
EFFECT OF OXYTETRACYCLINE TREATMENT ON THE GASTROINTESTINAL 

MICROBIOME OF CRITICALLY ENDANGERED WHITE ABALONE (Haliotis 

sorenseni) TREATED FOR WITHERING SYNDROME

Christine A. Parker-Graham, Ameen Eetemadi, Zeinab Yazdi, Blythe C. Marshman, Malina 

Loeher, Christine A. Richey, Samantha Barnum, James D. Moore, and Esteban Soto

Highlights

 OTC is the drug of choice for treating abalone for CaXc, which is associated with 

Withering Syndrome.

 Gut microbiome α-diversity is reduced following OTC treatment but recovers by day 

203.

 Fusobacteria remains absent in OTC-treated animals, even after α-diversity recovers.

 OTC appears safe for immersion treatment of Withering Syndrome for white abalone.
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30 Abstract

31 White abalone (Haliotis sorenseni) are critically endangered marine gastropods that are native to 

32 kelp forests in the northeastern Pacific. White abalone are highly susceptible to withering 

33 syndrome, a fatal bacterial disease caused by Candidatus Xenohaliotis californiensis (CaXc), an 

34 intracellular, order Rickettsiales prokaryote that is endemic throughout the white abalone’s range 

35 in California and Mexico. Oxytetracycline (OTC) baths at a dose of 500 mg/L are successful in 

36 clearing CaXc infections from the gastrointestinal tract of infected abalone. The impact of OTC 

37 treatment on the diversity and stability of the gut microbiome in white abalone is unknown. The 

38 objectives of this study were two-fold: (1) to characterize the gastrointestinal microbiome of 

39 clinically-normal white abalone and (2) to compare the gastrointestinal microbiomes of OTC-

40 treated white abalone to those of control animals. Gastrointestinal tracts from five OTC-treated 

41 individuals and five untreated controls were sampled at each time point: day 0, one day after the 

42 21-day OTC treatment (day 22), and at 203 days post-treatment. Gastrointestinal tract 

43 microbiomes were analyzed after amplification and sequence of the 16S rRNA. Gastrointestinal 

44 microbiomes of untreated animals were dominated by three core bacterial phyla: Proteobacteria, 

45 Fusobacteria, and Bacteroidetes. Reduced Shannon α-diversity and absence of various phyla in 

46 the microbiome of OTC-treated animals were observed in samples at day 22. Bacterial profiles 

47 were improved in terms of α-diversity at 203 days but some bacterial phyla, mainly 

48 Fusobacteria, remained absent. All animals remained clinically normal throughout the study 

49 period and there was no significant difference in a condition index between the two groups. OTC 

50 treatment for withering syndrome appears to be clinically safe in white abalone. 
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52 Keywords: White abalone, Withering syndrome, Oxytetracycline, Microbiome, Metagenomics, 

53 Candidatus Xenohaliotis californiensis

54 1. Introduction1

55 Numerous populations of Haliotidae abalone, including white abalone (Haliotis sorenseni), are 

56 in decline worldwide (Cook, 2016; Stierhoff et al., 2012). White abalone are herbivorous grazing 

57 marine snails native to rocky-bottomed kelp forests in the northeastern Pacific. Prior to the 1970s 

58 white abalone numbered in the millions throughout their native range from Point Conception, 

59 California to Baja California, Mexico. Today, the species is at critical risk of extinction in the 

60 wild due to overfishing (NOAA Fisheries, 2020; Catton et al., 2016; Hobday and Tegner, 

61 2000a). Recent surveys estimate that the extant wild white abalone population may be comprised 

62 of as few as 1,600 individuals (1,600-2,500), which is less than 0.1% of baseline historical 

63 abundance (Rogers-Bennett et al., 2002; NOAA Fisheries, 2020). The California fishery for 

64 white abalone closed in 1997 and in 2001 as the species earned the dubious honor of being the 

65 first marine invertebrate listed under the Endangered Species Act (Catton et al., 2016). Despite 

66 these protections, the species has continued in precipitous decline. The White Abalone Recovery 

67 Program includes a captive-rearing program located at Bodega Marine Lab in Bodega Bay, 

68 California, which has successfully cultured white abalone with the intent to re-establish wild 

69 populations throughout the species’ native range (Rogers-Bennett et al., 2016). The captive 

70 breeding program started with twenty-one adult white abalone collected from the Channel 

71 Islands, California, between 1999 and 2004. In November 2019, the program released the first 

1 Abbreviations in text: WS- withering syndrome; OTC- oxytetracycline; CaXc- Candidatus Xenohaliotis 

californiensis
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72 group of approximately 3,000 captive-cultured white abalone back into the wild off the coasts of 

73 Los Angeles and San Diego, California. 

74 White abalone face several impediments to survival and recovery, including recruitment failure, 

75 disease, and climate change. Like all members of Haliotidae, they are broadcast spawners; as 

76 members of the extant population become increasingly geographically separated, transmission of 

77 gametes and successful recruitment becomes increasingly unlikely (Hobday et al., 2000b). Most 

78 of the remaining white abalone in the wild are separated by long distances from other members 

79 of the species, making them functionally sterile (Stierhoff et al., 2012). Disease also poses a 

80 significant threat to wild abalone populations and recovery efforts (Moore et al., 2000; Tan et al., 

81 2008; Travers et al., 2008). Withering syndrome (WS), in particular, is a fatal disease caused by 

82 colonization of the abalone host’s gastrointestinal tract by an intracellular, order Rickettsiales 

83 prokaryote, identified as Candidatus Xenohaliotis californiensis (CaXc; Crosson et al., 2014; 

84 Friedman et al., 2000; Moore et al., 2001). CaXc appears to compromise the host’s ability to 

85 extract nutrients from feed, leading to a fatal wasting syndrome. In white abalone, WS manifests 

86 as profound lethargy, cachexia, and atrophy of the foot muscle as muscle tissue is catabolized for 

87 energy. Subsequent loss of muscle mass and body condition renders the abalone unable to adhere 

88 to substrate and feed properly. Abalone in the end stage of WS are much more easily dislodged 

89 from habitat and preyed upon than their unaffected counterparts. Induction of disease following 

90 infection with CaXc and eventual mortality are significantly accelerated in increased water 

91 temperatures, making this disease of special interest with regards to climate change and ocean 

92 warming (Moore et al., 2000). Abalone species such as white (H. sorenseni), green (H. fulgens), 

93 red (H. rufescens), and black (H. cracherodii) abalone are susceptible to CaXc infection but 

94 clinical expression of WS varies between species and with environmental conditions (Altstatt et 
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95 al., 1996; Crosson and Friedman, 2018; Davis at al., 1998; Moore et al., 2009; Vater et al., 2018; 

96 Vilchis et al., 2005). White abalone have the highest susceptibility and the lowest intrinsic 

97 resistance to WS of all Pacific abalone species (Crosson and Friedman, 2018; Vater et al., 2018). 

98 Mortality associated with WS has yet to be observed in wild white abalone populations although 

99 CaXc is present; they may be protected by relatively cold water microenvironments (CDFW 

100 unpublished observations; NOAA Fisheries, 2020); in contrast, cultured white abalone have 

101 experienced WS mortalities. The disease poses a considerable threat to captive culture operations 

102 and wild restoration efforts for white abalone (Moore et al., 2002; Friedman et al., 2007; Vater et 

103 al., 2018). 

104 Traditionally, antimicrobials have been used in aquaculture facilities worldwide to prevent and 

105 treat bacterial diseases (Romero et al., 2012). Oxytetracycline (OTC), a broad-spectrum, 

106 naturally-occurring tetracycline antimicrobial, is effective in reducing or eliminating CaXc from 

107 the gastrointestinal tract of infected red abalone and white abalone (Winkler et al., 2018; 

108 Friedman et al., 2007; Moore et al., 2019). OTC concentrates in the digestive gland of treated 

109 abalone and provides protection against reinfection with CaXc for numerous months following 

110 completion of treatment (Friedman et al., 2007; Moore et al., 2019; Rosenblum et al., 2008).  

111 Bath immersions in OTC are used to treat and protect captive culture populations from WS. 

112 Clinically, OTC treatment is well-tolerated by all abalone examined and there are no significant 

113 differences in growth rates between treated and untreated red abalone (Moore et al., 2019). 

114 Microbiome homeostasis is critical for abalone’s ability to utilize their primary food source, 

115 kelp, effectively (Nel et al., 2017). It is important to evaluate the potential impact that treatments 

116 rendered during the captive-raising period may have on the microbiome prior to release into the 

117 wild. The impact of antimicrobials on the gut microbiome of treated individuals is an emerging 
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118 field of study in human and veterinary medicine. Several studies have shown that antibiotic 

119 treatment reduces host microbiome diversity and can cause increased colonization of the 

120 gastrointestinal tracts in human, mouse, marine mammal, and fish patients with pathogenic 

121 bacteria (Theriot et al., 2014; Langdon et al., 2016; Schmidt et al., 2017; Carlson et al., 2017). 

122 Nothing is known about the influence of antibiotic treatment on the gastrointestinal microbiome 

123 of abalone. The goal of this study is to characterize the gastrointestinal microbiome of clinically 

124 healthy white abalone in a captive-culture setting using 16S metagenomics and to compare the 

125 microbiomes of animals undergoing routine OTC-treatment for WS with untreated abalone to 

126 evaluate the impact that OTC treatment has on the gut microbiota. 

127 2. Materials and Methods

128 2. 1. Animals

129 Thirty-one juvenile to young adult white abalone from the 2017 spawning at Bodega Marine Lab 

130 were enrolled in this study; the animals ranged in weight from 0.27 g to 7.55 g and had shell 

131 lengths of 12.2 mm to 38.8 mm on day 0. The abalone enrolled in this study were not used for 

132 any other research purpose prior. Prior to inclusion in the study abalone were considered 

133 clinically healthy based on visual examination and known to be free of CaXc infection by 

134 periodic tank feces testing with a qPCR protocol. Abalone were housed communally in a flow-

135 through system containing natural seawater sourced from Bodega Bay, California, and passed 

136 through a gravel filter, 21 µm paper cartridge filter, and ultraviolet sterilizer prior to reaching the 

137 housing tanks. The abalone were fed a mixture of wild kelp Macrocystis pyrifera and cultured 

138 Palmaria mollis that was immersed in freshwater for five minutes to reduce the chance of 

139 exposing animals to endemic CaXc. Animals were identified numerically by plastic tags attached 

140 to their shells with a methacrylate glue.
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141 The general sampling plan was to process five animals immediately prior to treatment (pre-

142 sample, day 0); then to process five animals from each of the OTC and mock (control) treatments 

143 just after the treatment regimen (day 22), and to process five animals from the OTC and mock-

144 treatments upon termination at day 203. Three additional animals were added to each of the OTC 

145 and mock treatment groups in case any mortality occurred prior to termination. Animals were 

146 randomly assigned to the Pre-treatment (n=5), OTC treatment (n=13), and mock treatment 

147 (n=13) groups. The OTC and mock treatment groups were housed in two separate containers 

148 throughout the study. 

149 Animals in the treated groups were exposed to the standard OTC bath treatment used to 

150 eliminate CaXc in abalone (Moore et al., 2019). This treatment consists of eight 24-hour 

151 immersions in an OTC bath (500 mg/L) over a period of twenty-one days. The sampling days 

152 were selected to correspond with the end of OTC treatment (day 22 sampling) and six months 

153 following treatment (day 203). Mock-treated animals were handled exactly the same way as 

154 OTC treated animals, except that oxytetracyline was not added to their holding tank. 

155 2. 2. Experimental Methods

156 On day 0 the five animals randomly assigned to the Pre-treatment group were processed. 

157 Animals were weighed and measured (maximum shell length) and body condition index (c.i.) 

158 was calculated for each animal (c.i. = total shell length, cm/[total weight, g]3). The animals were 

159 removed from the shell and the head (including the mouth and distal esophagus) was sharply 

160 incised from the body using a scalpel blade. The gastrointestinal tract was isolated from 

161 surrounding tissue by dissecting away the epipodium, gonads, gills, and as much of the foot and 

162 shell muscles and surrounding connective tissue as possible. The resultant gut tissue bloc was 

163 weighed, placed in a 50 ml centrifuge tube containing 0.1 % Tween80 (Sigma-Aldrich Corp, St. 
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164 Louis, MO, USA)  in 0.22 µm filtered seawater and rocked back and forth ten times to remove 

165 bacteria on external surfaces. The rinse was repeated with a new tube and Tween80 solution and 

166 the tissue was immediately frozen at -80 C in sterile cryovials labeled with the animal’s  °

167 identification number, date, and study group. On day 22 and day 203, five animals from each of 

168 the OTC and mock treatment groups were randomly selected from their holding tanks and an 

169 identical dissection and sample preparation protocol was used, except that the Tween80 rinse 

170 solution volume used on day 203 was 20 ml because the animals had grown significantly. All 

171 samples were held frozen at -80 °C until processing as described below.

172 2.3.  Library Preparation and Template Preparation/Enrichment. 

173 DNA of abalone tissues was extracted following manufacturer’s guidelines for the DNeasy 

174 Blood and Tissue Kit (Qiagen, Germantown, MD, USA). The Ion 16S™ Metagenomics Kit, 

175 (ThermoFisher Scientific, Carlsbad, CA, USA) which uses two primer pools to amplify seven 

176 hypervariable regions (V2, V3, V4, V6, V7, V8, and V9) of bacterial 16S rRNA and enables 

177 detection of a broad-range of bacteria from complex mixed populations, was used to detect 

178 bacterial phyla in this study. Briefly, 20 ng of DNA was amplified through 25 cycles with the Ion 

179 16S™ Metagenomics Kit.  After purification using the Agencourt AMPure XP beads (Beckman 

180 Coulter, Pasadena, CA, USA) according to the manufacturer’s procedure, 1 µl of each PCR was 

181 run on a 2100 Bioanalyzer® (Agilent, Santa Clara, CA, USA) to determine concentration and to 

182 confirm successful PCR. The entire PCR product underwent end repair and was purified with XP 

183 beads. Adapter and Ion Xpress Barcodes were ligated to allow pooling of all the samples for 

184 sequencing and each sample received a unique barcode. The samples were purified again with 

185 the XP beads and 7 cycles of PCR were performed to increase the number of amplicons and to 

186 select for amplicons with adapters. Samples were purified with XP beads and 1 µl was run on a 
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187 2100 Bioanalyzer® to determine a final library concentration. The library was diluted to 100 pM 

188 prior to template preparation on the Ion OneTouch™ using the Ion PGM™ Hi-Q™ View OT2 

189 kit (ThermoFisher Scientific, Carlsbad, CA, USA) according to manufacturer’s procedure. The 

190 template preparation is required to form template-positive Ion Spear™ particles (IPS), which 

191 contain clonally amplified DNA. IPS were then enriched on the Ion OneTouch™ ES Instrument 

192 (ThermoFisher Scientific, Carlsbad, CA, USA) to select IPS with only one amplified DNA 

193 amplicon.

194 2.3.1. Sequencing with Person Genome Machine (PGM™) 

195 The PGM™ (ThermoFisher Scientific, Carlsbad, CA, USA) was set up for initialization using 

196 the Ion PGM™ Hi-Q™ View Sequencing Kit (ThermoFisher Scientific, Carlsbad, CA, USA) 

197 according to manufacturer’s procedure.  An Ion 314™ Chip was loaded with half of the IPS and 

198 run on the PGM™ with the Torrent Suite™ System software (ThermoFisher Scientific, 

199 Carlsbad, CA, USA).  

200 2.4.  Microbiome Data Analysis

201 Raw ThermoFisher Ion Xpress “.bam” files were converted to fastq format using samtools-1.9 

202 (Li et al., 2009). For metagenomic analysis, DADA2 pipeline (Callahan et al., 2016) version 1.10 

203 implemented in R version 3.5.2 was used as described online 

204 (benjjneb.github.io/dada2/bigdata.html). First, quality control was performed by removing 16S 

205 rRNA reads that were chimeric, shorter than 240 bp, or had at least two expected errors. In 

206 addition, longer reads were truncated at 240bp since read qualities decreased sharply 

207 afterward. Approximately 24% of the total reads were marked as high quality. Next, de novo 

208 sequence assembly was performed. Then SILVA database (Quast et al., 2012) version 32 was 

209 used to identify bacterial taxonomies associated with 16S rRNA assembled sequences. The 
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210 phylogenetic tree was constructed next using phangorn (Schliep, 2011) R library. Taxa that were 

211 only observed in a single sample were filtered and taxa counts were transformed to relative 

212 abundances using PhILR library (Silverman et al., 2017). Finally, phyloseq (McMurdie and 

213 Holmes, 2013), ggplot2 (Wickham, 2016), and ggpubr (Kassambara, 2017) libraries were used 

214 for data visualization and statistical analysis.

215 3. Results

216 Microbiome Shannon α-diversity (i.e. diversity of microbial species within each sample) was 

217 significantly reduced in the digestive tracts of OTC-treated white abalone between day 0 and day 

218 22, but recovered by day 203 (Figure 1). α-diversity differences among other treatment groups 

219 and time points were not significant (p> 0.05) suggesting that OTC treatment is an important 

220 factor influencing intestinal microbiome diversity of OTC-treated white abalone. β-diversity 

221 analysis (Figure 2) shows that microbiome profiles are similar in each group across different 

222 timepoints. Furthermore, there is a consistent shift between day 22 and day 203 in the microbime 

223 profiles of OTC-treated white abalone which is not observed in controls across different time 

224 points. Phylogenetic trees relating microbiome populations of control and treated samples at 

225 various time points is presented in supplementary Figure 1.

226 Despite recovering α-diversity over the course of the study period, animals in the OTC-treated 

227 group showed a notable absence of bacteria within the phylum Fusobacteria at day 22 and day 

228 203 (Figure 3). The absence of the Fusobacteria phylum in the OTC-treated group may explain 

229 the distinguishable difference in microbiome profiles between OTC-treated and mock samples at 

230 day 203 (Figure 2).
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231 From a clinical perspective, animals in both the OTC-treated and mock groups remained normal 

232 throughout the duration of the study. Individuals in both groups continued to eat and ambulate 

233 normally throughout the study period. A one-way ANOVA on ranks comparing the condition 

234 indexes of five pre-treatment animals and the five treated and mock-treated groups at days 22 

235 and 203 showed no significant differences (p= 0.149). There was no mortality in either group 

236 during the study period. Adverse side effects such as anorexia and lethargy have been 

237 documented in other veterinary species in association with OTC therapy but, notably, no adverse 

238 side effects (ie: anorexia or lethargy) were observed in white abalone in this study. 

239 4. Discussion 

240 This study identified three core bacterial phyla that made up the majority of the gut microbiome 

241 in the untreated white abalone: Proteobacteria, Fusobacteria, and Bacteroidetes. There was no 

242 significant difference in this composition of the microbiome in untreated animals over the course 

243 of the study. The predominance of Proteobacteria is consistent with what has been documented 

244 in numerous species of marine invertebrates, such as Eastern oysters (Crassostrea virginica), 

245 blue-rayed limpets (Patella pellucida), and green sea urchins (Lytechinus variegatus) (King et 

246 al., 2012; Chauhan et al., 2014; Dudek et al., 2014; Hakin et al., 2016). More specifically, 

247 Proteobacteria was also the dominant bacterial phylum identified in the gut in studies of several 

248 Haliotis species, including variously colored abalone (H. diversicolor), European abalone (H. 

249 tuberculata), and green lip abalone (H. laevigata) (Zhao et al., 2018; Huang et al., 2018; Gobet 

250 et al., 2018; Danckert, 2020). Surprisingly, bacteria within the phylum Tenericutes were found in 

251 very small numbers in the control animals, which is contrary to what has been seen in green 

252 abalone (H. fulgens) and pink abalone (H. corrugata) (Cicala et al., 2018).
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253 The putatively robust population of Fusobacteria in the microbiome of Haliotis species is an 

254 interesting finding and it may correlate to an aquatic lifestyle. Fusobacteria has been found in 

255 high abundances in the gastrointestinal tracts of sea squirts (Ciona intestinalis) and several fish 

256 species, such as channel catfish (Ictalurus punctatus), largemouth bass (Micropterus salmoides), 

257 bluegill (Lepomis macrochirus), and zebrafish (Danio rerio) (Dishaw et al., 2014; Larsen et al., 

258 2014; Roeseler et al., 2011). Several mammalian, avian, and reptilian species that are associated 

259 with aquatic or semi-aquatic life histories have been shown to have Fusobacteria as a dominant 

260 bacteria in their gastrointestinal tracts (Sun et al. 2018; Hird, 2017; Nelson et al., 2012; Keenan 

261 et al., 2013). Indeed, marine mammals have a significantly greater average relative abundance of  

262 Fusobacteria in their intestinal tracts than terrestrial mammals (Nelson et al., 2012; Nelson et al., 

263 2013). Fusobacteria was the most commonly identified bacterial phylum in the lower 

264 gastrointestinal tracts of American alligators (Alligator mississippiensis), which was a novel 

265 finding as Firmicutes and Bacteroidetes are the dominant bacterial phyla in the intestinal tracts 

266 of most other species of reptiles (Keenan et al., 2013). Interestingly, of the species known to 

267 harbor large populations of Fusobacteria in their gastrointestinal tracts normally, the white 

268 abalone appears to be the only strictly herbivorous species represented.

269 It is possible that bacteria within the phylum Fusobacteria play an important role in digestion 

270 and energy production. In humans Fusobacterium varium is a minor, but important, component 

271 of the normal gastrointestinal microbiome because of its ability to ferment amino acids and 

272 glucose and produce butyrate (Potrykus et al., 2008; Potrykus et al., 2007). It is also an important 

273 competitor for pathogenic bacteria like Shigella and Salmonella (Potrykus et al., 2008). 

274 Fusobacteria is a minor component of the gastrointestinal microflora in oscar cichlids 

275 (Astronotus ocellatus) and angelfish (Pterophyllum scalare), but in both host species 
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276 Fusobacteria produces important digestive enzymes, including alkaline and acid phosphatases, 

277 esterase, lipase, and α-glucuronidase (Ramirez and Dixon, 2003). These digestive enzymes play 

278 important roles in digestion, such as absorption of lipid, glucose, and calcium, and the 

279 breakdown of proteins and carbohydrates. When transfaunated into gnotobiotic mice, human 

280 strains of Fusobacteria produce polyamines from pectin, a soluble indigestible polysaccharide 

281 found in plant cell walls, and these polyamines can be used by the host (Noack et al., 2000). This 

282 may be a key to why Fusobacteria is so prevalent in the gastrointestinal tract of abalone. As 

283 grazers, abalone exploit a wide range of green, red, and brown algae as food resources. White 

284 abalone rely heavily on giant kelp (Macrocystis pyrifera), which is a large, perennial species of 

285 brown algae. Giant kelp contains algin, an anionic heteropolysaccharide abundant in the cell 

286 walls of brown algae. Unlike other seaweed hydrocolloids, such as carrageenan, that owe their 

287 ionic characteristics to sulfate groups, algin is anionic because of its carboxyl groups, which 

288 makes it more similar to pectin than to other seaweed hydrocolloids (Barbaroux). Fusobacteria 

289 may catabolize algin similarly to the manner in which it acts on pectin and enables the host to 

290 produce amino acids through bacterial synthesis, thus allowing abalone to exploit a wider range 

291 of marine vegetation. 

292 Microbiome resilience is critical for abalone because the gut microbiome plays an important role 

293 in their overall health and ability to digest marine vegetation (Nel et al., 2017; Cicala et al., 

294 2018). While studies involving other marine invertebrates have shown that location, season, diet, 

295 and water temperature all profoundly affect the composition of the host’s microbiome (Lokmer 

296 et al., 2016a; Pierce et al., 2015), the microbiome of Haliotis species changes seasonally but 

297 appears to remain fairly stable despite changes in diet (Gobet et al., 2018). In ruminants, volatile 

298 fatty acids in acidic pH are toxic to some bacterial phyla, so the rumen environment selects for 
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299 specialized bacterial species that can tolerate these extreme conditions. The gastrointestinal 

300 environment of Haliotis species is microaerophilic/anaerobic and acidic; like in ruminants, this 

301 environment may lend itself to developing a specialized and stable bacterial profile (Gobet et al., 

302 2018). 

303 A decrease in bacterial diversity and quantity was expected after treatment with oxytetracyline, 

304 as it is a broad-spectrum antimicrobial. This study showed a decrease in gut microbiome α-

305 diversity of OTC-treated abalone on day 22, which corresponded to the completion of a full 

306 treatment course with OTC; α-diversity was restored by day 203 in OTC-treated animals, but 

307 with notable differences in the bacterial composition. Studies evaluating the effect of 

308 antimicrobials on the gut microbiome are generally lacking in aquatic veterinary medicine, but a 

309 study of Pacific oysters (Crassostrea gigas) yielded similar decreased microbiome α-diversity 

310 after a cohort of oysters was treated with a combination of unspecified antibiotics (Lokmer et al., 

311 2016b). As Gram-negative bacteria, Fusobacteria are within the antimicrobial spectrum of 

312 natural tetracyclines like oxytetracycline; indeed, oxytetracycline is used as a therapeutic against 

313 pathogenic strains of Fusobacteria, like F. necrophorum, in veterinary species (Lechtenberg et 

314 al., 1997). It appears that the decline in Fusobacteria observed in this study correlated to 

315 oxytetracycline therapy. Bacteria within the phylum Fusobacteria, however, are found only 

316 rarely in seawater and in association with marine vegetation (Gobet et al., 2018), which may 

317 explain why they did not repopulate the gut of treated animals as readily as the other bacterial 

318 phyla.  

319 In this study it was not immediately clear whether the change in gut microbiota composition 

320 would compromise a white abalone’s ability to compete in the wild, whether by compromising 

321 their ability to digest food or by compromising their immunity to disease. Antibiotics disturb the 
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322 gut microbiome community and may decrease colonization resistance which leads to increased 

323 downstream disease susceptibility and mortality in the host, and microbiome profiles have been 

324 identified as potentially important factors in shellfish mortality events (Schmidt et al., 2017; 

325 King et al., 2019a; King et al., 2019b). While the OTC bath treatment we used was reported to 

326 cause no adverse effects on growth or condition index in red abalone (Moore et al. 2019) a 

327 separate study with red abalone using an alternate OTC bath protocol reported slower growth 

328 over eleven months in treated animals versus untreated controls (Winkler et al. 2018). 

329 Significantly, Lokmer and colleagues found that antimicrobial treatment of Pacific oysters 

330 (Crassostrea gigas) actually increased survival after animals were translocated; in this study, 

331 oysters that were not treated with an antibiotic prior to translocation experienced a significantly 

332 higher mortality rate than oysters treated with an antibiotic prior to translocation (Lokmer et al., 

333 2016b). The authors speculate that part of this increased survival in treated animals was due to 

334 the decreased diversity and “reset” of the gut microbiome following antimicrobial therapy. 

335 Because the diversity of bacteria within the gastrointestinal tract was reduced in antimicrobial-

336 treated oysters there were fewer negative interactions within the microbiome as novel bacteria 

337 were introduced to the gut at the new location. In one study examining the resilience of the 

338 microbiome in South African abalone (H. midae) gnotobiotic abalone still showed digestive 

339 enzymatic activity, suggesting that there is a baseline level of digestive enzymatic activity within 

340 the digestive gland (Erasmus et al., 1997). This suggests that while the microbiome is important 

341 for digestion, there is a measure of intrinsic enzyme activity within the digestive tract. Whether 

342 this intrinsic digestive capacity is present in white abalone, and to what extent, is unknown. 

343 No wild white abalone specimens were available for inclusion in this project so it remains 

344 unknown whether, and to what extent, the gut microbiome of wild abalone differs from those 
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345 that are raised in the culture setting. Green sea urchins (Lytechinus variegatus), for example, 

346 maintained remarkably similar microbiome profiles between wild and captive-cultured 

347 individuals, despite the putative differences in feed items consumed and environment (Hakim et 

348 al., 2016). While the seawater supplied to the animals in our study was sterilized prior to 

349 reaching the housing tanks and thus an unlikely source of microbes, the macroalgal food items 

350 that were fed to the study abalone were lightly sanitized by immersion in fresh water for five 

351 minutes prior to feeding. It is likely that the wild vegetation included in the diet also introduced a 

352 natural algal holobiont to the study animals’ gastrointestinal tract. A significant difference in the 

353 makeup of captive-cultured white abalone and wild counterparts is not expected. 

354 The OTC bath concentration was 500 mg/L, which follows the protocol that Bodega Marine Lab 

355 currently uses for their white abalone culture operation. In this study OTC appeared to reach 

356 effective concentrations in the gastrointestinal tracts of treated abalone, given the reduction of 

357 Fusobacteria in the gut microbiomes of treated animals. Previous work on the pharmacokinetics 

358 of oxytetracyline in red abalone showed that OTC persisted in the digestive gland for 

359 significantly longer than in the foot muscle (Rosenblum et al., 2008). This study also found that 

360 there was a significantly higher presence of cations (iron, zinc, and manganese) present in the 

361 digestive gland versus the foot muscle, leading the authors to speculate that cations may be 

362 important to retention of OTC. A more recent study showed that the concentrations of cations, 

363 particularly calcium and magnesium, in seawater can bind OTC and reduce bioavailability of the 

364 drug in immersion treatments (Vorbach et al., 2019). Cation concentrations in the water were not 

365 measured in this study, but such measurements would be an important consideration for any 

366 future studies examining pharmacokinetics of oxytetracycline in abalone. 
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367 Further study to investigate the role that CaXc plays on the intestinal microbiota of infected 

368 abalone would further characterize the disease and its effect on infected abalone. A study of 

369 Sydney rock oysters (Saccostrea glomerata) showed that infection with a protozoal parasite 

370 (Marteilia sydneyi) drastically changed the composition of the microbiota of infected animals 

371 (Green and Barnes, 2010). Probiotics are of increasing interest within aquaculture for their 

372 purported ability to improve feed conversion rates and growth. Probiotics may be of interest to 

373 wild translocation projects, such as the one for white abalone. Multiple studies have shown 

374 benefits to giant abalone (H. gigantean), South African abalone (H. midae), and disk abalone (H. 

375 discus hannai) in terms of growth and immunity with the administration of probiotics with feed 

376 (Iehata et al., 2009; Macey and Coyne, 2005; Jiang et al., 2013; Iehata et al., 2014; Lee et al., 

377 2016). Further study is necessary to quantify the effects of probiotics on white abalone and the 

378 optimal probiotic combination for this species. 

379 This study suggests that oxytetracyline is safe for white abalone. While there were changes in the 

380 composition of the microbiome of OTC-treated abalone there were no significant changes in 

381 growth and weight gain between the treated and untreated control animals. Further study to 

382 evaluate the impact of the loss of certain bacterial phyla, notably Fusobacteria, is necessary to 

383 fully characterize the long-term impact of OTC-treatment on white abalone. 
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612 Figure 2. Principal coordinate analysis (PCoA) plot based on Euclidean distances after 

613 PhILR transform for all samples (β-diversity analysis). The components explain 73.7% of the 

614 variance. The microbiome profile of oxytetracycline treated samples at day 22 exhibits 

615 differences when it is compared to controls and treated samples at day 203, which corroborates 

616 α-diversity analysis results.
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620 Figure 3. Relative abundances of bacterial taxa for all samples at phylum level. Taxa 

621 diversity is reduced after treatment but is reconstituted at day 203, albeit with differences.
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622

623

624 Supplementary Figure 1. Phylogenetic trees relating microbiome populations of control (A-

625 C) and treated (D-E) samples at various time points. Each point represents the relative 

626 abundance (between 0 and 1) of closely related OTUs in one sample, colored based on its 

627 taxonomy at the phylum level. Note the considerable difference between control and treated 

628 samples at day 22.
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