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We describe a method for finding flux vacua of type IIB string theory in which the Gukov-Vafa-
Witten superpotential is exponentially small. We present an example with W0 ≈ 2 × 10−8 on an
orientifold of a Calabi-Yau hypersurface with (h1,1, h2,1) = (2, 272), at large complex structure and
weak string coupling.

1. INTRODUCTION

To understand the nature of dark energy in quantum
gravity, one can study de Sitter solutions of string theory.
Kachru, Kallosh, Linde, and Trivedi (KKLT) have ar-
gued that there exist de Sitter vacua in compactifications
on Calabi-Yau (CY) orientifolds of type IIB string theory
[1]. An essential component of the KKLT scenario is a
small vacuum value of the classical Gukov-Vafa-Witten
[2] flux superpotential,

W0 :=
√

2
π

〈
eK/2

∫
X

G ∧ Ω
〉
. (1)

Here X is the CY orientifold, G is the three-form flux,
Ω is the (3, 0) form on X, K is the Kähler potential for
the complex structure moduli and the axiodilaton, and
the brackets denote evaluation on the vacuum expecta-
tion values of these moduli. The stabilized values of the
Kähler moduli are proportional to log(|W0|−1), so con-
trol of the α′ expansion is possible only if |W0| is very
small.

String compactifications are characterized by discrete
data, including the topology of the internal space, and
quantized fluxes within it. The number of distinct choices
is vast, and although |W0| � 1 is evidently not typical,
strong evidence for the existence of vacua with |W0| � 1
comes from the statistical treatment of [3–7], as reviewed
in [8]. By approximating the integrally-quantized fluxes
by continuous variables, one can compute the expected
number of flux vacua with |W0| ≤ δ, for δ some chosen
threshold. This approach predicts that in an orientifold
with a sufficiently large value of the D3-brane charge tad-
pole QD3 there should exist choices of flux giving vacua
with exponentially small |W0|.

We are not aware of any flaw in this statistical ap-
proach, but one can nevertheless ask: do there in fact
exist orientifolds and choices of flux giving vacua with
|W0| � 1, as the statistical theory predicts? In this Let-
ter we answer this question in the affirmative.
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In §2 we present a general method for constructing
vacua with small W0 at large complex structure (LCS)
and weak string coupling, building on [9, 10]. In §3 we
give an explicit example1 where W0 ≈ 2 × 10−8, in an
orientifold of a Calabi-Yau hypersurface in CP[1,1,1,6,9].
In §4 we show that our result accords well with the sta-
tistical predictions of [4]. We show in §5 that at least one
complex structure modulus in our example is as light as
the Kähler moduli. We explain why this feature occurs in
our class of solutions, and we comment on Kähler moduli
stabilization in our vacuum.

2. A LANDSCAPE OF WEAKLY COUPLED
FLUX VACUA WITH SMALL W0

Vacua with |W0| � 1 are rare elements in a large
landscape. It is therefore impractical to exhibit vacua
with |W0| � 1 by enumerating general vacua on a mas-
sive scale and filtering out the desired ones. Instead one
should pursue algorithms that preferentially find fluxes
that lead to vacua with small |W0|.

One algorithm of this sort2 [9, 10] proceeds by finding
quantized fluxes that solve an approximate form of the
F-term equations, with the corresponding approximate
superpotential exactly vanishing, at some given point U?
in moduli space. One then solves for nearby moduli val-
ues U = U? + δU that solve the true F-term equations
with the same choice of fluxes. When the approximation
made in the first step is a good one, the true superpoten-
tial evaluated at U = U? + δU will be small.

We will construct a class of flux vacua along these lines.
The approximate superpotential is obtained by neglect-
ing nonperturbative corrections to the prepotential for
the complex structure moduli around the LCS locus in
moduli space.3 Stabilization near LCS, where these non-
perturbative terms are exponentially small, then yields
an exponentially small flux superpotential.

1 Pioneering work in this direction appears in [10, 11]. Issues re-
lated to the size of |W0| are discussed in e.g. [12, 13].

2 For an approach via genetic algorithms see [14].
3 Recent discussions of flux potentials near LCS appear in [15–17].
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We consider an orientifold X of a Calabi-Yau three-
fold with −QD3 units of D3-brane charge on seven-branes
and O3-planes. Let {Aa, Bb} be a symplectic basis for
H3(X,Z), with Aa ∩ Ab = 0, Aa ∩ Bb = δ ba , and
Ba ∩Bb = 0. We use projective coordinates {Ua} on the

complex structure moduli space of dimension n ≡ h2,1
− ,

and we work in a gauge in which U0 = 1. Denoting the
prepotential by F and writing Fa = ∂UaF , we define the
period vector as

Π =

( ∫
Ba

Ω∫
Aa

Ω

)
=

(
Fa
Ua

)
. (2)

The integer flux vectors F and H are similarly obtained
from the three-form field strengths F3 and H3 as

F =

( ∫
Ba
F3∫

Aa
F3

)
, H =

( ∫
Ba
H3∫

Aa
H3

)
. (3)

Defining the symplectic matrix Σ =
(

0 I
−I 0

)
, the flux su-

perpotential and the Kähler potential are4

W =
√

2
π

(
F − τH

)T
· Σ ·Π , (4)

K = − log
(
−iΠ† · Σ ·Π

)
− log

(
−i(τ − τ̄)

)
. (5)

The LCS expansion of the prepotential is F(U) =
Fpert(U) + Finst(U) [19] with the perturbative terms

Fpert(U) = − 1

3!
KabcUaU bU c +

1

2
aabU

aU b + baU
a + ξ ,

(6)
and the instanton corrections

Finst(U) =
1

(2πi)3

∑
~q

A~q e
2πi~q·~U . (7)

Here Kabc are the triple intersection numbers of the mir-
ror CY, aab and ba are rational, the sum runs over effec-

tive curves in the mirror CY, and ξ = − ζ(3)χ
2(2πi)3 , with χ

the Euler number of the CY. We write

W = Wpert +Winst , (8)

with Wpert the portion obtained by using Fpert(U) in (4),
and Winst the correction from Finst(U). We call Wpert the
perturbative superpotential, and Winst the nonperturba-
tive correction, even though the full flux superpotential
W is classical in the type IIB theory.

The real parts of ~U are axionic fields that do not appear
in the perturbative Kähler potential, enjoying discrete

4 We have set the reduced Planck mass to unity, and we omit here
the Kähler potential for the Kähler moduli, which reads KK =
−3 log

(
2 Vol2/3

)
, with Vol the volume of X in ten-dimensional

Einstein frame, in units of (2π)2α′. Our conventions match those
of [18] upon taking V = 1/4π and b = 1 in §A.3 of [18], cf. [11].

gauged shift symmetries ~U 7→ ~U +~ν with ~ν ∈ Zn. Under
such a shift, the period and flux vectors undergo a mon-
odromy transformation {Π, F,H} 7→M~ν

∞{Π, F,H} with
the monodromy matrix M~ν

∞ ∈ Sp(2n+2,Z). For generic
choices of flux quanta, these discrete axionic shift sym-
metries are spontaneously broken, realizing axion mon-
odromy [20–22]. A discrete shift symmetry remains un-
broken if and only if there exists a monodromy transfor-
mation M~ν

∞ combined with an SL(2,Z) transformation
T r : (H,F ) 7→ (H,F + rH), r ∈ Z, that leaves the pair
of flux vectors invariant.

Consider a choice of fluxes and moduli values that
solves the F-flatness conditions, has an unbroken shift
symmetry, and has Wpert = 0, all at the level of the per-
turbative prepotential Fpert(U). We call such a config-
uration a perturbatively flat vacuum. Here is a sufficient
condition for the existence of such a vacuum.
Lemma: Suppose there exists a pair ( ~M, ~K) ∈ Zn×Zn

satisfying − 1
2
~M · ~K ≤ QD3 such that Nab ≡ KabcM c is

invertible, and ~KTN−1 ~K = 0, and ~p ≡ N−1 ~K lies in

the Kähler cone of the mirror CY, and such that a · ~M
and ~b · ~M are integer-valued. Then there exists a choice
of fluxes, compatible with the tadpole bound set by QD3,
for which a perturbatively flat vacuum exists. The per-
turbative F-flatness conditions obtained from (6) are then

satisfied along the one-dimensional locus ~U = τ~p along
which Wpert vanishes.

To verify the Lemma, one considers the fluxes

F = ( ~M ·~b, ~MT · a , 0, ~MT ) , H = (0, ~KT , 0, 0) , (9)

which can be shown to be the most general ones lead-
ing to a perturbative superpotential Wpert that is homo-
geneous of degree two in the n + 1 moduli. The mon-
odromy transformation M~ν

∞ combined with an appropri-
ate SL(2,Z) transformation leaves (9) invariant, so a dis-
crete shift symmetry remains unbroken.

Because Wpert is homogeneous, there is a
perturbatively-massless modulus corresponding to
an overall rescaling of the moduli. This modulus can
be stabilized by the nonperturbative terms in F . Given

( ~M, ~K) for which stabilization of the rescaling mode
occurs at weak coupling, Winst will be exponentially
small. One finds the effective superpotential

Weff(τ)√
2/π

= Ma∂aFinst =
∑
~q

A~q ~M · ~q
(2πi)2

e2πiτ~p·~q , (10)

where we have chosen the axiodilaton τ as a coordinate
along the flat valley. As the inner product ~p·~q need not be
integer, it is possible to find flux quanta such that τ can
be stabilized at weak coupling, by realizing a racetrack.5

5 Achieving racetrack stabilization within our class of models could
aid in the search for large axion decay constants via alignment,
as in [23]. See [24–26] for approaches using shift symmetries: in
particular, [26] also employs a superpotential of degree two.



3

This works efficiently if the two most relevant instantons,
which we label as ~q1 and ~q2, satisfy ~p · ~q1 ≈ ~p · ~q2.

3. AN EXAMPLE

We now illustrate our method in an explicit example,
with n = 2. We consider the degree 18 hypersurface
in weighted projective space CP[1,1,1,6,9] studied in [27].
This is a CY with 272 complex structure moduli, but as
explained in [9], it is useful to study a particular locus
in moduli space where the CY becomes invariant under
a G = Z6 × Z18 discrete symmetry.6 By turning on only
flux quanta invariant under G, we are guaranteed to find
solutions of the full set of F-term equations, by solving
only those corresponding to the directions tangent to the
invariant subspace. Conveniently, the periods in these
directions are identical to the periods of the mirror CY,
and are obtained from an effective two-moduli prepoten-
tial as in (6) with the data

K111 = 9 , K112 = 3 , K122 = 1 ,

a =
1

2

(
9 3
3 0

)
, ~b =

1

4

(
17
6

)
. (11)

The instanton corrections take the form [27]

(2πi)3Finst = F1 + F2 + · · · , (12)

F1 = −540q1 − 3q2 , (13)

F2 = −1215

2
q2
1 + 1080q1q2 +

45

8
q2
2 , (14)

where qi = exp(2πiU i) with i ∈ {1, 2}. Note the O(10−2)
hierarchy in the coefficients of the one-instanton terms.
We consider an orientifold involution described in [29],
with two O7-planes, each with four D7-branes, and in
which we find QD3 = 138.

We will now use the Lemma to find a pair ( ~M, ~K) ∈
Z2 × Z2 yielding a perturbatively flat vacuum. Using

(11), the condition ~KTN−1 ~K = 0 becomes

M1 =
M2K2(2K1 − 3K2)

(K1 − 3K2)2
, (15)

and the flat direction is given by

~U = τ

(
p1

p2

)
=
τ(K1 − 3K2)

M2

(
−K2/K1

1

)
. (16)

Once the nonperturbative corrections (12) are included,
the effective superpotential along the flat direction reads

Weff(τ) = c
(
e2πip1τ +Ae2πip2τ

)
+ · · · , (17)

6 If we were to orbifold by this symmetry group and resolve the
singularities we would obtain the mirror CY [28]. We will not
proceed in this direction, but instead stay with the original CY.

7.0 7.5 8.0 8.5 9.0

FIG. 1: The scalar potential on the positive Im τ axis.

where c and A depend on the pair ( ~M, ~K), but not on τ .
A racetrack potential is realized when the two terms in
(17) are of comparable magnitude, which requires |p1 −
p2| � p2. We are thus looking for ~M and ~K obeying (15)

for which Qflux
D3 ≡ − 1

2
~M · ~K ≤ 138 and |K1 +K2| � |K2|.

A suitable choice is

~M =

(
−16

50

)
, ~K =

(
3
−4

)
, (18)

which gives Qflux
D3 = 124, A = − 5

288 , and c = −
√

2
π

8640
(2πi)3 .

The resulting racetrack potential is depicted in Figure 1.
The moduli are stabilized at

〈τ〉 = 6.856i , 〈U1〉 = 2.742i , 〈U2〉 = 2.057i , (19)

and we find

|W0| = 2.037× 10−8 . (20)

The instanton expansion is under excellent control:
the two-instanton terms (14) are a factor O(10−5)
smaller than the one-instanton terms (13), and the three-
instanton terms are smaller by a further factor O(10−5).

4. STATISTICS OF SMALL W0

A systematic understanding of statistical predictions
of the flux landscape was developed in [3–7], in part by
approximating the integer fluxes by continuous variables.
Let us compare our result (20) with the statistical pre-
diction for the smallest possible W0 in our orientifold.

We writeN (λ∗, QD3) for the expected number of vacua
with D3-brane charge in fluxes less than QD3 and with
|W0|2 ≤ λ∗ � 1. According to [4], N (λ∗, QD3) is given
for n = 2 by

N (λ∗, QD3) =
2π4(2QD3)5

5!
λ∗

∫
M
? e2KFabcF

abc
, (21)

whereM is the axiodilaton and complex structure mod-
uli space, ? is the Hodge star on M, and Fabc ≡ ∂3

abcF .
Taking QD3 = 138 and numerically integrating over the
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LCS region 1 < Im(U), we find that N (λ∗, 138) < 1
for
√
λ∗ . 6 × 10−7. The prediction of [4] is thus that

the smallest value of |W0| expected to exist is of order
6× 10−7, which agrees reasonably well with (20).

5. TOWARD STABILIZING ALL MODULI

Thus far we have found a class of no-scale vacua in
which the complex structure moduli and axiodilaton F-
terms vanish, and W0 is exponentially small. To achieve
stabilization of the Kähler moduli from this promising
starting point, two issues must be addressed: the masses
of the complex structure moduli and axiodilaton, and the
nonperturbative superpotential for the Kähler moduli.

For the example of §3, we have computed the mass ma-
trix along the G-symmetric locus. Two of the moduli are
heavy, but the third, corresponding to the perturbatively-
flat direction τ , has a mass proportional to |W0|. We are
not aware of a reason why any of the G-breaking com-
binations should be comparably light, but checking this
directly will be important, and rather challenging. As-
suming that the G-breaking moduli are indeed heavy, the
low energy theory describing Kähler moduli stabilization
will include τ and the Kähler moduli T1, T2. (Kähler
moduli stabilization in a related setting has been dis-
cussed in [30].)

Provided that the seven-brane stacks wrap divisors
that are either rigid [31], or else are rigidified by the in-
troduction of fluxes [32–34], we expect a nonperturbative
superpotential of the form

Weff(τ, T1, T2) = c
(
e2πi 25 τ +Ae2πi 3

10 τ
)

+Be−
2π
c1
T1 + Ce−

2π
c2
T2 . (22)

Here A and c are known coefficients, cf. (17), and c1 and
c2 are the dual Coxeter numbers of the confining seven-
brane gauge groups. The unbroken discrete shift symme-
try implies that the Pfaffian prefactors B and C can be
expanded in appropriate powers of e2πiτ . Provided that
there exists an interpolation to a weakly curved type IIA
description, these powers should be nonnegative, because
the objects that break the continuous shift symmetry
to a discrete one are type IIB D(-1)-brane instantons,
and worldsheet instantons of the type IIA mirror, which
are negligible at small string coupling and large complex
structure. By neglecting the exponentially small correc-

tions, one should then be able to treat B and C as con-
stants. Verifying this directly would be informative.

To exhibit vacua with all moduli stabilized in this set-
ting, one should establish (22) and compute B and C for
a seven-brane configuration in which c1 and c2 are suffi-
ciently large to ensure control of the α′ expansion. This
worthy goal is beyond the scope of the present work.

6. CONCLUSIONS

We have described a method for constructing flux
vacua with exponentially small Gukov-Vafa-Witten su-
perpotential in compactifications of type IIB string the-
ory on Calabi-Yau orientifolds, at weak string coupling
and large complex structure. The first step is to ne-
glect nonperturbative terms in the prepotential expanded
around large complex structure, and find quantized fluxes
that at this level yield vanishing F-terms and vanishing
superpotential along a flat direction in the complex struc-
ture and axiodilaton moduli space. We provided simple
and constructive sufficient conditions for the existence of
such solutions, and we determined the flat direction an-
alytically, vastly simplifying the search for vacua. Upon
restoring the nonperturbative corrections, one can find
full solutions in which the flat direction is lifted, although
it remains anomalously light, and the flux superpotential
is exponentially small.

We gave an explicit example with |W0| ≈ 2×10−8 in an
orientifold of the Calabi-Yau hypersurface in CP[1,1,1,6,9].
This value of |W0| accords well with the statistical ex-
pectation derived from the work of Denef and Douglas
[4]. Stabilizing the Kähler moduli in this class of vacua,
and then pursuing more explicit de Sitter solutions, are
important tasks for the future.
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