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Abstract. As mobile devices become more and more popular, mobile gaming has
emerged as a promising market with billion-dollar revenue. A variety of mobile game
platforms and services have been developed around the world. A critical challenge for
these platforms and services is to understand the churn behavior in mobile games,
which usually involves churn at micro level (between an app and a specific user) and
macro level (between an app and all its users). Accurate micro-level churn prediction
and macro-level churn ranking will benefit many stakeholders such as game developers,
advertisers, and platform operators. In this paper, we present the first large-scale churn
analysis for mobile games that supports both micro-level churn prediction and macro-
level churn ranking. For micro-level churn prediction, in view of the common limitations
of the state-of-the-art methods built upon traditional machine learning models, we
devise a novel semi-supervised and inductive embedding model that jointly learns the
prediction function and the embedding function for user-app relationships. We model
these two functions by deep neural networks with a unique edge embedding technique
that is able to capture both contextual information and relationship dynamics. We
also design a novel attributed random walk technique that takes into consideration
both topological adjacency and attribute similarities. To address macro-level churn
ranking, we propose to construct a relationship graph with estimated micro-level churn
probabilities as edge weights and adapt link analysis algorithms on the graph. We devise
a simple algorithm SimSum and adapt two more advanced algorithms PageRank and
HITS. The performance of our solutions to the two-level churn analysis problem is
evaluated on real-world data collected from the Samsung Game Launcher platform.
The data includes tens of thousands of mobile games and hundreds of millions of user-
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app interactions. The experimental results with this data demonstrate the superiority
of our proposed models against existing state-of-the-art methods.

Keywords: Churn prediction; Representation learning; Graph embedding; Inductive
learning; Semi-supervised learning; Mobile games

1. Introduction

With the wide adoption of mobile devices (e.g., smartphones and tablets), the
past decade has seen a rapid increase of the mobile gaming industry into a
billion-dollar market around the globe. $70.3 billion revenue was generated by
mobile games in 2018 according to Newzoo’s Global Games Market Report [1].
It is expected that mobile games will generate $106.3 billion revenue in 2021,
accounting for more than half of the overall game market. Driven by this in-
creasingly vital market, software and hardware providers of mobile devices (e.g.,
Apple, Google and Samsung) have provided integrated mobile game platforms
and services for end users, game developers and other stakeholders. Some ex-
amples of such platforms and services are Apple App Store, Google Play and
Samsung Game Launcher [2].

One particularly crucial task, within these mobile game platforms and ser-
vices, is understanding the churn behavior in mobile games, which usually in-
volves two levels of analysis: the micro level (between an app and a specific
user) and the macro level (between an app and all its users). In many traditional
business applications [3], accurately predicting micro-level churn has been a long-
standing and important task, the objective of which is to predict the likelihood
that a user will stop using a service or product. In our problem setting, the aim
is to predict the likelihood that a user will stop using a particular game app
in the future. This task is vital for the following reasons. First, the churn rate
of a mobile game is an important business metric to measure its success. With
accurately predicted churn probabilities of player-game pairs, a game platform
is able to prioritize its resources for better operation and management. Second,
predicting individual churn probabilities will enable a game platform to design
better marketing strategies to improve user retention. Examples include sending
push notifications and providing free items in games to users who are likely to
churn. Since, as well known, the acquisition cost for new users is much higher
than the retention cost for existing users, successful micro-level churn prediction
could largely reduce costs for game developers and platform operators to increase
the number of active users, which plays a critical role in the success of a mobile
game. Third, the micro-level churn prediction provides direct input to determine
the right timing of app recommendations for a game platform. The results of this
research will enable testing of the hypothesis that a user is more likely to act on
an app recommendation when he/she is about to stop playing other games.

The objective of macro-level churn ranking is to provide a list of games ranked
by their total number of users who will churn in the near future. It is an equally
important problem, and its solution can be applicable to various mobile app
services such as trend prediction [4], rating and review spam detection, ranking
fraud detection [5], and especially trend-sensitive recommendation [6]. There
has been a general consensus that the mobile app market is highly dynamic: new
apps continuously enter the market and distract users’ attention from existing
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ones. A recommender can use the results of macro-level churn ranking as prior
knowledge, e.g., an attribute in the representation of games. A recommender
can also slightly adjust the positions of recommended games before delivering
to users in preference to those that have smaller total numbers of near-future
churn. Macro-level churn ranking in general can be very challenging because the
order of the games on the list (1) can change very fast with the dynamics of
the market, and (2) is based on future events, which can only be estimated.
The macro-level churn ranking problem is intimately related to the micro-level
churn prediction problem. Consider the extreme case that all micro-level churn
predictions are 100% correct, then the number of users to churn in the future
can be directly computed.

There have been several previous studies [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
on micro-level mobile game churn prediction by using traditional machine learn-
ing models (e.g., logistic regression, random forests, Cox regression). However, we
observe several major limitations of these studies. First, they were developed for
predicting churn of a single or a few mobile games. None is capable of handling
churn prediction of large-scale mobile apps and users. For real-world applications,
a solution needs to handle tens of thousands of mobile games and hundreds of
millions of user-app interactions on a daily basis. Second, user-app interaction
data often comes with rich contextual information (e.g., WiFi connection status,
screen brightness, and audio volume), which has never been considered in the
existing studies. Third, the existing methods rely on handcrafted features that
usually cannot scale well in practice.

To overcome all these limitations, we propose a novel inductive semi-supervised
embedding model that jointly learns the prediction function and the embedding
function for user-game interactions. The user-app interaction data includes de-
tailed information of opens, closes, installs and uninstalls of game apps for each
individual user. This data is collected from the Samsung Game Launcher plat-
form [2], which is pre-loaded in most smartphones manufactured by Samsung.
We model the interplay between users and games by an attributed bipartite
graph and then learn these two functions by deep neural networks with a unique
embedding technique that is able to capture both contextual information and dy-
namic user-game interactions. Our method is fully automatic and can be easily
integrated into existing mobile game platforms.

With the predicted micro-level churn probabilities, we devise a simple method
SimSum to estimate the macro-level churn ranking. Under the presupposition
that the churn probabilities are properly estimated, we show that SimSum is
based on an unbiased estimation. Furthermore, as the churn behavior may be
related among users and games, we propose to construct a user-game graph with
edges weighted by the estimated churn probabilities and adapt link analysis
algorithms to infer the macro-level churn ranking of games. Among the family
of link analysis algorithms, PageRank [18] and HITS (Hyperlink-Induced Topic
Search) [19] are chosen because they have been widely applied in abundant real-
world applications and shown to have stable performance.

Contributions. Our research contributions are summarized as follows:

1. To the best of our knowledge, this paper is the first to develop solutions for
both micro-level churn prediction and macro-level churn ranking of mobile
games at scale. Although the paper mainly applies the proposed solutions to
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Fig. 1. An example of an attributed bipartite graph for mobile game churn anal-
ysis

mobile game churn analysis, they are also applicable to churn analysis in other
contexts.

2. We propose a novel semi-supervised and inductive model based on embedding.
Our model can capture the dynamics between users and mobile games based on
the introduced temporal loss in the formulated objective function. The model
is able to embed new users or games not used in training. This is critical for
mobile game churn prediction because new games and users continually enter
the market.

3. We develop an attributed random walk technique that enables us to sample the
contexts of edges in an attributed bipartite graph and that takes into account
both topological adjacency and attribute similarities.

4. We propose a simple method SimSum and adapt two link analysis algorithms
PageRank and HITS to solve the macro-level churn ranking problem.

5. We conduct a comprehensive experimental evaluation with large-scale real-
world data consisting of hundreds of millions of user-app interaction records
collected from Samsung Game Launcher, one of the largest commercial mobile
game platforms. The experimental results demonstrate that our model outper-
forms all state-of-the-art methods with respect to different evaluation metrics
for micro-level churn prediction and macro-level churn ranking.

The rest of the paper is organized as follows. Section 2 formulates the two-
level mobile game churn analysis problem. Section 3 discusses our solution in
detail. Section 4 presents our experimental results on large-scale real-world data.
Section 5 reviews the related literature. Finally, Section 6 concludes our work.

2. Problem Formulation

In the context of mobile games, churn is defined as a player stopping using
a game within a given period (i.e., there is no app usage in the period). The
duration T of the period may vary from application to application depending on
different business goals. T' = 14 days and T' = 30 days are some typical settings
used in industry [7, 8, 12]. In this paper, we consider the generic micro-level game
churn prediction and macro-level churn ranking problems without assuming any
particular value of T. We note that uninstall is different from churn. Regarding
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Table 1. Notations and definitions

Notations Descriptions or Definitions
G Attributed graph at time ¢
H® Historical attributed graphs {G; iiiu
u® Set of all player nodes in G(*)
() Set of all game nodes in G(*)
FAQ) Set of all edges in G(*)
egg Indicator of the existence of edge (u,v) in g
xg) Feature vector of user u € U®)
xgt) Feature vector of game v € y(t)
zE}J Aggregated feature vector of edge (u,v) € FAQ)
Ny, Moy Numbers of attributes in x§f> and xg,t), resp.
d Number of attributes in z§f3
m Embedding dimension

Edge embedding function g : R* — R™

Churn prediction function f: R™ — [0, 1]

lp Number of embedding hidden layers in Part I

In Number of prediction hidden layers in Part I1I

[ Cardinality of a set

A\ B Set of elements in A but not in B
1(c) Indicator function for condition ¢
S®) (v) Ranking score of game v at time ¢

only uninstall as churn would be problematic since there may be a large time
gap between cessation of playing and uninstall, if any.

The relationships between players and games can be represented by an at-
tributed bipartite graph as illustrated in Fig.1, whose two parts correspond to
players and games. In the sequel, we use the terms player and user, and game
and app interchangeably. Let G(Y) be the attributed bipartite graph at time ¢, the
vertex set UM denote the set of users and the vertex set V) denote the set of
games. A player is represented by a node v € U*) and a game is represented by a
node v € V). Each user u is associated with a feature vector xq(f) € R™, where
n, is the size of xg); each game v is associated with a feature vector xq(f) € R™,
where n,, is the size of xq(}t). There is an edge between nodes u and v in G if
player u played v in the time window [t + 1,¢ + T]. The set of neighbor nodes
that connect to game v at time t is denoted by Nét). The set of edges at time ¢
is denoted by £®),
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Now we are ready to define the two-level mobile game churn analysis problem
below.

Definition 2.1 (Mobile game churn analysis). Consider a collection of at-
tributed bipartite graphs observed from time ¢y to time ¢ (¢ > ty), which is

denoted by H") = {GW}i=! . Let N be the set of neighbors of game v at

time 7 and el be the indicator of the existence of edge (u,v) in G®. The dual
objectives are:

1. Micro-level churn prediction that estimates the probability Pr(eg;|r D _ O|e£f3 =

1,H®) for an edge (u,v) in G®) | which is the probability that (u,v) disappears
in g+

2. Macro-level churn ranking that ranks the games in a descending order of the
total number of users to churn at time ¢ + 1.

The notations used in this paper and their descriptions are listed in Table 1.

3. Methods

3.1. Overview of Our Solution

Most existing works [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] rely on traditional ma-
chine learning models to solve the micro-level churn prediction problem, which
suffer from several major limitations as mentioned in Section 1. In view of the
recent progress in graph embedding, a promising way is to adopt graph em-
bedding frameworks for churn prediction. However, we face several key technical
challenges that have not been addressed in prior studies: (1) Most existing meth-
ods are transductive, and thus cannot produce embeddings for new player-game
pairs. (2) Existing methods are either purely supervised or unsupervised, and
thus do not take full advantage of relevance between embedding and a task.
(3) Existing methods are node-centric, and thus are not directly applicable to
edge-centric tasks. (4) Existing methods mainly handle a static graph and do not
incorporate graph dynamics in embedding. In the mobile game industry, play-
ers and games, however, change very quickly. There are many new players, new
games, and new player-game relationships almost every day.

In addressing these challenges, we propose a novel inductive semi-supervised
embedding model in dynamic graphs that jointly learns the prediction function
f and the embedding function g. The prediction function f and the embedding
function g are learned by deep neural networks (DNNs). The architecture of
the proposed DNN is presented in Fig. 2, which consists of three parts. Part

I is responsible for producing embedding feature vectors g(z%) from raw edge

feature vectors z5f3 IS Rd, where d is the size of raw edge feature vectors. To learn
the probability of churn, we need to construct a feature vector for each (u,v)
with eﬁfv) = 1. However, it is impractical to calculate features for all possible
edges that may appear in the prediction period because the number of possible
edges is huge, which is O(JU®)| - |[V®)]). Instead, we construct the feature vector
z}) of (u,v) from attribute-wise cosine similarity aggregation of x,(¢) and x,(¢).
As such, all z!) can be readily computed from the features of |/ |4 |V®| nodes,
where | - | denotes the cardinality of a set.
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Fig. 2. Deep neural network architecture of the inductive semi-supervised em-
bedding model in training

Part II is for inferring contexts from embedding feature vectors. Here the
context of an edge refers to the edges that are similar to and co-occur with the
edge under some graph sampling strategy, for example, random walk. Part I and
Part II form the unsupervised component of our model. They are jointly trained
by minimizing the error of incorrect context inference and inconsistency with
respect to temporal smoothness (see Section 3.3 for an explanation of temporal
smoothness). Part I and Part II are trained in an inductive and edge-centric
way. In contrast to transductive node embedding that learns a distinct embed-
ding vector for each node, our model is to learn an embedding function that is
generalized to any unseen edges as long as their feature vectors are available.
We propose a novel attributed random walk to sample similar edges as contexts
(see Section 3.4 for details).

Part III fulfills the supervised churn prediction task from embedding feature
vectors. Part III forms the supervised component of the proposed model, which
is trained by minimizing the error of incorrect churn predictions. The supervised
component and unsupervised component are simultaneously trained as combined
into a single objective function. Traditional unsupervised embedding techniques
are not designed in a task-specific way and hence are not able to incorporate
task-specific information to improve performance. In contrast, in our model Part
IIT and Part IT share the common hidden layers in Part I, and therefore they
are implicitly coupled with each other. This helps the embedding align with the
supervised prediction task.

Part I and Part III both consider graph dynamics in training. Part I handles
graph dynamics by requiring the embeddings of the same edge at two consecutive
timestamps to stay close. Part IIT handles graph dynamics by requiring the churn
probabilities of the same edge at two consecutive timestamps to follow a decaying
pattern.

The overall objective function of our model consists of four parts:

L:=Ls+aly+BLr+~LR. (1)

L denotes the supervised loss due to incorrect predictions and will be discussed
in Section 3.2.1. Ly denotes the unsupervised loss, which comes from failures of
context inference and will be addressed in Section 3.2.2. L is the temporal loss
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that consists of two parts: temporal smoothness and temporal dynamics, and will
be explained in Section 3.3. Lp presented in Section 3.2.3 is the regularization
term, and (a, 8, 7) are trade-off weights.

After the prediction function f and embedding function g are learned through

minimizing the loss function in Equation (1), the churn probability Pr(eq(f;rl) =

O|e£fv = 1,H®) of any individual user-game pair (u,v) can be estimated by
f (g(zgfg)) Under the assumption that the micro-level churn probability is prop-
erly estimated, we are able to show that for a specific game v, the sum of its
churn probabilities of all its users is an unbiased estimator of the ground truth
|N5t) \J\f£t+1)|. This inspires us to derive a simple solution for macro-level churn

ranking: first estimate the total number of users to churn \J\/’ét) \/\/]Etﬂ)\ for each
game v € V) by summing all its users’ churn probabilities and then rank all
games based on the estimations. This method is referred to as SimSum. Further-
more, we observe that there may be correlations in the churn behavior between
different games and different users. For instance, for the same user, the proba-
bility of his/her churning a game is likely to be influenced by the probability of
churning other games. On the other hand, similar users may exhibit similar pat-
terns of churning the same game. Therefore, we propose to construct a user-game
graph with edges weighted by the estimated churn probabilities and adapt link
analysis algorithms to estimate macro-level churn ranking. Specifically, PageR-
ank [18] and HITS [19] are chosen due to their wide applications and stable
performance. Details will be discussed in Section 3.5.

3.2. Static Loss Functions
3.2.1. Supervised Loss Function Lg

The supervised loss function Lg is designed for Part III. Let h%(g (ZSB)) =

d(WERE=1(g (zuv)) + b*) be the k-th hidden layer for churn prediction (referred
to as prediction hidden layer in the sequel), where W¥ and b* are the weights
and biases in the k-th prediction hidden layer, and ¢(-) is a non-linear activation
function. We model the churn prediction function f by l,, such layers in Part III.
Then the prediction output layer can be represented by:

Fla(af) = Pr(ei = ojell) = 1.1) @
= o (bl (9(z42)))

_ exp (hl (9 Zuv)) )
1+ exp (hé"( (ZSB))TU)S)

where ﬁr() is the estimate of Pr(-), () is the sigmoid function, and wy is the
sigmoid weight vector that combines the outputs from the last hidden layer to
predict churn. Now we can define the supervised loss Lg as follows:

S (1 ey hlr (9(20))"w,) |2
LZ Z 5(+ ( _ +) p( 5 )))7 (3)

0 (u,v)eE® 1+exp ( (g Zuv))qu
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where L is the number of training examples and (51%“) is a censoring indicator
that will be discussed in Section 3.3.

3.2.2. Unsupervised Loss Function Ly

The unsupervised loss function Ly is devised for Part II, which guides to embed
the handcrafted features z&tg € R% into a latent space g(zq(fg) € R™, where m is
the size of the latent space. Denote the k-th hidden layer for embedding (referred
to as embedding hidden layer in the sequel) by hf(zgfv)) = (b(th}é’l(zgfg) +bF),
where WF and b* are the weights and biases in the k-th embedding hidden layer.
We use the [, layers in Part I to represent the embedding function g, and the
embedding output layer can be represented by:

9(2if)) = he (). (4)

We can define the unsupervised loss function as follows:

Lo==% Y Y ooy (P v)gt)). (5)

i=to (u,v)€ED (y vryeCt)

where C{) denotes the context (i.e., contextual edges) of (u,v) in G¥. The
contextual edges ijg are obtained by attributed random walk on the bipartite
graph, which will be discussed in Section 3.4.

The likelihood of having a contextual edge (u’,v") of (u,v) conditional on the
embedding of (u,v) is:

(T
) exp ( 9(Zuv)” Wurvr
Pr((u,v')|g(2))) = ( )

Z(u*,v*) exp (g(z(uii)))Twu*v*)

; (6)

where wyp+ and wy,s are the vectors of weights for edges (u*,v*) and (uv',v")
in the softmax layer, respectively. The denominator is computed by negative
sampling [20]. Although the embedding function is learned by training a context
inference task, it is still considered as “unsupervised” because the contexts are
calculated by sampling on the attributed graph, which is independent of any
supervised learning task [21].

The objective function in Equation (1) contains both the supervised loss
function and the unsupervised loss function. Thus the embedding hidden lay-
ers are jointly trained with prediction hidden layers. Compared to traditional
embedding methods, the semi-supervised approach makes the embedding more
suitable for the prediction task.

Note that the target of the embedding process is to learn a mapping func-
tion from the feature space to the embedding space, instead of directly learning
the embeddings. Thus, the input for the embedding hidden layers only contains
attributes. A new edge can be embedded for churn prediction as long as we can
observe its attributes. This indicates that the proposed approach is inductive. It
is able to produce the embedding for an edge that is not used in training.
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3.2.3. Regularization Loss Lg

Regularization loss is introduced mainly to avoid overfitting. The weights for
regularization consist of {{Wi b} {Wi bitl»  w,}. Therefore the regular-

. . erYelSi=1» s Vs i=1>
ization part can be expressed as:

lp lp ln
Lr:=Xo Y (W5 +M D 615+ X2 D IIWS
i=1 i=1 i=1

L
+Aa Y 153 + A llws 3, (7)

=1

where {\;}}_, are trade-off weights on different regularization terms.

3.3. Temporal Loss Function

Temporal loss refers to the loss related to graph dynamics. Different from existing
works [20, 21, 22|, the proposed embedding model takes into account graph
dynamics. Understanding the temporal dynamics of attributed bipartite graphs is
crucial to precisely model the churn behavior. We make several key observations
of the temporal dynamics, which help to achieve good prediction performance in
practical settings.

Observation 1. For a given user-game play relationship, the longer the
relationship exists, the more likely the user is to churn the game.

This is because the content of a mobile game is usually somewhat fixed.
Players can easily lose interests after going through all contents and passing all
levels in the game, let alone many players churn before passing all levels. With
more days of play, their initial interests in the game gradually efface. Indeed, 71%
of all mobile app users churn within 90 days [23]. The churn rate of mobile games
is even higher. We plot the average retention rate of mobile games as a function
of time, based on Game Launcher data in Fig. 3. It shows that 95% of user-game
play relationships end after 40 days, which well justifies our observation. We
formally state Observation 1 below.

Flo(2)) £ flg(2ifD)) VO < i<t —1, (u,v) € DY, (®)

where D) = {(u,v) : (u,v) € £ NEFFD} and < represents “almost always
smaller than”. We refer to this observation as temporal dynamics in the following
discussion.

The second observation we make is stated in Observation 2.

Observation 2. For a given user-game play relationship denoted by an
edge in the attributed bipartite graph, its context usually evolves slowly at
two consecutive timestamps.

This observation is also derived from the real-world data. Due to space limita-
tion, we omit the figure here. It follows that the topology and attribute values of
the attributed bipartite graph mostly evolve smoothly at two consecutive times-
tamps, resulting in similar contexts for a given edge at consecutive timestamps.
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Fig. 3. Average mobile game retention rate as a function of time

Therefore, its embeddings at these two timestamps should also be close, that is,
9(al ) = g(2) Y0 < i<t -1, (u,v) € DY, 9)

where & represents “almost always equal to”. We refer to this observation as
temporal smoothness in the later discussion.
The final observation is:

Observation 3. By definition, churn in nature introduces right censoring
to the training dataset.

The problem of right censoring has been widely studied [24] and is illustrated in
Fig. 4. The observation period refers to some time duration in history. Suppose
we are at time ¢ and the observation period is from time t¢ to time ¢t. Data for
training and testing all comes from the observation period. Since the label of a
player-game pair at a specific timestamp is determined by their interaction in the
next 7" time duration, the labels of some player-game pairs in the last 7' duration
could be unknown. For instance, the last observation of the pair of player 2 and
game 1 (denoted by p2-gl) was in the last T time duration, and therefore the
labels after that time are unknown. This is known as right censoring. In contrast,
the pair p3-g3 has play records every day in the last T' days, and it is not censored
during the observation period.

Considering the existence of censored instances, we introduce a binary indi-

cator 6 to indicate whether an edge (u,v) is censored at timestamp 1. 58 =0
if (u,v) is censored; 64 = 1 otherwise. Then Inequality (8) needs to be updated
by
Flo(2)) 5 fl9(2(fD)) V0 <i <ty — 1, (u,0) € DY (10)
Flg(als)) £ Fg(z) ¥ tuw < i < 1, (u,0) € £,

where t,, denotes the timestamp when the edge (u,v) was observed, i.e., t,, =
max{i : 533 = 1}. The update reflects the fact that after timestamp t,, the
label of (u,v) becomes unknown. Since the existence of edge (u,v) after t,, is
unknown, it is more reasonable to just require that Inequality (10) holds pairwise
between time point %,, and all time points after t,,,. Therefore the temporal loss
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can be expressed as:

Lr=Y Y o) - g+ ()

i=to (u,v)eD()
L6 = 1) (g(a) + LD = 0)(alale)) - Flalalit )], )

where 1(A) denotes the indicator function for event A and [z]1 = max{z,0}.
The first term corresponds to the temporal smoothness and the second term cor-
responds to the temporal dynamics. Taking Equations (2) and (4) into Equation
(11), we have the temporal loss L1 as follows.

t—1
Lri=>" > {In () - Bl (@) o+ (12)

i=0 (u,v)eD®

[L(60D = 1)——P Wit (zg‘l”)) )
1—|—exp(hl (g(z )Tws)

exp (Wl (g(z4e))Tw,)

1+ exp (Al (g(2))) Twy)

exp (Al (g(zitd ™)) w,) 1)

1+ exp (Bl (g(zl ™)) Twy) T

1(8uy(i + 1) = 0)

3.4. Context Generation by Attributed Random Walk

All above discussion assumes the availability of contexts of edges. There have
been a series of node-centric research on graph embedding proposing to apply
random walk to sample contexts [25]. These methods are normally topology-
based. In our problem setting, our goal is to embed an edge (relationship), not a
node (identity). In this case, a simple topology-based random walk may return
two adjacent edges having the same player or the same game while totally ignor-
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players

Fig. 5. An illustrative example of attributed random walk in an attributed bi-
partite graph

ing the similarity of the other end. This is undesirable. In contrast, attributed
random walk measures such similarities by attributes and allows to transit to
similar nodes even if they are not connected.

To this end, we propose a novel attributed random walk technique that takes
into account both topological adjacency and attribute similarities to make the
transition decision of the walk. Fig. 5 gives an illustrative example of attributed
random walk in an attributed bipartite graph. For clarity, we omit the time
index in the following discussion. The solid line indicates that there exists an
edge in the attributed bipartite graph. We denote the type of node o by type(o),
which can be of value either player or game. The dash-dotted lines between
users and games do not exist in the original attributed bipartite graph but may
be considered as transitions by our attributed random walk due to attribute
similarities.

The dashed lines in Fig. 5 represent the added augmented edges between the
nodes and their similar same-typed nodes. Consider a random walker that just
traversed edge (v1,u1) in Fig. 5 and now resides at node uy. The walker needs
to decide which node to transit to. The goal is to traverse a new edge that is
as similar as possible to the edge (v1,u;). For two edges to be similar, their
both ends should be similar. Since the next edge to traverse shares the same
end w1, we only need to consider the attribute similarity of the other end. As a
result, the walker should evaluate not only those nodes that are neighbors of u;
as suggested in [25], but also the non-neighbor nodes that are similar to vy. It is
time-consuming to calculate pairwise similarities between vy and all other nodes
with the same type at each step. For this reason, we add augmented edges for a
proportion of the same-typed nodes. For example, the augmented edges of node
vy are {(v1,0) : sim(v1,0) > 1 — ¢, type(v1) = type(o)}, where 0 < e < 1lis a
filtering parameter and:

Xv, " Xo

sim(v, 0) = o Tl

(13)

After adding the augmented edges, the nodes connecting v; through augmented
edges are one hop from v;. We denote such nodes by Ni(vi) = {v : d(v1,v) =
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1, type(v) = type(vy)}, where d(vy,v) is the length of shortest path between v,
and v. For example, vo € Ni(v1) (due to the augmented edge between vy and
v1). Similarly, we denote the set of two-hop same-typed neighbor nodes of vy
by Nao(v1) = {v : d(v1,v) = 2, type(v) = type(vi)}. It contains those that share
users with vy, e.g., v3. Then the transition probability in attributed random walk
can be calculated as follows:

0, if type(o) # type(v1)
%, ifo=wv;
p(oluy) = M7 if o € Ny(v1) (14)

q
stm(vi,0)e .
%’ if 0 € No(vy)

where p and ¢ are normalization constants used to control the walk strategy.
Recall that e,,, = 1 if there is an edge between u; and o. Similar equations can
be defined when the random walker transits to a game node from user node,
e.g., vg as shown in Fig. 5. The attributed walk in an attributed bipartite graph
walks through different types of nodes repeatedly. It heuristically enlarges the
probability of making any two consecutive edges in a path similar, and thus
the probability of making the entire set of edges in the attributed random walk
similar. As an example, suppose the walker transited from vy to u; as shown
in Fig. 5. Since v; and vy are highly similar, the walker may transit to v, and
produce a path with edges (v1,u1) and (u1,v2) even though w4 is not connected
to v in the bipartite graph.

Our proposed method shares some similarities with the idea of [26]. However,
in their work attribute similarities have no influence on which nodes a walker goes
through. In our proposed method, when choosing the next node to visit, there is
a non-zero probability to choose those that are not connected to the present node
but share similar attributes to the previous node. For those that are connected
to the present node, the probability to choose from them is weighted by the
similarity between the descendant and the ancestor nodes. In this way, an edge
can be the context of another even when they are not adjacent but similar in
both ends.

3.5. Macro-Level Churn Ranking

The objective of macro-level churn ranking is to provide a ranked list of games
based on their total numbers of users to churn in the near future. The ground
truth of the number for game v € V® is [N\ NSV Let S® (v) denote the
score of ranking for game v, where a larger S® (v) means a higher position. One

solution is to first estimate the total number of users to churn \./\/'U(t) \J\/}Stﬂ)\

as the score S (v) for a game v € V®) and then rank all games based on the
estimations. We refer to it as SimSum. After the prediction function f and the

embedding function ¢ are learned, the churn probability Igr(egfj_ D= 0|e1(f3 =

1,H®) of any individual user-game pair (u,v) can be estimated by f(g(zq(fg))
We sum up the churn probabilities across all users of game v and consider the
sum as the estimation of the total number of users to churn:

Sy = Y elflg(=l)). (15)

uelU ()
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)

where the subscript “ss” marks that the score is computed by the SimSum

method.
Now we show that SimSum provides an unbiased estimation of the ground

truth |V \NS | under the assumption that the micro-level churn probability
is properly estimated. This is because we have:

B[N AN = SQ@)HO] = BN ANV HO] - BISE (v)[H®)
=E[ Y 1(efd = DU =0)HY] = 7 el f(9(=),

uel () weU(t)
and H® = {GW}i=! | then
E[INV AN = 8D (0)|[HO] (16)
= Y eDE[EGY =0)HO Y =0] = Y el flg(2l)
ueU (t) weld (®)
C S P = 0 = L)) — Pr(ef) = el = 1,0,
uelU (t)

Since the right hand side of Equation 16 is 0, we complete the proof.
Furthermore, we observe that there may exist correlation in the churn be-
havior between different games and users. As such, we employ link analysis algo-
rithms, which are able to take into consideration the global information and mu-
tual reinforcing effects among different games and users, for inferring the macro-
level churn of games. In particular, we choose PageRank [18] and HITS [19] al-
gorithms due to their wide applications and stable performance. To apply both

algorithms, we first construct a user-game relation graph gﬁ“ = {V(t), FAON Wﬁt)},

where V® and £ are copied from the attributed graph G, and W is an
adjacency matrix with the element at u-th row and v-th column satisfying

W (u,0) = f(g(=))). (17)
This relation graph will be the input to both algorithms. The ranking scores

computed by PageRank and HITS are referred to as Sz(,g) (-) and S}(fiis(-), respec-
tively.

The procedure to compute Sz(,tg)() is given in Algorithm 1. The algorithm
assigns a larger ranking score to a game if the game has more about-to-churn
players with larger scores. Moreover, the score will be propagated along with
a damping factor from one game to another game. For a specific game, the
algorithm handles different players differently. In the algorithm, players with
distinct propensities of churn contribute differently to the computation of the

game’s ranking score. Considering that gﬁ” is a bipartite graph, in each iteration,
the algorithm computes a game’s ranking score by summing up its players’ scores.
The sum is weighted by the churn probabilities, where the players with larger
churn probabilities are more likely to contribute greater proportions to the game’s
ranking score. Meanwhile, this preponderance is normalized by the total number
of games the player is playing. The intuition is that the algorithm reduces the
proportion contributed by a game if the player is more likely to churn other
games at this time point. This is because a player is rarely observed to churn all
games at a single time point. In this way, the churn correlation between different
games for a specific player is addressed.
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Algorithm 1: PageRank Based Macro-Level Churn Ranking

Input: Graph gff), maximal number of iterations M, damping factor d,,
Output: The ranking score S,(,Z)(v) of v e V¥
1 k = 0, initialize T, (i) = 1/[V® UU®| for i € VO UU®);
2 while k< M do
for i € VW UU® do

N 1—d, 0(;
s | RO = progm) e S W6 <

g
S peno Wi, 0)

end
6 end

7 84 () = T, (v) for v e VO
8 return SI()Z)(U) forv e Vy®

Algorithm 2: HITS Based Macro-Level Churn Ranking

Input: Graph Qﬁt), maximal number of iterations M
Output: The ranking score S}(fi)ts (v) of v € V)

k =0, initialize A\, (i) = H{), (i) = 1 for i € VO UUW®),

1
2 while k£ < M do
3 Copy last iteration scores to 7®: T (4) = A;fi)ts (i) for i € VO UUD);
4 | foricV®uuU® do
AD () = WO RO (.
5 hits(z) ZJENi(t> T (7’7.7) hits(-])’
6 Hi(0) = 3, W0 )TO);
7 end
8 Normalize {A;Lti)ts(i)}iev(t)uu(t) and {Hglti)ts(i)}ievu)uu(t);
9 end

S}(Itzis (’U) = ‘Aglti)ts('l)) for v € ]}('t)7

11 return S,S?ts(v) forv e V®

i
o

t)

The procedure to compute S,(”-ts (+) is presented in Algorithm 2. The algorithm

uses the final authority score Ag?ts (v) as the ranking score S}(Zs(v) for game v.

Since the graph g,,(.t) is a bipartite graph composed of players and games, a larger
authority score is assigned to a game if the game has more players with large hub
scores. Similarly, a player has a large hub score when the player is playing many
games with large authority scores. In other words, the hub score for a player in
some sense describes the chance that a churn will happen with the player. And
the authority score of a game to some extent captures the number of its players
with high churn propensity. Meanwhile, for a specific game, the algorithm handles
different players differently, and for a specific player, different games contribute
different proportions. This is reflected by Lines 5 — 6 of Algorithm 2, where
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the computation of the authority score and the hub score are weighted by the
estimated probability of churn.

4. Experimental Evaluation

In this section, we conduct a comprehensive experimental evaluation over the
large-scale real data collected from the Samsung Game Launcher platform. We
compare our semi-supervised model (referred to as SS in the sequel) with the
following state-of-the-art models for mobile game churn prediction:

— LR: the logistic regression based solution used in [9, 13, 17]

— RS: the supervised variant of our model, in which the loss function contains
only the supervised component and the regularization term

— DT: a decision tree based solution
— RF: the random forests based solution used in [9, 17]
— SVM: the SVM based solution used in [9, 13].

In the experiments, we consider the churn duration 7' = 14, but again the
proposed solution is not restricted to any particular choice of T'.

4.1. Dataset and Feature/Label Construction

Two anonymous datasets were collected independently from the Samsung Game
Launcher platform within a 4-month period (from August 1st, 2017 to November
30th, 2017) with users’ consent, one from users in USA and the other from users
in Korea. We summarize the key statistics of these two datasets in Table 2. After
some investigation of the datasets, we find that the players from US and Korea
have very different tastes of mobile games. In our datasets, there are only 18
common games between the top 100 games played by US users and the top 100
games played by Korean users. One major reason is that the two countries have
different cultures, different life styles, and different native languages. Games in-
teresting Korean users do not necessarily interest US users. Representing users
and games from the two countries in one relation graph faces the risk that the
resulting graph is highly disconnected, which in turn increases the complexity of
graph embedding. Moreover, as shown in Table 2, the statistics of the datasets
from the two countries differ, e.g., the numbers of records and users from Korea
are larger than those from US. Training a single model for both datasets may
make the parameter update of one of them dominate the other in gradient de-
scent. Therefore, we use the same DNN prediction architecture for both datasets
but train them separately. We would also like to note that training multiple
vertical prediction models for different regions or countries is also a common
practice in industry.

The collected data contains three major types of information: (1) play history,
(2) game profiles, and (3) user information. Each play record in the play history
contains an anonymous user id, a game package name, and the timestamp of play.
It is also accompanied with rich contextual information, such as WiFi connection
status, screen brightness, audio volume, etc. Game profiles are collected from
different game stores, which include features like genre, developer, number of
downloads, rating values, number of ratings, etc. User information contains the
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Table 2. Dataset statistics
Dataset # of users # of games # of play records
USA 15,000 19,705 76,468,301

Korea 25,000 18,470 106,544,313

device model, region, OS version, etc. However, data within games (e.g., levels)
is not available due to privacy concerns.

Features and labels need to be generated with care in order to avoid data
leakage. In general, labels and features are taken from disjoint periods to avoid
data leakage. The semi-supervised model is trained based on features and labels
within the observation period. Labels indicate whether a player churns a game
on that day. Features are constructed from historical data before the day of
prediction. The training set and test set are split by label days in chronological
order [27], for example, taking the labeled data in the first 2/3 of the observation
period as the training set and the remaining 1/3 as the test set. This is also
to ensure that there is a time difference between the test set and the training
set. The semi-supervised model along with the SimSum, PageRank and HITS
methods are evaluated on the test datasets.

4.2. Experimental Settings

We tune the hyperparameters, including learning rate, batch size, regularization
terms, number of layers and number of neurons per layer, based on the model
performance on the test datasets. To determine the parameters for micro-level
churn prediction, we follow what we did in our previous work [28]. A grid search
on these parameters is performed and the combination yielding the best perfor-
mance is chosen. The regularization parameters {\;}1_, are all set to 1. , 3, and
~ in Equation (1) are set to 0.02, 0.01, le-5, respectively. €, p, and ¢ discussed
in Section 3.4 are set to 1, 1, and 0.05, respectively. The parameters used for
training the deep neural network are summarized below. The maximal number
of iterations M for the PageRank and HITS methods is set to 100. The damping
factor for PageRank is set to 0.85. We summarize the parameter settings of the
two datasets below.

Parameter settings of the USA dataset:

— Player feature dimension: 10,042
— Game feature dimension: 10,042
— Player-game feature dimension: 30

— Learning rate: the initial value no is 0.017 and decay by n = no/(1 + k/2),
where k is the number of epochs

— Number of neurons: input layers 30, embedding layers 50, output layers 380K
— Number of epochs: 6-8

— Batch size: 1,024

— Context number per user-game pair: 4

— Optimizer: Adam method [29]

— Activation function: rectified linear unit (ReLU)
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Table 3. Performance of different micro-level churn prediction models on USA

Model AUC Recall Precision
Ss 0.82 0.78 0.32

RS 0.77 0.75 0.27

LR 0.66 0.38 0.26

DT 0.59 0.28 0.32

RF 0.75 0.31 0.41

SVM 0.61 0.78 0.18

Table 4. Performance of different micro-level churn models on Korea

Model AUC Recall Precision
ss 0.82 0.70 0.34

RS 0.76 0.70 0.25

LR 0.67 0.59 0.21

DT 0.58 0.26 0.30

RF 0.73 0.27 0.42
SVM 0.63 0.67 0.18

Parameter settings of the Korea dataset:

— Player feature dimension: 10,042

— Game feature dimension: 10,042

— Player-game feature dimension: 30

— Learning rate: the initial value ng is 0.019 and decay by n = n9/(1 + k/2),
where k is the number of epochs

— Number of neurons: input layers 30, embedding layers 50, output layers 632K

— Number of epochs: 8-12

— Batch size: 4,096

— Context number per user-game pair: 4

— Optimizer: Adam method [29]

— Activation function: rectified linear unit (ReLU)

4.3. Experimental Results
4.8.1. Micro-Level Churn Prediction

We use three widely-used evaluation metrics to compare the performance of
different micro-level churn prediction models. The most important metric with
respect to the business goals is the area under the ROC curve (AUC). Following
previous studies [9, 13, 17], we also consider precision and recall. Accuracy is not



20 X. Liu et al

0.84 0.85

*Testing

*Testing
©Training

OTraining

AUC

0.65

0.6
01 02 03 04 05 06 07 08 09 1

.65 -
01 02 03 04 05 06 07 08 09 1 i
Proportion of Data Used Proportion of Data Used

0

(a) AUC on USA (b) AUC on Korea
Fig. 6. Comparison of AUC for SS in training and testing

used because our data is imbalanced with around 85% negative instances in the
USA dataset and 86% negative instances in the Korea dataset.

We report the main experimental results in Table 3 and Table 4. It can be
observed that in general our model achieves the best AUC and recall on both
datasets. Our model outperforms all single models (i.e., LR, DT and SVM) in terms
of all the three metrics. In particular, it is worth mentioning that SVM achieves
a high recall at the cost of a very low precision. This is because it makes a large
number of false positives. This fact makes it less useful for business decision
making. Compared with the ensemble method RF, which has been considered
so far the best method in the field, our model still achieves 34% AUC improve-
ment and 250% recall improvement. RF achieves the highest precision on the
datasets. However, we point out that this number is actually misleading because
it can easily overfit and only recognize a small proportion of churn labels. This
is partially evidenced by its poor recall, which makes it difficult to meet business
requirements of churn prediction (e.g., targeted promotion campaigns). We also
carefully compare the AUC of SS in training and testing in Fig. 6. Since the
curves are very close, it can be learned that our model is neither overfitting nor
underfitting.

The performance difference between SS and RS justifies the benefits of in-
corporating unsupervised loss and temporal loss in the objective function. We
provide a further comparison between SS and RS with respect to the number of
epochs in Fig. 7. Both models take 5-7 epochs to reach relatively stable perfor-
mance. We observe that SS outperforms RS in general under different numbers
of epochs and for both Korean users and USA users.

Since the architecture of our DNN is novel and unique (e.g., contain both
supervised outputs and unsupervised outputs), we expose more details on how
we choose the parameters and train the model. A comparison of AUC in train-
ing under different learning rates is given in Fig. 8. It can be observed that
the choice of the learning rate greatly influences the model performance after
the initial epoch. We experimentally find that 0.1 is too large for the learn-
ing rate, which makes the step in gradient descent too large to find a good
minimum and that 0.001 is too small, making it converge very slowly to the
optimal point. Therefore we experimentally test learning rates between 0.1 and
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0.001 and find that 0.017/(#Epochs/2+1) works best for training on USA while
0.019/(#Epochs/2+1) works best for training on Korea.

For the supervised and unsupervised components, we try two different train-
ing methods: co-train and alternative train. Co-train means that we simulta-
neously train the supervised loss function and the unsupervised loss function;
alternative train means that we alternately train the unsupervised component
with the unsupervised loss function and the supervised component with the
supervised loss function. Alternative train is a widely-used training method for
similar structures [20, 21]. It is interesting to observe that, however, co-train out-
performs alternative train in terms of AUC under different numbers of epochs
as shown in Fig. 9. Therefore, we choose co-train as the final training method in
our experiments.

4.8.2. Macro-Level Churn Ranking

We use five widely-used evaluation metrics to compare the performance of dif-
ferent macro-level churn ranking methods including Kendall’s Tau correlation
coefficient, weighted Kendall’s Tau correlation coefficient, Spearman correlation
coefficient, Average Precision at K and Mean Average Precision (MAP).

In statistics, the Kendall’s Tau coefficient, also known as Kendall rank cor-
relation coefficient, the weighted Kendall’s tau coefficient and the Spearman
coefficient are all measures of rank correlation: the similarity of two orderings on
the same data. For instance, Kendall’s Tau coefficient [30] is defined as:

P-Q
n(n—1)/2’

where P is the number of concordant pairs in two orderings, @) is the number
of discordant pairs, and n is the number of elements in the ranked list. In our
problem setting, one ordering is obtained by ranking the games based on one of

the ranking scores, namely Ss(?(v), Sf(fi)ts (v), or SZ(,tg) (v), and the other ordering

is obtained by ranking the games based on the ground truth |AY \ ASTY).
The weighted Kendall’s Tau is a weighted version of Kendall’s Tau, in which
exchanges of high rankings are more influential than exchanges of low rankings,
e.g., in [31] an exchange to break the ties between elements with rank r and
s has weight 1/(r + 1) + 1/(s + 1). Spearman coefficient, on the other hand,
quantifies how well the relationship between two ranked lists can be described
using a monotonic function. Unlike Pearson correlation that can only assess
linear relationships, Spearman correlation considers both linear and nonlinear
monotonic relationships. The range of all three evaluation metrics is between —1
and 1. Having a value closer to 1 indicates that the ranking of the games is more
similar to that based on the ground truth.

Since macro-level churn ranking is based on the results of micro-level churn
prediction, we compare the performance of different combinations of the two
parts. Each combination is referred to in the “macro-micro” format. For ex-
ample, SimSum-SS represents the combination of using SimSum as the macro-
level churn ranking method and our semi-supervised method as the micro-level
churn prediction model. Fig. 10, Fig. 11, and Fig. 12 present the performance
of different combinations in terms of Kendall’s Tau, weighted Kendall’s Tau and
Spearman coefficient, respectively. Each performance metric is experimentally
evaluated on the same test datasets described in Section 4.1. Since micro-level

Kendall’s Tau :=
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Table 5. Mean Average Precision under different micro-level churn prediction
and macro-level churn ranking methods on Korea and USA

Area-Model SimSum HITS PageRank
Korea-SS 0.41 0.40 0.40
Korea-LR 0.40 0.39 0.39
Korea-DT 0.40 0.40 0.39
USA-SS 0.41 0.40 0.38
USA-LR 0.38 0.38 0.37
USA-DT 0.38 0.38 0.38

churn prediction is performed daily, macro-level churn ranking is also calculated
every day. The performance reported in the figures is the average over the testing
period. As the ranked list of games can be as long as 20,000, we only report the
performance on the top K games where the maximal K value is set to 500. It can
be observed that in most cases the macro-level churn ranking methods in combi-
nation with our semi-supervised method outperform those in combination with
different baselines (i.e., LR, DT), especially when the value of K is small. This
is because SS achieves better performance in churn prediction than other base-
lines. This indicates that the quality of the churn prediction results is important
for subsequent churn ranking, which takes the predicted churn probabilities as
inputs. Moreover, we find that based on the Kendall’s Tau, Weighted Kendall’s
Tau and Spearman coefficient, the performance of HITS is more sensitive to the
quality of churn prediction results. This may be because in the iteration, HITS
normalizes the scores over the sum of scores across all nodes, which can be large
and lead to a skewed score distribution. In contrast, SimSum and PageRank nor-
malize the scores based on only the scores of neighbors, which is more robust.
We also evaluate the performance of different churn ranking methods by
two widely-adopted metrics in the recommendation domain: Average Precision
at K and Mean Average Precision (MAP). Precision at K corresponds to the
percentage of relevant results in the top K games of the ranked list. A game at
position ¢ in the ranked list based on our ranking scores is considered relevant
if it is in the top ¢ games of the ranked list based on the ground truth. The
comparison is reported in Fig. 13. Similarly, the scores reported are the average
of all days in the testing period. In Fig. 13, we observe similar patterns to those
observed under the previous statistic metrics. In most cases, different macro-
level churn ranking methods in combination with the proposed semi-supervised
mode SS achieve better performance than the combinations with other baselines.
This again indicates the importance of the positive interaction between micro-
level churn prediction and macro-level churn ranking. One shortcoming of this
metric is that it fails to take into account the positions of relevant games. To
overcome this limitation, we further adopt Mean Average Precision [32], in which
the relevance score is weighted by the position before being averaged. We report
the comparison of the methods in terms of MAP in Table 5. Similar conclusions
can be drawn from the results. It is interesting to note that after putting larger
weights on relevant games with higher ranking, the difference of the sensitivity
to churn prediction quality between HITS and the other two methods is reduced.
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5. Related Work

In this section, we review two categories of existing works that are relevant to
this paper. The first category includes the existing works for (game) churn anal-
ysis. The early works [7, 9, 8, 11, 13, 12] are based on more traditional machine
learning models, such as logistic regression, random forests, SVM, naive Bayes,
etc., and are experimentally evaluated on extremely small numbers of games (i.e.,
less than five). As shown in our experiments, their performance on large-scale
real data with tens of thousands of mobile games and hundreds of millions of
user-app interactions is generally not satisfactory. In addition, we also observe
scalability issues when they are applied to large-scale data. Some recent research
has started to use more advanced models. [10, 14, 16] propose to use survival
model for churn prediction, in which churn probability is modeled as a function of
playtime. Kim et al. [17] achieve good performance by using convolutional neural
networks (CNN) and long short-term memory networks (LSTM). There are also
several recent deep-learning-based studies [33, 34, 35] for non-game churn pre-
diction problems, which report better performance. This motivates us to employ
deep neural network models. While being a generic solution, our model is able to
accommodate the unique characteristics of mobile games. We provide a compari-
son between all existing works and ours in Table 6. Much of the research relevant
to macro-level churn ranking pays particular attention to popularity prediction,
the orthogonal to the churn ranking problem. However, they solve the problem
from scratch and thus require efforts on feature engineering [4] or a complex
model [5]. In contrast, we propose to reuse estimated churn probabilities of the
micro-level churn prediction task to reduce the overhead.

The second category contains recent works on graph embedding. The avail-

ability of temporal player-game relation graphs {gﬁi)}f:to motivates us to make
use of the graph embedding technique in data representation. Graph embedding
has been recently applied to many large-scale machine learning applications,
demonstrating strong performance. It automates the entire process of feature
engineering by casting feature extraction as a representation learning problem.
It frees models from human bottlenecks due to handcrafted features and is able
to utilize the full richness of data. The churn prediction task is trained not with
the original, maybe noisy, handcrafted features but with more informative latent
features generated by the embedding technique. Moreover, it reduces the dimen-
sions of the feature vectors used in training as well as the corresponding compu-
tational complexity. For example, the dimension of the original feature vectors in
our problem is 10,042, while in the latent space, the dimension is reduced to 30,
which is much smaller and more efficient for the downstream prediction task. In
addition, it is an inductive framework and is able to embed a new player-game
relationship into a latent vector close to the embedding vectors of similar player-
game relationships. This enables the framework to capture the churn tendency
of a player-game pair even when the churn of the pair was never observed be-
fore. However, most existing works such as Node2Vec [25], Deep Walk [36] and
LINE [37] are node-centric embedding. When it comes to game churn prediction,
the entities to be embedded are edges that represent the relationships between
players and games. Very limited work has studied edge embedding. Abu-El-Haija
et al. [38] propose to model edge embedding as a function of node embedding, in
which the two ends of an edge are first embedded and then passed into a deep
neural network with edge embedding as output. This method embeds edges in
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Table 6. Comparison between this paper and existing works in data size and key
techniques

Paper Data size Key techniques

(7] 5 games Decision tree, naive Bayes
50 thousand users

8] 2 games Hidden Markov Model combined
10 thousand users with a single layer neural network

(10, 1 game Survival ensembles

14] 3 thousand users

(16] 1 game Survival model

1 thousand users

[11] 1 game Hidden Markov Model
10 thousand users

9] 2 games SVM, decision tree, logistic re-
1 thousand users gression

[12] 1 game Heuristic decision tree

130 thousand users

[13] 3 games Logistic regression, decision tree,
60 thousand users SVM
(17] 3 games Logistic  regression, random

200 thousand users forests, CNN, LSTM

Ours 40,000 games Deep attributed edge embedding
40 thousand users

an indirect way and does not take into account any attribute information. In
addition, these models [25, 36, 37] all belong to the transductive framework, in
which embedding cannot be generated if an object has never appeared in train-
ing. However, in our problem new users and new games appear continuously;
new relationships between existing users and games may form anytime in the fu-
ture. Therefore, for game churn prediction the capability of handling new edges
is indispensable.

Several very recent works have proposed the idea of inductive graph embed-
ding [20, 22, 21, 39], inspired by which we propose our inductive edge embedding
model for micro-level churn prediction. Our model improves these works in sev-
eral major ways. First, our embedded features are learned in a semi-supervised
manner, where the supervised component is for churn prediction while the un-
supervised component is for context recovery. Compared to unsupervised meth-
ods, embedding features learned in a semi-supervised way have been shown to
achieve better performance [21]. Second, our model captures graph dynamics by
imposing temporal loss to the embeddings of the same edge in consecutive graph
snapshots. Unlike all existing works, where embeddings represent structures or
attribute information, embeddings in our model are designed to simultaneously
capture contexts and graph dynamics. To our best knowledge, our model is the
first to achieve such benefits.
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6. Conclusion

Churn analysis of mobile games is a vital research and business problem that
is backed up by a billion-dollar market. In this paper, we consider two impor-
tant aspects of churn analysis of mobile games: micro-level churn prediction and
macro-level churn ranking. We proposed a novel inductive semi-supervised em-
bedding model for large-scale micro-level game churn prediction. It jointly learns
a prediction function and an edge embedding function, the latter of which can au-
tomatically map high-dimensional raw feature vectors to more informative latent
feature vectors. We modeled the prediction function and the embedding function
by deep neural networks, where the embedding component is designed to capture
both contextual information and relationship dynamics. The contexts of an edge
are sampled by a novel attributed random walk technique, which considers both
topological adjacency and attribute similarities. To solve the macro-level churn
ranking problem without much overhead, we proposed a simple method SimSum
based on the outputs of the micro-level churn prediction model and adapted the
link analysis algorithms PageRank and HITS to further take into consideration
the global information and mutual reinforcing effects among different games and
users. We compared our approaches with several state-of-the-art baseline meth-
ods on large-scale real-world data collected from the Samsung Game Launcher
platform. The extensive experimental results clearly demonstrate the effective-
ness of our proposed solutions.

Although the paper focuses on mobile game churn analysis, the proposed
methods are not restricted to this specific problem and also work for more gen-
eral problems. Since the inputs of our model only contain the attributes of ob-
jects and their relationships at different timestamps, the proposed model can
be generalized to fulfill any churn analysis task where the underlying data can
be modeled in a similar way, for instance, customer disengagement prediction
in membership business (e.g., Apple Music, Costco, and insurance companies)
and interest group unsubscription prediction in social networks (e.g., Facebook,
Meetup, and Google+).
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