and toward unexplored transitions. Note the Y-axis changes between each plot.

Fig. 5. Timing results for the “tall handoff” domain. On the left, five stills are shown from an example generated multi-modal plan in this domain. The
start and goal are shown on the far left and right respectively. The end-effectors are red and blue, the graspable object is purple. An example of a necessary
regrasp to achieve a handoff is shown in the middle. Timing results are shown on the right, 30 trials for each planner. In difficult TMP-like scenarios, the
augmented heuristic makes our search more efficient. The Uniform method experienced four failures, shown as black dots.

with either end-effector—the co-parameter corresponds to

the location grasped on the bar. Fig. 3 shows that Dijkstra’s

works well when the discrete aspect of the problem is the

primary challenge. Intuitively this makes sense as the robot

must traverse many bars—choosing a good order makes the

problem significantly easier. Dijkstra’s helps the robot choose

which rung to grasp.

Fig. 4 shows results in the “lateral monkey” domains,

each domain increasing in clutter. There are eight bars the

monkey can grasp in each domain, with the same “monkey”

robot as before. Fig. 4 shows that we improve significantly

over Dijkstra’s in problems where choosing the right the

co-parameters becomes a significant aspect of the problem.

While similar to the above problem, the bars are much longer;

the greater latitude means where the robot grasps the bar (the

co-parameter) is much more important in this problem.

Fig. 5 shows results for the “tall handoff” domain. In

this case, there are two translating end-effectors that can

grasp a long object. Here, there are seven mode families:

five corresponding to the placement of the object along the

flat surfaces, and a mode family corresponding to each end-

effector grasping the object—the co-parameter corresponds

to where the end-effector grasps the object. Fig. 5 shows that

we can solve complex TMP-like problems. This scenario is

difficult due to obstacles preventing the object from being

removed from the narrow passage while grasped, necessitating

a sequence of handoffs to reach the goal. The robot needs

to repeatedly place the object in order to regrasp the object,

so it may be handed off. This combines a difficult motion

planning problem with the discrete structure inherent to the

problem. Our approach can solve problems intractable in

typical TMP frameworks (e.g., [23]), as search looks for short

tasks plans. Such plans are not feasible, so these methods

waste time by assuming the “best” plan has fewer actions,

while our approach inherently biases towards solving the

motion planning problem using discrete structure as a guide.

VI. DISCUSSION

We have presented a general layered multi-modal planning

framework to solve manipulation planning problems. Our

general formulation enables us to approach and inform search

across a wide variety of problems with continuous infinities

of modes. Moreover, we showed that both discrete leads and

informing discrete search with continuous planning yields

more efficient planning which can scale to complex problems.

Currently, our method provides feasible multi-modal mo-

tion, but not “optimal” motion with respect some cost (e.g.,

minimizing the number of transitions, total path length). Sim-

ilar to optimizing heursitics for sampling-based planners [47],

optimizing multi-modal paths is a fruitful line of future work,

similar to the heuristics used in [6] or joint optimization [41]–

[43]. In the future, we also plan to extend our work to more

complicated scenes such as robots with 3D workspaces and

more complicated mode transition graphs, similar to task and

motion planning domains.
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