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Highlights
e OTC is the drug of choice for treating abalone for CaXc, which is associated with
Withering Syndrome.
¢ Gut microbiome o-diversity is reduced following OTC treatment but recovers by day
203.

e Fusobacteria remains absent in OTC-treated animals, even after a-diversity recovers.
e OTC appears safe for immersion treatment of Withering Syndrome for white abalone.
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Abstract

White abalone (Haliotis sorenseni) are critically endangered marine gastropods that are native to
kelp forests in the northeastern Pacific. White abalone are highly susceptible to withering
syndrome, a fatal bacterial disease caused by Candidatus Xenohaliotis californiensis (CaXc), an
intracellular, order Rickettsiales prokaryote that is endemic throughout the white abalone’s range
in California and Mexico. Oxytetracycline (OTC) baths at a dose of 500 mg/L are successful in
clearing CaXc infections from the gastrointestinal tract of infected abalone. The impact of OTC
treatment on the diversity and stability of the gut microbiome in white abalone is unknown. The
objectives of this study were two-fold: (1) to characterize the gastrointestinal microbiome of
clinically-normal white abalone and (2) to compare the gastrointestinal microbiomes of OTC-
treated white abalone to those of control animals. Gastrointestinal tracts from five OTC-treated
individuals and five untreated controls were sampled at each time point: day 0, one day after the
21-day OTC treatment (day 22), and at 203 days post-treatment. Gastrointestinal tract
microbiomes were analyzed after amplification and sequence of the 16S rRNA. Gastrointestinal
microbiomes of untreated animals were dominated by three core bacterial phyla: Proteobacteria,
Fusobacteria, and Bacteroidetes. Reduced Shannon a-diversity and absence of various phyla in
the microbiome of OTC-treated animals were observed in samples at day 22. Bacterial profiles
were improved in terms of a-diversity at 203 days but some bacterial phyla, mainly
Fusobacteria, remained absent. All animals remained clinically normal throughout the study
period and there was no significant difference in a condition index between the two groups. OTC

treatment for withering syndrome appears to be clinically safe in white abalone.
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Candidatus Xenohaliotis californiensis

1. Introduction!

Numerous populations of Haliotidae abalone, including white abalone (Haliotis sorenseni), are
in decline worldwide (Cook, 2016; Stierhoff et al., 2012). White abalone are herbivorous grazing
marine snails native to rocky-bottomed kelp forests in the northeastern Pacific. Prior to the 1970s
white abalone numbered in the millions throughout their native range from Point Conception,
California to Baja California, Mexico. Today, the species is at critical risk of extinction in the
wild due to overfishing (NOAA Fisheries, 2020; Catton et al., 2016; Hobday and Tegner,
2000a). Recent surveys estimate that the extant wild white abalone population may be comprised
of as few as 1,600 individuals (1,600-2,500), which is less than 0.1% of baseline historical
abundance (Rogers-Bennett et al., 2002; NOAA Fisheries, 2020). The California fishery for
white abalone closed in 1997 and in 2001 as the species earned the dubious honor of being the
first marine invertebrate listed under the Endangered Species Act (Catton et al., 2016). Despite
these protections, the species has continued in precipitous decline. The White Abalone Recovery
Program includes a captive-rearing program located at Bodega Marine Lab in Bodega Bay,
California, which has successfully cultured white abalone with the intent to re-establish wild
populations throughout the species’ native range (Rogers-Bennett et al., 2016). The captive
breeding program started with twenty-one adult white abalone collected from the Channel

Islands, California, between 1999 and 2004. In November 2019, the program released the first

! Abbreviations in text: WS- withering syndrome; OTC- oxytetracycline; CaXc- Candidatus Xenohaliotis
californiensis
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group of approximately 3,000 captive-cultured white abalone back into the wild off the coasts of

Los Angeles and San Diego, California.

White abalone face several impediments to survival and recovery, including recruitment failure,
disease, and climate change. Like all members of Haliotidae, they are broadcast spawners; as
members of the extant population become increasingly geographically separated, transmission of
gametes and successful recruitment becomes increasingly unlikely (Hobday et al., 2000b). Most
of the remaining white abalone in the wild are separated by long distances from other members
of the species, making them functionally sterile (Stierhoff et al., 2012). Disease also poses a
significant threat to wild abalone populations and recovery efforts (Moore et al., 2000; Tan et al.,
2008; Travers et al., 2008). Withering syndrome (WS), in particular, is a fatal disease caused by
colonization of the abalone host’s gastrointestinal tract by an intracellular, order Rickettsiales
prokaryote, identified as Candidatus Xenohaliotis californiensis (CaXc; Crosson et al., 2014;
Friedman et al., 2000; Moore et al., 2001). CaXc appears to compromise the host’s ability to
extract nutrients from feed, leading to a fatal wasting syndrome. In white abalone, WS manifests
as profound lethargy, cachexia, and atrophy of the foot muscle as muscle tissue is catabolized for
energy. Subsequent loss of muscle mass and body condition renders the abalone unable to adhere
to substrate and feed properly. Abalone in the end stage of WS are much more easily dislodged
from habitat and preyed upon than their unaffected counterparts. Induction of disease following
infection with CaXc and eventual mortality are significantly accelerated in increased water
temperatures, making this disease of special interest with regards to climate change and ocean
warming (Moore et al., 2000). Abalone species such as white (H. sorenseni), green (H. fulgens),
red (H. rufescens), and black (H. cracherodii) abalone are susceptible to CaXc infection but

clinical expression of WS varies between species and with environmental conditions (Altstatt et
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al., 1996; Crosson and Friedman, 2018; Davis at al., 1998; Moore et al., 2009; Vater et al., 2018;
Vilchis et al., 2005). White abalone have the highest susceptibility and the lowest intrinsic
resistance to WS of all Pacific abalone species (Crosson and Friedman, 2018; Vater et al., 2018).
Mortality associated with WS has yet to be observed in wild white abalone populations although
CaXc is present; they may be protected by relatively cold water microenvironments (CDFW
unpublished observations; NOAA Fisheries, 2020); in contrast, cultured white abalone have
experienced WS mortalities. The disease poses a considerable threat to captive culture operations
and wild restoration efforts for white abalone (Moore et al., 2002; Friedman et al., 2007; Vater et

al., 2018).

Traditionally, antimicrobials have been used in aquaculture facilities worldwide to prevent and
treat bacterial diseases (Romero et al., 2012). Oxytetracycline (OTC), a broad-spectrum,
naturally-occurring tetracycline antimicrobial, is effective in reducing or eliminating CaXc from
the gastrointestinal tract of infected red abalone and white abalone (Winkler et al., 2018;
Friedman et al., 2007; Moore et al., 2019). OTC concentrates in the digestive gland of treated
abalone and provides protection against reinfection with CaXc for numerous months following
completion of treatment (Friedman et al., 2007; Moore et al., 2019; Rosenblum et al., 2008).
Bath immersions in OTC are used to treat and protect captive culture populations from WS.
Clinically, OTC treatment is well-tolerated by all abalone examined and there are no significant

differences in growth rates between treated and untreated red abalone (Moore et al., 2019).

Microbiome homeostasis is critical for abalone’s ability to utilize their primary food source,
kelp, effectively (Nel et al., 2017). It is important to evaluate the potential impact that treatments
rendered during the captive-raising period may have on the microbiome prior to release into the

wild. The impact of antimicrobials on the gut microbiome of treated individuals is an emerging
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field of study in human and veterinary medicine. Several studies have shown that antibiotic
treatment reduces host microbiome diversity and can cause increased colonization of the
gastrointestinal tracts in human, mouse, marine mammal, and fish patients with pathogenic
bacteria (Theriot et al., 2014; Langdon et al., 2016; Schmidt et al., 2017; Carlson et al., 2017).
Nothing is known about the influence of antibiotic treatment on the gastrointestinal microbiome
of abalone. The goal of this study is to characterize the gastrointestinal microbiome of clinically
healthy white abalone in a captive-culture setting using 16S metagenomics and to compare the
microbiomes of animals undergoing routine OTC-treatment for WS with untreated abalone to

evaluate the impact that OTC treatment has on the gut microbiota.

2. Materials and Methods

2. 1. Animals

Thirty-one juvenile to young adult white abalone from the 2017 spawning at Bodega Marine Lab
were enrolled in this study; the animals ranged in weight from 0.27 g to 7.55 g and had shell
lengths of 12.2 mm to 38.8 mm on day 0. The abalone enrolled in this study were not used for
any other research purpose prior. Prior to inclusion in the study abalone were considered
clinically healthy based on visual examination and known to be free of CaXc infection by
periodic tank feces testing with a qPCR protocol. Abalone were housed communally in a flow-
through system containing natural seawater sourced from Bodega Bay, California, and passed
through a gravel filter, 21 um paper cartridge filter, and ultraviolet sterilizer prior to reaching the
housing tanks. The abalone were fed a mixture of wild kelp Macrocystis pyrifera and cultured
Palmaria mollis that was immersed in freshwater for five minutes to reduce the chance of
exposing animals to endemic CaXc. Animals were identified numerically by plastic tags attached

to their shells with a methacrylate glue.
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The general sampling plan was to process five animals immediately prior to treatment (pre-
sample, day 0); then to process five animals from each of the OTC and mock (control) treatments
just after the treatment regimen (day 22), and to process five animals from the OTC and mock-
treatments upon termination at day 203. Three additional animals were added to each of the OTC
and mock treatment groups in case any mortality occurred prior to termination. Animals were
randomly assigned to the Pre-treatment (n=5), OTC treatment (n=13), and mock treatment
(n=13) groups. The OTC and mock treatment groups were housed in two separate containers

throughout the study.

Animals in the treated groups were exposed to the standard OTC bath treatment used to
eliminate CaXc in abalone (Moore et al., 2019). This treatment consists of eight 24-hour
immersions in an OTC bath (500 mg/L) over a period of twenty-one days. The sampling days
were selected to correspond with the end of OTC treatment (day 22 sampling) and six months
following treatment (day 203). Mock-treated animals were handled exactly the same way as

OTC treated animals, except that oxytetracyline was not added to their holding tank.

2. 2. Experimental Methods

On day 0 the five animals randomly assigned to the Pre-treatment group were processed.
Animals were weighed and measured (maximum shell length) and body condition index (c.i.)
was calculated for each animal (c.i. = total shell length, cm/[total weight, g]*). The animals were
removed from the shell and the head (including the mouth and distal esophagus) was sharply
incised from the body using a scalpel blade. The gastrointestinal tract was isolated from
surrounding tissue by dissecting away the epipodium, gonads, gills, and as much of the foot and
shell muscles and surrounding connective tissue as possible. The resultant gut tissue bloc was

weighed, placed in a 50 ml centrifuge tube containing 0.1 % Tween80 (Sigma-Aldrich Corp, St.
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Louis, MO, USA) in 0.22 um filtered seawater and rocked back and forth ten times to remove
bacteria on external surfaces. The rinse was repeated with a new tube and Tween80 solution and
the tissue was immediately frozen at -80 °C in sterile cryovials labeled with the animal’s
identification number, date, and study group. On day 22 and day 203, five animals from each of
the OTC and mock treatment groups were randomly selected from their holding tanks and an
identical dissection and sample preparation protocol was used, except that the Tween80 rinse
solution volume used on day 203 was 20 ml because the animals had grown significantly. All

samples were held frozen at -80 °C until processing as described below.

2.3. Library Preparation and Template Preparation/Enrichment.

DNA of abalone tissues was extracted following manufacturer’s guidelines for the DNeasy
Blood and Tissue Kit (Qiagen, Germantown, MD, USA). The Ion 16S™ Metagenomics Kit,
(ThermoFisher Scientific, Carlsbad, CA, USA) which uses two primer pools to amplify seven
hypervariable regions (V2, V3, V4, V6, V7, V8§, and V9) of bacterial 16S rRNA and enables
detection of a broad-range of bacteria from complex mixed populations, was used to detect
bacterial phyla in this study. Briefly, 20 ng of DNA was amplified through 25 cycles with the Ton
16S™ Metagenomics Kit. After purification using the Agencourt AMPure XP beads (Beckman
Coulter, Pasadena, CA, USA) according to the manufacturer’s procedure, 1 pul of each PCR was
run on a 2100 Bioanalyzer® (Agilent, Santa Clara, CA, USA) to determine concentration and to
confirm successful PCR. The entire PCR product underwent end repair and was purified with XP
beads. Adapter and Ion Xpress Barcodes were ligated to allow pooling of all the samples for
sequencing and each sample received a unique barcode. The samples were purified again with
the XP beads and 7 cycles of PCR were performed to increase the number of amplicons and to

select for amplicons with adapters. Samples were purified with XP beads and 1 pl was run on a
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2100 Bioanalyzer® to determine a final library concentration. The library was diluted to 100 pM
prior to template preparation on the Ion OneTouch™ using the lon PGM™ Hi-Q™ View OT2
kit (ThermoFisher Scientific, Carlsbad, CA, USA) according to manufacturer’s procedure. The
template preparation is required to form template-positive Ion Spear™ particles (IPS), which
contain clonally amplified DNA. IPS were then enriched on the Ion OneTouch™ ES Instrument
(ThermoFisher Scientific, Carlsbad, CA, USA) to select IPS with only one amplified DNA

amplicon.

2.3.1. Sequencing with Person Genome Machine (PGM™)

The PGM™ (ThermoFisher Scientific, Carlsbad, CA, USA) was set up for initialization using
the Jlon PGM™ Hi-Q™ View Sequencing Kit (ThermoFisher Scientific, Carlsbad, CA, USA)
according to manufacturer’s procedure. An Ion 314™ Chip was loaded with half of the IPS and
run on the PGM™ with the Torrent Suite™ System software (ThermoFisher Scientific,
Carlsbad, CA, USA).

2.4.  Microbiome Data Analysis

Raw ThermoFisher Ion Xpress “.bam” files were converted to fastq format using samtools-1.9
(Li et al., 2009). For metagenomic analysis, DADA?2 pipeline (Callahan et al., 2016) version 1.10
implemented in R version 3.5.2 was used as described online

(benjjneb.github.io/dada2/bigdata.html). First, quality control was performed by removing 16S

rRNA reads that were chimeric, shorter than 240 bp, or had at least two expected errors. In
addition, longer reads were truncated at 240bp since read qualities decreased sharply
afterward. Approximately 24% of the total reads were marked as high quality. Next, de novo
sequence assembly was performed. Then SILVA database (Quast et al., 2012) version 32 was

used to identify bacterial taxonomies associated with 16S rRNA assembled sequences. The
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phylogenetic tree was constructed next using phangorn (Schliep, 2011) R library. Taxa that were
only observed in a single sample were filtered and taxa counts were transformed to relative
abundances using PhILR library (Silverman et al., 2017). Finally, phyloseq (McMurdie and
Holmes, 2013), ggplot2 (Wickham, 2016), and ggpubr (Kassambara, 2017) libraries were used

for data visualization and statistical analysis.

3. Results

Microbiome Shannon a-diversity (i.e. diversity of microbial species within each sample) was
significantly reduced in the digestive tracts of OTC-treated white abalone between day 0 and day
22, but recovered by day 203 (Figure 1). a-diversity differences among other treatment groups
and time points were not significant (p> 0.05) suggesting that OTC treatment is an important
factor influencing intestinal microbiome diversity of OTC-treated white abalone. B-diversity
analysis (Figure 2) shows that microbiome profiles are similar in each group across different
timepoints. Furthermore, there is a consistent shift between day 22 and day 203 in the microbime
profiles of OTC-treated white abalone which is not observed in controls across different time
points. Phylogenetic trees relating microbiome populations of control and treated samples at

various time points is presented in supplementary Figure 1.

Despite recovering a-diversity over the course of the study period, animals in the OTC-treated
group showed a notable absence of bacteria within the phylum Fusobacteria at day 22 and day
203 (Figure 3). The absence of the Fusobacteria phylum in the OTC-treated group may explain
the distinguishable difference in microbiome profiles between OTC-treated and mock samples at

day 203 (Figure 2).
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From a clinical perspective, animals in both the OTC-treated and mock groups remained normal
throughout the duration of the study. Individuals in both groups continued to eat and ambulate
normally throughout the study period. A one-way ANOVA on ranks comparing the condition
indexes of five pre-treatment animals and the five treated and mock-treated groups at days 22
and 203 showed no significant differences (p= 0.149). There was no mortality in either group
during the study period. Adverse side effects such as anorexia and lethargy have been
documented in other veterinary species in association with OTC therapy but, notably, no adverse

side effects (ie: anorexia or lethargy) were observed in white abalone in this study.

4. Discussion

This study identified three core bacterial phyla that made up the majority of the gut microbiome
in the untreated white abalone: Proteobacteria, Fusobacteria, and Bacteroidetes. There was no
significant difference in this composition of the microbiome in untreated animals over the course
of the study. The predominance of Proteobacteria is consistent with what has been documented
in numerous species of marine invertebrates, such as Eastern oysters (Crassostrea virginica),
blue-rayed limpets (Patella pellucida), and green sea urchins (Lytechinus variegatus) (King et
al., 2012; Chauhan et al., 2014; Dudek et al., 2014; Hakin et al., 2016). More specifically,
Proteobacteria was also the dominant bacterial phylum identified in the gut in studies of several
Haliotis species, including variously colored abalone (H. diversicolor), European abalone (H.
tuberculata), and green lip abalone (H. laevigata) (Zhao et al., 2018; Huang et al., 2018; Gobet
et al., 2018; Danckert, 2020). Surprisingly, bacteria within the phylum Tenericutes were found in
very small numbers in the control animals, which is contrary to what has been seen in green

abalone (H. fulgens) and pink abalone (H. corrugata) (Cicala et al., 2018).
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The putatively robust population of Fusobacteria in the microbiome of Haliotis species is an
interesting finding and it may correlate to an aquatic lifestyle. Fusobacteria has been found in
high abundances in the gastrointestinal tracts of sea squirts (Ciona intestinalis) and several fish
species, such as channel catfish (Ictalurus punctatus), largemouth bass (Micropterus salmoides),
bluegill (Lepomis macrochirus), and zebrafish (Danio rerio) (Dishaw et al., 2014; Larsen et al.,
2014; Roeseler et al., 2011). Several mammalian, avian, and reptilian species that are associated
with aquatic or semi-aquatic life histories have been shown to have Fusobacteria as a dominant
bacteria in their gastrointestinal tracts (Sun et al. 2018; Hird, 2017; Nelson et al., 2012; Keenan
et al., 2013). Indeed, marine mammals have a significantly greater average relative abundance of
Fusobacteria in their intestinal tracts than terrestrial mammals (Nelson et al., 2012; Nelson et al.,
2013). Fusobacteria was the most commonly identified bacterial phylum in the lower
gastrointestinal tracts of American alligators (A/ligator mississippiensis), which was a novel
finding as Firmicutes and Bacteroidetes are the dominant bacterial phyla in the intestinal tracts
of most other species of reptiles (Keenan et al., 2013). Interestingly, of the species known to
harbor large populations of Fusobacteria in their gastrointestinal tracts normally, the white

abalone appears to be the only strictly herbivorous species represented.

It is possible that bacteria within the phylum Fusobacteria play an important role in digestion
and energy production. In humans Fusobacterium varium is a minor, but important, component
of the normal gastrointestinal microbiome because of its ability to ferment amino acids and
glucose and produce butyrate (Potrykus et al., 2008; Potrykus et al., 2007). It is also an important
competitor for pathogenic bacteria like Shigella and Salmonella (Potrykus et al., 2008).
Fusobacteria is a minor component of the gastrointestinal microflora in oscar cichlids

(Astronotus ocellatus) and angelfish (Pterophyllum scalare), but in both host species
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Fusobacteria produces important digestive enzymes, including alkaline and acid phosphatases,
esterase, lipase, and a-glucuronidase (Ramirez and Dixon, 2003). These digestive enzymes play
important roles in digestion, such as absorption of lipid, glucose, and calcium, and the
breakdown of proteins and carbohydrates. When transfaunated into gnotobiotic mice, human
strains of Fusobacteria produce polyamines from pectin, a soluble indigestible polysaccharide
found in plant cell walls, and these polyamines can be used by the host (Noack et al., 2000). This
may be a key to why Fusobacteria is so prevalent in the gastrointestinal tract of abalone. As
grazers, abalone exploit a wide range of green, red, and brown algae as food resources. White
abalone rely heavily on giant kelp (Macrocystis pyrifera), which is a large, perennial species of
brown algae. Giant kelp contains algin, an anionic heteropolysaccharide abundant in the cell
walls of brown algae. Unlike other seaweed hydrocolloids, such as carrageenan, that owe their
ionic characteristics to sulfate groups, algin is anionic because of its carboxyl groups, which
makes it more similar to pectin than to other seaweed hydrocolloids (Barbaroux). Fusobacteria
may catabolize algin similarly to the manner in which it acts on pectin and enables the host to
produce amino acids through bacterial synthesis, thus allowing abalone to exploit a wider range

of marine vegetation.

Microbiome resilience is critical for abalone because the gut microbiome plays an important role
in their overall health and ability to digest marine vegetation (Nel et al., 2017; Cicala et al.,
2018). While studies involving other marine invertebrates have shown that location, season, diet,
and water temperature all profoundly affect the composition of the host’s microbiome (Lokmer
et al., 2016a; Pierce et al., 2015), the microbiome of Haliotis species changes seasonally but
appears to remain fairly stable despite changes in diet (Gobet et al., 2018). In ruminants, volatile

fatty acids in acidic pH are toxic to some bacterial phyla, so the rumen environment selects for
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specialized bacterial species that can tolerate these extreme conditions. The gastrointestinal
environment of Haliotis species is microaerophilic/anaerobic and acidic; like in ruminants, this
environment may lend itself to developing a specialized and stable bacterial profile (Gobet et al.,

2018).

A decrease in bacterial diversity and quantity was expected after treatment with oxytetracyline,
as it is a broad-spectrum antimicrobial. This study showed a decrease in gut microbiome a-
diversity of OTC-treated abalone on day 22, which corresponded to the completion of a full
treatment course with OTC; a-diversity was restored by day 203 in OTC-treated animals, but
with notable differences in the bacterial composition. Studies evaluating the effect of
antimicrobials on the gut microbiome are generally lacking in aquatic veterinary medicine, but a
study of Pacific oysters (Crassostrea gigas) yielded similar decreased microbiome a-diversity
after a cohort of oysters was treated with a combination of unspecified antibiotics (Lokmer et al.,
2016b). As Gram-negative bacteria, Fusobacteria are within the antimicrobial spectrum of
natural tetracyclines like oxytetracycline; indeed, oxytetracycline is used as a therapeutic against
pathogenic strains of Fusobacteria, like F. necrophorum, in veterinary species (Lechtenberg et
al., 1997). It appears that the decline in Fusobacteria observed in this study correlated to
oxytetracycline therapy. Bacteria within the phylum Fusobacteria, however, are found only
rarely in seawater and in association with marine vegetation (Gobet et al., 2018), which may
explain why they did not repopulate the gut of treated animals as readily as the other bacterial

phyla.

In this study it was not immediately clear whether the change in gut microbiota composition
would compromise a white abalone’s ability to compete in the wild, whether by compromising

their ability to digest food or by compromising their immunity to disease. Antibiotics disturb the
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that are raised in the culture setting. Green sea urchins (Lytechinus variegatus), for example,
maintained remarkably similar microbiome profiles between wild and captive-cultured
individuals, despite the putative differences in feed items consumed and environment (Hakim et
al., 2016). While the seawater supplied to the animals in our study was sterilized prior to
reaching the housing tanks and thus an unlikely source of microbes, the macroalgal food items
that were fed to the study abalone were lightly sanitized by immersion in fresh water for five
minutes prior to feeding. It is likely that the wild vegetation included in the diet also introduced a
natural algal holobiont to the study animals’ gastrointestinal tract. A significant difference in the

makeup of captive-cultured white abalone and wild counterparts is not expected.

The OTC bath concentration was 500 mg/L, which follows the protocol that Bodega Marine Lab
currently uses for their white abalone culture operation. In this study OTC appeared to reach
effective concentrations in the gastrointestinal tracts of treated abalone, given the reduction of
Fusobacteria in the gut microbiomes of treated animals. Previous work on the pharmacokinetics
of oxytetracyline in red abalone showed that OTC persisted in the digestive gland for
significantly longer than in the foot muscle (Rosenblum et al., 2008). This study also found that
there was a significantly higher presence of cations (iron, zinc, and manganese) present in the
digestive gland versus the foot muscle, leading the authors to speculate that cations may be
important to retention of OTC. A more recent study showed that the concentrations of cations,
particularly calcium and magnesium, in seawater can bind OTC and reduce bioavailability of the
drug in immersion treatments (Vorbach et al., 2019). Cation concentrations in the water were not
measured in this study, but such measurements would be an important consideration for any

future studies examining pharmacokinetics of oxytetracycline in abalone.
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Further study to investigate the role that CaXc plays on the intestinal microbiota of infected
abalone would further characterize the disease and its effect on infected abalone. A study of
Sydney rock oysters (Saccostrea glomerata) showed that infection with a protozoal parasite
(Marteilia sydneyi) drastically changed the composition of the microbiota of infected animals
(Green and Barnes, 2010). Probiotics are of increasing interest within aquaculture for their
purported ability to improve feed conversion rates and growth. Probiotics may be of interest to
wild translocation projects, such as the one for white abalone. Multiple studies have shown
benefits to giant abalone (H. gigantean), South African abalone (H. midae), and disk abalone (H.
discus hannai) in terms of growth and immunity with the administration of probiotics with feed
(Iehata et al., 2009; Macey and Coyne, 2005; Jiang et al., 2013; Iehata et al., 2014; Lee et al.,
2016). Further study is necessary to quantify the effects of probiotics on white abalone and the

optimal probiotic combination for this species.

This study suggests that oxytetracyline is safe for white abalone. While there were changes in the
composition of the microbiome of OTC-treated abalone there were no significant changes in
growth and weight gain between the treated and untreated control animals. Further study to
evaluate the impact of the loss of certain bacterial phyla, notably Fusobacteria, is necessary to

fully characterize the long-term impact of OTC-treatment on white abalone.
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Figure 1. Shannon a-diversities for control and treated samples. Each box represents five
samples including the outliers. A) No significant differences between controls at different time
points with p-value threshold of 0.05. B) Microbiome diversity is significantly reduced on day 22
in oxytetracycline treated samples when compared to controls at day 0 (p < 0.008) and

reconstituted treated microbiomes at day 203 (p < 0.008) based on two-sided Wilcoxon rank-sum
test.
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Figure 2. Principal coordinate analysis (PCoA) plot based on Euclidean distances after

PhILR transform for all samples (B-diversity analysis). The components explain 73.7% of the

variance. The microbiome profile of oxytetracycline treated samples at day 22 exhibits

differences when it is compared to controls and treated samples at day 203, which corroborates

a-diversity analysis results.
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Figure 3. Relative abundances of bacterial taxa for all samples at phylum level. Taxa
diversity is reduced after treatment but is reconstituted at day 203, albeit with differences.
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Supplementary Figure 1. Phylogenetic trees relating microbiome populations of control (A-
C) and treated (D-E) samples at various time points. Each point represents the relative
abundance (between 0 and 1) of closely related OTUs in one sample, colored based on its
taxonomy at the phylum level. Note the considerable difference between control and treated
samples at day 22.



