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Abstract

Molecular level understanding and characterization of solvation environments is of-

ten needed across chemistry, biology, and engineering. Toward practical modeling of

local solvation effects of any solute in any solvent, we report a static and all-quantum

mechanics based cluster-continuum approach for calculating single ion solvation free

energies. This approach uses a global optimization procedure to identify low energy

molecular clusters with different numbers of explicit solvent molecules and then em-

ploys the Smooth Overlap for Atomic Positions (SOAP) learning kernel to quantify

the similarity between different low-energy solute environments. From these data, we

use sketch-maps, a non-linear dimensionality reduction algorithm, to obtain a two-

dimensional visual representation of the similarity between solute environments in dif-

ferently sized microsolvated clusters. After testing this approach on different ions hav-

ing charges of 2+, 1+, 1-, and 2-, we find that the solvation environment around each
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ion can be seen to progressively become more similar along with each corresponding

calculated single-ion solvation free energy. Without needing either dynamics simula-

tions or an a priori knowledge of local solvation structure of the ions, this approach

can be used to calculate solvation free energies with errors within five percent of ex-

perimental measurements for most cases, and it should be transferable for the study

of other systems where dynamics simulations are not easily carried out.

1 Introduction

Solvation plays an essential role in chemical and biological processes ranging from homo-

geneous catalysis to ion channel transport to energy storage. In many cases, the explicit

interactions between small ions with nearby solvent molecules are crucial for molecular-scale

understanding of the systems. In such cases, single-ion solvation free energies can be several

hundreds of kcal/mol (or greater than 10 eV), which can make accurate predictions quite

challenging. Molecular dynamics (MD) or Monte Carlo (MC) simulations have been used,

notably for systems that have anions and complex small molecules,1–3 but the accuracy of

these simulations depends on the availability of high-quality force field parameters. In the

absence of reliable parameters, MD simulations involving quantum mechanics (QM) calcu-

lations can be accurate, but they are far more computationally laborious. Semi-empirical

continuum solvation models (CSMs)4–9 have been developed as practical means to determine

absolute solvation free energies, but CSMs can sometimes result in large errors, especially

with systems that have non-uniform charge distributions. Such errors can significantly im-

pede predictions of thermodynamic properties and severely bias mechanistic predictions.10

A standard approach to address these problems has been to include explicit solvent

molecules with the QM calculation of the solute, using cluster-continuum or mixed im-

plicit/explicit modeling, since this often provides better solvation free energies from ther-

modynamic cycles. Of the methods in this classification, the cluster formulation of quasi-

chemical theory (QCT), developed by Pratt, Rempe, and colleagues, is a rigorous treat-
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ment that uses an electronic structure calculation on the ion with one or more solvation

shells.11–13 This approach has produced accurate predictions of solvation free energies for

hydration of alkali metal ions (Li+, Na+, K+, Rb+),14–19 alkaline earth metals (Mg2+, Ca2+,

Sr2+, Ba2+),20–23 transition metals,24,25 halide ions (F−, Cl−),26–28 small molecules (Kr, H2,

CO2),29–32 ion solvation from non-aqueous solvents,22,33 and binding sites of proteins and

other macromolecules,34–40 generally to within 5% error.23 However, the correct use of QCT

requires determining an appropriate solvation shell for the system, and this can be non-

trivial.41,42

Adding to the complexity of single-ion solvation predictions is that there are two different

free energy scales that are frequently misunderstood or not acknowledged in the literature.

One is often called the ‘absolute’ scale, while the other is called the ‘real’ scale. The real scale

includes the phase potential43 or surface potential,44–46 which is the total reversible work to

move an ion across the vacuum/liquid interface, whereas the absolute scale does not. The

absolute scale is associated with data from Marcus, who studied and reported experimental

solvation free energies for a large number of ions.47 Those data rely on the ‘classical’ extra-

thermodynamic assumption, referred to as the TATB hypothesis, that two specific ions of

opposite charges have similar absolute free energies. That hypothesis assumes the system is

independent of any interfacial potential that arises from the anisotropic distribution of the

solvent molecules near the interface.48 In a real physical system, a solvation free energy will

also include a phase potential contribution that depends on the interfacial potential at the

water-air interface. The real scale can be associated with data from Tissandier et al., who

have extrapolated conventional free energy measurements on small ionic hydrates to obtain

real solvation free energies of ions in bulk phase.49 This idea is often referred as the cluster

pair-based (CPB) approximation.

The absolute solvation free energy scale can be converted into the real solvation free
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energy scale by incorporating the phase potential using the following equation:

∆Greal
solv = ∆Gabs

solv + zFφ (1)

where F is the Faraday constant, z is the atomic charge and φ is the interfacial potential.

Table S1 compares Marcus’s data with data from Tissandier et al., and it highlights the phase

potential contribution in real solvation free energy calculations, which is ∼-10 kcal/mole for

alkali metals and ∼12 kcal/mole for halides. With two sets of experimental data to compare

to, there has often been a lack of consensus on which calculation schemes result in which

solvation free energy scale and why. It is generally understood that free energy calculations

using periodic boundary conditions (such as MD and MC simulations) do not include the

phase potential contribution, and thus represent absolute solvation data because there is no

physical vacuum/liquid interface.50

For cluster-based calculations this is murkier. Specifically, QCT literature cites the ab-

sence of phase potentials in theoretical predictions and reports data in closest agreement with

the absolute solvation data of Marcus,23 while other computational studies using a similar

thermodynamic cycle and cluster-continuum approach have reported closer agreement with

the real solvation scale.51,52 Of course, solvation energies will depend on how many solvent

molecules are used and where they are placed. Kemp and Gordon demonstrated the effec-

tive fragment potential (EFP) method, coupled with Monte Carlo simulations can be used to

study the solvation of F− and Cl− anions.53 Their approach showed that 15 water molecules

in this model were required to fully solvate a single F− anion while 18 water molecules were

required to completely solvate a Cl− anion. Merz and coworkers also used molecular dy-

namics simulations to identify the first solvent shell that can be used in calculations using

continuum solvation methods.54 It would be beneficial to have a general and automatable

way to model local solvation environments (of any solute in any general solvent) without

using molecular dynamics simulations that can be computationally prohibitive.
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This work elucidates the theory between two different thermodynamic cycles (schemes 1

and 2) and how they result in two different solvation free energy scales. To automatically gen-

erate microsolvated clusters, we used a global optimization method, called ABCluster.55,56

We then calculated the real solvation free energies with cluster-continuum modeling using

the thermodynamic cycle outlined in scheme 2. We initially hypothesized that solvation free

energies will improve if we systematically add explicit water molecules around each ion while

ensuring that each microsolvated state is a reasonable approximation of a thermodynamically

low energy structure. A similar idea was previously studied by Bryantsev and co-workers by

increasing water cluster sizes to 18 explicit solvent molecules around the Cu2+ ion, which sig-

nificantly decreased the error compared to the CSM-computed solvation free energy. 57 Here,

we introduce a way to leverage machine learning (ML) to study local solvation structures.

Unlike other studies that use supervised ML to predict solvation energies with algorithms

like quantitative structure-activity relationship models (QSAR),58 random forest,59 decision

tree,60 or artificial neural networks,61 we are using unsupervised ML to study how similarities

between microsolvated structures coincide with solvation energies so that one can learn the

inherent arrangement of our data without using explicitly provided labels. We first assemble

our data-set of microsolvated structures and then use dimensionality reduction algorithms to

study similar patterns in the microsolvated clusters. One of the main challenges in applying

ML techniques to chemistry problems is to find the best representation of the system so

that it is complete and concise. In this study we use Smooth Overlap of Atomic Positions

(SOAP) descriptors62 to represent our microsolvated clusters. Next we use sketch-maps to

reduce the dimensions of our feature vectors and to study similar patters between our mi-

crosolvated clusters.63 Using the combination of SOAP and sketch-map ML algorithms we

demonstrate that low energy molecular clusters produced by our procedure have structurally

similar local solvation environments. This suggests that this calculation scheme can be used

to quantify the number of explicit solvent molecules needed to accurately model the relevant

local solvation environment of a charged solute.
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2 Theory

Cluster continuum modeling has been used in different formulations to calculate solvation

free energies of small ions.54,64–67 These methods involve different approximations, ranging

from including a single water molecule to using MD simulations to obtain physical solvent

structures at room temperatures. This hybrid approach has received further developments

in the theory (e.g. by using cluster expansion treatments).68–70 QCT is the most robust

approach of these because it is based on statistical mechanics,71 and it has been proven to

be reliable in different applications.13–16,20,23,24,27,28,33,34

The starting point for QCT is to partition the region around the solute into inner and

outer shell solvent domains. Akin to cluster-continuum modeling schemes, the inner shell

is typically treated quantum mechanically, while the outer shell is treated with a dielectric

continuum model. Applied to hydration of ions X with charge m±, the inner-shell reactions

are given as cluster association equilibria:

Xm± + nH2O ⇀↽ X(H2O)m±n (2)

A clustering algorithm is applied to identify the populations of the clusters on the right

side of Eq. 2. The theory then treats the cluster X(H2O)m±n as a molecular system under

analysis. A natural procedure to identify inner-shell configurations for an ion is to define

waters within a distance λ from an ion as an inner-shell partner. With n water ligands in

the cluster, the excess chemical potential, or hydration free energy, consists of several terms,

µ
(ex)
X = −kT ln

[
K(0)

n ρH2O
n
]

+ kT ln [pX(n)] +
(
µ

(ex)
X(H2O)n

− nµ(ex)
H2O

)
(3)

This formula is correct for any physical choices of λ and n.

The terms in Eq. 3 describe contributions to the total ion hydration free energy from the

inner and outer shell solvation environments. The first term gives ion association reactions

with water molecules in the inner shell taking place in an ideal gas phase. The association
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reactions are scaled by the water density, ρH2O, to account for the availability of water

ligands to occupy the inner shell. The second term accounts for the thermal probability that

a specific ion has n inner-shell partners in solution. The last terms describe the solvation

of the X(H2O)m±n cluster and the de-solvation of n individual water molecules from aqueous

solution in the outer-shell environment.

A judicious selection of λ and n in Eq. 3 can simplify the free energy analysis. First, by

considering a specific λ, the minimum value in kT ln [pX(n)] identifies the most probable n,

denoted as n̄. Then that contribution, associated with the work of selecting n waters for ion

association, can be dropped to result in Eq. 4,

µ
(ex)
X ≈ −kT ln

[
K

(0)
n̄ ρH2O

n̄
]

+
(
µ

(ex)
X(H2O)n̄

− n̄µ(ex)
H2O

)
(4)

Alternatively, the magnitude of the contribution, kT ln [pX(n)] from Eq. 3 can be estimated

from molecular simulation results for any n. Second, CSMs can be used to determine outer

shell contributions. With most CSMs, the external boundary of the model cavity is defined by

spheres centered on each of the atoms. Typically, CSM results are sensitive to the radii of the

spheres that define the solute cavity, but when the ion is surrounded by a full shell of solvating

ligands, the sensitivity is lessened (when the radii for the ligands are adequate), and this

results in a fortuitous error cancellation in the last terms of (Eq. 3 and 4). Third, selecting

clusters with small n generally results in stronger solute-solvent interactions, which helps

ensure that vibrational motions are characterized by small displacements from equilibrium,

which is required when assuming a harmonic potential energy surface for the analysis of a

free energy. Prior work suggests that anharmonic vibrational motions become prominent

with clusters as small as n=5 for Na+ and K+ ions in clusters with water molecules,37 and

they can be even smaller sizes for anion-water clusters.28

As an aside, the solvation energy represented in Eq. 4 can also be equivalently represented

using the thermodynamic cycle shown in Scheme 1 which is mathematically expressed (us-
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ing different notation) with Eq 5. This alternative notation is based on the observable

macroscopic quantities coming from thermodynamics and is often used in chemistry and

engineering communities (e.g. see Refs.66 and57). We note that when Eq 5 and Eq 6 are

written in per mole basis so they are equivalent to chemical potentials.

Scheme 1: Monomer cycle for calculating an absolute solvation free energy.

∆G∗solv(Xm±) = ∆G◦g,bind−n̄∆G◦→∗+∆G∗solv(X(H2O)m±n̄ )−n̄∆G∗solv(H2O)−n̄RT ln[H2O] (5)

Scheme 1 is sometimes called the “monomer cycle” since it involves individual water monomers

rather than a water cluster. The free energy of binding a gas phase cluster is expressed as

∆G◦g,bind, where the circle denotes a the free energy difference at a gas phase standard state

of 1 bar. The solvation free energies (∆G∗solv) are labeled with asterisks to denote energies

conventionally expressed at an aqueous standard state of 1 M, and they are calculated here

using SMD implicit solvation. Additional corrections (∆G◦→∗, each having a magnitude of

1.9 kcal/mol or 0.08 eV) are needed to account for the change from a gas phase standard

state to an aqueous phase standard state. Here, we use scheme 1 to map the QCT theory on

macroscopic variables. Solvation energies calculated using Scheme 1 are comparable to the

Marcus scale and thus will be comparable to MD/free energy perturbation or QCT studies

that do not have the phase potential contribution.72

Of the different cluster continuum procedures that do not require dynamics, the procedure

by Bryantsev et al. is promising since it appears to yield solvation free energies that agrees
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well with the experimental data for both the proton and Cu2+, and with results that appear

to match the real solvation scale. Their cycle, outlined in Scheme 2, is similar to the monomer

cycle in Scheme 1, but it involves pre-formed water clusters containing n interacting water

molecules that have been optimized at 0 K and free energy contributions are obtained using

standard ideal gas, rigid rotor, and harmonic oscillator approximations. The single ion

solvation free energy from the Scheme 2 cluster cycle is calculated with Eq. 6:

∆G∗solv(Xm±) = ∆G◦g,bind −∆G◦→∗ + ∆G∗solv(X(H2O)m±n )−∆G∗solv(H2O)n −RTln([H2O]/n)

(6)

Scheme 2 also evaluates the same QCT theory shown in Eq. 3, but by applying QCT to

both the water dehydration problem (µ
(ex)
H2O) as well as the ion hydration problem (µ

(ex)
X ). This

dual QCT approach has advantages due to anticipated error cancellations.32 Successful use of

CSM models is known to require that CSM parameters are properly chosen since results can

vary greatly with surface type, cavity size, and continuum model used.73 However, by using

similar sizes of clusters for ion hydration and water dehydration, the boundary λ between

inner and outer shells is approximately balanced on both sides of the equation, leading to a

cancellation of errors to the outer-shell solvation contribution from a CSM model.

The same balance in cluster sizes may also lead to an approximate cancellation of an-

harmonic contributions in the inner-shell contributions to the solvation free energy. Eq. 3

depends on using the most probable n to eliminate the kT ln [pX(n)] term (as done in Eq.4),

or requires molecular simulations to explicitly evaluate that term. It also needs a filled

inner-shell occupancy so that the CSM model is minimally dependent on specific radii used

to compute the outer shell contribution to hydration free energy. Scheme 2 approximately

eliminates these constraints by error cancellations. With Scheme 2, large n values can be

used; however, care must be applied when the cavity radius is around 6 Å. In such length

scales and above, the surface or phase potential contributions to the solvation free energy, φ,
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should be included in the calculation.74–78 In the analysis here, outer-shell contributions to

the solvation free energy go to zero as cluster size increases,20,23 and then the phase potential

enters into the calculation and then is accounted for naturally. This explains why results

from Scheme 2 agree better with the real solvation scale than the absolute solvation scale.

We acknowledge there are limitations of Scheme 2, for instance the use of 0 K optimized

water clusters would not physically represent real water droplets at ambient temperatures,

but by using similar sizes of clusters for ion hydration and water dehydration, one might

take advantage of fortuitous error cancellation from this scheme.

Scheme 2: Cluster cycle for the calculation of real solvation free energy.

As mentioned before, a limitation with using Scheme 2 is to know how many solvent

molecules should be used. To identify the degree of solvation necessary we employ ML

algorithms first to assemble our micrsolvated structures then to study the similarities be-

tween the structures. The main challenge in using ML based algorithms is to come up with

an appropriate representation that will give a complete description of your system. SOAP

algorithm makes use of Gaussian functions to find a best match between pairs of atomic envi-

ronments. Previously, it has been used to study different geometries of fullerene, amorphous

silicon, pentacene, and ice structures.63,79–82 We believe SOAP is a good representation for

our systems because it is invariant to rotations, translations, and permutations. Assembling

techniques like SOAP identify an agglomeration of data in chemical space, but they do not

offer a Euclidan relationship between different structures. Such relations can be determined

and represented using maps that represent geometrically similar structures as data points
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that are adjacent to each other. Here, we use sketch-map non-linear dimensionality reduction

techniques to construct a two-dimensional representation of the free energy surface. Given

a certain cut-off radius, this algorithm identifies structures that show similar local solvation

motifs, e.g. if two points are close to each other on the sketch-map then the local solvation

environments from the two data points are relatively similar.

In this study, we will apply Scheme 2 to systematically model microsolvated ions and

water clusters using n = 1−20 water molecules. Below, we will show a modeling scheme that

involves modern tools such as ABCluster, dispersion-corrected Kohn-Sham density functional

theory, and the SOAP algorithm to analyze this thermodynamic cycle to quantify energy

contributions, assess likely causes for errors, and understand the local structures of water

molecules in these solvation environments. While more calculations are required for Scheme

2 than would be needed for Scheme 1, we find that the former scheme provides reasonably

accurate single ion solvation free energies while also eschewing the need for a priori knowledge

of the solvation environment. Thus, calculations from such cycles should be generalizable

and easily automatable for any solute in any solvent environment.

3 Computational Methodology

We generated microsolvated solutes using the rigid molecular optimizer module of the AB-

Cluster program.55,56 We generated 1,000 low energy candidates using CHARMM forcefield

parameters from MacKerell’s CGenFF website together with TIP4P water parameters. 83 All

force filed parameters used in this study are reported in Table S8. Five lowest energy struc-

tures obtained from the CHARMM forcefield optimization were then further optimized at

the BP8684,85-D3BJ86/def2-SVP87 or B3LYP88-D3BJ86/def2-SVP87 level of theory, as im-

plemented in ORCA89 using the RI-J or RIJCOSX approximations. To study the solvation

effects we have used SMD implicit solvation with both geometry optimizations and single

point energy calculations. Free energy contributions were calculated using the ideal gas, rigid
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rotor, and harmonic oscillator approximations at the same level of theory as the geometry

optimizations. Finally, to assess the significance of higher levels of theory, we calculated

single point energies on fully optimized geometries at the B3LYP88-D3BJ86/def2-TZVP87

and ωB97X-D390/def2-TZVP87 levels of theory. Every energy reported in this manuscript

is the Boltzmann-weighted average of the five low energy structures identified with a global

optimization code (ABCluster). It is our experience that ABCluster with appropriate sam-

pling is reliable at identifying low energy candidates as demonstrated by our comparisons to

identifying globally optimized water clusters, but caution is still recommended in future work

to ensure that meaningful structures are obtained. The thermodynamic cycle reported in

Scheme 2 requires calculations on water clusters. To generate the water clusters, we followed

the same procedure outlined above using with TIP4P parameters for the water molecules. 91

Cluster geometries were then optimized at the same level of QM theory as the solute-solvent

clusters, as discussed above.

Finally, to compare our microsolvated structures with structures obtained from MD tra-

jectories we performed simulations using the AMEOBA force field92 with the TINKER93

software package. First, we performed NPT simulations with a water box of 500 water

molecules and equilibrated for 200 picoseconds at 298.15K and 1 atm. Next, we inserted an

ion into the system (while removing one water molecule) and performed NVT simulations

for another 200 picoseconds. Finally, we extracted 100 structures from the NVT trajectory

and compared them with the structures generated with our clustering approach.

4 Results and Discussion

We first benchmarked low energy water clusters generated from ABCluster compared to

global minimum energy water clusters from the Cambridge Cluster Database that also used

the TIP4P forcefield.94 In all cases (n = 1, 2, 4, 8, 12, 16, 20), the energy differences between

our structures and the reference structures from the database were all at most +1.2 kcal/mol
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(Table S2). This agreement demonstrates that ABCluster is an effective tool for identifying

low energy structures and that our water clusters are comparable to well-established and

globally optimized water cluster structures.

Next, we calculated solvation free energies of (H2O)n clusters using the thermodynamic

cycle outlined in Scheme S1 and compared it with solvation energy calculations using the

SMD solvation model. Table S3 shows solvation free energies for water clusters derived using

the thermodynamic cycle shown in Scheme S1, solvation free energies calculated directly

using a CSM, and the difference between the two calculation schemes. For cases where

n = 2, 4, 8, the difference in the two sets of solvation free energies is under 5 kcal/mol.

However, for larger clusters (n = 12, 16, 20), the difference in free energies from these two

calculation schemes significantly increases by as much as 30 kcal/mol. This trend shows

that when relatively large clusters of water are solvated with a CSM, the model seems to

introduce significant errors that would then make them less reliable if used for calculations

with Scheme 2. The observation also in part justifies the use of QCT methods that use

Scheme 1 and relatively small cluster sizes. The lowest error arises with n = 4 because

it is the most probable size for water clusters, making the ln [pX(n)] term in Eq. 3 go

approximately to zero.

We then benchmarked calculated gas phase binding free energies of water molecules to

different ions against experimental data.95,96 Table S4 shows gas phase binding free energies

for one water molecule and different ions. For all the ions (Li+, Na+, K+, Cl−, Br−, F−),

calculations are in good agreement with the experimental data, and our errors are mostly

under 5 kcal/mol. We further compared the Na+ and K+ binding free energies with one wa-

ter molecule to other computational studies, and Table S4 shows that different calculations

agree reasonably well with experimental data.17,19 We also calculated binding free energies

involving four water molecules using Schemes 1 and 2, and compared them with both exper-

imental and other computational studies (Table S5). The reference experimental data used

for comparison add water molecules one by one to the system.95,96 Using Scheme 1, we get
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very good agreement with the experimental values and our errors are under 5 kcal/mol for

all ions (Li+, Na+, K+, F−, Cl−, Br−). The data are also in relatively close agreement with

gas phase binding free energies calculated by Rempe and coworkers.24 However, when we

used Scheme 2 to calculate binding of ions to four water molecules, we obtained free energies

that differ from the prior work by 10 kcal/mol. This difference is anticipated on the basis

that Scheme 2 applies to solvation reactions, not gas phase association reactions.

After benchmarking our calculations, we calculated hydration free energies using Eq. 6,

which relies on the cluster thermodynamic cycle as outlined in Scheme 2. We considered

a data set of ions having difference sizes and charges of 2+, 1+, 1-, and 2-. Figures 1 and

2 show hydration free energies for Na+, Mg2+, Cl−, SO2−
4 , and similar data are reported

for all ions and shown in Figures S1-S7. Table S6 shows hydration free energies for all the

solutes, and the percent error calculated by taking absolute hydration free energies from

Marcus’s study and adding the phase potential contribution taken from Lamoureux and

Roux,50 using Eq.1 or comparing with experimental values from Tissandier et. al.49 We

also calculated and compare hydration free energies for ion-pairs. Table S7 shows hydration

free energies for ion pairs and how they agree with both Marcus et. al.47 and Tissandier

et. al.49 For all ions we report solvation free energies computed with both BP86-D3BJ and

B3LYP-D3BJ geometries to compare the relative importance of including exact exchange in

these systems. In all cases, B3LYP-D3BJ geometries result with more consistent solvation

energies compared to BP86-D3BJ geometries, and thus using higher levels of theory that

are appropriate for each system is recommended whenever possible. In Figure 1a and 1c, for

Na+ and Mg2+ cations, respectively, the hydration free energies appear to get closer to the

experimental data when we gradually increase the number of water molecules in the system.

For Na+ starting with 8 water molecules we get good agreement with the experimental

data. Similarly, For Mg2+ starting with 12 water molecules we get good agreement with the

experimental data. In Figures 2a and 2c, for Cl− and SO2−
4 anions, respectively, the same

inference does not hold. The anion hydration free energies are not particularly sensitive to
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water cluster size, and hydration free energies begin to deviate more from experiment when

using 16 and 20 water molecules. Thus, our initial hypothesis that adding more solvent

molecules into the system should generally improve the accuracy compared to experiment

was mainly true only for the cations we modeled.

We then hypothesized that different microsolvated ion clusters might have significantly

different solute structures, which result in different hydration free energies, as shown in

Figures 1 and 2. To test this idea, we studied geometric similarities in cluster sizes. We

used the SOAP kernel to quantify the similarity between solute environments.62,63 For the

high-dimensional pair-similarity data on solute environments, we used “sketch-maps”, a

non-linear dimensionality reduction technique.97,98 Sketch-maps allow us to obtain a two-

dimensional map that provides a meaningful visual representation of the similarity between

solvent environments and solvent arrangements.

We define the local solute environment as a sphere of radius r+2 Å, centered at the

solute atom, where r is the atomic radius. For complex anions, the environment center was

chosen to be the position of the central atom, and r was taken to be the average central

atom-oxygen distance plus the atomic radius of the oxygen atom. This cutoff was chosen

to capture the evolution of the local solvation environment around the ion as increasing

numbers of water molecules were added, while disregarding solvent molecules further from

the ion. The atoms within the cutoff distance (including those of the solute) contribute to

a smooth representation of the atom density, which is used to define a similarity measure

between structures invariant to permutation of atom indices as well as rigid translations and

rotations.

In our previous study using SOAP, we applied the pairwise similarity between configu-

rations to comment on structural analogies.99 To provide an intuitive representation of the

relationships between all pairs within a group of structures, we used a sketch-map based on

the SOAP metric. Each point on the map represents a solute environment. Data points

in close proximity indicate systems with high similarity in local solvent environments. The
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Figure 1: Hydration free energy plots and sketch-maps for Na+ and Mg2+. Plots show (a)
hydration free energies calculated with Eq.6 for Na+, (b) SOAP/sketch-map analysis for Na+,
(c) hydration free energies calculated with Eq.6 for Mg2+, (d) SOAP/sketch-map analysis
for Mg2+. Data are from ωB97X-D3/def2-TZVP calculations on BP86-D3BJ/def2-SVP or
B3LYP-D3BJ/def2-SVP geometries. Color bar shows the number of water molecules in the
system.

sketch-map algorithm follows a non-linear optimization procedure where the discrepancy

between pairwise Euclidean distances in low dimension and the kernel-induced metric is

minimized. A sigmoid function is applied to focus the optimization on the most relevant

range of distances, e.g. disregarding thermal fluctuations. The parameters of this filter are in

the format, sigma-a-b. In all cases, we used a=3 and b=8, while sigma values were adapted

to different systems following the heuristics described in Ref.100 In Figures 1 and 2, we used a

coloring scheme in which the color gets lighter when the size of the cluster increases. Yellow

dots represent the clusters that have 20 water molecules, and dark purple dots represent the
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Figure 2: Hydration free energy plots and sketch-maps for Cl− and SO2−
4 . Plots show (a)

hydration free energies calculated Eq.6 for Cl−, (b) SOAP/sketch-map analysis for Cl−,
(c) hydration free energies calculated with Eq.6 for SO2−

4 , (d) SOAP/sketch-map anaylsis
for SO2−

4 . Data are from ωB97X-D3/def2-TZVP calculations on BP86-D3BJ/def2-SVP or
B3LYP-D3BJ/def2-SVP geometries. Color bar shows the number of water molecules in the
system.

clusters with only one water molecule.

Figure 1b demonstrates that models for Na+ starting with eight or more water molecules

give good agreement with the experimental values and all structures exhibit a similar solvent

environment around the ion. Similarly for Mg2+, Figure 1d shows a similar set of results

except that models should have 12 or more water molecules. Given the short-range cutoff

for the SOAP descriptors, these results indicate that the relatively accurate hydration free

energies for the cations appear to be correlated with a similar local solvent environment.
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However, this correspondence between structures and energetics is not observed for the

anions (Cl−, SO2−
4 ). The sketch-map for Cl− in Figure 2b shows that local solvation environ-

ments start becoming progressively similar with n = 8, but there is a 10 kcal/mol deviation

in energy with clusters that involve 16 and 20 water molecules. A similar trend is seen for

the sketch-map for SO2−
4 in Figure 2d. As with the cations, we see the local solvation struc-

tures start to become more similar with about n = 12, but the solvation energies for the

16 and 20 molecule water clusters are inaccurate compared to experiment by 15 kcal/mol.

This discrepancy suggests that the errors shown in Figure 2 with the 16 and 20 molecule

water clusters likely arise from an imbalance in anharmonic effects in Scheme 2 because

the ion-water clusters have more anharmonicity than the water-water clusters. Nevertheless

we can still use sketch-maps to identify the number of solvent molecules needed to see a

analogous solvent arrangements. For example with Cl−, the local solvation environment for

progressively larger microsolvation environments starts becoming similar with n = 8 and

when we calculate the hydration free energy with eight water molecules we get a relatively

good agreement with the experimental data. Similarly with SO2−
4 , we identify 12, 16, and

20 water clusters have similar solvent arrangements. When we calculate the hydration free

energy with 12 waters, we also get a very good agreement with the experimental values.

Table S6 summarizes all of our calculations and compares calculated hydration free energies

with experimental data. Thus, the sketch-map analysis appears to be useful for identifying

how many solvent molecules are needed to calculate an accurate hydration free energy.

To obtain a more detailed understanding of where the errors come from, we performed

MD simulations using the AMEOBA force field92 with the TINKER93 software package to

account for both chemical and thermal energy scales. We performed simulations for Na+

and Cl− and used a cubic box starting with 500 solvent molecules. We picked 100 frames

from the trajectory and carved out clusters having eight water molecules. Figure 3 shows

SOAP/sketch-map analysis for these 100 structures and our DFT optimized structures. For

Na+, DFT optimization resulted in similar structures as those found from the MD simulation

18



regardless of the functional used in the optimization. However for Cl−, DFT optimization

resulted in different structures than those found from the MD simulation. We believe this

is a result of enhanced anharmonic effects in ion-water clusters with anions. The lack of

error cancellation in Scheme 2 with anions suggests that one needs to perform BOMD or LD

simulations within Scheme 1 to capture the correct geometry for outer-shell contributions

and account for anharmonicity in the inner-shell contributions to hydration free energy, as

demonstrated recently.27,28,30

Figure 3: SOAP/sketch-map analysis for Na+ and Cl− with eight water clusters. Yellow
data points are obtained from an MD trajectory, purple and green data points are obtained
from a full QM optimization in this work.

Therefore, in the absence of well-parameterized force fields or computationally intensive

BOMD simulations, we propose the following practical treatment (that exploits error cancel-

lations) for automated calculations of real solvation free energies: 1) Calculate solvation free

energies using the thermodynamic cycle in Scheme 2 for various values of n. 2) Use a SOAP

sketch-map analysis to identify a relatively similar local solvent environment. 3) Use the

smallest possible cluster to calculate solvation free energy contributions to minimize unbal-

anced errors that appear to arise from a CSM analysis of outer-shell contributions combined

with harmonic analysis of inner-shell contributions to solvation free energy.
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5 Conclusion

We have demonstrated an automatable cluster-continuum (i.e., mixed implicit/explicit) mod-

eling approach to calculating solvation free energies of ions and small molecules that should

be applicable for other molecules not considered in this study. We elucidated Scheme 1 in

practical applications limits analysis to small n and CSM models to account for outer-shell

contributions, and the results agree with absolute solvation free energies. In contrast, Scheme

2 analyzes large n and large cluster sizes, where CSM models drop out and phase potentials

enter the calculation. We also showed how adding explicit solvent molecules improves cal-

culated solvation free energies by creating a more physical local solvation environment, but

adding too many solvent molecules leads to significant errors in the CSM combined with

harmonic analysis of inner-shell. Overall, we show an approach to systematically investigate

atomic scale microsolvation environments along with corresponding solvation free energies.

The SOAP/sketch-map analysis can be combined with global optimization techniques such

as ABCluster to minimize the required prior knowledge needed to compute an accurate sol-

vation free energy using quantum chemistry. We expect this approach will be applicable to

other ions in water as well as ions in different solvents.
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(63) De, S.; Bartók, A. P.; Csányi, G.; Ceriotti, M. Comparing molecules and solids across

structural and alchemical space. Phys. Chem. Chem. Phys. 2016, 18, 13754–13769.

(64) Pliego, J. R.; Riveros, J. M. The cluster- continuum model for the calculation of the

solvation free energy of ionic species. J. Phys. Chem. A 2001, 105, 7241–7247.

(65) Zhan, C.-G.; Dixon, D. A. Absolute hydration free energy of the proton from first-

principles electronic structure calculations. J. Phys. Chem. A 2001, 105, 11534–11540.

(66) Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. Aqueous solvation free energies of ions and

28



ion- water clusters based on an accurate value for the absolute aqueous solvation free

energy of the proton. J. Phys. Chem. B 2006, 110, 16066–16081.

(67) Riccardi, D.; Guo, H.-B.; Parks, J. M.; Gu, B.; Liang, L.; Smith, J. C. Cluster-

continuum calculations of hydration free energies of anions and group 12 divalent

cations. J. Chem. Theory Comput. 2012, 9, 555–569.

(68) Pliego, J. R. Shells theory of solvation and the long-range Born correction. Theoretical

Chemistry Accounts 2011, 128, 275–283.

(69) Pliego Jr, J. R. Cluster expansion of the solvation free energy difference: Systematic

improvements in the solvation of single ions. The Journal of chemical physics 2017,

147, 034104.

(70) de Lima, G. F.; Duarte, H. A.; Pliego Jr, J. R. Dynamical discrete/continuum linear

response shells theory of solvation: convergence test for NH4+ and OH- ions in water

solution using DFT and DFTB methods. The Journal of Physical Chemistry B 2010,

114, 15941–15947.

(71) Beck, T. L.; Paulaitis, M. E.; Pratt, L. R. The Potential Distribution Theorem and

Models of Molecular Solutions ; Cambridge University Press, 2006.

(72) Roux, B.; Yu, H. Assessing the accuracy of approximate treatments of ion hydration

based on primitive quasichemical theory. The Journal of chemical physics 2010, 132,

06B606.

(73) Gutowski, K. E.; Dixon, D. A. Predicting the energy of the water exchange reaction

and free energy of solvation for the uranyl ion in aqueous solution. The Journal of

Physical Chemistry A 2006, 110, 8840–8856.

(74) Pollard, T.; Beck, T. L. Quasichemical analysis of the cluster-pair approximation for

the thermodynamics of proton hydration. J. Chem. Phys. 2014, 140, 224507.

29



(75) Pollard, T. P.; Beck, T. L. The thermodynamics of proton hydration and the electro-

chemical surface potential of water. J. Chem. Phys. 2014, 141, 18C512.

(76) Pollard, T. P.; Beck, T. L. Re-examining the tetraphenyl-arsonium/tetraphenyl-borate

(TATB) hypothesis for single-ion solvation free energies. J. Chem. Phys. 2018, 148,

222830.

(77) Shi, Y.; Beck, T. L. Length scales and interfacial potentials in ion hydration. J. Chem.

Phys. 2013, 139, 044504.

(78) Beck, T. L. The influence of water interfacial potentials on ion hydration in bulk water

and near interfaces. Chem. Phys. Lett 2013, 561, 1–13.

(79) Engel, E. A.; Anelli, A.; Ceriotti, M.; Pickard, C. J.; Needs, R. J. Mapping uncharted

territory in ice from zeolite networks to ice structures. Nature communications 2018,

9, 2173.
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