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Abstract—Cyber-physical systems are often safety-critical in
that violations of safety properties may lead to catastrophes.
We propose a method to enforce the safety of systems with
real-valued signals by synthesizing a runtime enforcer called
the shield. Whenever the system violates a property, the shield,
composed with the system, makes correction instantaneously to
ensure that no erroneous output is generated by the combined
system. While techniques for synthesizing Boolean shields are well
understood, they do not handle real-valued signals ubiquitous in
cyber-physical systems, meaning their corrections may be either
unrealizable or inefficient to compute in the real domain. We
solve the realizability and efficiency problems by analyzing the
compatibility of predicates defined over real-valued signals, and
using the analysis result to constrain a two-player safety game
used to synthesize the shield. We demonstrate the effectiveness of
this method on a variety of applications, including an automotive
powertrain control system.

Index Terms—program synthesis, controller synthesis, safety
game, signal temporal logic, cyber physical system

I. INTRODUCTION

A cyber-physical system often needs to continuously re-

spond to external stimuli with actions under strict timing

and safety requirements; violations of these requirements may

lead to catastrophes. While formal verification is desirable, in

practice, it can be difficult due to high system complexity,

unavailability of source code, and limited capacity of existing

verification tools. In addition, many systems have started

incorporating machine learning components, which remain

challenging to test or verify [13], [21].

Bloem et al. [7] recently introduced the concept of shield,

denoted S , to enforce a specification ϕ of a system D with

certainty. The goal is to ensure that the combined D◦S never

violates ϕ. If, for example, D malfunctions and produces an

erroneous output O for input I , S will correct O into O′

instantaneously to ensure ϕ(I,O′) holds even when ϕ(I,O)
fails. Here, instantaneously means correction is made in the

same clock cycle. Furthermore, S depends solely on ϕ, which

makes it well-suited for complex D but small ϕ, e.g., learning-

based systems [2], [3], [42], [44].

While the functional specification of D, denoted Ψ, may be

large, typically, only a small subset ϕ ⊆ Ψ is safety-critical.

Since S depends on ϕ, as opposed to Ψ or D, synthesizing S
from ϕ is more practical than model checking [9], [33], which

decides if D satisfies ϕ, or program synthesis [5], [6], [14],

[32], which creates D from Ψ.

Although techniques for synthesizing Boolean shields are

well understood [7], [22], [43], they do not work for systems

where signals have real values and need to satisfy constraints

such as x + y ≤ 1.53. Naively treating the real-valued

constraint as a predicate, or a Boolean variable P , may lead

to loss of information at the synthesis time and unrealizability

at run time. For example, while the Boolean combination

P ∧¬Q∧¬R may be allowed, the corresponding real-valued

constraint may not have solution, e.g., with P : x+ y ≤ 1.53,

Q : x < 1.0 and R : y < 1.0.

Even the use of abstraction refinement to combine a

Boolean shield with constraint solving does not work. For

example, one may be tempted to block P ∧ ¬Q ∧ ¬R and

ask the shield to generate a new solution. However, since the

shield must be reflexive, i.e., producing O′ in the same clock

cycle when the erroneous O occurs, it may be too slow at run

time to recompute a solution. Even if it is fast enough, the

new solution may still be unrealizable in the real domain. In

general, it is difficult to bound a priori the number of iterations

in such an abstraction-refinement loop to meet the strict timing

requirement.

We propose a shield synthesis method to guarantee, with

certainty, the realizability of real-valued signals. This is ac-

complished by treating Boolean and real-valued signals uni-

formly by adding a set of new constraints. These constraints

take the form of two automata: a relaxation automaton, to

capture the impossible combinations of predicates over signals

in I and O, and a feasibility automaton, to capture the

infeasible combinations of signals in O′. We use them to

restrict the synthesis algorithm formulated as a two-player

safety game, where the antagonist controls the erroneous O
and the protagonist (shield) controls the corrected O′: the

game is won if the protagonist ensures that ϕ(I,O′) holds

even if ϕ(I,O) fails.

The overall flow is shown in Fig. 1, where the input consists

of real-valued Ir and Or signals and a safety property ϕr

defined over these signals. Internally, the shield S has three

subcomponents: a converter from real-valued Ir/Or signals

to Boolean I/O signals, a converter from Boolean O′ signals

to real-valued O′
r signals, and a Boolean shield S(I,O,O′).

Note that the system, denoted D(Ir, Or), is not required to

synthesize the shield: by treating D as a blackbox, we ensure

that D ◦ S |= ϕr for any D.

Our shield synthesis algorithm first computes a set P of

predicates over real-valued signals from ϕr, Ir, Or and O′
r.

Next, it leverages P to construct the Boolean abstractions ϕ,

I , O and O′, as well as the relaxation automaton R(I,O) and

the feasibility automaton F(O′). Using these components, it

constructs and solves a safety game where the antagonist is
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Fig. 1. Overview of the safety shield for real.

free to introduce errors to O and the protagonist must correct

them in O′. The winning strategy computed for the protagonist

is the Boolean shield S(I,O,O′). At run time, real values

are computed for signals in O′
r by solving a conjunction of

constraints based on the Boolean values of signals in O.

To speed up the computation of real values at run time,

we also propose a set of design-time optimizations, which

leverage the information gathered from the shield to simplify

the constraints to be solved at run time. When there are

multiple real-valued solutions, the utility function γ shown

in Fig. 1, which defines a robustness criterion, is used to

pick the best one. We also propose a two-phase, predict-and-

validate technique to speed up the computation of the real-

valued solutions.

We have evaluated the method on a number of applications,

including automotive powertrain control [19], autonomous

driving [35], adaptive cruise control [29], multi-drone fleet

control [30], generic control [20], blood glucose control [39],

and water tank control [2]. Our results show that, in all cases,

the shield can quickly produce real-valued correction signals

at run time. Furthermore, the use of robustness constraints and

two-phase computation can significantly improve the quality

and efficiency of the real-valued solutions.

To sum up, we make the following contributions:

• We propose a method for synthesizing shields while

guaranteeing the realizability of real-valued signals.

• We propose optimizations to speed up the computation

and improve the quality of these correction signals.

• We demonstrate the effectiveness of the proposed tech-

niques on a number of applications.

The remainder of this paper is organized as follows. First,

we review the basics of shield synthesis in Section II. Then,

we present the technical challenges of extending the Boolean

shield to the real domain in Section III. Details of our method

for addressing these challenges can be found in Sections IV

and V. Next, we present our experimental results in Section VI.

We review the related work in Section VII. Finally, we give

our conclusions in Section VIII.

II. PRELIMINARIES

We assume that the system, D, is a blackbox with input

I and output O. When D malfunctions, it produces some

erroneous values in O. The shield, S , takes both I and O
as input and returns O′ as output. Whenever D |= ϕ, the

shield returns O′ = O; and when D 6|= ϕ, the shield needs to

compute correction O′ for O. Following Bloem et al. [7], we

treat the correction computation as a two-player safety game.

Safety Game The antagonist controls the alphabet ΣIO and

the protagonist controls the alphabet ΣO′ . The game is a tuple

G = (G, g0,ΣIO × ΣO′ , δG , F ), where G is a set of states,

g0 is the initial state, ΣIO × ΣO′ is the combined alphabet,

δG : G × ΣIO × ΣO′ → G is the transition function, and F
is the set of unsafe states. In each state g ∈ G, the antagonist

chooses a letter σIO ∈ ΣIO and then the protagonist chooses

a letter σO′ ∈ ΣO′ , thus leading to state g′ = δG(g, σIO, σO′).
The resulting state sequence g0g1... is called a play. A play is

winning for the protagonist when it visits only the safe states.

The game may be solved using the classic algorithm of

Mazala [28], which computes “attractors” for a subset of safe

states (G \ F ) and unsafe states F . A winning region W is

a subset of (G \ F ) states within which the protagonist has

a strategy to win. A winning strategy is a function ω : G ×
ΣIO → ΣO′ that ensures the protagonist always wins. The

shield S is an implementation of the winning strategy.

Boolean Shield It is a tuple S = (S, s0,ΣIO,ΣO′ , δS , λS),
where S is a set of states, s0 is the initial state, δS :
S×ΣIO → S is the transition function, and λS(S, σIO) = σO′

is the output function. Here, λS implements the winning

strategy ω in the game G. Assume the system is D =
(Q, q0,ΣI ,ΣO, δD, λD), where Q is the set of system states,

q0 is the initial state, δD : Q × ΣI → Q is the transition

function, and λD : Q×ΣI → ΣO is the output function. The

composition D ◦ S is (QS, qs0,ΣI ,ΣO′ , δD◦S , λD◦S), where

QS = Q× S, the initial state is qs0 = (q0, s0), the transition

function is δD◦S : QS × ΣI → QS, and the output function

is λD◦S .

Given a state qs = (q, s), the next state qs′ = (q′, s′) is

computed by δD◦S(qs, σI) as follows: q′ = δD(q, σI) and

s′ = δS(s, σI◦λD(σI)), and σO′ is computed by λD◦S(qs, σI)
as follows: λS(s, σI ◦ λD(σI)).

If there are multiple ways of changing O to O′ to satisfy

ϕ(I,O′), the shield must choose the one with minimum

difference between O and O′. The difference may be measured

in Hamming Distance [7]: when D |= ϕ, HD(O,O′) = 0; and

when D 6|= ϕ, HD(O,O′) is minimized.

Example Consider the following two formulas in LTL [31]:

G

(

A ⇒ B1

)

G

(

A ∧ X(¬A) ⇒ B2UA
)

where G means Globally, X means Next, U means Until,

Boolean variable A is an input signal, while B1 and B2 are

output signals of D. Fig. 2 shows the corresponding automaton
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representation, where 0 is the initial state and 2 is an unsafe

state. Note that the transition labels are on the edges.
Fig. 3 shows the shield generated by existing techniques [7],

[22], [43], which takes signals A, B1 and B2 as input, and

return the modified signals B′
1 and B′

2 as output. Here, labels

are on nodes instead of edges: they are conditions under which

transitions go to destination nodes. Furthermore, B1 = B′
1

means the two signals have the same value.
The shield ensures that A, the input signal of D, and

B′
1, B

′
2, the modified output signals of D, always satisfy the

specification in Fig. 2. At the same time, the deviation between

B1, B2 and B′
1, B

′
2 is minimized.

The red dashed edge in Fig. 3 illustrates a scenario where D
violates the specification by setting B2 to false while moving

from a state where A is true to a state where A is false, as

represented by the red dashed edge in Fig. 2. The shield, upon

detecting this violation, responds instantaneously by setting

B′
2 to true. It allows the specification to be satisfied by the

modified output (B′
2). As for B′

1, whose value does not matter,

the shield maintains B′
1 = B1 to minimize the deviation.

III. TECHNICAL CHALLENGES

Using a Boolean shield to generate real-valued correction

signals has two problems: realizability of the Boolean predi-

cates, and quality of the real-valued signals.

A. Realizability of the Boolean Predicates

The Boolean specification in Section II are abstractions

of the real-valued LTL properties below, which in turn are

abstractions of properties of an automotive powertrain control

system [19] expressed in Signal Temporal Logic (STL [27]).

G
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Fig. 4. Importance of the smoothness in real-valued correction signals.

The input signal l denotes the system mode, which may

be normal or power. The output signal µ is the normalized

error of the air-fuel (A/F) ratio inside an internal combustion

engine. Let λ be the A/F ratio and λref be a reference value,

then µ = (λ− λref )/λref . Since µ affects other parts of the

systems, it must be kept in certain regions depending on the

system mode.

The first property says that |µ| should stay below 0.2 in the

power mode. The second property says that, after the system

changes from the power mode to the normal mode, |µ| should

stay below 0.02. In the Boolean versions, A denotes whether

the system is in the power mode, while B1 and B2 denote

|µ| < 0.2 and |µ| < 0.02, respectively. The combination ¬B1∧
B2 is unrealizable, because |µ| cannot be both greater than 0.2
and less than 0.02.

However, the shield synthesized by existing methods is not

aware of this problem, and thus may produce combinations

of Boolean values that are not realizable in the real domain.

As shown by the red edge in Fig. 3: if the shield’s input is

¬A∧¬B1∧¬B2, the shield’s output will be ¬B′
1∧B

′
2, despite

that |µ′| ≥ 0.2 ∧ |µ′| < 0.02 is unsatisfiable.

We solve this problem by checking the compatibility of the

predicates at the synthesis time, to guarantee their realizability

at run time. Details will be presented in Section IV.

B. Quality of the Real-valued Output

Even if the Boolean values are realizable, the real-valued so-

lution computed by a generic solver may not be of high quality.

Assume that all predicates are linear arithmetic constraints,

the output of a Boolean shield would be a conjunction of

constraints. As shown in Fig. 1, the back-end may convert O′,

the Boolean output, to O′
r, the real-valued output, by solving

a linear programming (LP) problem.

Consider G(A ⇒ B), which abstracts G
(

l = power ⇒
|µ| < 0.2

)

. Suppose the original system’s output violates the

property |µ| < 0.2 as shown by the blue line in Fig. 4, where

the two erroneous values are in the middle. The correction

computed by an LP solver may be any of the infinitely many

values in the interval (-0.2, +0.2), including -0.19 and 0.

However, neither of these two values may be acceptable in

a real system, which expects the signal to be stable, not

arbitrary.

Ideally, we want to generate real-valued signals that are

smooth, and consistent with physical laws of the environment,

e.g., the green line in Fig. 4. Toward this end, we leverage

a utility function, γ, to impose robustness in addition to

correctness constraints. With both types of constraints, the LP

solver can generate values of high quality.



Algorithm 1 Synthesizing a realizable Boolean shield Sbool from ϕr .

1: Let P be the set of predicates over real-valued variables in ϕr ;
2: Let ϕ, I , O, O′ be Boolean abstractions of ϕr , Ir , Or , O′

r via P;
3: function SYNTHESIZEBOOL ( P , I , O, O′ )
4: Q(I,O′)← GENCORRECTNESSMONITOR(ϕ)
5: E(I,O,O′)← GENERRORAVOIDINGMONITOR(ϕ)
6: G ← Q ◦ E
7: W ← COMPUTEWINNINGSTRATEGY(G)
8: R(I,O)← GENRELAXATIONAUTOMATON(P, I,O,W)
9: F(O′)← GENFEASIBILITYAUTOMATON(R)

10: Gr ←W ◦R ◦ F
11: ωr ← COMPUTEWINNINGSTRATEGY(Gr )
12: Sbool(I,O,O′)← IMPLEMENTSHIELD(ωr )
13: return Sbool
14: end function

We also propose a technique to speed up the computation

of real values. The intuition is that system dynamics may

be approximated using (linear) regression, which predicts the

current value of a signal based on its values in the recent past.

Thus, we develop a fast runtime prediction unit to guess the

value, followed by a fast validation unit to check its validity. If

the predicted value is valid, it will serve as the shield’s output.

Otherwise, we invoke the LP solver. Details will be presented

in Section V.

IV. SYNTHESIZING THE BOOLEAN SHIELD

In this section, we present our method for ensuring the

realizability of the shield’s output signals. The idea is to

check the compatibility of predicates inside the game-based

algorithm for synthesizing the Boolean shield. To improve

efficiency, we check predicate combinations only when they

are involved in compute the winning strategy.

Algorithm 1 shows the procedure, where blue highlighted

lines address the realizability issue while the remainder fol-

lows the classic algorithm in the prior work [7], [22], [43].

First, it creates P , the set of predicates from the real-valued

specification ϕr. Then, it uses P to compute a Boolean

abstraction of ϕr, denoted ϕ. Next, it uses ϕ to formulate

a two-player safety game G where the antagonist controls I
and O, the protagonist controls O′, and W is the winning

region where the protagonist may win the game.

Since the construction of the safety game G is part of the

prior work, we refer to Bloem et al. [7] and Wu et al. [43]

for details. Here, it suffices to say that G is a synchronous

composition of E , an error-avoiding monitor that outlines all

possible ways in which the antagonist may introduce errors in

O and the protagonist may introduce corrections in O′, and

Q, a correctness monitor that ensures ϕ(I,O′) always holds.

Since a winning strategy in W may not be realizable

in the real domain, our next step is to compute a strategy

ωr based on W while ensuring correction signals produced

by ωr are always realizable. Toward this end, we introduce

two additional automata: the feasibility automaton F(O′) and

the relaxation automaton R(I,O). Specifically, F is used to

identify and remove the infeasible edges in ω, i.e., corrections

in O′ with no real-valued solutions. R is used to identify and

remove the unrealistic errors in I and O, i.e., errors that are

impossible and thus will not occur in the first place.

In other words, F restricts the search to realizable solutions,

and R allows us to have more freedom while computing the

winning strategy. Thus, the new game Gr is a composition of

W , R and F . Based on the winning strategy ωr computed

from Gr, we can construct a shield Sbool that is guaranteed to

be realizable at run time.

In the remainder of this section, we illustrate the details

while focusing on the highlighted lines in Algorithm 1.

A. Computing the Predicates

P is the set of predicates over real-valued signals used in

ϕr, where ϕr is expressed in Signal Temporal Logic (STL).

In addition to the LTL operators, STL also has dense time

intervals associated with temporal operators and constraints

over real-valued variables.

Consider the STL formulas below, which come from the

powertrain control system [19] without modification.

G[τs,T ]

(

l=power⇒ |µ| < 0.2
)

G[τs,T ]

(

l=power ∧ X(l=normal)⇒ G[η, ς
2
]

(

|µ| < 0.02
)

)

Here, G[τ1,τ2] is the temporal operator augmented with time

interval [τ1, τ2], l is the system mode, and µ is the normalized

error of the air-fuel ratio. The first property says that |µ| should

stay below 0.2 immediately after the system switch to the

power mode, i.e., between time τs and time T . The second

property says that, when it switches from the power mode to

the normal mode, |µ| should settle down to below 0.02 after

time η and before time ς
2 .

To compute P , first, we convert each time interval to a

conjunction of linear constraints, e.g., by using a time variable

t to represent the bounds in intervals [τs, T ] and [η, ς
2 ].

T1: (t ≥ τs) T2: (t ≤ T )
T3: (t ≥ η) T4: (t ≤ ς

2 )

Next, we convert the constraints over real-valued variables to

predicates. From the running example, we will produce the

following predicates:

L1: (l = power) L2: (l = normal)
M1: (|µ| < 0.2) M2: (|µ| < 0.02)

B. Computing the Boolean Abstractions

After the set P of predicates is computed, we use it to

compute the Boolean abstractions of ϕr, Ir, Or and O′
r. This

step is straightforward. To compute ϕ from ϕr, we traverse

the abstract syntax tree (AST) of ϕr and, for each AST node n
that corresponds to a real-valued predicate P ∈ P , we replace

P with a new Boolean variable vP .

To compute I from Ir, we traverse the predicates in P
and, for each predicate Q ∈ P defined over some real-

valued signals in Ir, we add a new Boolean variable vQ to

I . Similarly, O and O′ are also computed from Or and O′
r by

creating new Boolean variables.

C. Computing the Relaxation Automaton

The relaxation automaton R aims to identify impossible

combinations of I and O values, and since they will never

occur in the shield’s input, there is no need to make corrections

in the shield’s output. There may be two reasons why a value

combination is impossible:
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Fig. 5. Relaxation automaton R(I,O): impossible means the system D will
not allow the state to be reached, and the shield S can treat it as don’t care.
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Fig. 6. Feasibility automaton F(O′): infeasible means the state is unrealiz-
able, and the shield S must avoid the related edges while generating solutions.

1) The values of real-valued predicates are incompatible,

e.g., as in |µ| < 0.02 and |µ| > 0.2.

2) The values are not consistent with physical laws of

the environment, e.g., time never travels backward. For

example, with respect to the time interval [τs, T ], the

transition from T1 ∧ T2 to ¬T1 ∧ T2 is impossible.

In addition, our method allows users to provide more con-

straints to characterize physical laws of the environment or

their understanding of the behaviors of the system D.

States in the relaxation automaton R are divided into

two types: normal states and impossible states. Here, normal

means the I/O behavior of the system D may occur, whereas

impossible means it will never occur. Since impossible I/O
behavior will never occur in the shield’s input, the shield may

treat it as don’t-care and thus have more freedom to compute

the winning strategy.

Example Fig. 5 shows the relaxation automaton for our

running example. Here, the dashed edges come from the

physical laws (time never travels backward), while the solid

edges comes from the compatibility of real-valued predicates

defined over l and µ. In particular, the combination ¬M1∧M2
is identified as impossible, because |µ| cannot be greater than

0.2 and less than 0.02 at the same time.

To check the compatibility of the predicate values, concep-

tually, one can iterate through all possible value combinations

for the predicates in P , and check each combination with

an LP solver. If the combination is unsatisfiable (UNSAT)

according to the LP solver, we say it is impossible. However, in

our actual implementation, the compatibility checking is per-

formed significantly more efficiently, due to the use of variable

partitioning and UNSAT cores. First, P may be divided into

subgroups, such that predicates from different subgroups do

not interfere with each other. Therefore, value combinations

may be computed via Cartesian products. Second, when a

value combination is proved to be unsatisfiable, we compute

its UNSAT core, i.e., a minimal subset that itself is UNSAT.

By leveraging these UNSAT cores, we can significantly speed

up the checking of value combinations.

D. Computing the Feasibility Automaton

The feasibility automaton F aims to capture the combina-

tions of O′ values that are unrealizable in the real domain.

Similar to R, states in F are divided into two types: normal

and infeasible. Here, normal means the value combinations

are realizable in the real domain, whereas infeasible means

the value combinations may be unrealizable.

Fig. 6 shows an example feasibility automaton for the run-

ning example: all predicates are the primed versions because

they are defined over O′ signals, which are part of the modified

output of the shield. Upon ¬M ′
1∧M

′
2, the automaton goes into

the infeasible state, because ¬(|µ′| < 0.2)∧ (|µ′| < 0.02) has

no real-valued solution.

While this is rare, a value combination may depend on real-

valued signals not only in the shield’s output (O′
r) but also in

the input (Ir). Let such a value combination be denoted by

φ(Ir, O
′
r). Whether φ is guaranteed to be realizable can be

decided using an SMT solver, by checking the validity of the

formula ∀Ir.∃O
′
r.φ(Ir, O

′
r).

Subsequently, during our computation of the winning strat-

egy ωr, we need to avoid such unrealizable combinations.

E. Solving the Constrained Game

The new safety game Gr is defined as the composition of

W , the winning region of the Boolean game G, the relaxation

automaton R, and the feasibility automaton F . We tweak the

winning region automaton W by adding an unsafe state for all

edges going out of W . Here, composition means the standard

synchronous product, where a state transition exists only if it is

allowed by all three components (W , R and F). Furthermore,

safe states of Gr are either (1) states that are both safe in W
and feasible in F , or (2) states that are impossible in R.

More formally, assume that FW is the set of unsafe states

related to the winning region W , FF is the set of infeasible

states of the feasibility automaton F , and FR is the set of the

impossible states of the relaxation automaton R. The set of

safe states in the new game Gr is defined as (¬FW ∧¬FF )∨
FR.

Finally, we solve Gr using standard algorithms for safety

games, e.g., Mazala [28], which are also used in the prior

work [7], [22], [43]. The result is a winning strategy ωr,

which in turn may be implemented as a reactive component

Sbool . Note that Sbool is a Mealy machine that takes I and O
signals as input and returns the modified O′ signals as output.

Furthermore, due to the use of R and F , the output of Sbool

is guaranteed to be realizable at run time.

V. GENERATING THE REAL-VALUED SIGNALS

In this section, we present our method for computing the

real-valued signals (O′
r) at run time, based on the Boolean

shield’s output (O′).

Algorithm 2 shows the details of our method, which needs

Ir, Or, O′
r, the set P of predicates, Sbool , and a utility function

γ, which is used to evaluate the quality of the real-valued



Algorithm 2 Computing real-valued correction signals at run time.

1: function COMPUTEREALVALUES( Ir , Or , O′
r , P , Sbool , γ)

2: I,O ← GENBOOLEANABSTRACTION(Ir, Or,P)
3: O′ ← GENBOOLEANSHIELDOUTPUT(Sbool , I, O)
4: if O′ = O then
5: O′

r = Or

6: else
7: O′

r ← PREDICTION(Hist)
8: if ¬ SATISFIABLE(P, O′, O′

r) then
9: model←LPSOLVE(P, γ, O′)

10: O′
r ← model

11: end if
12: end if
13: Hist← Hist ∪ {O′

r}
14: end function

solution. First, real values in Ir and Or are transformed to

Boolean values in I and O. Then, they are used by Sbool

to compute new values in O′. When O′ and O have the

same Boolean value, meaning the shield does not make any

correction, O′
r and Or will also have the same real value; in

this case, no computation is needed (Line 5). However, when

O′ and O have different values, we need to recompute the real

values in O′
r (Lines 7-11).

A. Robustness Optimization

Since the output of the Boolean shield is an assignment of

the Boolean predicates in O′, and each predicate corresponds

to a linear constraint of the form Σk
i=1aixi ≤ 0, conceptually,

the real values in O′
r can be computed by solving the linear

programming (LP) problem.

However, naively invoking the LP solver does not always

produce a high-quality solution. Instead, we develop the fol-

lowing optimization to improve the quality of the solution.

Specifically, we restrict the LP problem using a robustness

constraint derived from the utility function γ. While there

may be various ways of defining robustness, especially in the

context of STL [12], [15], a straightforward way that works

in practice is to ensure the signal is smooth (see Fig. 4).

That is, we restrict the LP problem using the objective

function

min
(

|vali −

N
∑

k=1

vali−k

N
|
)

where vali denotes the current value (at the i-th time step)

and vali−k, where k = 1, 2, . . . , denotes the value in the

recent past. The above function aims to minimize the distance

between vali and the (moving) average of the previous N
values, stored in Hist (Line 13).

B. Value Prediction and Validation

While the robustness constraint improves the quality of the

real-valued solution, it also increases the computational cost

of LP solving. To reduce the computational cost, we develop

a two-phase optimization for computing the solution.

First, we predict the value of a signal using standard

regression algorithms based on the historical values of the

signal in the immediate past (Line 7 in Algorithm 2). Here,

the procedure PREDICTION leverages historical values stored

in Hist. Since the signal is expected to be smooth, standard

linear or non-linear regression can be very accurate in practice.

Next, we validate the predicted value (Line 8). This is

accomplished by plugging the predicted value for O′
r into

the combination of Boolean predicates defined by P and the

values of signals in O′. If it is valid, the value is accepted as

the final output, and invocation of the LP solver is avoided.

Note that the time taken to perform prediction and validation

is significantly smaller than that of the LP solving.

Only when the predicted value is not valid, we invoke the

LP solver (Line 9). Even in this case, the response time is fast

because we can use the same LP solver for validation and LP

solving. Due to incremental computation inside the solver, the

solution used for validation, which is often close to the final

solution, can help speed up LP solving.

VI. EXPERIMENTS

We have implemented our method as a tool that takes the

automaton representation of a safety specification as input and

returns a real-valued shield as output. Internally, we solve the

safety game using Mazala’s algorithm [28] implemented sym-

bolically using CUDD [1], and use the LP solver integrated

in Z3 [11] for prediction, validation and constraint solving.

For evaluation purposes, the shield is implemented as a C

program and is executed at every time step. Each execution

has two phases: (1) generating Boolean values for signals in

O′, and (2) generating real values for signals in O′
r.

Benchmarks We evaluated our tool on seven sets of

benchmarks, including automotive powertrain control [19],

autonomous driving [35], adaptive cruise control [29], multi-

drone fleet control [30], generic control [20], blood glucose

control [39], and water tank control [2]. In all benchmarks,

the original specification was given in STL, which has both

timing and real-valued constraints.

Table I shows the benchmark statistics, including the appli-

cation name, the property, a short description, and the corre-

sponding STL formula. For brevity, we omit the automaton

representations. We conducted experiments on a computer

with Intel i5 3.1GHz CPU, 8GB RAM, and the Ubuntu 14.04

operating system. Our experiments were designed to answer

the following questions: (1) Is our tool efficient in synthesizing

the real-valued shield? (2) Is the shield effective in preventing

safety violations? (3) Are the real-valued signals produced by

the shield of high quality?

Experimental Results Table II shows the results of our shield

synthesis procedure. Columns 1-3 show the property name, the

number of states of the specification, and the number of real-

valued signals in Ir and Or, respectively. Column 4 shows the

number of predicates defined over signals in Ir and Or. Based

on these predicates, Boolean signals in I and O are created;

Column 5 shows the number of these signals. Column 6

shows the number of conflicting constraints captured by the

relaxation and feasibility automata, respectively. Column 7

shows the synthesis time. Columns 8-9 show the number of

states of the Boolean shield, and the number of real-valued

constraints to be solved at run time.

Table III shows the performance of the shields. For each

shield, we generated input signals (for Ir and Or) based on the

system description: some input signals satisfy the specification

while others do not. By measuring the response time of the



TABLE I
STATISTICS OF THE BENCHMARK APPLICATIONS.

Application Property STL Formula and Description

R26 In normal mode, permitted overshoot/undershoot is always less than 0.05

G[τs,T ]

(

l=normal⇒ |µ| < 0.05
)

R27 In normal mode, overshoot/undershoot less than 0.02 within the settling time

G[τs,T ]

(

rise(a)|fall(a)⇒ G[η, ς
2
]

(

|µ| < 0.02
)

)

Powertrain R32 From power to normal, overshoot/undershoot less than 0.02 within settling time

G[τs,T ]

(

l=power ∧ X(l=normal)⇒ G[η, ς
2
]

(

|µ| < 0.02
)

)

R33 In power mode, permitted overshoot or undershoot should be less than 0.2

G[τs,T ]

(

l=power⇒ |µ| < 0.2
)

R34 Upon startup/sensor failure, overshoot/undershoot <0.1 within the settling time

G[τs,T ]l=startup|sensor fail ∧ rise(a)|fall(a)⇒ G[η, ς
2
]

(

|µ| < 0.1
)

)

D1 Vehicle should keep a steady speed Vs when there is no collision risk

Autonomous G
(

|yego
k
− xadv

k
| >= 4

)

⇒ G
(

|vego
k
− Vs| < ε

)

Driving D2 Vehicle should come to stop for at least 2 second when there is collision risk

G
(

|yego
k
− xadv

k
| < 4

)

⇒ G[0,2]

(

|vego
k
| < 0.1

)

A1 Keep a safe distance with lead vehicle: G
(

pos lead[t]− pos ego[t] > Ds

)

Cruise A2 Achieve cruise velocity if there is a comfortable distance

Control
(

pos lead[t]− pos ego[t] > Dc

)

U[0,10]

(

|v ego[t]− v cruise[t]| < ε
)

A3 Vehicle should never travel backward: G
(

v ego[t] >= 0
)

A4 Vehicle doesn’t halt unless lead vehicle halts:

G
(

v lead[t] > 0
)

⇒ G
(

v ego[t] > 0
)

Q1 Drone flies to goal point if no obstacles are on the way:

Quadrotor G
(

Obs(posquad,posobs)⇒ ωg > 0)
)

Control Q2 Avoiding obstacles:G¬Obs(posquad,posobs)⇒
(

ωḡ > 0 ∧ G
(

Dis(posquad,posobs) < ε⇒ ωg = 0
)

)

C1 After settling, output error should be less than set value εb:

General G

(

x[t]⇒ G[10,∞]

(

|
y[t]−yref

yref
| < εb

)

)

Control C2 Output error should be [ε⊥, ε⊤] in settling time:

G

(

x[t]⇒ G[0,20]

(

ε⊥ <
y[t]−yref

yref
< ε⊤

)

)

C3 Output should achieve reference value within rise time:

G

(

x[t]⇒ F[0,rise time]

(

|
y[t]−yref

yref
| < εr

)

)

Glucose
Control

B1 Having meal within t1 minutes after taking the bolus is safe. A bolus must be
taken after t2 minutes of having meal, if it is not yet taken:

G

(

F[0,t1+t2](B > c2) ∨ G[t1,t1+t2]

(

M > c1 ⇒ F[0,t2](B > c2)
)

)

Water Tank W1 Turn on inflow and turn off outflow switch when water level is low (l < 4)

Control G
(

l < 4⇒ G[0,3](flowout = 0 ∧ 1 < flowin < 2)
)

W2 Turn on outflow and turn off inflow switch when water level is high (l > 93)

G
(

l > 93⇒ G[0,3](flowin = 0 ∧ 0 < flowout < 1)
)

TABLE II
RESULTS OF OUR NEW SHIELD SYNTHESIS PROCEDURE.

Name Specification Synthesis Tool Shield S
states |Ir|/|Or| |PI |/|PO| |I|/|O| |R|/|F| time(s) states constrs

R26+R27 8 1/1 2/2 5/2 2/1 0.16 25 2+2
R32+R33 9 1/1 2/2 5/2 2/1 0.15 28 2+2
R26+R27+R32
+R33+R34

23 1/1 2/4 5/4 12/11 1.15 158 4+2

D1 6 3/1 5/3 6/3 53/5 0.15 19 3+2
D2 5 3/1 2/3 3/3 5/5 0.21 30 3+2
D1+D2 14 3/1 5/3 6/3 53/5 0.8 164 3+2
A1+A3+A4 3 3/1 2/2 2/3 1/1 0.08 8 2+0
A2+A3+A4 4 4/1 3/3 3/3 4/4 0.1 15 3+0
A1+A2+A3+A4 7 4/1 4/3 4/4 8/4 0.55 48 3+0
Q1+Q2 5 1/2 1/2 2/2 0/0 0.08 7 2+0
C1+C2+C3 19 2/1 3/4 3/4 13/11 0.52 118 4+2
B1 5 3/1 5/1 5/1 14/0 0.1 6 1+0
W1+W2 6 1/2 2/2 2/2 1/0 0.1 10 2+2

shield under these input signals, and the quality of corrections

made by the shield, we hope to evaluate its effectiveness.

In this table, Column 1 shows the property name. Column 2

shows the size of the C program that implements the shield.

Column 3 shows the response time of the Boolean shield on

input signals that do not violate the specification. Columns 4-

5 show the response time on input signals that violate the

specification. Among these columns, prediction means the

real-valued solution was successfully computed by a linear

regression, whereas constraint solving means prediction failed

and the solution was computed by the LP solver.

Overall, the time to compute real-valued correction signals

is within 0.5 ms when D 6|= ϕ, and less than 1 us when D |= ϕ.

In the latter case, the shield does not need to make correction

at all. In both cases, the response time is always bounded and

fast enough for the target applications.

TABLE III
RESULTS OF EVALUATING RUNTIME PERFORMANCE OF THE SHIELD.

Name Implementation Shield Response Time
(LoC) Boolean step (us) prediction step (us) constraint solving (us)

R26+R27 745 0.3 293.3 336.8
R32+R33 748 0.41 256.5 333.9
R26+R27+R32
+R33+R34

1446 0.8 245.0 279.8

D1 781 0.45 177.2 164.7
D2 853 0.5 313.5 329.0
D1+D2 2242 0.8 318.3 202.4
A1+A3+A4 539 0.37 164.3 212.7
A2+A3+A4 632 0.49 281.7 431.5
A1+A2+A3+A4 940 0.45 291.7 290.1
Q1+Q2 556 0.18 299.2 313.5
C1+C2+C3 1037 0.5 299.4 395.2
B1 623 0.31 225.4 313.4
W1+W2 608 0.57 295.3 222.1
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Fig. 7. Automotive powertrain system simulation (w/ and w/o the shield).

Case Study 1: Powertrain Control System To validate the

effectiveness of our approach, we integrated the shield into

the simulation model of the powertrain control system. Then,

we compared the system performance with and without the

shield. Fig. 7 shows the simulation results, where our shield

was synthesized from the system properties 26, 27, 32, 33

and 34 as described in Jin et al. [19]. Recall that µ is the

normalized error of the A/F ratio and µref is a reference value.

The green dashed line indicates the safe region, which varies

as the system switches between different modes (transition

events are highlighted with black dotted line). The red dashed

line represents violations of the specification by the Or signals.

The solid red line represents corrections made in O′
r. The

result shows that our shield can always produce real-valued

correction to keep µ in the safe region.

Recall that the goal of using a shield is not to correct the

flawed design D itself, which includes the overshot plant;

instead, the goal is to avoid the negative impact of D’s output.

Here, the output signal µ may be used by other components

of the system.

Case Study 2: Autonomous Driving Fig. 8 shows the

simulation results of an autonomous driving system [35] with

and without our shield. Here, an ego vehicle is put into

a nondeterministic environment that includes an adversarial

vehicle, and the two cars are crossing an intersection. The ego

vehicle is protected by a shield synthesized from D1+D2 in

Table I. The three plots, from top to bottom, are for distances

to the intersection, velocities, and accelerations of the two

vehicles. The x-axis represents the time in seconds.

The adversarial vehicle drives straight through the intersec-

tion at a constant speed. The ego vehicle, in contrast, may

change speed to avoid collision. From t = 0s to t = 5s,
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Fig. 8. Position, velocity and acceleration in autonomous driving simulation.

since the distance between the two vehicles is large, the ego

vehicle maintains a steady speed (set to 2m/s initially). At

t = 5s, based on the safety specification, it is supposed to

come to a stop (for at least 2s or when there is no collision

risk). However, since we injected an error at t = 6s (in red

dashed line), there is an unexpected acceleration and, without

the shield, there would have been a collision.

The blue lines show the behavior of the ego vehicle after

corrections are made by the shield. Clearly, its behavior

satisfies the requirements: it stops at the intersection to allow

the adversarial vehicle to pass safely. Furthermore, the real-

valued correction made by the shield is successfully predicted

using linear regression, and the predicted values satisfy not

only the safety but also the robustness requirements.

VII. RELATED WORK

As we have mentioned earlier, prior work on shield syn-

thesis has been restricted to the Boolean domain. Specifically,

Bloem et al. [7] introduced the notion of shield together with

a synthesis algorithm, which minimizes the deviation between

O and O′ under the assumption that no two errors occur

within k steps. Wu et al. [43] improved the algorithm to deal

with burst error. That is, if more errors occur within the k-

step recovery period, instead of entering a fail-safe state, they

keep minimizing the deviation. Könighofer et al. [22] further

improved the shield while Alshiekh et al. [2] leveraged it to

improve the performance of reinforcement learning. However,

none of the existing techniques dealt with the realizability

problems associated with real-valued signals.

There is also a large body of work on reactive synthesis [6],

[14], [32], [41] and controller synthesis [17], [24], [34], [35].

The goal is to synthesize D from a complete specification Ψ,

or the control sequences for D to satisfy Ψ. In both cases, the

complexity depends on D. This is a more challenging problem,

for two reasons. First, specifying all aspects of the system

requirement may be difficult. Second, even if Ψ is available,

synthesizing D from Ψ is difficult due to the inherent double

exponential complexity of the synthesis problem. Our method,

in contrast, treats D as a blackbox while focusing on a small

subset ϕ ⊆ Ψ of safety-critical properties. This is why shield

synthesis may succeed where conventional reactive synthesis

fails.

Renard et al. [36] proposed a runtime enforcement method

for timed automata, but assumed that controllable input events

may be delayed or suppressed, whereas our method does not

require such an assumption. Bauer et al. [4] and Falcone et

al. [16] studied various types of temporal logic properties that

may be monitored or enforced at run time. Renard et al. [37]

also leveraged Büchi games to enforce regular properties with

uncontrollable events. Our work is orthogonal in that it tackles

the realizability and efficiency problems associated with real-

valued signals. Furthermore, we focus on safety while leaving

liveness properties and hyper-properties [8], [10], [18] for

future work.

An important feature of the shield synthesized by our

method is that it always makes corrections instantaneously,

without any delay. Therefore, it differs from a variety of

solutions that allow delayed corrections. In some cases, for

example, buffers may be allowed to store the erroneous output

temporarily, before computing the corrections [16], [23], [40].

In this context, the notion of edit-distance is more relevant. Yu

et al. [45], for example, proposed a technique for minimizing

the edit-distance between two strings, but the technique re-

quires the entire input be stored in a buffer prior to generating

the output. However, when the buffer size reduces to zero,

these existing techniques would no longer work.

Runtime enforcement is related to, but also different from,

the various software techniques for error avoidance. For ex-

ample, failure-oblivious computing [25], [38] was used to

allow software applications to execute through memory errors;

temporal properties [26], [46] were leveraged to control thread

schedules to avoid runtime failures of concurrent software.

However, these techniques are not designed to target cyber-

physical systems with real-valued signals, where corrections

are expected to be made instantaneously, i.e., in the same time

step when errors occur.

VIII. CONCLUSIONS

We have presented a method for synthesizing real-valued

shields to enforce the safety of cyber-physical systems. The

method relies on a principled technique at the synthesis time

to rule out impossible and infeasible scenarios and ensure

the realizability of real-valued corrections at run time. We

also proposed optimizations to speed up the computation

and improve the quality of the solution. We have evaluated

our method on a number of applications, including case

studies with an automotive powertrain control system and

an autonomous driving system. Our results demonstrate the

effectiveness of the method in enforcing safety properties of

cyber-physical systems.
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