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Empirical Bayes small area prediction under a zero-inflated log-
normal model with correlated random area effects
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Many variables of interest in agricultural or economical surveys have skewed distributions and can equal
zero. Our data are measures of sheet and rill erosion called RUSLE2. Small area estimates of mean RUSLE2
erosion are of interest. We use a zero-inflated lognormal mixed effects model for small area estimation. The
model combines a unit-level lognormal model for the positive RUSLE2 responses with a unit-level logistic
mixed effects model for the binary indicator that the response is nonzero. In the CEAP data, counties with
a higher probability of nonzero responses also tend to have a higher mean among the positive RUSLE2 val-
ues. We capture this property of the data through an assumption that the pair of random effects for a county
are correlated. We develop empirical Bayes small area predictors and a bootstrap estimator of the MSE. In
simulations, the proposed predictor is superior to simpler alternatives. We then apply the method to con-
struct empirical Bayes predictors of mean RUSLE2 erosion for South Dakota counties. To obtain auxiliary
variables for the population of cropland in South Dakota, we integrate a satellite derived land cover map
with a geographic database of soil properties. We provide an R Shiny application called viscover (avail-
able at https://lyux.shinyapps.io/viscover/) to visualize the overlay operations required to
construct the covariates. On the basis of bootstrap estimates of the mean square error, we conclude that the
empirical Bayes predictors of mean RUSLE2 erosion are superior to direct estimators.
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1 Introduction

In small area estimation, direct estimators for domains of interest are considered unreliable due to small
sample sizes. Model-based small area estimators (Rao and Molina, 2015) attain efficiency gains relative
to design-based estimators through the use of auxiliary information, often assumed known for the full
population. Early and influential approaches to small area estimation use linear mixed effects models with
symmetric error distributions (Battese et al., 1988; Fay III and Herriot, 1979).

We consider small area estimation for skewed response variables that are contaminated with zeros. Ex-
amples of variables that exhibit these distributional properties include household expenditures on durable
goods (Tobin, 1958), agricultural production (Dreassi et al., 2014; Karlberg, 2015), and expenditures for
medical care. Min and Agresti (2002) provide additional examples in the context of a review of regression
models for semi-continuous data. When distributions are skewed and inflated with zeros, the assumptions
of the linear mixed effects model may not hold.
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1.1 Motivating CEAP RUSLE2 data

The data that motivate our study are from the Conservation Effects Assessment Project (CEAP), a survey
conducted from 2003-2006 through a cooperative agreement between the Natural Resources Conservation
Service of the United States Department of Agriculture and Iowa State University. The response variables
in CEAP are several measures of soil and nutrient loss on crop fields due to different types of water and
wind erosion. We focus on a particular measure of sheet and rill erosion obtained by processing survey
responses collected in CEAP through a computer model, the Revised Universal Soil Loss Equation - 2
(RUSLE2).

Figure 1 demonstrates the challenges associated with specifying an appropriate small area model for the
CEAP RUSLE2 data. The histogram in the left panel of Figure 1 shows that the distribution of RUSLE2 is
highly skewed right, and approximately 15% of the RUSLE2 measurements are equal to zero. The scatter-
plot in the right panel of Figure 1 shows that counties with higher mean values of positive erosion (in the log
scale) are less likely to have observed zeros. An appropriate small area model for the CEAP RUSLE2 data
will reflect both of these characteristics: the right skew in the distribution of positive RUSLE2 values and
the positive correlation between the county mean of log positive erosion and the county level probability
that erosion is nonzero.

1.2 Zero-inflated lognormal model with correlated area random effects

We define a zero-inflated lognormal model with correlated random effects to address the challenges in
modeling the CEAP RUSLE2 data. Let i = 1, . . . , D index the small domains (South Dakota counties,
for the CEAP application) of interest and j = 1, . . . , Ni index the units in the population for area i. We
assume that a probability sample is selected and let si be the set of sampled units for area i with |si| = ni.
The observed response variable (RUSLE2 in the CEAP application), denoted as y∗ij , satisfies

y∗ij = δijyij , (1)

where δij is a Bernoulli random variable with probability pij of being 1, and yij > 0. The quantities of
interest are the area means defined by ȳ∗Ni

= N−1
i

∑Ni

j=1 y
∗
ij for i = 1, . . . , D. In the model, defined

precisely below, we assume yij satisfies a lognormal mixed effects model and relate pij to the vector of
covariates using a general link function g(·). Assume

log(yij) = β0 + z′1,ijβ1 + ui + eij , (2)

and

g(pij) = α0 + z′2,ijα1 + bi, (3)

where g(·) : (0, 1)→ (−∞,∞) is a parametric, one-to-one link function, eij
iid∼ N(0, σ2

e), and the pair of
random area effects (ui, bi) satisfies(

ui
bi

)
iid∼ BVN(0,Σub),Σub =

(
σ2
u σub

σub σ2
b

)
,

where σub = ρσuσb. The pairs of random variables {(ui, bi) : i = 1, . . . , D} are mutually independent
and are also independent of eij for i = 1, . . . , D and j = 1, . . . , Ni. Implications of this dependence
structure are that δij ⊥ ui | bi, and δij ⊥ eij | (bi, ui), where ⊥ denotes independence. When the link
function g(µ) is chosen to be the logit link log(µ/(1−µ)), model (3) is called logistic mixed effects model.

The model (2-3) represents the main features of the data seen in Figure 1. The lognormal model (2)
captures the skewed distribution observed in the left panel of Figure 1. The binary part (3) accounts for the
nontrivial proportion of zeros in the CEAP data set. The important parameter ρ ∈ (−1, 1), the correlation
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between bi and ui, enables us to represent the correlation between the positive and binary parts observed
in the right panel of Figure 1 through our model. In a preliminary analysis of the CEAP data, we fit a
simplified version of the model (2-3) with ρ = 0. In this “independence model”, the lognormal mixed
effects model for the positive RUSLE2 values is independent of the logistic mixed effects model for the
probability of a nonzero. The sample correlation between random effects from these two independent
models for the positive and binary parts suggests that the population correlation is nontrivial. Our model
development in this paper allows us to investigate the significance of the correlation between bi and ui
formally through a bootstrap interval.

1.3 Related small area procedures for skewed, binary, or zero-inflated data

The model (2-3) advances existing small area literature primarily through the introduction of the correlation
parameter ρ in the lognormal framework and secondarily through the development of small area predictors
and mean squared error (MSE) estimators in Section 2. We review the literature on which our model and
procedure build in this subsection. We first review procedures that address either skewed positive data or
binary data individually. We then turn attention to models for zero-inflated data.

Several small area models have been developed for positive, skewed data with support (0,∞). Most
relevant for our work, Berg and Chandra (2014) develop closed form expressions for the empirical Bayes
(EB) small area predictor and corresponding mean squared error (MSE) estimator under the assumptions
of a lognormal mixed effects model. They apply the mixed effects small area model to construct predictors
for a subset of the CEAP data collected in Iowa, a highly cultivated and relatively homogeneous state with
a negligible number of observed zeros. For states with greater heterogeneity than Iowa with respect to
agriculture, appropriately modeling observed zeros is an important issue for small area estimation. Several
studies extend Berg and Chandra (2014). Molina et al. (2018) study MSE estimation for the lognormal
small area model of Berg and Chandra (2014) more rigorously, and Zimmermann and Münnich (2018)
consider informative sampling. Molina and Rao (2010) and Marhuenda et al. (2017) generalize the log-
normal small area model to an arbitrary class of transformations. We considered the Box-Cox family of
transformations for the positive component as well as parametrized families of link functions for the binary
component. We focus on the log transformation with the logit link function because those transformations
fit the CEAP data well, as we demonstrate in Section 4. Distributions other than the lognormal distribution
for skewed, positive data have also been considered for small area estimation. Berg et al. (2016) compare
properties of small area predictors constructed under a mixed effects lognormal model to those based on a
generalized linear mixed model (GLMM) with a gamma response distribution in a simulation study. Jiang
(2003) develops EB small area predictors under the assumptions of a general GLMM.

A vast literature also exists on small area estimation for binary data. In the context of a unit-level lo-
gistic mixed effects model, González-Manteiga et al. (2007) investigate a bootstrap MSE estimator for a
small area predictor of a binary response variable constructed using the penalized quasi-likelihood method
of Schall (1991). Hobza and Morales (2016) improve upon González-Manteiga et al. (2007) by using a
Laplace approximation for the maximum likelihood estimator and EB prediction. Jiang and Lahiri (2001)
develops a rigorous theory for EB prediction under the unit-level logistic mixed effects model, where
the parameters are estimated using simulated method of moments. Extensions of the logistic mixed ef-
fects model with a single normally distributed random effect have been developed to incorporate a semi-
parametric model for the random effects (Marino et al., 2019) and temporal data (Hobza et al., 2018).

Pfeffermann et al. (2008) combine the logistic mixed effects model with a unit-level linear mixed effects
model to develop a unit-level small area model for zero-inflated data. In constructing small area estimates
of literacy rates, Pfeffermann et al. (2008) use this two-part random effects model to accommodate a
large number of observed literacy scores of zero. A logistic mixed effects model is used to describe the
probability of a nonzero, and a linear mixed model is used for the nonzero literacy scores. Pfeffermann
et al. (2008) use Bayesian methods for inference. Our development addresses many of the challenges
associated with a frequentist analysis of a two-part small area model raised in Pfeffermann et al. (2008).
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The use of a linear model for the positive component, as in Pfeffermann et al. (2008), is undesirable for
CEAP because the RUSLE2 data are highly skewed and have nonlinear associations with covariates.

Existing approaches to small area estimation for zero-inflated skewed data include Dreassi et al. (2014)
and Chandra and Chambers (2016). Dreassi et al. (2014) develop a zero-inflated gamma model and apply
the zero-inflated model to estimate grape wine production in small areas in Italy. Similar to Pfeffermann
et al. (2008), Dreassi et al. (2014) use Bayesian methods for inference. Chandra and Chambers (2016)
extend the lognormal model of Berg and Chandra (2014) to a two-part model, where the binary component
is independent of the positive, lognormal component. Chandra and Chambers (2016) use penalized quasi-
likelihood (PQL) to define a “plug-in” type of predictor for the binary component, similar to González-
Manteiga et al. (2007). As discussed in Hobza and Morales (2016), the PQL predictor is not an EB
predictor.

When developing a two-part zero-inflated mixed effects model, one issue to consider is the correlation
between the random effects in the positive component and the random effects in the binary component.
In the model (2-3), this correlation is represented through the parameter ρ. The Bayesian methods of
Dreassi et al. (2014) and Pfeffermann et al. (2008) are flexible enough to allow for a nonzero correlation.
Implicit in the “plug-in” approach of Chandra and Chambers (2016) is an assumption that the model for
the positive component is independent of the model for the binary component. Frequentist estimation
and inference for the two-part model with correlated random effects creates new analytical challenges.
Nonetheless, we prefer to adopt a frequentist approach since (1) we lack prior information that would guide
an appropriate choice of prior distributions and (2) constructing a posterior distribution for all elements of
the large population of cropland in South Dakota is computationally expensive. We address the analytical
challenges arising in the frequentist analysis of the zero-inflated lognormal model through our development
of a maximum likelihood estimator and an EB predictor in Section 2.

1.4 Auxiliary information acquisition for small area models

To construct EB predictors, we require the covariates to be available for every element of the population.
The requirement that the covariates are known for all population elements results from the nonlinear model
form. For a linear model (Battese et al., 1988), in contrast, the population means of covariates for each
area are sufficient. For nonlinear small area models, the assumption that the covariate is available for all
population elements is common. One of the most labor-intensive steps in small area estimation in practice
is obtaining the auxiliary variables for the full population. Many applications in small area estimation
touch upon that issue lightly (i.e., Pfeffermann et al. (2008)) or resort to incomplete auxiliary information,
which inflates the MSE of the predictor (Erciulescu and Fuller, 2016).

We provide a thorough treatment of the issue of obtaining population level auxiliary information. We
integrate a land cover map derived from satellite imagery with administrative data on soil properties to
obtain covariates that are known for the full population and relate to several factors thought to impact
erosion. The covariates z1,ij and z2,ij for the positive and binary parts in the model (2-3) can be the same
or different. Besides subject matter and data availability, the choice of covariates for each model component
also depends on appropriate variable selection techniques. We use a combination of the science underlying
erosion and statistical model comparison techniques to select the acquired covariates for the CEAP data
analysis in Section 4.

1.5 Outline of our approach

We develop EB predictors of small area means and corresponding MSE estimators based on the zero-
inflated lognormal model defined in (2-3). The EB predictor has theoretical support because it is an es-
timator of the minimum MSE unbiased predictor. The EB predictor enables a computationally simple
estimator of the leading term in the MSE as well as parametric bootstrap MSE estimators. We present

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 52 (2010) 61 5

the small area predictors based on the zero-inflated lognormal model with correlated random area ef-
fects in Section 2. In Section 3, we compare our proposed EB predictor to alternatives through simu-
lations. In Section 4, we describe how we obtain the auxiliary variables for the full population, apply
the method to the CEAP RUSLE2 data collected in South Dakota, and give predictions of county-level
average soil erosion with associated standard errors. We develop a visualization tool that demonstrates
the overlay operations needed to construct the covariates and also helps verify that the overlay oper-
ation works appropriately. The tool is featured in the RStudio Shiny gallery and available online at
https://lyux.shinyapps.io/viscover/. Concluding remarks are given in Section 5. The
Appendix provides the computational details for maximum likelihood estimation including the functional
form of the score equation. Tables and figures not required to communicate the main ideas are deferred to
Supporting Information available on the journal’s web page (http://onlinelibrary.wiley.com/doi/10.1002/bimj.202000029/suppinfo).
We develop a R (R Core Team, 2019) package saezero (Lyu, 2020) to implement the maximum likeli-
hood estimation and empirical Bayes prediction methods described in this paper.

2 Empirical Bayes prediction for the zero-inflated lognormal model

To define empirical Bayes predictors and MSE estimators under model (1), we introduce additional nota-
tion. Let θ = (β′,α′, σ2

u, σ
2
b , σ

2
e , ρ)′ denote the vector of fixed model parameters to be estimated, where

β = (β0,β
′
1)′ and α = (α0,α

′
1)′. As we illustrate through the data analysis, one can add parameters of

parametrized families of link functions or transformations.
Assume a sample is selected, and denote the index sets for sampled and nonsampled elements in area i

by si and s̄i, respectively. Assume that y∗ij is observed for all sampled elements. As discussed in Section
1.3, assume that the covariate zij = (z′1,ij , z

′
2,ij)

′ is observed for every element in the population, where
z1,ij and z2,ij , respectively, are the covariates in the models (2) for the positive part and in the model (3)
for the binary part. Denote the observed data as (y∗, z) = {y∗ij , j ∈ si, i = 1, . . . , D} ∪ {zij : j =
1, . . . , Ni; i = 1, . . . , D}. As discussed in Section 1.4, the requirement that the covariate zij is known for
every element of the population results from the nonlinear model form. We explain how we achieve this
requirement for the CEAP data analysis in Section 4.

2.1 Minimum mean square error predictor of small area mean

A common objective function for defining a predictor in small area estimation is squared error loss. It is
straightforward to show that the optimal predictor of ȳ∗Ni

under squared error loss is E{ȳ∗Ni
| (y∗, z)},

the conditional expectation of the population mean given the observed data. We call E{ȳ∗Ni
| (y∗, z)} the

minimum mean square error (MMSE) predictor. A synonym for the MMSE predictor used, for example,
in Molina and Rao (2010) is the term “best predictor” (BP). The MMSE predictor is also often called the
“Bayes” predictor. To stress that the MMSE predictor of ȳ∗Ni

depends on the unknown θ, we denote the
MMSE predictor by ˆ̄y∗MMSE

Ni
(θ).

In this section, we derive a form for the conditional expectation defining the MMSE predictor for the
specific model (2-3). The MMSE predictor is difficult to attain because the required conditional expectation
involves a bivariate integral over the distribution f(ui, bi | (y∗, z)). We present a form for the MMSE
predictor as a univariate integral in Theorem 2.1 below. The key idea of the derivation is that the conditional
distribution of ui given bi and (y∗, z) has a standard form. This allows us to transform the bivariate integral
defining the MMSE predictor to a univariate integral.

Theorem 2.1 The minimum MSE predictor of ȳ∗Ni
under model (2-3) has the form

ˆ̄y∗MMSE
Ni

(θ) = E{ȳ∗Ni
| (y∗, z)} =

1

Ni

[∑
j∈si

y∗ij +
∑
j∈s̄i

E{y∗ij | (y∗, z);θ}
]
, (4)
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where

E{y∗ij | (y∗, z);θ} = hij(θ)

∫
πsi(bi)exp

{
− 1

2vi
(bi −mi)

2
}
pij(bi)η(bi) dbi∫

πsi(bi)exp
{
− 1

2vi
(bi −mi)2

}
dbi

, (5)

(mi, vi) = (¯̃riρσuσb(σ
2
u + σ2

e/ñi)
−1, σ2

b{(1− ρ2)σ2
u + σ2

e/ñi}(σ2
u + σ2

e/ñi)
−1),

hij(θ) = exp(β0+z′1,ijβ1+γi ¯̃ri+γiσ
2
e ñ
−1
i /2+σ2

e/2), πsi(bi) =
∏
j∈si

[
pij(bi)

δij{1−pij(bi)}(1−δij)
]
,

pij(bi) = g−1(α0 + z′2,ijα1 + bi), η(bi) = exp{(1 − γi)ρσu/σbbi}, γi = (1 − ρ2)σ2
u{(1 − ρ2)σ2

u +

σ2
e/ñi}−1, ¯̃ri = ñ−1

i

∑
j∈si r̃ij , r̃ij = δij{log(yij)− β0 − z′1,ijβ1}, and ñi =

∑
j∈si δij .

P r o o f. The main steps of the proof are to first find a form for f(ui | bi, (y∗, z)) and to second
find a form for f(bi | (y∗, z)). By standard properties of bivariate normal distributions, ui | bi ∼
N(ρσuσ

−1
b bi, (1−ρ2)σ2

u). Additionally, recall that the assumptions of model (2-3) imply that δij ⊥ eij | bi
and ui ⊥ δij | bi. This allows us to specify the model for log(yij) as a unit-level model in new parameters.
Specifically,

log(yij) = β0 + z′1,ijβ1 + ρσuσ
−1
b bi + ki + eij ,

where ki = ui − ρσuσ−1
b bi, ki ∼ N(0, (1− ρ2)σ2

u), and eij
iid∼ N(0, σ2

e). Then standard properties of the
linear mixed effects model (i.e., Battese et al. (1988)) imply that ui | {bi, (y∗, z)} ∼ N(µ̃ui

, σ̃2
ui

), where
µ̃ui = γi ¯̃ri + (1 − γi)ρσuσ−1

b bi and σ̃2
ui

= γiσ
2
e/ñi. When ñi = 0 which indicates there is no positive

response in area i, it holds that γi = 0, µ̃ui
= ρσuσ

−1
b bi and σ̃2

ui
= (1 − ρ2)σ2

u. To derive the density
of the conditional distribution of bi given the observed data, note that f(ui | bi, (y∗, z))f(bi | (y∗, z)) =
f(ui, bi | (y∗, z)) ∝ f(y∗i | ui, bi, z)f(ui | bi, z)f(bi | z) implies

f(bi | (y∗, z)) ∝ f(y∗i | ui, bi, z)f(ui | bi, z)f(bi, z)

f(ui | bi, (y∗, z))
, (6)

where y∗i = (y∗i1, . . . , y
∗
ini

)′. Plugging in the known terms on the right side of (6) gives f(bi | (y∗, z)) ∝
πsi(bi)exp{−(bi − mi)

2/(2vi)}. When ñi = 0 or ρ = 0, it can be shown that mi = 0 and vi = σ2
b .

Let φ(·) denote the probability density function of a standard normal distribution. Then, the conditional
probability density function of bi given the observed data is

h(bi | (y∗, z)) =

1√
vi
πsi(bi)φ( bi−mi√

vi
)∫

1√
vi
πsi(bi)φ( bi−mi√

vi
) dbi

.

We are now able to express the conditional expectation of y∗ij as a univariate integral. By definition,

E{y∗ij | (y∗, z);θ} = E{δij exp(β0 + z′1,ijβ1 + ui + eij) | (y∗, z)}
= exp(β0 + z′1,ijβ1 + σ2

e/2)E{pij(bi) exp(ui) | (y∗, z)}
= exp(β0 + z′1,ijβ1 + σ2

e/2)E[E{pij(bi) exp(ui) | bi, (y∗, z)} | (y∗, z)]

= hij(θ)E{pij(bi)η(bi) | (y∗, z)},
where the second equal sign results from the independence of eij and eik for j 6= k, and the final equal
sign results from the conditional normal distribution of ui given bi and the observed data as well as the
moment generating function of a normal distribution. The expression for the conditional expectation as a
univariate integral in the statement of Theorem 2.1 now follows.

Observe that we derive a minimum MSE predictor for y∗ij in the original scale of the observed responses,
not in the log scale. By double conditioning, E[E{y∗ij | (y∗, z);θ}−y∗ij ] = E(E[E{y∗ij | (y∗, z);θ}−y∗ij |
(y∗, z)]) = 0. A correction for the transformation between log(yij) and yij is implicit in the development
of the minimum MSE predictor.
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2.2 Empirical Bayes predictor of small area mean

The minimum MSE predictor is defined through the integral in (5) and depends on the unknown θ. An
empirical Bayes (EB) predictor is an estimate of the MMSE predictor (Rao and Molina, 2015, p. 271).
Calculating an EB predictor in practice requires estimating the parameter vector θ and approximating
the integral in (5). We use maximum likelihood to estimate θ and approximate the integral in (5) using
Gauss-Hermite quadrature (Golub and Welsch, 1969).

An advantage of converting bivariate integrals with respect to the conditional distribution of (ui, bi) |
(y∗, z) to univariate integrals with respect to the distribution of bi | (y∗, z) is that one can easily approx-
imate an integral with respect to the distribution h(bi | (y∗, z)) using a Gauss-Hermite approximation
(Smyth, 2014). For an arbitrary function q(bi), a Gauss-Hermite approximation to E{q(bi) | (y∗, z)} is
given by

EA{q(bi) | (y∗, z);θ} =

∑K
k=1 πsi(bi,k)q(bi,k)wk(mi, vi)∑K

k=1 πsi(bi,k)wk(mi, vi)
, (7)

where bi,k for k = 1, . . . ,K are specified nodes, and wk(mi, vi) is a weight defined to approximate
expectation with respect to a normal distribution with mean mi and variance vi. We obtain the nodes and
weights using the R function gauss.quad.prob in the R package statmod (Giner and Smyth, 2016).
We use the approximation (7) to define maximum likelihood estimators and to construct EB predictors.

Using the same reasoning used in (6) of the derivation of h(bi | (y∗, z)), we have f(y∗i | θ) = [f(ui |
bi, (y

∗, z))f(bi | (y∗, z))]−1f(y∗i | ui, bi)f(ui | bi)f(bi). The terms on the right side of this expression
have known forms from the proof of Theorem 2.1. Substitution of these known forms gives the likelihood
function L(θ) =

∏D
i=1 Li(θ) where

Li(θ) =

∏
j∈si [

1
σe
φ(

rij−ui

σe
)]δij 1√

(1−ρ2)σ2
u

φ(
ui−ρσuσ

−1
b bi√

(1−ρ2)σ2
u

)πsi(bi)
1
σb
φ( biσb

)

1
σ̃ui

φ(
ui−µ̃ui

σ̃ui
)πsi(bi)

1√
vi
φ( bi−mi√

vi
)/
∫
πsi(bi)

1√
vi
φ( bi−mi√

vi
)dbi

=
(1− γi)1/2(vi/σ

2
b )1/2

(2πσ2
e)ñi/2

exp

(
γi ¯̃r

2
i

2σ2
e/ñi

+
m2
i

2vi
−
∑
j r̃

2
ij

2σ2
e

)∫
πsi(bi)

1
√
vi
φ(
bi −mi√

vi
)dbi.

A Gauss-Hermite approximation to the log likelihood is then `A(θ) =
∑D
i=1 log(Li,A(θ)), where Li,A(θ)

approximatesLi(θ) by substituting
∫
πsi(bi)vi

−1/2φ((bi −mi)vi
−1/2)dbi with

∑K
k=1 πsi(bi,k)wk(mi, vi).

We define the maximum likelihood estimator θ̂ to satisfy θ̂ = argmaxθ`A(θ). To maximize `A(θ) op-
erationally, we use the R function optim in the R package stats (R Core Team, 2019), as explained
in more detail in the Appendix. To calculate the empirical Bayes predictor, we replace the unknown θ
with an estimator and approximate expectations with respect to the distribution h(bi | (y∗, z)) using the
Gauss-Hermite approximation (7). We estimate (5), the conditional expectation of a nonsampled y∗ij given
the observed data, by

ŷ∗MMSE
ij (θ̂) = hij(θ̂)EA{p̂ij(bi)η̂(bi) | (y∗, z); θ̂},

where p̂ij(bi) = g−1(α̂0 + z′2,ijα̂1 + bi) and η̂(bi) = exp{(1− γ̂i)ρ̂σ̂uσ̂−1
b bi}. The EB predictor is then

defined by

ˆ̄y∗EB
Ni

=
1

Ni

{∑
j∈si

y∗ij +
∑
j∈s̄i

ŷ∗MMSE
ij (θ̂)

}
. (8)

The term in the EB predictor that provides the predictor of pij has connections to EB predictors of propor-
tions developed under the unit-level logistic mixed effects model in Hobza and Morales (2016) and Hobza
et al. (2018).
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2.3 MSE of the EB predictor

Theorem 2.2 gives an expression for the MSE of the EB predictor (8) as the sum of the MSE of the
MMSE predictor (4) and a second term that accounts for the variance of θ̂. We express the MSE of the
MMSE predictor as a univariate integral, which we approximate through Gauss-Hermite quadrature after
substituting the unknown parameters with estimators. We estimate the second term in the MSE using the
parametric bootstrap, a resampling procedure that involves simulating repeatedly from the estimated model
(Rao and Molina, 2015, p. 226).

Theorem 2.2 Under model (2-3),

MSE(ˆ̄y∗EB
Ni

) = E{(ˆ̄y∗EB
Ni
− ȳ∗Ni

)2} = M1i(θ) +M2i(θ),

where

M1i(θ) = E

 1

N2
i

∑
j∈s̄i

∑
k∈s̄i

[
E{y∗ijy∗ik | (y∗, z)} − E{y∗ij | (y∗, z)}E{y∗ik | (y∗, z)}

] ,

E{y∗ijy∗ik | (y∗, z)} =


hijhik exp(σ̃2

ui
)E{pijpikη(2bi) | (y∗, z)} if j 6= k

h2
ij exp(σ̃2

ui
+ σ2

e)E{pijη(2bi) | (y∗, z)} if j = k

,

and M2i(θ) = E{(ˆ̄y∗EB
Ni
− ˆ̄y∗MMSE

Ni
)2}.

P r o o f. Expanding the square defining the MSE, we have MSE(ˆ̄y∗EB
Ni

) = E{(ˆ̄y∗EB
Ni
− ȳ∗Ni

)2} =

M1i(θ) + M2i(θ) + 2M3i(θ), where M1i(θ) = E([N−1
i

∑Ni

j=1 E{y∗ij | (y∗, z); θ̂} −N−1
i

∑Ni

j=1 y
∗
ij ]

2),

andM2i(θ) = E([N−1
i

∑Ni

j=1 E{y∗ij | (y∗, z); θ̂}−Ni−1∑Ni

j=1 E{y∗ij | (y∗, z);θ}]2). and the cross term

M3i(θ) = E([Ni
−1∑Ni

j=1 E{y∗ij | (y∗, z); θ̂} − Ni
−1∑Ni

j=1 E{y∗ij | (y∗, z);θ}][Ni−1∑Ni

j=1 E{y∗ij |
(y∗, z);θ} −Ni−1∑Ni

j=1 y
∗
ij ]). We consider the cross term M3i(θ). Using double-conditioning,

M3i(θ) = E

[
E
([ 1

Ni

Ni∑
j=1

E{y∗ij | (y∗, z); θ̂} − 1

Ni

Ni∑
j=1

E{y∗ij | (y∗, z);θ}
]

×
[ 1

Ni

Ni∑
j=1

E{y∗ij | (y∗, z);θ} − 1

Ni

Ni∑
j=1

y∗ij
]
| (y∗, z)

)]

= E

[( 1

Ni

Ni∑
j=1

E{y∗ij | (y∗, z); θ̂} − 1

Ni

Ni∑
j=1

E{y∗ij | (y∗, z);θ}
)

× E
([ 1

Ni

Ni∑
j=1

E{y∗ij | (y∗, z);θ} − 1

Ni

Ni∑
j=1

y∗ij
]
| (y∗, z)

)]
= 0.

The leading termM1i(θ) is the MSE of the MMSE predictor (4), which has the formM1i(θ) = E[E{ȳ∗Ni
|

(y∗, z)} − ȳ∗Ni
]2 = E[V{ȳ∗Ni

| (y∗, z)}], where

V{ȳ∗Ni
| (y∗, z)} = E

 1

N2
i

∑
j∈s̄i

∑
k∈s̄i

[
E{y∗ijy∗ik | (y∗, z)} − E{y∗ij | (y∗, z)}E{y∗ik | (y∗, z)}

] .

The form for M1i(θ) in Theorem 2.2 now follows from the conditional distributions derived through the
proof of Theorem 2.1.
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Before presenting the MSE estimator, we make a couple of remarks on Theorem 2.2. A proof that
a cross-term analogous to M3i(θ) for the area-level model is zero is presented on page 141-142 of Rao
and Molina (2015). Jiang (2003) uses a decomposition similar to that in Theorem 2.2 for the MSE of an
empirical Bayes small area predictor constructed under a unit-level generalized linear mixed model. Also,
see Jiang and Lahiri (2006). The simulations in Section 3.2 provide numerical evidence that the MSE is
dominated by the leading term M1i(θ), although a formal proof of the orders of the terms in the MSE is
beyond the scope of this manuscript.

The estimate of M1i(θ) is an estimate of the observed conditional variance V {ȳ∗Ni
| (y∗, z)} obtained

by substituting the unknown θ with the MLE θ̂ and using the Gauss-Hermite approximation (7) for expec-
tations with respect to the distribution of bi | (y∗, z). We call this estimator the “one-step” estimator of
the leading term. The “one-step” estimator is defined as

M̂1i(θ̂) =
1

N2
i

∑
j∈s̄i

∑
k∈s̄i

[
EA{y∗ijy∗ik | (y∗, z); θ̂}−EA{y∗ij | (y∗, z); θ̂}EA{y∗ik | (y∗, z); θ̂}

]
, (9)

where EA{y∗ijy∗ik | (y∗, z);θ} approximates E{y∗ijy∗ik | (y∗, z);θ} by replacing E{pijη(2bi) | (y∗, z);θ}
with EA{pijη(2bi) | (y∗, z);θ} and E{pijpikη(2bi) | (y∗, z);θ} with EA{pijpikη(2bi) | (y∗, z);θ}
based on the Gauss-Hermite approximation (7).

Approximations to M2i(θ) are difficult to derive due to the complexity of the derivatives involved.
Therefore, use of the bootstrap, as defined in (10) below, to estimate M2i(θ) is more practical. For b =

1, . . . , B, we generate {y∗(b)ij : i = 1, . . . , D; j = 1, . . . , Ni} from the zero-inflated lognormal model (1)

with the original parameter estimator θ̂. We then obtain a bootstrap sample {y∗(b)ij : i = 1, . . . , D; j ∈ si}

where si is the index set of the originally observed sample units in area i. We let θ̂
(b)

denote the vector of
parameter estimators obtained from the b-th bootstrap sample. A bootstrap estimator of M2i(θ) is defined
by

M̂Boot
2i = B−1

B∑
b=1

(ˆ̄y
∗(b)EB
Ni

− ˆ̄y
∗(b)MMSE
Ni

)2, (10)

where ˆ̄y
∗(b)EB
Ni

is the EB predictor of ȳ∗(b)Ni
based on θ̂

(b)
and ˆ̄y

∗(b)MMSE
Ni

is the minimum MSE predictor

based on θ̂. Both ˆ̄y
∗(b)EB
Ni

and ˆ̄y
∗(b)MMSE
Ni

are constructed with the b-th bootstrap sample. We define a
semi-bootstrap estimator of the MSE of ˆ̄y∗EB

Ni
by

M̂Semi−Boot
i = M̂1i(θ̂) + M̂Boot

2i . (11)

where M̂1i(θ̂) is the proposed one-step MSE estimator as in (9). The MSE estimator (11) intention-
ally ignores the cross term M3i(θ) in the decomposition of the MSE of ˆ̄y∗EB

Ni
because this cross term is

theoretically 0. Our simulation study confirms that the cross term is indeed negligible. Note that González-
Manteiga et al. (2008) consider an estimator with a form analogous to the semi-boot estimator (11) in the
context of a linear mixed effects model.

The semi-bootstrap estimator of the MSE does not incorporate an estimate of the bias of the one-step
MSE estimator for the leading term in the MSE. This bias is defined formally as E{M̂1i(θ̂) −M1i(θ)}.
Typically, in small area estimation, the double bootstrap is needed to estimate the bias (Hall and Maiti,
2006). Because we are able to calculate M1i(θ) in one step, we can estimate the bias without requiring the
double bootstrap. We assess the importance of this bias and compare the semi-boot estimator of the MSE
to a fully parametric bootstrap MSE estimator in simulations.
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3 Simulations

We evaluate the properties of the proposed EB predictor through Monte Carlo (MC) simulations.We sim-
ulate M = 1000 populations {y∗ij : j = 1, ..., Ni; i = 1, ..., D} from the zero-inflated lognormal model
(1). We fix the parameters so that the proportion of zeros in the simulation is about 15%, similar to the
CEAP data for South Dakota. A single set of covariates {zij : j = 1, ..., Ni; i = 1, ..., D} is gener-
ated as mutually independent N(4.45, 0.055) random variables and held fixed across simulations. The
covariate zij is used for both model parts such that z1,ij = z2,ij = zij The logit link is used for the
binary part, and the parameters are β = (−13, 2)′,α = (−20, 5)′, and (σ2

u, σ
2
e , σ

2
b ) = (0.22, 1.23, 0.52).

We vary the value of the correlation parameter ρ in the simulations below. There are 64 counties in the
CEAP data analysis, so D = 60 areas are simulated. In each generated realization, (Ni, ni) = (71, 5)
for 20 of the areas, (143, 10) for another 20 of the areas and (286, 20) for the remaining 20 areas so that
(N,n) = (10000, 700). In Section 3.1, we evaluate the effect of ignoring the correlation by comparing the
EB predictor with simpler alternatives. In Section 3.2, we compare the proposed semi-boot MSE estimator
to a more traditional bootstrap MSE estimator and assess the importance of the bias of the estimator of the
leading term in the MSE.

3.1 Comparison with alternative predictors

The four alternative predictors to be compared with the EB predictor (8) are computationally simple but
lack optimality. The alternative predictors use θ̂0, the estimator of θ obtained by fitting the lognormal
model (2) to the positive responses and independently fitting the model (3) to the {δij : i = 1, . . . , D; j =
1, . . . , ni}. We use the R functions lmer and glmer in the package lme4 (Bates et al., 2015) for the
positive and binary parts, respectively. Restricted maximum likelihood (REML) is used to estimate the
parameters of the lognormal component and maximum likelihood is used to estimate the parameters of
the binary component. The first alternative predictor is the plug-in predictor (Chandra and Chambers,
2016) defined by replacing ŷ∗MMSE

ij (θ̂) in (8) with ŷ∗PI
ij = hij(θ̂0)p̂PI

ij (θ̂0), where p̂PI
ij (θ̂0) = g−1(α̂0 +

z′2,ijα̂1 + b̂i) and b̂i is the predictor of bi obtained from the penalized quasi-likelihood method of Schall
(1991) implemented in the R function glmer. The second alternative, the “zero-ignored predictor”, is the
estimated MMSE predictor for the mean of the positive component defined in Berg and Chandra (2014)
as ˆ̄y∗ZI

Ni
= Ñ−1

i {
∑
j∈si y

∗
ij +

∑
j∈s̄i hij(θ̂0)}, where Ñi = Ni −

∑
j∈si (1− δij) = Ni − (ni − ñi)

is the adjusted population size which excludes the number of zeros in the sample for area i. We refer to
the predictor ˆ̄y∗ZI

Ni
as the zero-ignored MMSE predictor. Rather than ignoring zeros completely, the third

approach begins by adding a small positive constant ε, such as the minimum observed positive value, to y∗ij .
The third predictor, referred to as the shifted MMSE predictor, is defined by ˆ̄y∗SI

Ni
= max{ˆ̄y∗MMSE

Ni,ε
− ε, 0},

where ˆ̄y∗MMSE
Ni,ε

is the MMSE predictor of Berg and Chandra (2014) applied to y∗ij + ε. Finally, we define
the EB(0) predictor as the EB predictor constructed with θ̂0 and ρ = 0. Thus, EB(0) is an estimated MMSE
predictor if the true correlation ρ is 0. The functional forms of the EB(0) and “plug-in” predictors differ
only in the predictor of δij .

We define the average MC MSE of the EB predictor by

¯MSEMC(ˆ̄y∗EB
Ni

) =
1

|{k : Nk = Ni}|
∑

{k:Nk=Ni}

M−1
M∑
m=1

(ˆ̄y
∗(m)EB
Ni

− ȳ∗(m)
Ni

)2, (12)

where ˆ̄y
∗(m)EB
Ni

is the EB predictor obtained in the m-th MC simulation, and ȳ∗(m)
Ni

is the corresponding
population mean simulated in them-th MC simulation. Note that the average in (12) is across MC iterations
and areas with the common number of elements. We define the average MSE difference between an
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alternative predictor (EB(0), PI, ZI and SI) and the EB predictor as

MSEDiffMC(ˆ̄y∗Alt
Ni

) =
1

|{k : Nk = Ni}|
∑

{k:Nk=Ni}

M−1
M∑
m=1

(ˆ̄y
∗(m)Alt
Ni

−ȳ∗(m)
Ni

)2− ¯MSEMC(ˆ̄y∗EB
Ni

),

(13)

where ˆ̄y
∗(m)Alt
Ni

is an alternative predictor of the i-th area mean in the m-th MC simulation. To account for
the variance of MSEDiffMC(ˆ̄y∗Alt

Ni
) as a MC approximation for the true difference, we define a margin of

error as 1.96 times the MC standard error. (Detailed definition in Section S3 in Supporting Information.)
A 95% confidence interval for each average MSE difference ζ̄ is given by (ζ̄ − ω, ζ̄ + ω) where ω denotes
the corresponding margin of error.

Table 1 reports the average MSE difference (multiplied by 105) between each alternate predictor and
the EB predictor for ρ = 0.9. As a reference, the average MC MSEs (multiplied by 105) of the EB
predictor defined in (12) are 24.09, 15.92 and 9.27, respectively for ni = 5, 10 and 20. The relative
MSE difference (ratio of the average MSE difference to the average MSE of the EB predictor) tends
to increase as the area sample size increases. The zero-ignored MMSE predictor is clearly inefficient
with relative MSE differences between 18% and 30%, implying that simply tossing the zeros is not a
good approach. Interestingly, the shifted MMSE predictor introduces an even larger error by adding a
small positive constant before the log-transformation and corrupting the normality. As a consequence of
mis-specification of the correlation structure, the relative MSE differences for the EB(0) and “plug-in”
predictors are about 5% to 7%. The margins of error in Table 1 indicate that the increase in MSE of the
EB(0) and “plug-in” predictors relative to the EB predictor is significant.

Given that the EB(0) predictor is most competitive with the EB predictor when ρ = 0.9, we next assess
the effect of the size of ρ on the relative efficiency of the EB predictor to the EB(0) predictor. Table 2
contains the average MSE differences (multiplied by 105) between the EB(0) and EB predictor for values
of ρ ranging from -0.9 to 0.9. When |ρ| = 0.3, the MSE of the EB(0) predictor does not differ significantly
from that of the EB predictor. As |ρ| increases to 0.6 or 0.9, the EB(0) predictor has larger MSE than the
EB predictor. Because the EB predictor is over-parametrized when ρ = 0, the EB(0) predictor is superior
to the EB predictor when the true correlation is indeed zero.

The comparison to alternative predictors above focuses on predictors constructed under the assumptions
of a lognormal model. The remaining predictor for zero-inflated skewed data in the small area literature
to which we do not compare is the zero-inflated gamma model presented in Dreassi et al. (2014). We do
not include their model in our study because the lognormal and gamma models are two different models
for the response distribution. We expect predictors constructed under the assumptions of the lognormal
model to outperform predictors constructed under the assumption of a gamma model if the lognormal
model is true (and vice versa). We consider an investigation into properties of predictors constructed under
a misspecified model assumption to be an area for future work. We focus on predictors constructed under
the assumptions of the lognormal model because the lognormal model appears adequate for the CEAP
data, as discussed further in Section 4.

3.2 Evaluation of the parametric bootstrap MSE terms

We use a traditional parametric bootstrap method to define another MSE estimator besides the one-step
and semi-boot MSE estimators. A fully parametric bootstrap MSE estimator is defined by

M̂Boot
i = B−1

B∑
b=1

(ˆ̄y
∗(b)EB
Ni

− ȳ∗(b)Ni
)2, (14)

where ˆ̄y
∗(b)EB
Ni

is the same as defined in (10) and ȳ∗(b)Ni
= N−1

i

∑Ni

j=1 y
∗(b)
ij is the i-th small area mean

based on the b-th bootstrap population. Fully parametric bootstrap estimators such as (14) are suggested
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in Molina and Rao (2010) for transformed parameters, in González-Manteiga et al. (2007) for a logistic
mixed effects model, and in González-Manteiga et al. (2008) for a linear mixed effects model.

The bootstrap MSE estimator (14) of the EB predictor can be decomposed into three parts as M̂Boot
i =

M̂Boot
1i + M̂Boot

2i + 2M̂Boot
3i , where M̂Boot

1i = B−1
∑B
b=1(ˆ̄y

∗(b)MMSE
Ni

− ȳ∗(b)Ni
)2, M̂Boot

2i is defined as in

(10) and a bootstrap estimator of the cross term M̂Boot
3i = B−1

∑B
b=1(ˆ̄y

∗(b)MMSE
Ni

− ȳ
∗(b)
Ni

)(ˆ̄y
∗(b)EB
Ni

−
ˆ̄y
∗(b)MMSE
Ni

). A bootstrap estimator of the bias of the estimator of the leading term in the MSE is defined

by M̂Bias
1i = B−1

∑B
b=1 M̂1i(θ̂

(b)
)−M̂1i(θ̂), where M̂1i(θ̂

(b)
) is the one-step MSE estimator constructed

with the original sample and the b-th bootstrap parameter estimate θ̂
(b)

. The semi-boot MSE estimator
(11) intentionally ignores the cross-term M3i(θ) because the expected value of the cross-term is zero, as
explained in the proof of Theorem 2.2. The one-step MSE estimator (9) additionally ignores M2i, the
error due to estimating model parameters. Both the fully parametric and semi-boot MSE estimator ignore
MBias

1i , the bias of the estimator of the leading term. Therefore, an assessment of the importance of the
three MSE components MBoot

3i , M2i and MBias
1i is relevant.

The MSE components and MSE estimators are evaluated through simulations, where the simulation
configuration is the same as Section 3.1 with ρ = 0.9, a MC sample size of 1000, and a bootstrap sample
size of B = 100 in each MC sample. We group by sample size and compute the MC means of the ratios of
M̂3i, M̂2i, and M̂Bias

1i to the fully parametric bootstrap MSE estimator (14). (We defer full tabular output to
Table S2 in Supporting Information.) Accounting for parameter estimation through M̂2i accounts for about
5-6% of the total MSE. The bias of estimating the leading term is less important, as M̂Bias

1i accounts for
-2.14%, -2.98%, and -3.06% of M̂Boot

i on average when the sample size is 5, 10, and 20, respectively. The
average ratios for the cross-term M̂3i are approximately -0.2%, supporting the theory that the cross-term
is negligible.

We next consider the biases for the MC MSE (13) and empirical coverages of normal theory prediction
intervals for the three MSE estimators (one-step, bootstrap and semi-boot). The analysis of the MC bias
and empirical coverage presented in Table 3 provides further support for the semi-boot MSE estimator.
Accounting for parameter estimation significantly reduces the negative bias of the one-step MSE estimator
and keeps the coverage rate close to the nominal 95% level. The bootstrap MSE estimator is unbiased
but has significantly lower coverage than the one-step MSE estimator. We believe that the semi-boot MSE
estimator is superior to the fully parametric bootstrap MSE estimator because the fully parametric bootstrap
MSE estimator unnecessarily estimates the cross-term.

4 Estimating sheet and rill erosion for the Conservation Effects Assess-
ment Project

The Conservation Effects Assessment Project (CEAP), detailed in Goebel (2012), is a collection of four
types of surveys that assess conditions on cropland, grazing lands, wildlife, and wetlands. The cropland
assessment, the focus of our work, monitors soil and chemical loss from crop fields. The sample for the
cropland assessment is a subset of locations classified as cropland in a larger survey called the National
Resources Inventory (Nusser and Goebel, 1997). Policies that allocate resources at a local level can benefit
from small area estimates of variables collected in CEAP. Therefore, we consider county estimation for
CEAP in South Dakota.

The response variable of interest for our study (y∗) is a measure of sheet and rill erosion in tons per year
obtained from the Revised Universal Soil Loss Equation, version 2 (RUSLE2), one of the outputs of the
Agricultural Policy/Environmental eXtender (APEX) model (Williams and Izaurralde, 2006). RUSLE2
is intended to improve upon the Universal Soil Loss Equation (USLE), a traditional measure of sheet
and rill erosion, published in Wischmeir and Smith (1965). USLE includes several fundamental factors
accounting for soil erosion, some of which we use in our model for the computationally more complex
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RUSLE2. Specifically, the USLE equation is defined by

A = R K L S C P, (15)

where A is USLE soil loss per unit area, R is the rainfall factor, K is the soil erodibility index, L is the
slope-length, S is the slope-gradient, C is the cropping-management effect relative to a fallow field, and P
is the erosion-control practice factor. The USLE equation (15) implies a log-linear relationship between
the sheet and rill erosion and the USLE factors. RUSLE2 maintains many of the fundamental concepts of
the USLE equation but uses more granular weather information and a more detailed cover-management
subfactor.

The proportions of non-zeros and sample sizes of the CEAP RUSLE2 data collected in the 66 counties
of South Dakota tend to increase from west to east, as shown in Figure S2 of the Supporting Information.
The east of South Dakota has more sampled units than the west, because most of the cropland in South
Dakota is located to the east of the Missouri river. The sample size is less than 5 for most of the counties in
the west. Butte county and Lawrence county are considered out of scope because 80% of the lands in those
two counties are rangeland or federal land. Among the 64 counties in the cropland population of interest,
seven of them have no positive RUSLE2 measurement. The overall proportion of zeros in the sampled
cropland RUSLE2 measurements is 15%.

4.1 Auxiliary variables and population predictions for CEAP

We require auxiliary variables that are known for the full population of cropland locations in South Dakota.
A simple and complete list of crop locations in South Dakota does not exist. Compiling the necessary
auxiliary information requires combining three additional sources besides CEAP: National Resources In-
ventory (NRI), Soil Survey Geographic Database (SSURGO) and Cropland Data Layer (CDL). We use
these sources for two purposes. The first is modeling cropland RUSLE2. The second is defining the full
population of crop fields for which predictions are required. These three sources provide covariates that
are known for the full population of cropland in South Dakota and are related to the USLE factors.

The first covariate is the log of the USLE R-factor, log(R). We obtain the USLE rainfall factor from
NRI. The R-factor is nearly constant within a county due to the uniform climate conditions in the midwest-
ern United States. We define a county level auxiliary variable by the the most frequently recorded NRI
R-factor in each county of South Dakota.

We obtain covariates for USLE K and S factors from SSURGO (U.S. Department of Agriculture,
2020b), a detailed map with soil properties for mapunits covering most of the United States. One of
the properties is KWFACT, an erosion factor modified by the presence of the rock fragment and rang-
ing from 0.02 to 0.69. We use the values of log(K), the log of the KWFACT as approximations for
the log of the USLE K-factors. Another property is SLOPE R, the representative slope gradient in per-
centage. To convert slope gradient to a USLE S-factor, Smith and Wischmeier (1957) proposed S =
(0.43 + 0.30s+ 0.043s2)/6.613, where s is the slope gradient and S is the USLE S-factor. We use log(S)
as a covariate.

Cropland Data Layer (U.S. Department of Agriculture, 2020a) is a geo-referenced and crop-specific
land cover data layer. Given the CEAP sample is collected by the 2003-2006 CEAP survey and South
Dakota was not included in the CDL project until 2006, we use the 2006 CDL data for South Dakota.
Corn, soybean, spring wheat and winter wheat are the four dominant crops in South Dakota according
to the 2006 CDL. Thus we classify each 2006 CDL pixel at a spatial resolution of 56 meters into one of
these four categories or the “remainder” category. The crop-based CDL classification is our best available
approximation to the USLE C-factor.

These three sources (NRI, SSURGO and CDL) result in seven possible explanatory variables: log(R),
log(K), log(S), and four indicator variables for CDL membership in corn, soybeans, spring wheat, or
winter wheat. (The baseline category is the remainder of CDL crop categories.) These variables provide
zij in the small area model. Although possible covariates are chosen to be related to USLE factors,
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RUSLE2 is a complicated function of a lot of factors which may not be available for the full population.
The factors we represent through possible covariates are those we are able to populate at each cropland
location.

The population of interest is the collection of all crop fields in South Dakota. We define the population
of interest to be locations with CDL pixels that are classified as cropland according to the NRI definition of
cropland (NRI Broad-use Category 1 or 2, defined in terms of specific crops in Table S3 of the Supporting
Information). Our constructed population consists of about 20 million CDL pixels of cropland in 6,615
soil map units. Several soil map units overlap with more than one county, so we overlaid those map unit
polygons with the county shapefiles to obtain their intersections. After excluding one sampled point which
falls out of the 6,615 soil map units classified as eligible, the sample dataset contains a total of n = 641
different geographic locations in the CEAP sample for South Dakota.

Obtaining the soil map unit classification and subsequently defining a prediction for 20 million distinct
CDL pixels is computationally prohibitive. To facilitate the computations, we exploit the fact that the
predictors are constant within an intersection of a soil map unit, CDL crop type, and county. This sim-
plification allows us to express the predictor as a weighted sum of a smaller number of distinct entities.
We refer the reader to Section S1 of the Supporting Information for an explanation of how we incorporate
weights to reduce the computational complexity for the CEAP analysis.

4.2 CEAP zero-inflated lognormal model fitting

We fit the zero-inflated lognormal model (1) with the logit link to the observed data (y∗, z). To select the
covariates, we apply backward variable selection to the model (2) for the positive part and to the model (3)
for the binary part separately. We use ∆(AIC) = 0.5 as a threshold for variable exclusion. As shown in
Table 4, the best predictors according to this criterion are logR, logK together with logS for the positive part
and logR, logS, is.soybean together with is.sprwht for the binary part. When the zero-inflated lognormal
model assuming correlation between the random effects with all possible explanatory variables is fit to the
CEAP RUSLE2 data, the coefficients associated with the selected covariates remain significant. Table 4
contains the maximum likelihood estimates of the coefficients and the corresponding bootstrap standard
errors based on the assumed model with estimated ρ. A nominal 95% confidence interval for ρ based on
the lower and upper 2.5% percentiles of parametric bootstrap distribution of θ̂ (with bootstrap sample size
of 500) is (0.21, 0.99). In consistency with the soil loss equation (15), the R-factor, K-factor and S-factor
are positively related with soil loss per year. The probability that cropland RUSLE2 is positive, or there
exists soil loss, is estimated to be significantly higher for the crop type of soybean or spring wheat relative
to the remainder category.

The simple logit link and log transformations used to fit the model are special cases of parametric
families of link functions and transformations. We considered alternate link functions besides the logit
for the binary part and transformations in the family of Box-Cox power transformations (Box and Cox,
1964) for the positive part. The analysis detailed in Section S2 of the Supporting Information provides no
evidence against the simple choices of the logit link and logarithmic transformation. We therefore use the
logit link and the logarithmic transformation for the CEAP data analysis.

We assess the goodness of fit of the model using residuals for the positive part and a Hosmer-Lemeshow
test for the binary part. We constructed marginal and conditional residuals defined as

rij,marg = (log(yij)− z′1,ijβ̂)/
√
σ̂2
u + σ̂2

e

and as
rij,cond = (log(yij)− z′1,ijβ̂ − Ê[ui | (y∗, z)])/

√
σ̂2
e

respectively, where β̂ is the MLE estimate of the regression coefficient for the positive part and Ê[ui |
(y∗, z)] denotes the estimated conditional expected value of ui given the data (after integrating over the
conditional distribution of bi). We plotted the residuals against z′1,ijβ̂ and against z′1,ijβ̂+Ê[ui | (y∗, z)].
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The residual plots (presented in Figure S3 of the Supporting Information) reveal that the RUSLE2 values
are rounded so that the same values of log(yij) are duplicated in the data set. Otherwise, the residual
plots show no important trends as a function of the fitted values. The p-values of Shaprio-Wilk tests
for normality exceed 0.05, providing essentially no evidence to reject the normality assumption. For the
binary part, we construct Hosmer-Lemeshow tests (Hosmer Jr and Lemeshow, 2000) using an estimate
of E[pij | (y∗, z)] as the predicted probability. The p-values (presented specifically in Figure S4 of the
Supporting Information) for group sizes ranging from 5 to 15 are all above 0.05. These analyses provide
support for the zero-inflated lognormal model.

4.3 CEAP empirical Bayesian predictions

We obtain the EB predicted mean cropland RUSLE2 in the 64 sampled counties of South Dakota with the
fitted zero-inflated lognormal model with correlated random effects. We compare the EB predictors and
corresponding MSE estimators to direct estimators and associated standard errors. The direct estimator is
the sample mean. Scatterplots of the EB predictors (presented in Figure S5 of the Supporting Information)
against the direct estimators show a strong, linear association. The strength of the association increases
as the area sample size increases, an expected trend because increasing the sample size should reduce the
effect of modeling on the predictors. We define a standard error of the direct estimator by SEpool(ˆ̄y∗Ni

) =√
S2/ni, where S2 is the pooled within-county variance given by S2 = (n−D)

−1∑D
i=1

∑ni

j=1(y∗ij −
ȳ∗i.)

2 and ȳ∗i. = n−1
i

∑ni

j=1 y
∗
ij . We use the pooled variance S2 because the sample variance for the i-th

county is undefined if the sample size ni is 1. Figure 2 shows the standard errors of the direct estimators
along with the square root of the one-step MSE estimator and the square root of the semi-boot MSE
estimator constructed with bootstrap size B = 100. The standard errors computed by the one-step method
are close to the semi-boot method. With either the one-step or the semi-boot standard error, as depicted in
Figure 2, the proposed EB predictor is more precise than the direct estimator across different sample sizes.
The reduction in standard error tends to be greater for the group of counties with smaller sample sizes.

Figure 3 gives a cartogram of the EB predicted mean cropland RUSLE2 in the 64 sampled counties of
South Dakota. The darkness of the shade corresponds to the magnitude of the prediction. The relative size
of the shaded region to the total area of the county is inversely related to the estimated coefficient of vari-
ation (CV), a graphical technique intended to draw the reader’s attention toward more reliable estimates.
The predicted erosion tends to be highest in magnitude and most reliable (smallest estimated CV) in the
eastern, particularly the southeastern, portion of South Dakota. The increase in predicted erosion from
west to east occurs partly because rainfall and the prevalence of soybeans are greater in the east than in the
west of South Dakota. The decrease in estimated CV from west to east likely occurs because the CEAP
sample is more dense in more highly cultivated areas.

5 Conclusion

A zero-inflated lognormal model with correlated random area effects has been proposed for modeling soil
loss data, and empirical Bayesian small area estimators have been derived from the model. By deriving
the conditional distribution of the random components in the model, we are able to use the maximum
likelihood method to estimate the whole parameter vector even with the correlation coefficient ρ. The
model assumptions appear reasonable for the data analysis of the cropland CEAP RUSLE2 measurements
collected in South Dakota. The correlation of the random area effects between the two parts is estimated to
be positive and moderately large. The model based EB predictors of area means have values near the direct
estimator (sample mean) when the sample size is relatively large. The standard errors of the EB predictor
are estimated to be much smaller than the direct estimator, especially for counties with only a few samples.

In the simulation study, we compare our proposed EB predictor of area means with the EB(0), plug-
in, zero-ignored MMSE and shifted MMSE predictor. Simply tossing all the zeros in the sample would
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result in poor estimation results, and shifting the responses by the amount of the smallest positive quantity
leads to even larger mean square errors. The plug-in estimator has comparable performance with the
EB(0) predictor, both of which assume independence between the two parts and have moderately larger
MSE than the proposed EB predictor when the independence assumption is violated. For the proposed EB
predictor, we give three ways to estimate the mean square error: an analytic estimator and two bootstrap
estimators. The analytic approximation is based on the observed conditional variance. The two bootstrap
MSE estimators take into account the variance due to parameter estimation. The semi-bootstrap MSE
estimator that adds the variance due to parameter estimation to the estimator of the conditional variance
outperforms the other MSE estimators. This MSE estimator differs from the full parametric bootstrap MSE
estimator because it uses the fact that the prediction error is uncorrelated with the difference between the
EB predictor and the MMSE predictor. For both the simulation and the data analysis, the sample size is
large enough that the observed conditional variance and the semi-boot MSE estimator are close.

In the supporting information, we also show that our proposed estimators can accommodate any parametrized
link functions for the binary part of the model as well as parametrized transformations for the positive part.
Although a generalized link function for the positive part may prevent one from using the analytic form
of the proposed EB predictor in the paper, the conditional distributions of the random components are im-
plicitly using the link functions. Therefore, one can easily adapt the simulation-based method of Molina
and Rao (2010) to obtain the predictions. In the data analysis, it is shown that the proposed predictor can
be easily adapted to incorporate weights for averaging across the individual level predicted values.

The data analysis also suggests areas for future work. The observed cropland RUSLE2 measurements
are rounded to the three decimal places. Modifying our EB approach to account for the discrete nature of
the data is an area for future study. The lognormal model for the positive component, though reasonable for
South Dakota, may not hold for all states and response variables of interest. Investigation of compromises
between the fully parametric approach considered here and the semiparametric quantile regression model
of Berg and Lee (2019) is a possible avenue for future research.
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Appendix

To maximize the likelihood, we use the method BFGS in the R function optim, which is a quasi-Newton
algorithm that uses information about the objective function and its gradient. To improve the speed of the
optimization, we supply optimwith a function to calculate the gradient vector to find the fastest ascending
direction. The functional form for the gradient vector is given in subsection A.1 below. In the R code, we
express the functions defining the log likelihood and its gradient in terms of (α,β, σe, σu, σb, t)

′ where
t = tan(ρπ/2). This transformation for ρ avoids a need to specify bounds for the parameter space. To
obtain starting values for α, β, σe, σu, and σb, we begin with the elements of θ̂0, the parameter estimator
from fitting the two model parts independently as described in Section 3.1. We then bound the starting
value of σb below by

√
10−5 because the gradient vector is undefined if the starting value for σb is zero.

The R functions lmer and glmer furnish predictors of ui and of bi, where the predictor of ui is the best
linear unbiased predictor, and the predictor of bi is calculated using PQL. We use as the starting value for
ρ the sample correlation between the initial predictors of bi and ui. If the starting value for σb is set to the
bound of

√
10−5, the starting value for ρ is set to zero.
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A.1 Gradient vector

We give the functional form for the gradient of the log likelihood li(θ) = log(Li(θ)). Denote Z1i as the
model matrix and r̃i = (r̃i1, . . . , r̃ini

)′ as marginal residual vector of model (2) for area i. It can be shown
that ∂ ¯̃ri/∂β = −¯̃z1i, ∂mi/∂β = mi/¯̃ri ¯̃z1i where ¯̃z1i = ñ−1

i Z
′
1iδi and δi = (δi1, . . . , δini

)′. Denote
Z2i as the model matrix of model (3) for area i. It can be shown that ∂πsi/∂α = πsi(bi)Z

′
2iui, where

ui = (ui1, . . . , uini
)′, uij = (g−1)′(α0 + z′2,ijα1 + bi)p

−δij
ij (1− pij)δij−1(2δij − 1) and (g−1)′(·) is the

derivative function of g−1(·). When g(·) is the logit function, uij simplifies to p1−δij
ij (1−pij)δij (2δij−1).

The derivatives of the log likelihood function with respect to the fixed effect coffcient vectors are

∂li
∂β

= − γi ¯̃ri
σ2
e/ñi

¯̃z1i −
mi

vi

∂mi

∂β
+

1

σ2
e

Z ′1ir̃i +

∫
πsi(bi)(− bi−mi√

vi
) 1√

vi
φ( bi−mi√

vi
)dbi∫

πsi(bi)
1√
vi
φ( bi−mi√

vi
)dbi

1
√
vi

∂mi

∂β

∂li
∂α

=

∫
(
∂πsi

∂α ) 1√
vi
φ( bi−mi√

vi
)dbi∫

πsi(bi)
1√
vi
φ( bi−mi√

vi
)dbi

.

For derivatives with respect to the variance components, it can be derived that ∂γi/∂σu = 2γi(1−γi)/σu,
∂γi/∂σe = −2γi(1 − γi)/σe, ∂mi/∂σu = (mi/σu)(σ2

e/ñi − σ2
u)/(σ2

e/ñi + σ2
u), ∂mi/∂σb = mi/σb,

∂mi/∂σe = −2mi(σe/ñi)/(σ
2
e/ñi + σ2

u), ∂vi/∂γi = −viρ2/{1− (1− γi)ρ2}, ∂vi/∂σb = 2vi/σb. The
derivatives of vi use the fact that vi = σ2

b (1− ρ2)/{1− (1− γi)ρ2} is an equivalent expression of vi as in
Theorem 2.1. Then

∂li
∂σu

=
1

2

[ −1

1− γi
∂γi
∂σu

+
¯̃r2
i

σ2
e/ñi

∂γi
∂σu

+
2mi

vi

∂mi

∂σu
− m2

i

v2
i

∂vi
∂σu

]
+

∫
πsi(bi)[−( bi−mi√

vi
) ∂
∂σu

( bi−mi√
vi

)] 1√
vi
φ( bi−mi√

vi
)dbi∫

πsi(bi)
1√
vi
φ( bi−mi√

vi
)dbi

∂li
∂σe

=
1

2

[ −1

1− γi
∂γi
∂σe
− 2

σe/ñi
+

¯̃r2
i

σ2
e/ñi

∂γi
∂σe
− 2γi ¯̃r

2
i

σ3
e/ñi

+
2mi

vi

∂mi

∂σe
− m2

i

v2
i

∂vi
∂σe

+ 2σ−3
e

∑
j

r̃2
ij

]
+

∫
πsi(bi)[−( bi−mi√

vi
) ∂
∂σe

( bi−mi√
vi

)] 1√
vi
φ( bi−mi√

vi
)dbi∫

πsi(bi)
1√
vi
φ( bi−mi√

vi
)dbi

∂li
∂σb

=
1

2

[2mi

vi

∂mi

∂σb
− m2

i

v2
i

∂vi
∂σb
− 2

σb

]
+

∫
πsi(bi)[−( bi−mi√

vi
) ∂
∂σb

( bi−mi√
vi

)] 1√
vi
φ( bi−mi√

vi
)dbi∫

πsi(bi)
1√
vi
φ( bi−mi√

vi
)dbi

where ∂{(bi −mi)/
√
vi}/∂σ = −{∂mi/∂σ + (bi −mi)/(2vi)∂vi/∂σ}/

√
vi for σ = σu, σe or σb. For

derivative with respect to ρ, we have ∂γi/∂ρ = −2γi(1− γi)ρ/(1− ρ2), ∂vi/∂ρ = −2ργiσ
2
b/{1− (1−

γi)ρ
2}, ∂mi/∂ρ = ¯̃riσuσb/(σ

2
u + σ2

e/ñi). Then

∂li
∂ρ

=
1

2

[ −1

1− γi
∂γi
∂ρ

+
¯̃r2
i

σ2
e/ñi

∂γi
∂ρ

+
2mi

vi

∂mi

∂ρ
− m2

i

v2
i

∂vi
∂ρ

]
+

∫
πsi(bi)[−( bi−mi√

vi
) ∂∂ρ ( bi−mi√

vi
)] 1√

vi
φ( bi−mi√

vi
)dbi∫

πsi(bi)
1√
vi
φ( bi−mi√

vi
)dbi
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where ∂{(bi −mi)/
√
vi}/∂ρ = −{∂mi/∂ρ + (bi −mi)/(2vi)∂vi/∂ρ}/

√
vi. The implementation of

this MLE method inputs t = tan(ρπ/2) instead of ρ to the optim function. Therefore, the last element
of the gradient vector is ∂li/∂t = (∂li/∂ρ)(∂ρ/∂t) where ∂ρ/∂t = 2/{π(1 + t2)}.
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Figure 1 Left: Histogram of CEAP sampled RUSLE2s in South Dakota. Right: Scatterplot of county
proportions of positive RUSLE2s against county mean of log RUSLE2s.

Table 1 Average MSE differences (×105) between the alternative predictors (EB(0), EB predictor as-
suming ρ = 0; PI, plug-in predictor; ZI, zero-ignored MMSE predictor; SI, shifted MMSE predictor) and
the EB predictor. The associated Monte Carlo margins of error are presented in parentheses.

predictor EB(0) PI ZI SI
Avg. for ni = 5 1.17 (0.99) 1.20 (0.99) 4.28 (0.96) 71.58 (7.32)

Avg. for ni = 10 0.89 (0.72) 0.90 (0.72) 3.57 (0.70) 78.04 (8.17)
Avg. for ni = 20 0.64 (0.35) 0.63 (0.35) 2.76 (0.36) 71.29 (6.54)

Table 2 Average MSE differences (×105) between the EB(0) predictor and the EB predictor as the
true correlation ρ of the random area effects between the positive part and the binary part changes. The
associated Monte Carlo margins of error are presented in parentheses.

ρ -0.9 -0.6 -0.3 0 0.3 0.6 0.9
Avg. for ni = 5 2.43 (0.25) 0.97 (0.18) 0.16 (0.12) -0.14 (0.08) -0.05 (0.09) 0.45 (0.13) 1.17 (0.19)
Avg. for ni = 10 2.49 (0.23) 0.79 (0.16) 0.01 (0.13) -0.14 (0.08) -0.03 (0.07) 0.27 (0.12) 0.89 (0.16)
Avg. for ni = 20 1.54 (0.13) 0.39 (0.10) -0.02 (0.06) -0.08 (0.04) 0.02 (0.04) 0.23 (0.06) 0.64 (0.09)

Table 3 Average biases (×105) and coverage percentages (CP) of nominal 95% normal theory predic-
tion intervals for the MSE estimators (one-step, bootstrap, semi-bootstrap). The associated Monte Carlo
margins of error are presented in parentheses.

One-Step Bootstrap Semi-Boot
Bias CP Bias CP Bias CP

Avg. for ni = 5 -0.66 (0.51) 94.94 (0.33) 0.48 (0.48) 94.54 (0.33) 0.46 (0.53) 95.36 (0.31)
Avg. for ni = 10 -0.96 (0.32) 94.88 (0.32) -0.00 (0.30) 94.08 (0.33) -0.14 (0.33) 95.48 (0.30)
Avg. for ni = 20 -0.68 (0.19) 94.47 (0.35) -0.16 (0.16) 93.78 (0.32) -0.12 (0.19) 95.37 (0.31)
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Table 4 The parameter estimates and associated bootstrap standard errors (SE) for the zero-inflated log-
normal model fit to the cropland CEAP RUSLE2 data.

Positive Part Binary Part
Estimate (SE) Estimate (SE)

logR 2.19 (0.36) 4.94 (0.72)
logK 0.52 (0.23)
logS 0.49 (0.08) 0.38 (0.21)
is.soybean 0.71 (0.33)
is.sprwht 0.98 (0.52)
Var: county 0.22 0.47
Var: residual 1.23
Correlation 0.77
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Figure 2 Standard errors of the EB predictor and the direct estimator (sample mean) of mean cropland
RUSLE2 South Dakota counties. Standard errors for the EB predictor are square roots of the one-step or
semi-boot MSE estimator. The pooled standard error is used for the direct estimator. The comparisons are
grouped by sample size labeled on the top.
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Figure 3 Cartogram of the EB predicted county means of cropland RUSLE2 in South Dakota. Darker
shade indicates severer soil sheet and rill erosion. Smaller shrinkage indicates smaller coefficient of vari-
ance. This figure appears in color in the electronic version of this article.
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