

EFFECT OF OXYTETRACYCLINE TREATMENT ON THE GASTROINTESTINAL MICROBIOME OF CRITICALLY ENDANGERED WHITE ABALONE (*Haliotis sorenseni*) TREATED FOR WITHERING SYNDROME

Christine A. Parker-Graham, Ameen Eetemadi, Zeinab Yazdi, Blythe C. Marshman, Malina Loeher, Christine A. Richey, Samantha Barnum, James D. Moore, and Esteban Soto

Highlights

- OTC is the drug of choice for treating abalone for *CaXc*, which is associated with Withering Syndrome.
- Gut microbiome α -diversity is reduced following OTC treatment but recovers by day 203.
- *Fusobacteria* remains absent in OTC-treated animals, even after α -diversity recovers.
- OTC appears safe for immersion treatment of Withering Syndrome for white abalone.

1
2
3 **EFFECT OF OXYTETRACYCLINE TREATMENT ON THE GASTROINTESTINAL**
4 **MICROBIOME OF CRITICALLY ENDANGERED WHITE ABALONE (*Haliotis***
5 ***sorenseni*) TREATED FOR WITHERING SYNDROME**

6
7 Christine A. Parker-Graham^{a,1,2}, Ameen Eetemadi^{b,1}, Zeinab Yazdi^a, Blythe C. Marshman^c, Malina
8 Loher^c, Christine A. Richey^d, Samantha Barnum^e, James D. Moore^c, and Esteban Soto^{a*}

9
10 ^a Department of Medicine & Epidemiology, School of Veterinary Medicine, University of
11 California, Davis, CA, USA.

12 ^b Department of Computer Science, University of California, Davis, CA, USA.

13 ^c Shellfish Health Lab, California Department of Fish and Wildlife, Bodega Bay, CA, USA.

14 ^d Fish Health Lab, California Department of Fish and Wildlife, Rancho Cordova, CA, USA.

15 ^e Real-time PCR Research and Diagnostic Core Facility, School of Veterinary Medicine, University of
16 California, Davis, CA, USA.

17 ¹ These authors contributed equally to this work

18 ² Present address: US Fish and Wildlife Service, Lacey, WA, USA.

19 * Corresponding author at: Department of Medicine & Epidemiology

20
21 School of Veterinary Medicine
22 University of California-Davis
23 2108 Tupper Hall
24 Davis, CA 95616-5270
25 Office number: +1 (530)752-2440
26 sotomartinez@ucdavis.edu

57
58
59
60 30 **Abstract**
61
62

63 31 White abalone (*Haliotis sorenseni*) are critically endangered marine gastropods that are native to
64 kelp forests in the northeastern Pacific. White abalone are highly susceptible to withering
65 syndrome, a fatal bacterial disease caused by *Candidatus Xenohaliotis californiensis* (*CaXc*), an
66 intracellular, order Rickettsiales prokaryote that is endemic throughout the white abalone's range
67 in California and Mexico. Oxytetracycline (OTC) baths at a dose of 500 mg/L are successful in
68 clearing *CaXc* infections from the gastrointestinal tract of infected abalone. The impact of OTC
69 treatment on the diversity and stability of the gut microbiome in white abalone is unknown. The
70 objectives of this study were two-fold: (1) to characterize the gastrointestinal microbiome of
71 clinically-normal white abalone and (2) to compare the gastrointestinal microbiomes of OTC-
72 treated white abalone to those of control animals. Gastrointestinal tracts from five OTC-treated
73 individuals and five untreated controls were sampled at each time point: day 0, one day after the
74 21-day OTC treatment (day 22), and at 203 days post-treatment. Gastrointestinal tract
75 microbiomes were analyzed after amplification and sequence of the 16S rRNA. Gastrointestinal
76 microbiomes of untreated animals were dominated by three core bacterial phyla: *Proteobacteria*,
77 *Fusobacteria*, and *Bacteroidetes*. Reduced Shannon α -diversity and absence of various phyla in
78 the microbiome of OTC-treated animals were observed in samples at day 22. Bacterial profiles
79 were improved in terms of α -diversity at 203 days but some bacterial phyla, mainly
80 *Fusobacteria*, remained absent. All animals remained clinically normal throughout the study
81 period and there was no significant difference in a condition index between the two groups. OTC
82 treatment for withering syndrome appears to be clinically safe in white abalone.
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105 51
106
107
108
109
110
111
112

113
114
115 52 Keywords: White abalone, Withering syndrome, Oxytetracycline, Microbiome, Metagenomics,
116
117 53 *Candidatus Xenohaliotis californiensis*
118
119

120 54 **1. Introduction¹**
121
122

123 55 Numerous populations of *Haliotidae* abalone, including white abalone (*Haliotis sorenseni*), are
124
125 56 in decline worldwide (Cook, 2016; Stierhoff et al., 2012). White abalone are herbivorous grazing
126
127 57 marine snails native to rocky-bottomed kelp forests in the northeastern Pacific. Prior to the 1970s
128
129 58 white abalone numbered in the millions throughout their native range from Point Conception,
130
131 59 California to Baja California, Mexico. Today, the species is at critical risk of extinction in the
132
133 60 wild due to overfishing (NOAA Fisheries, 2020; Catton et al., 2016; Hobday and Tegner,
134
135 61 2000a). Recent surveys estimate that the extant wild white abalone population may be comprised
136
137 62 of as few as 1,600 individuals (1,600-2,500), which is less than 0.1% of baseline historical
138
139 63 abundance (Rogers-Bennett et al., 2002; NOAA Fisheries, 2020). The California fishery for
140
141 64 white abalone closed in 1997 and in 2001 as the species earned the dubious honor of being the
142
143 65 first marine invertebrate listed under the Endangered Species Act (Catton et al., 2016). Despite
144
145 66 these protections, the species has continued in precipitous decline. The White Abalone Recovery
146
147 67 Program includes a captive-rearing program located at Bodega Marine Lab in Bodega Bay,
148
149 68 California, which has successfully cultured white abalone with the intent to re-establish wild
150
151 69 populations throughout the species' native range (Rogers-Bennett et al., 2016). The captive
152
153 70 breeding program started with twenty-one adult white abalone collected from the Channel
154
155 71 Islands, California, between 1999 and 2004. In November 2019, the program released the first
156
157
158
159
160
161
162

163 1 Abbreviations in text: WS- withering syndrome; OTC- oxytetracycline; CaXc- *Candidatus Xenohaliotis*
164
165
166
167
168
californiensis

169
170
171 72 group of approximately 3,000 captive-cultured white abalone back into the wild off the coasts of
172
173 73 Los Angeles and San Diego, California.
174
175
176 74 White abalone face several impediments to survival and recovery, including recruitment failure,
177
178 75 disease, and climate change. Like all members of *Haliotidae*, they are broadcast spawners; as
179
180 76 members of the extant population become increasingly geographically separated, transmission of
181
182 77 gametes and successful recruitment becomes increasingly unlikely (Hobday et al., 2000b). Most
183
184 78 of the remaining white abalone in the wild are separated by long distances from other members
185
186 79 of the species, making them functionally sterile (Stierhoff et al., 2012). Disease also poses a
187
188 80 significant threat to wild abalone populations and recovery efforts (Moore et al., 2000; Tan et al.,
189
190 81 2008; Travers et al., 2008). Withering syndrome (WS), in particular, is a fatal disease caused by
191
192 82 colonization of the abalone host's gastrointestinal tract by an intracellular, order Rickettsiales
193
194 83 prokaryote, identified as *Candidatus Xenohaliotis californiensis* (*CaXc*; Crosson et al., 2014;
195
196 84 Friedman et al., 2000; Moore et al., 2001). *CaXc* appears to compromise the host's ability to
197
198 85 extract nutrients from feed, leading to a fatal wasting syndrome. In white abalone, WS manifests
199
200 86 as profound lethargy, cachexia, and atrophy of the foot muscle as muscle tissue is catabolized for
201
202 87 energy. Subsequent loss of muscle mass and body condition renders the abalone unable to adhere
203
204 88 to substrate and feed properly. Abalone in the end stage of WS are much more easily dislodged
205
206 89 from habitat and preyed upon than their unaffected counterparts. Induction of disease following
207
208 90 infection with *CaXc* and eventual mortality are significantly accelerated in increased water
209
210 91 temperatures, making this disease of special interest with regards to climate change and ocean
211
212 92 warming (Moore et al., 2000). Abalone species such as white (*H. sorenseni*), green (*H. fulgens*),
213
214 93 red (*H. rufescens*), and black (*H. cracherodii*) abalone are susceptible to *CaXc* infection but
215
216 94 clinical expression of WS varies between species and with environmental conditions (Altstatt et
217
218
219
220
221
222
223
224

225
226
227 95 al., 1996; Crosson and Friedman, 2018; Davis et al., 1998; Moore et al., 2009; Vater et al., 2018;
228 96 Vilchis et al., 2005). White abalone have the highest susceptibility and the lowest intrinsic
229 97 resistance to WS of all Pacific abalone species (Crosson and Friedman, 2018; Vater et al., 2018).
230 98 Mortality associated with WS has yet to be observed in wild white abalone populations although
231 99 *CaXc* is present; they may be protected by relatively cold water microenvironments (CDFW
232 100 unpublished observations; NOAA Fisheries, 2020); in contrast, cultured white abalone have
233 101 experienced WS mortalities. The disease poses a considerable threat to captive culture operations
234 102 and wild restoration efforts for white abalone (Moore et al., 2002; Friedman et al., 2007; Vater et
235 103 al., 2018).

246
247 104 Traditionally, antimicrobials have been used in aquaculture facilities worldwide to prevent and
248 105 treat bacterial diseases (Romero et al., 2012). Oxytetracycline (OTC), a broad-spectrum,
249 106 naturally-occurring tetracycline antimicrobial, is effective in reducing or eliminating *CaXc* from
250 107 the gastrointestinal tract of infected red abalone and white abalone (Winkler et al., 2018;
251 108 Friedman et al., 2007; Moore et al., 2019). OTC concentrates in the digestive gland of treated
252 109 abalone and provides protection against reinfection with *CaXc* for numerous months following
253 110 completion of treatment (Friedman et al., 2007; Moore et al., 2019; Rosenblum et al., 2008).
254 111 Bath immersions in OTC are used to treat and protect captive culture populations from WS.
255
256 112 Clinically, OTC treatment is well-tolerated by all abalone examined and there are no significant
257 113 differences in growth rates between treated and untreated red abalone (Moore et al., 2019).
258
259 114 Microbiome homeostasis is critical for abalone's ability to utilize their primary food source,
260 115 kelp, effectively (Nel et al., 2017). It is important to evaluate the potential impact that treatments
261 116 rendered during the captive-raising period may have on the microbiome prior to release into the
262 117 wild. The impact of antimicrobials on the gut microbiome of treated individuals is an emerging
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

281
282
283 118 field of study in human and veterinary medicine. Several studies have shown that antibiotic
284 119 treatment reduces host microbiome diversity and can cause increased colonization of the
285 120 gastrointestinal tracts in human, mouse, marine mammal, and fish patients with pathogenic
286 121 bacteria (Theriot et al., 2014; Langdon et al., 2016; Schmidt et al., 2017; Carlson et al., 2017).
287 122 Nothing is known about the influence of antibiotic treatment on the gastrointestinal microbiome
288 123 of abalone. The goal of this study is to characterize the gastrointestinal microbiome of clinically
289 124 healthy white abalone in a captive-culture setting using 16S metagenomics and to compare the
290 125 microbiomes of animals undergoing routine OTC-treatment for WS with untreated abalone to
291 126 evaluate the impact that OTC treatment has on the gut microbiota.
292
293
294
295
296
297
298
299
300
301
302
303 127 **2. Materials and Methods**
304
305
306 128 **2. 1. Animals**
307
308
309 129 Thirty-one juvenile to young adult white abalone from the 2017 spawning at Bodega Marine Lab
310 130 were enrolled in this study; the animals ranged in weight from 0.27 g to 7.55 g and had shell
311 131 lengths of 12.2 mm to 38.8 mm on day 0. The abalone enrolled in this study were not used for
312 132 any other research purpose prior. Prior to inclusion in the study abalone were considered
313 133 clinically healthy based on visual examination and known to be free of *CaXc* infection by
314 134 periodic tank feces testing with a qPCR protocol. Abalone were housed communally in a flow-
315 135 through system containing natural seawater sourced from Bodega Bay, California, and passed
316 136 through a gravel filter, 21 µm paper cartridge filter, and ultraviolet sterilizer prior to reaching the
317 137 housing tanks. The abalone were fed a mixture of wild kelp *Macrocystis pyrifera* and cultured
318 138 *Palmaria mollis* that was immersed in freshwater for five minutes to reduce the chance of
319 139 exposing animals to endemic *CaXc*. Animals were identified numerically by plastic tags attached
320 140 to their shells with a methacrylate glue.
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

337
338
339
340 141 The general sampling plan was to process five animals immediately prior to treatment (pre-
341 sample, day 0); then to process five animals from each of the OTC and mock (control) treatments
342
343 143 just after the treatment regimen (day 22), and to process five animals from the OTC and mock-
344 treatments upon termination at day 203. Three additional animals were added to each of the OTC
345
346 144 and mock treatment groups in case any mortality occurred prior to termination. Animals were
347
348 145 randomly assigned to the Pre-treatment (n=5), OTC treatment (n=13), and mock treatment
349
350 146 (n=13) groups. The OTC and mock treatment groups were housed in two separate containers
351
352 147 throughout the study.

356
357 149 Animals in the treated groups were exposed to the standard OTC bath treatment used to
358
359 150 eliminate *CaXc* in abalone (Moore et al., 2019). This treatment consists of eight 24-hour
360
361 151 immersions in an OTC bath (500 mg/L) over a period of twenty-one days. The sampling days
362
363 152 were selected to correspond with the end of OTC treatment (day 22 sampling) and six months
364
365 153 following treatment (day 203). Mock-treated animals were handled exactly the same way as
366
367 154 OTC treated animals, except that oxytetracycline was not added to their holding tank.

369
370 155 2. 2. Experimental Methods
371
372

373 156 On day 0 the five animals randomly assigned to the Pre-treatment group were processed.
374
375 157 Animals were weighed and measured (maximum shell length) and body condition index (c.i.)
376
377 158 was calculated for each animal (c.i. = total shell length, cm/[total weight, g]³). The animals were
378
379 159 removed from the shell and the head (including the mouth and distal esophagus) was sharply
380
381 160 incised from the body using a scalpel blade. The gastrointestinal tract was isolated from
382
383 161 surrounding tissue by dissecting away the epipodium, gonads, gills, and as much of the foot and
384
385 162 shell muscles and surrounding connective tissue as possible. The resultant gut tissue bloc was
386
387 163 weighed, placed in a 50 ml centrifuge tube containing 0.1 % Tween80 (Sigma-Aldrich Corp, St.

393
394
395
396
397 164 Louis, MO, USA) in 0.22 μ m filtered seawater and rocked back and forth ten times to remove
398 165 bacteria on external surfaces. The rinse was repeated with a new tube and Tween80 solution and
399 166 the tissue was immediately frozen at -80 °C in sterile cryovials labeled with the animal's
400 167 identification number, date, and study group. On day 22 and day 203, five animals from each of
401 168 the OTC and mock treatment groups were randomly selected from their holding tanks and an
402 169 identical dissection and sample preparation protocol was used, except that the Tween80 rinse
403 170 solution volume used on day 203 was 20 ml because the animals had grown significantly. All
404 171 samples were held frozen at -80 °C until processing as described below.
405
406
407
408
409
410
411
412
413 172 2.3. Library Preparation and Template Preparation/Enrichment.
414
415
416 173 DNA of abalone tissues was extracted following manufacturer's guidelines for the DNeasy
417 174 Blood and Tissue Kit (Qiagen, Germantown, MD, USA). The Ion 16S™ Metagenomics Kit,
418 175 (ThermoFisher Scientific, Carlsbad, CA, USA) which uses two primer pools to amplify seven
419 176 hypervariable regions (V2, V3, V4, V6, V7, V8, and V9) of bacterial 16S rRNA and enables
420 177 detection of a broad-range of bacteria from complex mixed populations, was used to detect
421 178 bacterial phyla in this study. Briefly, 20 ng of DNA was amplified through 25 cycles with the Ion
422 179 16S™ Metagenomics Kit. After purification using the Agencourt AMPure XP beads (Beckman
423 180 Coulter, Pasadena, CA, USA) according to the manufacturer's procedure, 1 μ l of each PCR was
424 181 run on a 2100 Bioanalyzer® (Agilent, Santa Clara, CA, USA) to determine concentration and to
425 182 confirm successful PCR. The entire PCR product underwent end repair and was purified with XP
426 183 beads. Adapter and Ion Xpress Barcodes were ligated to allow pooling of all the samples for
427 184 sequencing and each sample received a unique barcode. The samples were purified again with
428 185 the XP beads and 7 cycles of PCR were performed to increase the number of amplicons and to
429 186 select for amplicons with adapters. Samples were purified with XP beads and 1 μ l was run on a
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

449
450
451 187 2100 Bioanalyzer® to determine a final library concentration. The library was diluted to 100 pM
452
453 188 prior to template preparation on the Ion OneTouch™ using the Ion PGM™ Hi-Q™ View OT2
454
455 189 kit (ThermoFisher Scientific, Carlsbad, CA, USA) according to manufacturer's procedure. The
456
457 190 template preparation is required to form template-positive Ion Spear™ particles (IPS), which
458
459 191 contain clonally amplified DNA. IPS were then enriched on the Ion OneTouch™ ES Instrument
460
461 192 (ThermoFisher Scientific, Carlsbad, CA, USA) to select IPS with only one amplified DNA
462
463 193 amplicon.
464
465
466

467 194 2.3.1. Sequencing with Person Genome Machine (PGM™)
468
469 195 The PGM™ (ThermoFisher Scientific, Carlsbad, CA, USA) was set up for initialization using
470
471 196 the Ion PGM™ Hi-Q™ View Sequencing Kit (ThermoFisher Scientific, Carlsbad, CA, USA)
472
473 197 according to manufacturer's procedure. An Ion 314™ Chip was loaded with half of the IPS and
474
475 198 run on the PGM™ with the Torrent Suite™ System software (ThermoFisher Scientific,
476
477 199 Carlsbad, CA, USA).

478 200 2.4. Microbiome Data Analysis
481
482

483 201 Raw ThermoFisher Ion Xpress “.bam” files were converted to fastq format using samtools-1.9
484
485 202 (Li et al., 2009). For metagenomic analysis, DADA2 pipeline (Callahan et al., 2016) version 1.10
486
487 203 implemented in R version 3.5.2 was used as described online
488
489 204 (benjneb.github.io/dada2/bigdata.html). First, quality control was performed by removing 16S
490
491 205 rRNA reads that were chimeric, shorter than 240 bp, or had at least two expected errors. In
492
493 206 addition, longer reads were truncated at 240bp since read qualities decreased sharply
494
495 207 afterward. Approximately 24% of the total reads were marked as high quality. Next, *de novo*
496
497 208 sequence assembly was performed. Then SILVA database (Quast et al., 2012) version 32 was
498
499 209 used to identify bacterial taxonomies associated with 16S rRNA assembled sequences. The
500
501
502
503
504

505
506
507 210 phylogenetic tree was constructed next using phangorn (Schliep, 2011) R library. Taxa that were
508 211 only observed in a single sample were filtered and taxa counts were transformed to relative
509 212 abundances using PhILR library (Silverman et al., 2017). Finally, phyloseq (McMurdie and
510 213 Holmes, 2013), ggplot2 (Wickham, 2016), and ggpubr (Kassambara, 2017) libraries were used
511 214 for data visualization and statistical analysis.

515 215 **3. Results**

516 216 Microbiome Shannon α -diversity (i.e. diversity of microbial species within each sample) was
517 217 significantly reduced in the digestive tracts of OTC-treated white abalone between day 0 and day
518 218 22, but recovered by day 203 (Figure 1). α -diversity differences among other treatment groups
519 219 and time points were not significant ($p > 0.05$) suggesting that OTC treatment is an important
520 220 factor influencing intestinal microbiome diversity of OTC-treated white abalone. β -diversity
521 221 analysis (Figure 2) shows that microbiome profiles are similar in each group across different
522 222 timepoints. Furthermore, there is a consistent shift between day 22 and day 203 in the microbiome
523 223 profiles of OTC-treated white abalone which is not observed in controls across different time
524 224 points. Phylogenetic trees relating microbiome populations of control and treated samples at
525 225 various time points is presented in supplementary Figure 1.

526 226 Despite recovering α -diversity over the course of the study period, animals in the OTC-treated
527 227 group showed a notable absence of bacteria within the phylum *Fusobacteria* at day 22 and day
528 228 203 (Figure 3). The absence of the *Fusobacteria* phylum in the OTC-treated group may explain
529 229 the distinguishable difference in microbiome profiles between OTC-treated and mock samples at
530 230 day 203 (Figure 2).

561
562
563 231 From a clinical perspective, animals in both the OTC-treated and mock groups remained normal
564 232 throughout the duration of the study. Individuals in both groups continued to eat and ambulate
565 233 normally throughout the study period. A one-way ANOVA on ranks comparing the condition
566 234 indexes of five pre-treatment animals and the five treated and mock-treated groups at days 22
567 235 and 203 showed no significant differences ($p= 0.149$). There was no mortality in either group
568 236 during the study period. Adverse side effects such as anorexia and lethargy have been
569 237 documented in other veterinary species in association with OTC therapy but, notably, no adverse
570 238 side effects (ie: anorexia or lethargy) were observed in white abalone in this study.
571
572
573
574
575
576
577
578
579

580 239 **4. Discussion**
581
582

583 240 This study identified three core bacterial phyla that made up the majority of the gut microbiome
584 241 in the untreated white abalone: *Proteobacteria*, *Fusobacteria*, and *Bacteroidetes*. There was no
585 242 significant difference in this composition of the microbiome in untreated animals over the course
586 243 of the study. The predominance of *Proteobacteria* is consistent with what has been documented
587 244 in numerous species of marine invertebrates, such as Eastern oysters (*Crassostrea virginica*),
588 245 blue-rayed limpets (*Patella pellucida*), and green sea urchins (*Lytechinus variegatus*) (King et
589 246 al., 2012; Chauhan et al., 2014; Dudek et al., 2014; Hakin et al., 2016). More specifically,
590 247 *Proteobacteria* was also the dominant bacterial phylum identified in the gut in studies of several
591 248 *Haliothis* species, including variously colored abalone (*H. diversicolor*), European abalone (*H.*
592 249 *tuberculata*), and green lip abalone (*H. laevigata*) (Zhao et al., 2018; Huang et al., 2018; Gobet
593 250 et al., 2018; Danckert, 2020). Surprisingly, bacteria within the phylum *Tenericutes* were found in
594 251 very small numbers in the control animals, which is contrary to what has been seen in green
595 252 abalone (*H. fulgens*) and pink abalone (*H. corrugata*) (Cicala et al., 2018).
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

617
618
619
620 253 The putatively robust population of *Fusobacteria* in the microbiome of *Haliotis* species is an
621 254 interesting finding and it may correlate to an aquatic lifestyle. *Fusobacteria* has been found in
622 255 high abundances in the gastrointestinal tracts of sea squirts (*Ciona intestinalis*) and several fish
623 256 species, such as channel catfish (*Ictalurus punctatus*), largemouth bass (*Micropterus salmoides*),
624 257 bluegill (*Lepomis macrochirus*), and zebrafish (*Danio rerio*) (Dishaw et al., 2014; Larsen et al.,
625 258 2014; Roeseler et al., 2011). Several mammalian, avian, and reptilian species that are associated
626 259 with aquatic or semi-aquatic life histories have been shown to have *Fusobacteria* as a dominant
627 260 bacteria in their gastrointestinal tracts (Sun et al. 2018; Hird, 2017; Nelson et al., 2012; Keenan
628 261 et al., 2013). Indeed, marine mammals have a significantly greater average relative abundance of
629 262 *Fusobacteria* in their intestinal tracts than terrestrial mammals (Nelson et al., 2012; Nelson et al.,
630 263 2013). *Fusobacteria* was the most commonly identified bacterial phylum in the lower
631 264 gastrointestinal tracts of American alligators (*Alligator mississippiensis*), which was a novel
632 265 finding as *Firmicutes* and *Bacteroidetes* are the dominant bacterial phyla in the intestinal tracts
633 266 of most other species of reptiles (Keenan et al., 2013). Interestingly, of the species known to
634 267 harbor large populations of *Fusobacteria* in their gastrointestinal tracts normally, the white
635 268 abalone appears to be the only strictly herbivorous species represented.
636
637 269 It is possible that bacteria within the phylum *Fusobacteria* play an important role in digestion
638 270 and energy production. In humans *Fusobacterium varium* is a minor, but important, component
639 271 of the normal gastrointestinal microbiome because of its ability to ferment amino acids and
640 272 glucose and produce butyrate (Potrykus et al., 2008; Potrykus et al., 2007). It is also an important
641 273 competitor for pathogenic bacteria like *Shigella* and *Salmonella* (Potrykus et al., 2008).
642
643 274 *Fusobacteria* is a minor component of the gastrointestinal microflora in oscar cichlids
644 275 (*Astronotus ocellatus*) and angelfish (*Pterophyllum scalare*), but in both host species

673
674
675 276 *Fusobacteria* produces important digestive enzymes, including alkaline and acid phosphatases,
676
677 277 esterase, lipase, and α -glucuronidase (Ramirez and Dixon, 2003). These digestive enzymes play
678
679 278 important roles in digestion, such as absorption of lipid, glucose, and calcium, and the
680
681 279 breakdown of proteins and carbohydrates. When transfaunated into gnotobiotic mice, human
682
683 280 strains of *Fusobacteria* produce polyamines from pectin, a soluble indigestible polysaccharide
684
685 281 found in plant cell walls, and these polyamines can be used by the host (Noack et al., 2000). This
686
687 282 may be a key to why *Fusobacteria* is so prevalent in the gastrointestinal tract of abalone. As
688
689 283 grazers, abalone exploit a wide range of green, red, and brown algae as food resources. White
690
691 284 abalone rely heavily on giant kelp (*Macrocystis pyrifera*), which is a large, perennial species of
692
693 285 brown algae. Giant kelp contains algin, an anionic heteropolysaccharide abundant in the cell
694
695 286 walls of brown algae. Unlike other seaweed hydrocolloids, such as carrageenan, that owe their
696
697 287 ionic characteristics to sulfate groups, algin is anionic because of its carboxyl groups, which
700
701 288 makes it more similar to pectin than to other seaweed hydrocolloids (Barbaroux). *Fusobacteria*
702
703 289 may catabolize algin similarly to the manner in which it acts on pectin and enables the host to
704
705 290 produce amino acids through bacterial synthesis, thus allowing abalone to exploit a wider range
706
707 291 of marine vegetation.

709
710 292 Microbiome resilience is critical for abalone because the gut microbiome plays an important role
711
712 293 in their overall health and ability to digest marine vegetation (Nel et al., 2017; Cicala et al.,
713
714 294 2018). While studies involving other marine invertebrates have shown that location, season, diet,
715
716 295 and water temperature all profoundly affect the composition of the host's microbiome (Lokmer
717
718 296 et al., 2016a; Pierce et al., 2015), the microbiome of *Haliotis* species changes seasonally but
719
720 297 appears to remain fairly stable despite changes in diet (Gobet et al., 2018). In ruminants, volatile
721
722 298 fatty acids in acidic pH are toxic to some bacterial phyla, so the rumen environment selects for

729
730
731 299 specialized bacterial species that can tolerate these extreme conditions. The gastrointestinal
732 environment of *Haliothis* species is microaerophilic/anaerobic and acidic; like in ruminants, this
733 300 environment may lend itself to developing a specialized and stable bacterial profile (Gobet et al.,
734 301 2018).
735
736 302 2018).
737
738 303 A decrease in bacterial diversity and quantity was expected after treatment with oxytetracycline,
739 304 as it is a broad-spectrum antimicrobial. This study showed a decrease in gut microbiome α -
740 305 diversity of OTC-treated abalone on day 22, which corresponded to the completion of a full
741 306 treatment course with OTC; α -diversity was restored by day 203 in OTC-treated animals, but
742 307 with notable differences in the bacterial composition. Studies evaluating the effect of
743 308 antimicrobials on the gut microbiome are generally lacking in aquatic veterinary medicine, but a
744 309 study of Pacific oysters (*Crassostrea gigas*) yielded similar decreased microbiome α -diversity
745 310 after a cohort of oysters was treated with a combination of unspecified antibiotics (Lokmer et al.,
746 311 2016b). As Gram-negative bacteria, *Fusobacteria* are within the antimicrobial spectrum of
747 312 natural tetracyclines like oxytetracycline; indeed, oxytetracycline is used as a therapeutic against
748 313 pathogenic strains of *Fusobacteria*, like *F. necrophorum*, in veterinary species (Lechtenberg et
749 314 al., 1997). It appears that the decline in *Fusobacteria* observed in this study correlated to
750 315 oxytetracycline therapy. Bacteria within the phylum *Fusobacteria*, however, are found only
751 316 rarely in seawater and in association with marine vegetation (Gobet et al., 2018), which may
752 317 explain why they did not repopulate the gut of treated animals as readily as the other bacterial
753 318 phyla.
754
755 319 In this study it was not immediately clear whether the change in gut microbiota composition
756 320 would compromise a white abalone's ability to compete in the wild, whether by compromising
757 321 their ability to digest food or by compromising their immunity to disease. Antibiotics disturb the
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

785
786
787 322 gut microbiome community and may decrease colonization resistance which leads to increased
788 323 downstream disease susceptibility and mortality in the host, and microbiome profiles have been
789 324 identified as potentially important factors in shellfish mortality events (Schmidt et al., 2017;
790 325 King et al., 2019a; King et al., 2019b). While the OTC bath treatment we used was reported to
791 326 cause no adverse effects on growth or condition index in red abalone (Moore et al. 2019) a
792 327 separate study with red abalone using an alternate OTC bath protocol reported slower growth
793 328 over eleven months in treated animals versus untreated controls (Winkler et al. 2018).
800
801
802 329 Significantly, Lokmer and colleagues found that antimicrobial treatment of Pacific oysters
803 330 (*Crassostrea gigas*) actually increased survival after animals were translocated; in this study,
804 331 oysters that were not treated with an antibiotic prior to translocation experienced a significantly
805 332 higher mortality rate than oysters treated with an antibiotic prior to translocation (Lokmer et al.,
806 333 2016b). The authors speculate that part of this increased survival in treated animals was due to
807 334 the decreased diversity and “reset” of the gut microbiome following antimicrobial therapy.
808
809 335 Because the diversity of bacteria within the gastrointestinal tract was reduced in antimicrobial-
810 336 treated oysters there were fewer negative interactions within the microbiome as novel bacteria
811 337 were introduced to the gut at the new location. In one study examining the resilience of the
812 338 microbiome in South African abalone (*H. midae*) gnotobiotic abalone still showed digestive
813 339 enzymatic activity, suggesting that there is a baseline level of digestive enzymatic activity within
814 340 the digestive gland (Erasmus et al., 1997). This suggests that while the microbiome is important
815 341 for digestion, there is a measure of intrinsic enzyme activity within the digestive tract. Whether
816 342 this intrinsic digestive capacity is present in white abalone, and to what extent, is unknown.
817
818 343 No wild white abalone specimens were available for inclusion in this project so it remains
819 344 unknown whether, and to what extent, the gut microbiome of wild abalone differs from those

841
842
843 345 that are raised in the culture setting. Green sea urchins (*Lytechinus variegatus*), for example,
844 346 maintained remarkably similar microbiome profiles between wild and captive-cultured
845 347 individuals, despite the putative differences in feed items consumed and environment (Hakim et
846 348 al., 2016). While the seawater supplied to the animals in our study was sterilized prior to
847 349 reaching the housing tanks and thus an unlikely source of microbes, the macroalgal food items
848 350 that were fed to the study abalone were lightly sanitized by immersion in fresh water for five
849 351 minutes prior to feeding. It is likely that the wild vegetation included in the diet also introduced a
850 352 natural algal holobiont to the study animals' gastrointestinal tract. A significant difference in the
851 353 makeup of captive-cultured white abalone and wild counterparts is not expected.
852
853
854 354 The OTC bath concentration was 500 mg/L, which follows the protocol that Bodega Marine Lab
855 355 currently uses for their white abalone culture operation. In this study OTC appeared to reach
856 356 effective concentrations in the gastrointestinal tracts of treated abalone, given the reduction of
857 357 *Fusobacteria* in the gut microbiomes of treated animals. Previous work on the pharmacokinetics
858 358 of oxytetracycline in red abalone showed that OTC persisted in the digestive gland for
859 359 significantly longer than in the foot muscle (Rosenblum et al., 2008). This study also found that
860 360 there was a significantly higher presence of cations (iron, zinc, and manganese) present in the
861 361 digestive gland versus the foot muscle, leading the authors to speculate that cations may be
862 362 important to retention of OTC. A more recent study showed that the concentrations of cations,
863 363 particularly calcium and magnesium, in seawater can bind OTC and reduce bioavailability of the
864 364 drug in immersion treatments (Vorbach et al., 2019). Cation concentrations in the water were not
865 365 measured in this study, but such measurements would be an important consideration for any
866 366 future studies examining pharmacokinetics of oxytetracycline in abalone.

890
891
892
893
894
895
896

897
898
899
900 367 Further study to investigate the role that *CaXc* plays on the intestinal microbiota of infected
901 368 abalone would further characterize the disease and its effect on infected abalone. A study of
902 369 Sydney rock oysters (*Saccostrea glomerata*) showed that infection with a protozoal parasite
903 370 (*Marteilia sydneyi*) drastically changed the composition of the microbiota of infected animals
904 371 (Green and Barnes, 2010). Probiotics are of increasing interest within aquaculture for their
905 372 purported ability to improve feed conversion rates and growth. Probiotics may be of interest to
906 373 wild translocation projects, such as the one for white abalone. Multiple studies have shown
907 374 benefits to giant abalone (*H. gigantean*), South African abalone (*H. midae*), and disk abalone (*H.*
908 375 *discus hannai*) in terms of growth and immunity with the administration of probiotics with feed
909 376 (Iehata et al., 2009; Macey and Coyne, 2005; Jiang et al., 2013; Iehata et al., 2014; Lee et al.,
910 377 2016). Further study is necessary to quantify the effects of probiotics on white abalone and the
911 378 optimal probiotic combination for this species.

912
913
914
915
916
917
918
919
920
921
922
923
924
925 379 This study suggests that oxytetracycline is safe for white abalone. While there were changes in the
926 380 composition of the microbiome of OTC-treated abalone there were no significant changes in
927 381 growth and weight gain between the treated and untreated control animals. Further study to
928 382 evaluate the impact of the loss of certain bacterial phyla, notably *Fusobacteria*, is necessary to
929 383 fully characterize the long-term impact of OTC-treatment on white abalone.

930
931
932
933
934
935
936 384 **5. Acknowledgements**

937
938
939
940
941
942
943
944
945
946
947
948 385 This work was funded by the University of California, Davis Aquatic Animal Health fellowship
949 386 and the Fisheries Branch, California Department of Fish and Wildlife. The authors would also
950 387 like to thank Dr. Daniel Ben-Aderet for his assistance in sample collection and Patrick Graham
951 388 for his editorial input on this manuscript.

952
949
950
951
952 389 **6. References:**

953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

390 Altstatt, JM, Ambrose RF, Engle JM, Haaker PL, Lafferty KD, Raimondi, PT. 1996. Recent
391 declines of black abalone *Haliotis cracherodii* on the mainland coast of Central California. Mar.
392 Ecol. Prog. Ser. 142, 185–192.

393 Barbaroux O. Production, properties, and uses of alginate, carrageenan and agar.
394 <http://www.fao.org/3/ab728e/AB728E09.htm> (accessed 19 January 2020).

395 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AA, Holmes SP. 2016. DADA2: high-
396 resolution sample inference from Illumina amplicon data. Nat. Methods. 13(7), 581.

397 Carlson JM, Leonard AB, Hyde ER, Petrosino JF, Primm TP. 2017. Microbiome disruption and
398 recovery in the fish *Gambusia affinis* following exposure to broad-spectrum antibiotic. Infect.
399 Drug Resist. 10, 143.

400 Catton CA, Stierhoff KL, Rogers-Bennett L. 2016. Population status assessment and restoration
401 modeling of white abalone *Haliotis Sorenseni* in California. J. Shellfish Res. 35(3), 593–600.

402 Chauhan A, Wafula D, Lewis DE, Pathak A. 2014. Metagenomic assessment of the Eastern
403 oyster-associated microbiome. Genome Announc. 2(5), e01083-14.
404 <https://doi.org/10.1128/genomeA.01083-14>.

405 Cicala F, Cisterna-Céliz JA, Moore JD, Rocha-Olivares A. 2018. Structure, dynamics and
406 predicted functional role of the gut microbiota of the blue (*Haliotis fulgens*) and yellow (*H.*
407 *corrugata*) abalone from Baja California Sur, Mexico.” Peer J. 6, e5830.
408 <http://doi.org/10.7717/peerj.5830>.

409 Cook P. 2016. Recent trends in worldwide abalone production. J. Shellf. Res. 35(3), 581-583.

410 Crosson LM, Friedman CS. 2018. Withering Syndrome susceptibility of northeastern Pacific
411 abalones: A complex relationship with phylogeny and thermal experience. J. Invertebr. Pathol.
412 151, 91–101.

413 Crosson LM, Wight N, VanBlaricom GR, Kiryu I, Moore JD, Friedman CS. 2014. Abalone
414 Withering Syndrome: Distribution, impacts, current diagnostic methods and new findings. Dis.
415 Aquat. Org. 108(3), 261–270.

416 Danckert NP. 2020. Characterising the intestinal microbiome of Australian aquacultured
417 abalone. PhD thesis University of Sydney.

418 Davis GE, Haaker PL, Richards DV. 1998. FISHERIES- the perilous condition of white abalone
419 *Haliotis sorenseni*, Bartsch, 1940. J. of Shellfish Res. 17, 871–876.

420 Dishaw LJ, Flores-Torres J, Lax S, Gemayel K, Leigh B, Melillio D, Mueller MG, Natale L,
421 Zucchetti I, de Santis R, Pinto MR, Litman GW, Gilbert JA. 2014. The gut of geographically
422 disparate *Ciona intestinalis* harbors a core microbiota. PLoS. 9, e93380.
423 <https://doi:10.1371/journal.pone.0093386>.

1009
1010
1011
1012 424 Dudek M, Adams J, Swain M, Hegarty M, Huws S, Gallagher J. 2014. Metaphylogenomic and
1013 425 potential functionality of the limpet *Patella pellucida*'s gastrointestinal tract microbiome.
1014 426 International J of Molecular Sci. 15(10), 18819-18839.

1015
1016 427 Erasmus JH, Cook PA, Coyne VE. 1997. The role of bacteria in the digestion of seaweed by the
1017 428 abalone *Haliotis midae*. Aquaculture. 155, 377-386.

1018
1019 429 Friedman CS, Scott BB, Strenge RE, Vadopalas B, McCormick TB. 2007. Oxytetracycline as a
1020 430 tool to manage and prevent losses of the endangered white abalone, *Haliotis sorenseni*, caused
1021 431 by Withering Syndrome. J. of Shellfish Res. 26(3), 877-886.

1022
1023 432 Gobet A, Mest L, Perrenou M, Dittami SM, Caralp C, Coulombet C, Huchette S, Roussel S,
1024 433 Michel G, Leblanc C. 2018. Seasonal and algal diet-driven patterns of the digestive microbiota
1025 434 of the European abalone *Haliotis tuberculata*, a generalist marine herbivore. Microbiome. 6(60).
1026 435 <https://doi.org/10.1186/s40168-018-0430-7>.

1027
1028 436 Green TJ, Barnes AC. 2010. Bacterial diversity of the digestive gland of Sydney rock oysters,
1029 437 *Saccostrea glomerata* infected with the paramyxean parasite, *Marteilia sydneyi*. J of Appl.
1030 438 Microbiol. 109(2), 613-622.

1031
1032 439 Hakim JA, Koo H, Kumar R, Lefkowitz EJ, Morrow CD, Powell ML, Watts SA, Bej AK. 2016.
1033 440 The gut microbiome of the sea urchin, *Lytechinus variegatus*, from its natural habitat
1034 441 demonstrates selective attributes of microbial taxa and predictive metabolic profiles. FEMS
1035 442 Mirobiol. Ecol. 92(9), fiw146. <https://doi.org/10.1093/femsec/fiw146>.

1036
1037 443 Hird SM. 2017. Evolutionary biology need wild microbiomes. Front in Microbiol. 8(725).
1038 444 <http://doi.org/10.3389/fmicb.2017.00725>.

1039
1040 445 Hobday AJ, Tegner MJ, Haaker PL. 2000a. Over-exploitation of a broadcast spawning marine
1041 446 invertebrate: Decline of the white abalone. Rev. Fish Biol. Fish. 10(4), 493-514.

1042
1043 447 Hobday AJ, Tegner MJ. 2000b. Status review of white abalone (*Haliotis sorenseni*) throughout
1044 448 its range in California and Mexico.

1045
1046 449 Huang ZB, Guo F, Zhao J, Li WD, Ke C. 2018. Molecular analysis of the intestinal bacterial
1047 450 flora in cage-cultured adult small abalone, *Haliotis diversicolor*. Aquaculture Res. 41(11), 760-
1048 451 769.

1049
1050 452 Iehata S, Nakano M, Tanaka R, Maeda H. 2014. Modulation of gut microbiota associated with
1051 453 abalone *Haliotis gigantea* by dietary administration of host-derived *Pediococcus* sp. Ab1.
1052 454 Fisheries Res. 80, 323-331.

1053
1054 455 Iehata S, Inagaki T, Okunishi S, Nakano M, Tanaka R, Maeda H. 2009. Colonization and
1055 456 probiotic effects of lactic acid bacteria in the gut of the abalone *Haliotis gigantea*. Aquacul. 75,
1056 457 1285-1293.

1057
1058 458 Jiang HF, Liu XL, Chang YQ, Liu MT, Wang GX. 2013. Effects of dietary supplementation of
1059 459 probiotic *Shewanella colwelliana* WA64, *Shewanella olleyana* WA65 on the innate immunity

1065
1066
1067
1068 460 and disease resistance of abalone, *Haliotis discus hannai* Ino. Fish and Shellfish Immunol. 35(1),
1069 461 86-91.

1070 462 Kassambara, A. 2017. Ggpubr:‘Ggplot2’ based publication ready plots. R Package Version 0.1.6.
1071
1072 463 Keenan SW, Engel AS, Elsey RM. 2013. The alligator gut microbiome and implications for
1073 464 archosaur symbiosis. Sci Rep. 3, e2877. <https://doi.org/10.1038/srep02877>.

1074
1075 465 King WL, Jenkins C, Go J, Siboni N, Seymour JR, Labbate M. 2019a. Characterisation of the
1076 466 Pacific oyster microbiome during a summer mortality event. Microbial Ecol. 77(2), 502-512.
1077
1078 467 King WL, Jenkins C, Seymour JR, Labbate M. 2019b. Oyster disease in a changing
1079 468 environment: decrypting the link between pathogen, microbiome and environment. Mar.
1080 469 Environ. Res. 143, 124-140.
1081
1082 470 King GM, Judd C, Kuske CR, Smith C. 2012. Analysis of stomach and gut microbiomes of the
1083 471 Eastern oyster (*Crassostrea virginica*) from Coastal Louisiana, USA. PLoS One 7(12), e51475.
1084 472 <https://doi.org/10.1371/journal.pone.0051475>.

1085
1086 473 Langdon A, Crook N, Dantas G. 2016. The effects of antibiotics on the microbiome throughout
1087 474 development and alternative approaches for therapeutic modulation. Genome Med. 8(1), 39.
1088
1089 475 Larsen AM, Mohammed HH, Arias CR. 2014. Characterization of the gut microbiota of three
1090 476 commercially valuable warm water fish species. J. Appl. Microbiol. 116(6), 1396–1404.
1091
1092 477 Lechtenberg KF, Nagaraja TG, Chengappa MM. 1997. Antimicrobial susceptibility of
1093 478 *Fusobacterium necrophorum* isolated from bovine hepatic abscesses. AJVR. 59(1), 44-47.
1094
1095 479 Lee MJ, Lee JJ, Chung HY, Choi SH, Kim BS. 2016. Analysis of microbiota on abalone
1096 480 (*Haliotis discus hannai*) in South Korea for improved product management. Int. J. for Food
1097 481 Micrbiol. 234, 45-52.
1098
1099 482 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R.
1100 483 2009. The sequence alignment/map format and SAMtools. Bioinformatics. 25(16), 2078–2079.
1101
1102 484 Lokmer A, Goedknecht MA, Thieltges DW, Fiorentino D, Kuenzel S, Baines JF, Wegner KM.
1103 485 2016a. Spatial and temporal dynamics of Pacific oyster hemolymph microbiota across multiple
1104 486 scales. Front. Microbiol. 7, 1367. <https://doi.org/10.3389/fmicb.2016.01367>.
1105
1106 487 Lokmer A, Keunzel S, Baines JF, Wegener KM. 2016b. The role of tissue-specific microbiota in
1107 488 initial establishment success of Pacific oysters. Environ. Microbiol. 18(3), 970-987.
1108
1109 489 Macey BM, Coyne VE. 2005. Improved growth rate and disease resistance in farmed *Haliotis*
1110 490 *midae* through probiotic treatment. Aquacul. 245(1-4), 249-261.
1111
1112 491 McMurdie PJ, Holmes S. 2013. Phyloseq: An R package for reproducible interactive analysis
1113 492 and graphics of microbiome census data. PloS One. 8(4), e61217.
1114 493 <https://doi.org/10.1371/journal.pone.0061217>.

1115
1116
1117
1118
1119
1120

1121
1122
1123
1124 494 Moore JD, Finley CA, Robbins TT, Friedman CS. 2002. Withering Syndrome and restoration of
1125 495 Southern California abalone populations. Reports of California Cooperative Oceanic Fisheries
1126 496 Investigations. 43, 112–119.

1127
1128 497 Moore JD, Juhasz CI, Robbins TT, Vilchis LI. 2009. Green abalone, *Haliotis fulgens* infected
1129 498 with the agent of Withering Syndrome do not express disease signs under a temperature regime
1130 499 permissive for red abalone, *Haliotis rufescens*. Mar. Biol. 156(11), 2325–2330.

1131
1132 500 Moore JD, Robbins TT, Friedman CS. 2000. Withering Syndrome in farmed red abalone
1133 501 *Haliotis rufescens*: Thermal induction and association with a gastrointestinal Rickettsiales-like
1134 502 prokaryote. J. of Aquat. Anim. Health. 12(1), 26–34.

1135
1136 503 Moore JD, Robbins TT, Hedrick RP, Friedman CS. 2001. Transmission of the Rickettsiales-like
1137 504 Prokaryote *Candidatus xenohaliotis californiensis* and its role in Withering Syndrome of
1138 505 California abalone, *Haliotis spp.* J. Shellfish Res. 20(2), 867–874.

1139
1140 506 Nel A, Pletschke BI, Jones CLW, Kemp J, Robinson G, Britz PJ. 2017. Effects of kelp *Ecklonia*
1141 507 *maxima* inclusion in formulated feed on the growth, feed utilisation and gut microbiota of South
1142 508 African abalone *Haliotis midae*. Afr. J. Mar. Sci. 39(2), 183–192.

1143
1144 509 Nelson TM, Rogers TL, Brown MV. 2013. The gut bacterial community of mammals from
1145 510 marine and terrestrial habitats. PLoS One. 8(12), e83655.
1146 511 <https://doi.org/10.1371/journal.pone.0083655>.

1147
1148 512 Nelson TM, Rogers TL, Carlini AR, Brown MV. 2012. Diet and phylogeny shape the gut
1149 513 microbiota of Antarctic seals: a comparison of wild and captive animals. Environ. Microbiol.
1150 514 15(4), 1132-1145.

1151
1152 515 NOAA Fisheries Online at: <https://www.fisheries.noaa.gov> (accessed 13 January 2020).

1153
1154 516 Noack J, Dongowski G, Hartmann L, Blaut M. 2000. The human gut bacteria *Bacteroides*
1155 517 *thetaiotaomicron* and *Fusobacterium varium* produce putrescine and spermidine in cecum of
1156 518 pectin-fed gnotobiotic rats. J of Nutrit. 130(5), 1225-1231.

1157
1158 519 Potrykus J, White RL, Bearne SL. 2008. Proteomic investigation of amino acid catabolism in the
1159 520 indigenous gut anaerobe *Fusobacterium varium*. Proteomics. 8, 2691-2703.

1160
1161 521 Potrykus J, Mahaney B, White RL, Bearne SL. 2007. Proteomic investigation of glucose
1162 522 metabolism in the butyrate-producing gut anaerobe *Fusobacterium varium*. Proteomics. 7, 1839-
1163 523 1853.

1164
1165 524 Pierce ML, Ward, JE, Holohan BA, Zhao X, Hicks RE. 2015. The influence of site and season
1166 525 on the gut and pallial fluid microbial communities of the eastern oyster *Crassostrea virginica*
1167 526 (Bivalvia, Ostreidea): community-level physiological profiling and genetic structure.
1168 527 Hydrobiologica. 756, 97-113.

1169
1170 528 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO, Walker
1171 529 BJ, Ashlock LW, Marshman BC. 2016. Implementing a restoration program for the endangered
1172 530 white abalone (*Haliotis sorenseni*) in California. J. Shellfish Res. 35(3), 611–619.

1173
1174
1175
1176

1177
1178
1179
1180 531 Ramirez, RF, Dixon BA. 2003. Enzyme production by obligate intestinal anaerobic bacteria
1181 532 isolated from oscars (*Astronotus ocellatus*), angelfish (*Pterophyllum scalare*) and southern
1182 533 flounder (*Paralichthys lethostigma*). *Aquacul.* 227(1-4), 417-426.
1183
1184 534 Rogers-Bennett L, Aquilino KM, Catton CA, Kawana SK, Walker BJ, Ashlock LW, Marshman
1185 535 BC, Moore JD, Taniguchi IK, Gilardi KV, Cherr, GN. 2016. Implementing a restoration program
1186 536 for the endangered white abalone (*Haliotis sorenseni*) in California. *Journal of Shellfish*
1187 537 *Research* 35:611-618.
1188
1189 538
1190
1191 539 Rogers-Bennett L, Haaker PL, Huff TO, Dayton PK. 2002. Estimating baseline abundances of
1192 540 abalone in California for restoration. *CalCOFI Rep.* 43, 97-111.
1193
1194 541 Romero J, Feijoó CG, Navarrete P. 2012. Antibiotics in aquaculture—use, abuse and alternatives,
1195 542 in: Carvalho E, David GS, Silva RJ (eds), *Health and Environment in Aquaculture*. InTech,
1196 543 Rijeka, Croatia, p. 159.
1197
1198 544 Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF.
1199 545 2011. Evidence for a core gut microbiota in the zebrafish. *ISME J.* 5, 1595-1608.
1200
1201 546 Rosenblum, ES, Robbins, TT, Scott, B. B., Nelson S, Juhasz C, Craigmill A, Tjeerdema, RS,
1202 547 Moore, JD, Friedman, CS. 2008. Efficacy, tissue distribution, and residue depletion of
1203 548 oxytetracycline in WS-RLP infected California red abalone *Haliotis rufescens*. *Aquaculture*
1204 549 277:138-148.
1205
1206 550 Schliep KP. 2011. Phangorn: Phylogenetic analysis in R. *Bioinformatics*. 27(4), 592.
1207
1208 551 Schmidt V, Gomez-Chiarri M, Roy C, Smith K, Amaral-Zettler L. 2017. Subtle microbiome
1209 552 manipulation using probiotics reduces antibiotic-associated mortality in fish. *Msystems* 2 (6),
1210 553 e00133–17.
1211
1212 554 Silverman JD, Washburne AD, Mukherjee S, David LA. 2017. A phylogenetic transform
1213 555 enhances analysis of compositional microbiota data. *eLife*. 6, e21887.
1214 556 <https://doi.org/10.7554/eLife.21887>.
1215
1216 557 Stierhoff KL, Neuman M, Butler JL. 2012. On the road to extinction? Population declines of the
1217 558 endangered white abalone, *Haliotis sorenseni*. *Biol. Conserv.* 152, 46-52.
1218 559 <https://doi.org/10.1016/j.biocon.2012.03.013>.
1219
1220 560 Sun C, Liu H, Zhang Y, Lu C. 2018. Comparative analysis of the gut microbiota of hornbill and
1221 561 toucan in captivity. *Microbiol. Open*. 8, e00786. <https://doi.org/10.1002/mbo3.786>.
1222
1223 562 Tan J, Lancaster M, Hyatt A, van Driel R, Wong F, Warner S. 2008. Purification of a Herpes-
1224 563 like virus from abalone (*Haliotis spp.*) with ganglionitis and detection by transmission
1225 564 electron microscopy. *J. Virol. Methods*. 149(2), 338–341.
1226
1227
1228
1229
1230
1231
1232

1233
1234
1235 565 Theriot CM, Koenigsknecht MJ, Carlson Jr PE, Hatton GE, Nelson AM, Li B, Huffnagle GB, Li
1236 566 JZ, Young VB. 2014. Antibiotic-induced shifts in the mouse gut microbiome and metabolome
1237 567 increase susceptibility to *Clostridium Difficile* infection. *Nature Commun.* 5, 3114.

1238
1239 568 Travers MA, Goic NL, Huchette S, Koken M, Paillard C. 2008. Summer immune depression
1240 569 associated with increased susceptibility of the European abalone, *Haliotis tuberculata* to *Vibrio*
1241 570 *harveyi* infection. *Fish and Shellfish Immunol.* 25(6), 800–808.

1242
1243 571 Vater A, Byrne BA, Marshman BC, Ashlock LW, Moore JD 2018. Differing responses of red
1244 572 abalone (*Haliotis rufescens*) and white abalone (*H. sorenseni*) to infection with phage-associated
1245 573 *Candidatus Xenohaliotis californiensis*. *PeerJ* 6:e5104; DOI 10.7717/peerj.5104.

1246
1247 574 Vilchis LI, Tegner MJ, Moore JD, Friedman CS, Riser KL, Robbins TT, Dayton PK. 2005.
1248 575 Ocean warming effects on growth, reproduction, and survivorship of southern California
1249 576 abalone. *Ecological Applications* 15:469-480.

1250
1251 577 Vorbach BS, Chandasana H, Derendorf H, Yanong RPE. 2019. Pharmacokinetics of
1252 578 oxytetracycline in the great danio (Devario aequipinnatus) following bath immersion. *Aquacul.*
1253 579 498, 12-16.

1254
1255 580 Wickham H. 2016. *Ggplot2: Elegant Graphics for Data Analysis*, second ed. Springer-Verlag,
1256 581 New York.

1257
1258 582 Winkler FM, García R, Valdivia MV, Lohrmann KB. 2018. Assessment of oxytetracycline baths
1259 583 as therapeutic treatment for the control of the agent of Withering Syndrome (WS) in red abalone
1260 584 (*Haliotis rufescens*). *J. of Invertebr. Pathol.* 153, 109–116.

1261
1262 585 Zhao J, Ling Y, Zhang R, Ke C, Hong G. 2018. Effects of dietary supplementation of probiotics
1263 586 on growth, immune responses, and gut microbiome of the abalone *Haliotis diversicolor*.
1264 587 *Aquacul.* 493, 289-295.

1265
1266 588

1267
1268 589

1269
1270 590

1271
1272 591

1273
1274 592

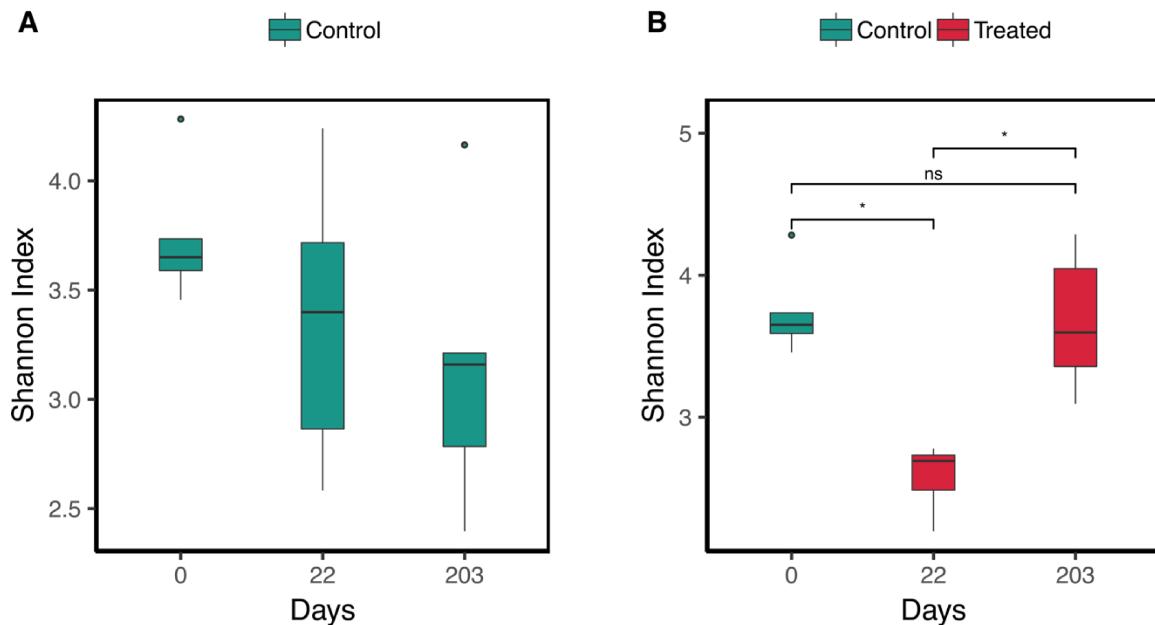
1275
1276 593

1277
1278 594

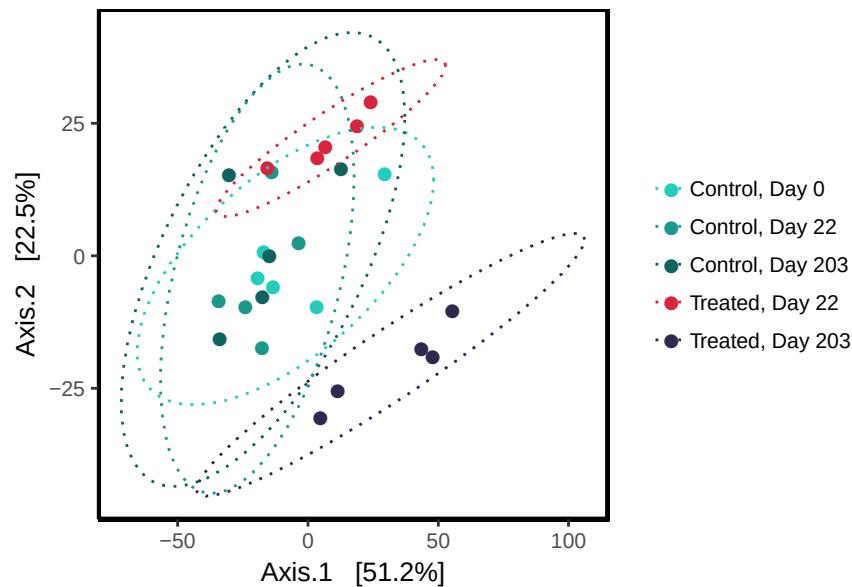
1279
1280 595

1281

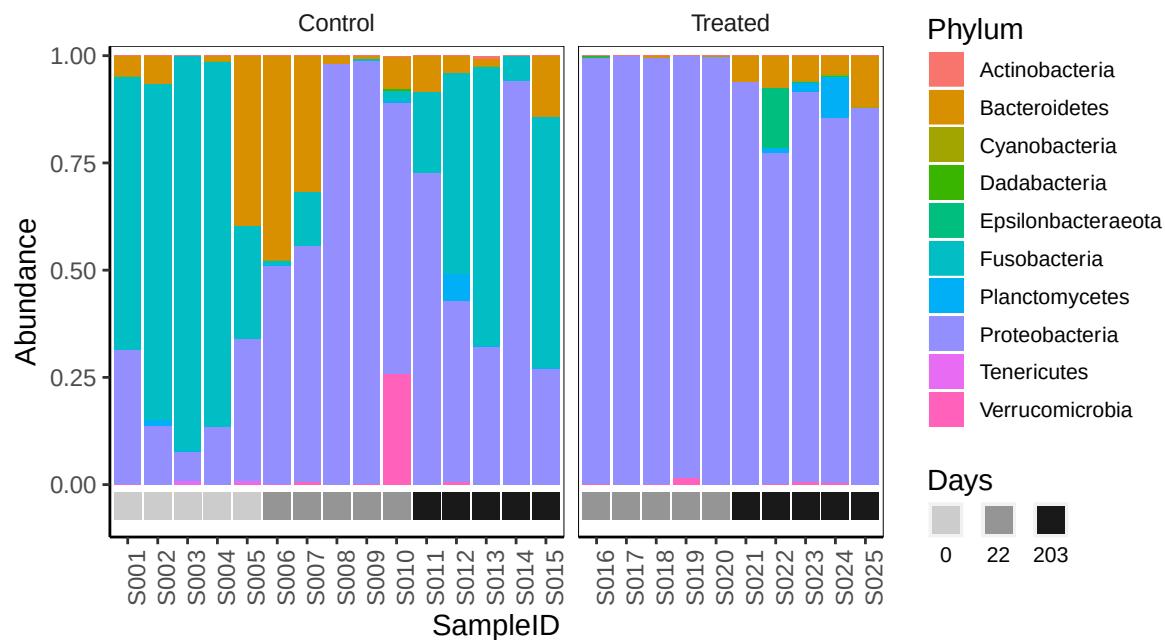
1282
1283 595


1284

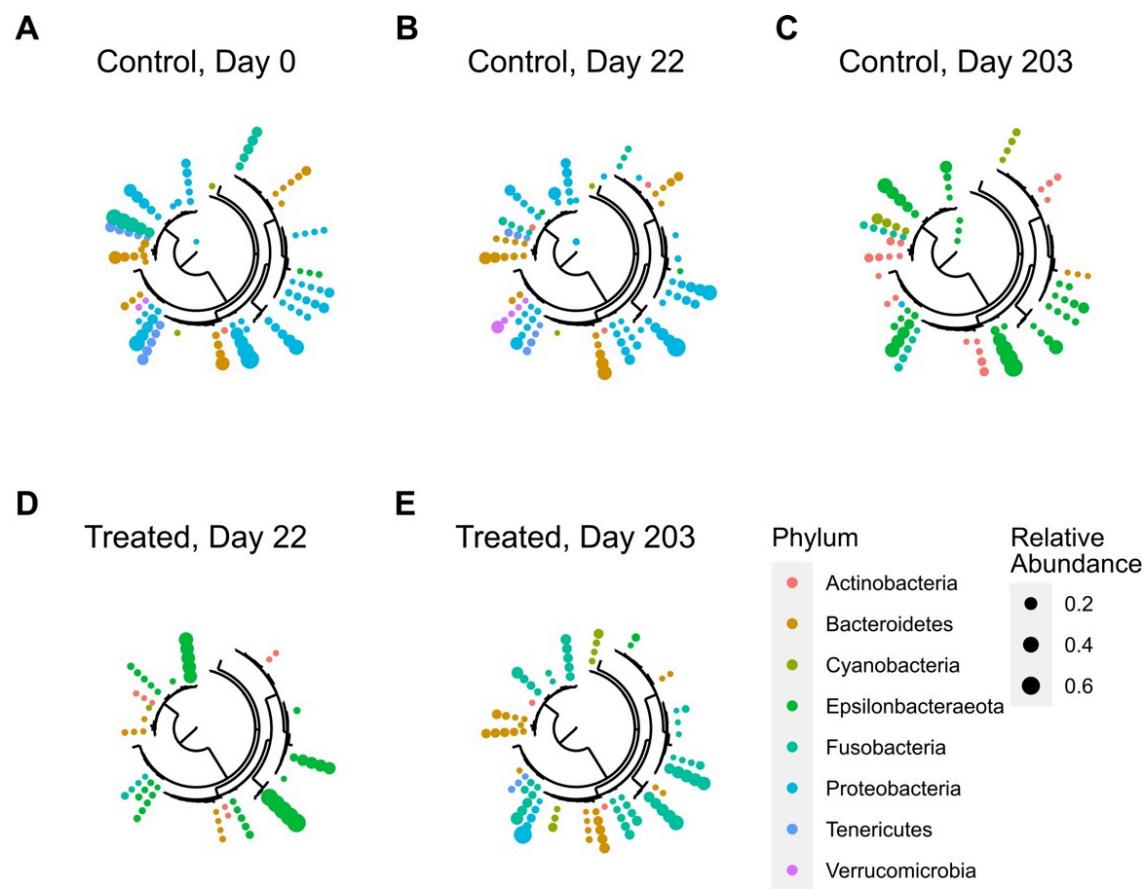
1285


1286

1287


1288

1289
1290
1291
1292 596
1293
1294 597
1295
1296 598
1297
1298 599
1299
1300
1301 600
1302
1303 601 7. Figures:
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322 602
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344


603 **Figure 1. Shannon α -diversities for control and treated samples.** Each box represents five
604 samples including the outliers. **A)** No significant differences between controls at different time
605 points with p-value threshold of 0.05. **B)** Microbiome diversity is significantly reduced on day 22
606 in oxytetracycline treated samples when compared to controls at day 0 ($p < 0.008$) and
607 reconstituted treated microbiomes at day 203 ($p < 0.008$) based on two-sided Wilcoxon rank-sum
608 test.
609

611
612 **Figure 2. Principal coordinate analysis (PCoA) plot based on Euclidean distances after**
613 **PhILR transform for all samples (β-diversity analysis).** The components explain 73.7% of the
614 variance. The microbiome profile of oxytetracycline treated samples at day 22 exhibits
615 differences when it is compared to controls and treated samples at day 203, which corroborates
616 α-diversity analysis results.

619
620 **Figure 3. Relative abundances of bacterial taxa for all samples at phylum level.** Taxa
621 diversity is reduced after treatment but is reconstituted at day 203, albeit with differences.

Supplementary Figure 1. Phylogenetic trees relating microbiome populations of control (A-C) and treated (D-E) samples at various time points. Each point represents the relative abundance (between 0 and 1) of closely related OTUs in one sample, colored based on its taxonomy at the phylum level. Note the considerable difference between control and treated samples at day 22.