arXiv:1812.07548v2 [hep-th] 20 May 2019

The Swampland Distance Conjecture for Kahler moduli

Pierre Corvilain!, Thomas W. Grimm!, Irene Valenzuela?

L Institute for Theoretical Physics
Utrecht University, Princetonplein 5, 3584 CE Utrecht, The Netherlands

2 Department of Physics, Cornell University, Ithaca, New York, USA

Abstract

The Swampland Distance Conjecture suggests that an infinite tower of modes becomes ex-
ponentially light when approaching a point that is at infinite proper distance in field space.
In this paper we investigate this conjecture in the Kahler moduli spaces of Calabi-Yau three-
fold compactifications and further elucidate the proposal that the infinite tower of states
is generated by the discrete symmetries associated to infinite distance points. In the large
volume regime the infinite tower of states is generated by the action of the local monodromy
matrices and encoded by an orbit of D-brane charges. We express these monodromy ma-
trices in terms of the triple intersection numbers to classify the infinite distance points and
construct the associated infinite charge orbits that become massless. We then turn to a
detailed study of charge orbits in elliptically fibered Calabi-Yau threefolds. We argue that
for these geometries the modular symmetry in the moduli space can be used to transfer
the large volume orbits to the small elliptic fiber regime. The resulting orbits can be used
in compactifications of M-theory that are dual to F-theory compactifications including an
additional circle. In particular, we show that there are always charge orbits satisfying the
distance conjecture that correspond to Kaluza-Klein towers along that circle. Integrating
out the KK towers yields an infinite distance in the moduli space thereby supporting the
idea of emergence in that context.
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1 Introduction

The term Swampland [1] refers to those quantum effective field theories which cannot be UV
embedded in a consistent theory of quantum gravity. In particular, there are several proposals
for consistency constraints that any effective theory weakly coupled to Einstein gravity must
satisfy to arise from string theory. In this paper, we will focus on the Swampland Distance
Conjecture (SDC) [2], for which infinite distances in field space imply an infinite tower of states
becoming massless exponentially fast in the proper field distance. This infinite tower of states
is associated to a quantum gravity cut-off that goes to zero at infinite distance and above which



a quantum effective field theory description weakly coupled to Einstein gravity is no longer
possible. Therefore, the conjecture implies an upper bound on the scalar field range that any
effective theory can accommodate in terms of the energy scale up to which the effective theory
is valid. Such a bound can have several potential implications for phenomenology especially
when constructing models of large field inflation.

Due to the importance of the swampland criteria to yield non-trivial quantum gravity con-
straints at low energies as well as to provide new guidelines to make progress in high energy
physics, it is essential to gather more evidence to prove or disprove these conjectures in a rig-
orous way. It is the aim of this paper to continue testing the Swampland Distance Conjecture
in string theory compactifications. As a byproduct of analyzing this conjecture we further elu-
cidate the very rich underlying geometric structure of the moduli space and compactification
manifolds required for the conjecture to hold. This structure, together with the understanding
of the states arising in string theory, implies highly non-trivial correlations between the number
of light states and field distances. In certain cases, as we will see, the SDC seems to be satisfied
in a conspiratorial way by string theory. This invites us to continue exploring the SDC to
reveal the underlying quantum gravity principle responsible for the validity of the conjecture,
and hopefully learn new lessons about quantum gravity itself.

Non-trivial evidence for the SDC was obtained in [3,4] by studying infinite distance singu-
larities of the complex structure moduli space of Calabi-Yau manifolds. We also refer the reader
to [5,6] for a recent general analysis of weak coupling points in F-theory and [7—16] for a series of
previous works analyzing the conjecture in concrete string compactification setups. The power
of the approach followed in [3,4] was its model independence as the results are valid regardless
the specific Calabi-Yau under consideration. The proposal is to identify the infinite tower of
states with an infinite charge orbit generated by a monodromy action of infinite order. This
infinite order monodromy is a necessary condition for a singular locus to be at infinite field dis-
tance. In one-parameter degenerations the charge orbit was shown in [3] to be populated by an
exponentially increasing number of BPS states that become exponentially light as we approach
the singular locus, providing evidence for the conjecture. Furthermore, it was proposed that
the infinite field distance itself emerges from quantum corrections of integrating out the infinite
tower of states. We will revisit this argument and provide a general field theory computation
that highlights the properties that need to be met by the tower of states. Furthermore, the
monodromy transformation is translated to an axionic discrete shift symmetry in the effective
theory which enhances to a continuous shift symmetry at infinite distance. This provides a
new understanding of the SDC as a quantum gravity obstruction to restore global symmetries.
Everything fits together in a beautiful story linked to the monodromy action. The next obvious
question is how much of this story can be generalized to other moduli spaces.

In this paper, we will explore the Swampland Distance Conjecture in the multi-dimensional
Kéahler moduli space of Calabi-Yau compactifications. We will show how the techniques in-
troduced in [3,4] can also be used to identify an infinite charge orbit becoming massless at
infinite distance in Kahler moduli spaces. The main focus of our paper will be on the study of
infinite distance loci and charge orbits at the large volume regime. The monodromy action can
be written in full generality in terms of the intersection numbers and topological data of the
Calabi-Yau threefold, allowing for a classification of the infinite distance limits at large volume.
We will also provide the general result for the infinite charge orbit becoming massless at these
limits. The existence of such orbits was shown in [4], where it was also argued that this crucially



requires to address the issue of path-dependence by applying the powerful mathematical ma-
chinery of [17]. However, in this work we will be able to determine the charge orbit by studying
a comparably simple set of vector equations. This refined approach is valid more generally and
can also be applied to the complex structure moduli space. Subsequently we will discuss the
interesting phenomenon of transferring the charge orbit to other infinite distance points of the
moduli space away from large volume. In the case of elliptic fibrations, it is possible to carry
the charge orbit from large volume to the small fiber point by applying double T-duality along
the fiber.

The tower of states becomes exponentially light with respect to the Planck scale. This means
that, if we are moving along some path in the moduli space which is also sending M}, — oo,
they can become very heavy while still satisfying m /M, — 0. This is a result of the fact that
the SDC only gives non-trivial implications in the IR effective theory if the M, is forced to
remain finite, while all implications go away when gravity decouples. This feature is particularly
visible when moving in the Kéhler moduli space, since My — oo at large volume. Furthermore,
there can also be more than one tower of states becoming exponentially light with respect
to My at infinite distance. For instance, if we consider type ITA compactified on a Calabi-Yau
threefold, we get that the infinite charge orbits generated by the monodromy action at large
volume consist of a tower of particles arising from bound states of DO-D2 branes. Clearly, there
will also be Kaluza-Klein towers of states becoming massless at large volume. However, it is
the tower of D0-D2 branes that appears to be relevant for the proposals of emergence and
global symmetries in the Kéhler moduli space. In particular, the infinite field distance can
be understood as emerging from quantum corrections of integrating out D-brane states rather
than Kaluza-Klein states in this case. Notice also that if the infinite distance emerges from
integrating out the tower of states, this emergence interpretation should be equally applicable
for the intersection numbers and topological discrete data of the Calabi-Yau manifold.

There are other instances, though, in which a Kaluza-Klein tower can be responsible for
(at least part of) the infinite field distance. This is, for example, the case in the circle com-
pactification performed in order to implement the duality of M-theory and F-theory. The 6D
effective theory of F-theory compactified on an elliptically fibered Calabi-Yau threefold can be
derived from compactifying M-theory on the same Calabi-Yau manifold to five dimensions and
sending the volume of the fiber to zero. The limit of shrinking the elliptic fiber corresponds to
decompactifying an additional circle and opening up an extra dimension in the F-theory side. It
is known that quantum corrections from the KK tower in the circle F-theory compactification
are essential to match with the classical M-theory reduction [18-20].! In this paper, we will
also analyze the infinite distance limits in the M-theory geometry, and recover the KK tower
of the circle compactification of F-theory from following the infinite charge orbit to the small
fiber regime in M-theory. This provides a geometric realization of the Kaluza-Klein tower in
terms of a charge orbit generated by a monodromy action of infinite order.

The outline of the paper goes as follows. We will start in section 2 discussing the general
properties that the tower of states must satisfy and revisiting the idea of emergence. We also
present a new field theory computation that shows how quantum corrections from integrating
out any infinite tower up to its species scale generates an infinite field distance (and consequently,
an exponential mass behavior) as long as the number of species increases as we move in field

'Tt was recently shown in [21] that this infinite tower of states is also crucial in order to account for the
entropy of certain F-theory black holes.



space. We will then discuss the microscopic meaning of the species bound in Kaluza-Klein
compactifications. In section 3 we will analyze infinite distances in the large volume regime of
Calabi-Yau threefold compactifications. We will construct the infinite charge orbits becoming
massless at the different large volume limits and their microscopic interpretation in terms of
type ITA string theory. We will also discuss how to carry the charge orbit to the small fiber
volume in elliptic fibrations. In section 4 we will discuss infinite distances and charge orbits
arising in the duality between M-theory and F-theory, providing a geometric realization for
the KK tower in terms of an infinite charge orbit in M-theory. Finally, section 5 contains our
conclusions.

2 Swampland, emergence of infinite distance and global sym-
metries

Consider the moduli space of a consistent quantum gravity effective theory parametrized by
the expectation values of the massless scalar fields in the theory. The Swampland Distance
Conjecture [2] states that any low energy effective theory defined at a particular point of the
moduli space is only valid in a finite domain around that point, because there will be an infinite
tower of states becoming exponentially light when moving infinitely far away and signaling the
complete breakdown of the effective theory. More concretely, when starting with an effective
theory defined at a point Q in the moduli space and moving towards another point P, the mass
of this tower of states behaves as

m(P) ~ m(Q)e14PQ) (2.1)

in the limit d(P,Q) — oo. Here, d(P,Q) is the geodesic distance between the two points,
and « is a positive constant which is not specified in generality. This infinite tower implies
the complete breakdown of the effective theory in the sense that quantum gravitational effects
become important and a quantum field theory description with infinitely many fields weakly
coupled to Einstein gravity is not possible. Therefore, not only the low energy effective theory
breaks down because of the presence of new states, but the quantum gravity cut-off Agg also
goes to zero exponentially fast. As it stands, the conjecture leaves many open questions: Can we
universally specify v and Age? How do they change if we move along a non-geodesic trajectory?
Is there any universal prescription to identify the tower of states? What is the underlying
quantum gravity principle which forces the conjecture to hold? For the latter question, there
are two recent proposals:

e The infinite distance itself emerges from quantum corrections of integrating out the infinite
tower of states up to the species bound of the tower [2,3,22].

e The infinite tower is a quantum gravity obstruction to restore a global symmetry at the
infinite distance limit [3].

These two proposals find confirmation [3] at the infinite distance loci of the complex structure
moduli space of Type IIB Calabi-Yau compactifications, where it was also proposed a general
prescription to identify the tower of states in terms of a charge orbit generated by a monodromy
action of infinite order. It is the aim of this paper to extend the discussion to Kéhler moduli



spaces, and to check whether these two proposals, as well as the aforementioned prescription
to identify the tower, are still valid. Before turning to do so, we will first explain in more
detail and revisit these two proposals in view of the new insights gathered in this paper. Let
us remark, though, that the following discussion in this section is empty without the solid
technical work that follows in section 3 and 4. Furthermore, since moving in the Kahler moduli
space usually also implies varying the Planck mass, there are some subtleties that need to be
addressed. Hence, we will first discuss these subtleties in section 2.2 in a toy model example: a
circle Kaluza-Klein compactification.

2.1 Emergence and global symmetries

In the following we will describe in more detail the above two proposals and present a new
computation that shows how the exponential mass behavior (and the infinite field distance)
is an automatic consequence of integrating out any infinite tower of states (regardless their
concrete mass) up to the species bound of the tower, as long as the tower gets compressed as we
move in the moduli space. This leads to a natural identification of the quantum gravity cut-off
with the species bound, as we will next discuss.

Emergence of infinite distance from integrating out a tower Let us consider a D-
dimensional effective theory of a massless scalar field ¢ plus a tower of heavy particles h whose
mass depends on ¢ as my(¢) = nAm(¢). We will follow very closely [3,22] but without
assuming any particular form for Am(¢). The power of our results will precisely reside in this
independence of the form of Am(¢). The Lagrangian is

=100+ [30ha) +1ma (@) 2] . (2:2)

We are interested in the quantum corrections to the field metric of ¢ when integrating out the
massive infinite tower of states. However, any tower of states weakly coupled to Einstein gravity
has an associated cut-off scale above which quantum gravitational effects become important and
the quantum field theory description breaks down. Since the procedure of integrating out can
only be performed within the realm of an effective quantum field theory, we should only integrate
out the states up to this quantum gravity scale Agg. There is a very natural candidate for Agq
known as the species scale [23-27],

AQG’ = MLE’Da (23)

NoG”

where N is the number of species (i.e. elementary particles weakly coupled to gravity) present
below the energy scale Agg, and My, p is the D-dimensional Planck mass. For the above tower
of particles of evenly increasing mass, we have

AQG
Nog = 2.4
%= Am() 24
implying
e Mup \ 50
Agg ~ <M£762Am(¢)) N and Noc = (m) . (2.5)



Therefore, if Am depends on the point of the moduli space parametrized by ¢, so will the
species scale. In fact if we now consider that the whole tower becomes massless at a particular
point ¢g, so Amy,(¢g) = 0 and Ngg — oo, the species scale will go to zero at that point,

i.e. Aga(do) = 0.

We can now compute the one-loop quantum corrections to the field metric of ¢ when inte-
grating out the tower of massive states, given by [2, 3, 22]

1-loo _
Gy~ > mn(9)7 7 (9ymn(9))? (2.6)
When summing only over the number of species below Agg, we get
-loo — — 2 — 0 Am(¢) ?
Gos " ~ NoG ' Am()7 ™ (9p8m(9))” ~ M1 (ZTW) ' 2.7)
The distance between two points of the moduli space ¢y and ¢ is then given by

o m
000 = [ Vs ~ o (o5 ) (2.9

which indeed diverges if Am(¢;) — 0, and the masses decrease exponentially as we approach
the infinite distance point,

Am(¢g) ~ Am(py) e 74 P001), (2.9)

where v encodes all the numerical factors that we have neglected in the above procedure of
integrating out and that will depend on the properties of the tower. Notice that we did not
need to specify the dependence of the masses on ¢. The logarithmic divergence of the proper
field distance, and consequently the exponential mass behavior, emerges from integrating out
any tower of states up to its species bound?. The only thing that matters is that the tower
gets compressed, i.e. Am(¢g) goes to zero at the point in question. In terms of the quantum
corrected proper field distance, the number of species then increases exponentially and the
quantum gravity cut-off decreases exponentially fast,

Aga ~ My p e dd0:1) (2.10)

where A\ ~ ~/(D — 1). This toy model computation removes part of the mysticism of the
conjecture relating infinite distances and infinite towers of states. If the number of species
increases when approaching a point of the moduli space, quantum corrections from this tower
will automatically generate a logarithmic field distance divergence in terms of the mass of these
states. In [2] it was pointed out that not every infinite massless tower necessarily generates an
infinite field distance. We however think that this will always be the case as long as they count
as different species.

Finally, there are also two possible levels of emergence. It could either be that the infinite
tower generates part of the infinite field distance, a classical divergence being also present, or
that the infinite field distance fully emerges from quantum corrections form integrating out the
tower. In the latter case, the fact that moduli spaces are in general non-compact would be an

2See [3,22,28,29] for the proposal that the Weak Gravity Conjecture is also implied by the idea that the small
gauge coupling emerges from integrating out the massive charged WGC states up to the species bound.



IR effect from integrating out infinite towers of states that become massless at particular points.
Why these towers should exist will be the question of the next section about global symmetries.
As a final remark, notice that quantum corrections will dominate over the classical piece if the
tower of states satisfies what was called the Scalar Weak Gravity Conjecture [12],

- . OsAm(o) 2
1-loo fo)0) fo]
g P> 9o if g <7m( ) > 21 (2.11)

where we have used (2.7). Equivalently, the Scalar WGC is automatically satisfied if the idea
of emergence holds. This also provides a motivation to have v, A 2 1.

Obstruction to global symmetries A nice relation between the SDC and the absence of
global symmetries was proposed in [3]. As we will explain later on in more detail, the infinite
tower of states is identified with a charge orbit generated by a discrete monodromy transforma-
tion of infinite order. When reaching the infinite distance point, this discrete transformation
enhances to a continuous one, which would imply the presence of a continuous global shift sym-
metry in the effective theory. The presence of the infinite tower, which automatically forces the
quantum gravity cut-off to go to zero, can then be understood as a quantum gravity obstruction
to restore this global symmetry. This is consistent with the common lore that global symme-
tries are not allowed in quantum gravity (recently proved in the context of AdS/CFT [29,30]).
The key point is that the conjecture states how the effective theory breaks down when trying
to recover a global symmetry in a continuous way. Therefore, it quantifies how approximate a
global shift symmetry can be, by providing a quantum gravity cut-off above which no effective
field theory enjoying that approximate global symmetry is valid. It also nicely connects with
the Weak Gravity Conjecture [31], which analogously quantifies what goes wrong when trying
to recover a U(1) global symmetry by sending a gauge coupling to zero. Given that when a
global shift symmetry of a field is broken, the global symmetry of the Hodge dual field is gauged,
both conjectures could just be dual versions of each other.

This intuition of restoring a global symmetry was obtained in [3] by studying infinite distance
singularities in the complex structure moduli space of type IIB Calabi-Yau compactifications.
There, the discrete monodromy transformation generating the infinite tower translates into a
discrete shift symmetry of the axionic complex structure modulus corresponding to the angular
coordinate encircling the singularity. In this paper, we will show how this intuition can be
extrapolated to Kéhler moduli spaces. In fact, even if the moduli space is not complex, as
M-theory on a Calabi-Yau threefold or the circle compactification of F-theory, it will still be
possible to have a notion of a monodromy transformation which will generate the tower and will
correspond to some p-form discrete shift symmetry in the effective theory. In particular, we will
see that in M-theory Calabi-Yau threefold compactifications, the discrete symmetry enhances to
a continuous one-form global symmetry at infinite distance. This suggests a generalization of the
SDC by requiring an infinite number of massless degrees of freedom (not necessarily particles) at
every infinite distance point at which a generalized global symmetry would be restored (see [32]
for a detailed explanation of generalized global symmetries). It would be interesting to further
investigate this relation between the SDC and generalized global symmetries in the future.



2.2 Kaluza-Klein circle compactification

As mentioned, the aim of this paper is to study infinite distance limits in the K&hler moduli
space of a string compactification. The expectation value of the Kéhler moduli parametrize
the volumes of non-trivial cycles of the compactification space. Hence, in certain cases, moving
in this moduli space will also correspond to varying the Planck mass as this is given by the
overall volume of the internal space. It is important to remark that the mass of the tower of
states in (2.1) is given in the Einstein frame, which implies that My, is assumed to remain fixed.
Otherwise, the mass in (2.1) should be replaced by the ratio m/My;. This implies, in particular,
that the tower of states at infinite distance can be very heavy while still satisfying m /My — 0
if M) — oo at infinite distance. In other words, the tower of states only affects the low energy
effective theory if My, is finite, but any effect disappears if gravity decouples, as expected from
a swampland constraint. The simplest example in which this happens corresponds to varying
the radius of a circle compactification. For this reason, we will first describe these observations
on a Kaluza-Klein circle compactification as well as the meaning of the species bound in this
context, before turning to more complicated Kéhler moduli spaces in string theory in section 3.

To begin with, we consider the effective theory of a complex scalar field in D+ 1-dimensions,
Son = B0k, [ {R+a,000) (2.12)
Mpg1

and dimensionally reduce it on a circle satisfying d3? = ds? 4+ r?dy?. Our convention is that
hatted objects are D+1-dimensional, R is the Ricci scalar and My, p is the D-dimensional Planck

mass. A circle has a single modulus r whose expectation value parametrizes the radius of the
2

circle. The kinetic term for r only appears after performing the Weyl rescaling gf;) = (%) D=2g.p
to go to the Einstein frame of the D-dimensional theory,

Sp=MJT / {RE + %%aﬂ 0r + > (0abn 0°¢n + mn(r)’dnon) } 1, (213)
) MD

nel

where the introduction of the scale 7y is required to keep the metric dimensionless and can
be later fixed to the expectation value of r. The field metric for r exhibits infinite distance
singularities at r — 0 and » — oc0; the Planck masses in D and D + 1 dimensions are related by

D-2 D-1
MEE? ~ g MDY (2.14)

The D + 1-dimensional scalar field leads to a massless scalar field plus a tower of massive

1
Kaluza-Klein modes of mass m,(r) = % (22)P-2. This tower of KK modes becomes massless

in the decompactification limit r — oo and their mass decreases exponentially in terms of the
proper field distance A = alogr, where o = \/%,

1

mp =nry " exp (—ald) (2.15)
consistent with the Swampland Distance Conjecture. The species bound (2.3) for the KK tower
reads

MP=2\ 55 FoN s FoN s
Aog < =22 (—°> P2 (—°> -2 2.16
Qe S ( o . pLD+1 | ; (2.16)



where we have used that Am = % ( TT—O) ﬁ. Therefore, the true quantum gravity cutoff Agq is
indeed dictated by My p41 and not My, p, which fits with the fact that the UV of the theory is
in fact higher dimensional. In other words, for an observer in D-dimensions, the presence of the
tower of KK modes lowers the quantum gravity cut-off from My p to Agg ~ My py1 and this
matches with the fact that this is also the scale at which quantum gravitational effects become
important for an observer in D + 1. The number of species present at this scale is

D—-2 1_

ME T bt
NQG ~ T T(; ~ T Mpl,D+1 . (217)

Notice also that the quantum gravity cut-off Agg goes to zero only if one insists on keeping My, p
fixed. However, in the usual picture one rather keeps M) p1 fixed so that M, p goes to infinity
as r — oo.

We can also compute the quantum corrections from the KK tower to the field metric in-
tegrating up to Ngg. Notice that this is not a standard regularization method as we want
to explicitly keep the dependence on the UV cut-off. Recall that Ags depends on r and this
dependence is crucial to generate the infinite field distance. Using (2.6) we obtain

Nga
_ N p 51
591 ST ()P By ()2 ~ NG ror P MﬁDQﬁ (2.18)
n=—Nga

which has the same parametric dependence as the classical piece in (2.13). Therefore, we find
that integrating out the infinite tower of KK modes up to the species bound, one generates a
metric that forces the limit » — oo to be at infinite distance. This is expected as it corresponds
to a particular case of the general computation performed in the previous section. However,
notice that this is a mild version of emergence, as the metric already has a classical divergence.
One could wonder if this classical piece could also emerge from integrating out another infinite
tower of states. Even if this is not possible in a Kaluza-Klein compactification, it might be
possible in a consistent theory of quantum gravity. We will discuss this issue again when
studying a circle compactification of 6D F-theory in section 4. It would also be interesting to
study how typical regularization methods applied to UV-dependent quantities change when we
assume that the UV cut-off varies. Let us also recall that if we keep Agq fixed instead and apply
usual regularization methods, we do not get any quantum divergence for the field distance, but
in return, the D-dimensional Planck mass tends to infinity and gravity decouples. Only if we
insist on keeping My, p fixed, we generate the infinite field distance at quantum level.

The possibility of having different towers becoming massless at infinite distance raises new
questions: is there any preferred tower that should be identify as the candidate for the SDC?
Is it always possible to find a tower responsible for the quantum emergence of the infinite field
distance? We think that the best way to identify the tower is to look for the objects that are
charged under the discrete symmetry that becomes continuous at infinite distance. And this
is what will do in the rest of the paper, by identifying the charge orbit of states generated by
a monodromy transformation of infinite order. This monodromy is part of the discrete duality
group of the compactification which enhances to a continuous group at the infinite field distance
singularities. Sometimes this tower will correspond to KK modes but in general it will consist
of more exotic objects, namely wrapping D-branes.

As a final comment, let us recall that the limit » — 0 is also at infinite distance. From
the point of view of this quantum field theory, there is not any additional tower that become



massless in this limit. However, if the theory has a stringy UV-completion, one has indeed
the tower of winding modes becoming massless as 7 — 0 (this is actually a motivation for a
theory of extended objects [2], if one assumes the SDC to hold). Even if this limit is usually
not accessible in a supergravity effective theory, we can analyze it in the context of string
theory, by making use of the T-duality. Since under T-duality winding modes and KK states
are exchanged, and that the metric %(8?)2 is left invariant, one can conclude from the above
analysis of integrating out the KK-modes that, at small radius values, the result of integrating
out the winding modes will also yield a metric ~ %2(67‘)2, thereby also forcing the limit » — 0
at infinite distance. We will come back to such arguments involving dualities in section 3.5.

3 Infinite distances and charge orbits at large volume in Type ITA

In this section we shift to the discussion of the SDC in string theory. More precisely, we will
consider Type TIA string theory compactified on a Calabi-Yau threefold Y3. Focusing vector
multiplet sector of the resulting N' = 2 four-dimensional theory we study infinite distances in
Kihler moduli space. Note that the Kihler moduli, henceforth denoted by v!, parameterize
the volumes of geometrical submanifolds of Y3. Limits sending one or more v’ to infinity hence
correspond to decompactification limits in generalization of the discussion of section 2.2. We
will classify such limits in subsection 3.1 and show that they always lead to infinite distances
in subsection 3.2. The candidate charge orbits of states that become massless in the limits
are determined in subsection 3.3. They can be explicitly constructed and studied for elliptic
fibrations, as we show in subsection 3.4. Finally, we show in subsection 3.5 that in the latter
case the orbits can be transferred from large to small elliptic fiber volume.

3.1 Classifying infinite distance limits in the large volume regime

To start with we briefly review some basic aspects of the Kahler moduli space of Type ITA Calabi-
Yau compactifications. The moduli space Mg is a Kihler manifold of complex dimension A1,
where hP? = dim(HP(Y3,C)) are the Hodge numbers of the Calabi-Yau threefold Y5. The
complexified Kéhler structure deformations ¢! parametrizing My, are given by

Bo+iJ=tw;, I=1,... Kb (Y3), (3.1)

where the w;’s form a basis of the harmonic (1,1)-forms of Y3, By = blw; is the NS 2-form
and J = vlwr is the Kihler form, so ¢/ = b/ +4v!. The Kihler potential is given by K = — log 8V
with the overall volume V is defined as

1 1
V== [ JAJANJ==Krgvivlv (3.2)
3 Jy, 3!

where the triple intersection numbers are defined as
IC[JK:/WI/\WJ/\WK. (3.3)
Y3

Furthermore it is useful to introduce by = ﬁ ng wrAca(Ys), with c2(Y3) being the second Chern
class of the Calabi-Yau threefold. The scalars t/ comprise n, = h'!(Y3) vector multiplets

10



together with the vectors A’ coming from expanding the RR three-form C3 in the same basis
CgZAI/\w[—i-.... (34)

Note that there is one further vector in the spectrum arising from the dimensional reduction of
the RR one-form C;. This additional vector, or rather an appropriate linear combination of all
vectors, will be part of the gravity multiplet and is often denoted as the graviphoton.

Let us next introduce the machinery to classify the types of infinite distances that appear

4> 1 of Calabi-Yau compactifications. The basic idea is to

in the large volume regime v
translate the data specifying the large volume compactification given in (3.3), i.e. the triple
intersection numbers K7 and the second Chern class by, into h'*(Y3) so-called log-monodromy
matrices N; and an anti-symmetric inner product 9. Together Ny, ¥ capture all relevant

information concerning the metric on the scalar field space spanned by the t!’s.

To begin with we briefly discuss the construction of a monodromy matrix in Kéhler moduli
space by using mirror symmetry. More precisely, recall that under mirror symmetry the large
volume point is mapped to the large complex structure point by identifying the complexified
Kéhler structure deformations ¢! with the complex structure deformations z! of ITA and IIB
compactifications. The Kahler potential for complex structure moduli space of the mirror
Calabi-Yau threefold Y3 is given by

K(z,2) = —log(ill* 977117 ) (3.5)
where II7 are the periods of the holomorphic (3,0)-form € into a real integral basis vz, T =
1,...,h%1(Y3) + 2 of three-cycles as follows,

0 =T"z, 19IJ=—/ YT AT - (3.6)

Y3

The mirror map implies that, at the large volume point, one can introduce the following 2h'! (Y3)+
2-dimensional period vector IT depending on these complex variables

1
o
Kt 8 + LKt — by ’

Kot /4% — (§Krrr + br)t! + —i%(jgx

I (t!) = (3.7)

where x = st c3(Y3) is the Euler number of Y3. It is crucial in this identification that we consider
a basis wy spanning (part of) the Kahler cone. In other words, we need to ensure that when
taking v/ > 0, the Kéhler form J = v/w; measures a positive volume fc J > 0 for all irreducible
proper curves C' in Y3. While much of the following discussion is general, we will assume that the
Kiihler cone of the considered manifold is simplicial, i.e. spanned by exactly h''!(Y3) generators.
This implies, in particular, that all C;;x > 0, which will significantly simply the discussion
below.

Then one defines the monodromy transformation to be the matrix arising in the transforma-
tion TI(¢!, ..., t4—1,...) = TaII(t', ..., t4,...). From the point of view of the four dimensional
effective theory, this transformation corresponds to a discrete shift of the axionic field Re(t/).
Instead of displaying the matrix T4 (see [4] for an explicit expression and references), we rather
show the nilpotent matrix N4 obtained from T4 by setting

Ny =log(Ty) . (3.8)
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These N4 are known as the log-monodromy matrices and can be used to classify singularity
types arising in Calabi-Yau moduli spaces. For the large complex structure periods (3.7) they
are readily determined to be

0 0 0

—0Ar 0 0

—iKaar —Karg 0
tKaaa  3Kazs —6ay

Ny =

o O O O
—
w
o)
N~—

The corresponding pairing 1 that can be used to contract the periods, takes the form

0 1Ky —2b; 0 -1
1 1
“Krrr+2br 5(Krrg—Krgg) 615 0
_| & 2
9 A o Yo (3.10)
1 0 0 0

where by was introduced below (3.3). It is important to stress that displayed (2h%1(Y3) + 2) x
(2h11(Y3) +2) matrices N4, ¥ are determined in a special basis of even forms on the Calabi-Yau
manifold Y3, which also requires the Kéhler cone condition introduced above. We will not go
into details how this basis is derived, but rather stress that the following considerations are
invariant under basis transformations. Let us also notice that the above nilpotent matrix has
also been derived in a different avenue by analysing the structure of the flux induced scalar
potential when written in terms of Minkowski 3-form fields [33-35], as it also deeply relies on
the presence of the discrete axionic shift symmetries.

The crucial point is that we can now associate a log-monodromy matrix to each limit of
the ¢! taken in the Kéhler cone. The simplest situation is to consider only a specific ¢! taken
to 400 for some chosen index I. Let us relabel the coordinates such that this is the direction ¢!.
Then one has to associate the matrix N7 to this limit. However, if one takes the limit in two
directions, which we choose after relabeling to be t! — ico and t?> — 00, then one associates
the matrix N1+ Ns, or any other positive linear combination of N1, No, to this limit. In general,
if one takes the limit of n coordinates labeled by t!,...,t", one thus associates

th.. " —ico — Nyy=Ni+...+Ny,, (3.11)

where N, is the relevant log-monodromy matrix in this limit. For future reference, we give
here its explicit form in terms of the intersection numbers

0 0 0

S 0 0

— I3 Kur =30 Kirg 0
E N K 5 > Ky — Y0 0

Note that in order to extract the crucial properties of the limit one can also replace the

0

0
Ny = o |- (3.12)
0

above N(,) with any other linear combination of all Ny, ..., N, with positive coefficient. The
crucial point about this map is the fact that one now has a handle on classifying infinite
distances by analyzing the associated log-monodromy matrix [3,4] In fact, since the allowed
log-monodromy matrices can be classified [36] one also finds a classification of limits in the
Kahler cone and of infinite distances.
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Let us briefly introduce the general classification of log-monodromy matrices for Calabi-Yau
threefolds. In general these do not have to arise from the large volume regime, even though
we will immediately return to this specific situation after this brief general interlude. More
precisely, they can arise at any limit in an m-dimensional complex structure moduli space, of
which the large volume regime is just a single patch identified via mirror symmetry. Let us
denote a log-monodromy matrix by N and the inner product by ¥. The allowed pairs (N, )
can be classified into 4m types denoted by

I, , a=0,...,m,

I,, b6=0,....m-—1,
(3.13)
., ¢=0,....m—2,

IVd, d:1,...,m.

In fact, these types classify singularities that can arise at the boundaries of the moduli space.
Near such a boundary one can introduce local coordinates t!, and the limits are taken as above
in (3.11). The singularity types are distinguished [4] by the relations displayed in Table 3.1,
where we included the extra condition allowing us to distinguish the cases I, and II; by using
only ¥ and N.

Type N ranl;v(;f N3 eigenvalues of ¢ N
I, a 0 0 a negative
11, 24b 0 0 2 positive, b negative
II1. 44c¢ 2 0 not needed
1V, 2+d 2 1 not needed

Table 3.1: Classification of the arising limits and singularities occurring in the complex moduli
space of Calabi-Yau threefolds.

Let us stress that the N appearing in Table 3.1 does not have to be the log-monodromy
matrix arising from sending a single coordinate into a limit. Rather, it can be extracted when
sending any number of coordinates ! to ico as in (3.11). Hence, we can also study what happens
if we send step-wise one after the other coordinate to ico. At the jth step we can determine
the singularity type by associating the appropriate N(;) using (3.11), i.e. we consider

th,...t/ »ico — Ny =Ni+...+Nj, j=1,...,n, (3.14)

and then determined the type using Table 3.1. As a place-holder for the possible types (3.13)
we will write Type A for the singularity type occurring at the jth step. We then find an
enhancement chain of the form

1 ; 2 .
tt—100 Type A(l) t“—1i00 Type A(Q)

t3—ioco t"—i00

In fact, one can show that the type only can increase or stay the same, i.e. a general chain of
singularity enhancements takes the form

o, = ...= 1y = I, — ... = Il —

(3.16)
= ey = ... = IIl,, —» Vg, — ... = IVg, .
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The precise rules of which enhancements can occur in principle have been worked out in [36]
and a concise summary can be found in [4], Table 3.3.

This general classification can immediately be applied to the large volume log-monodromies
determined in (3.9) in the limit ¢4 — ioco for a single coordinate . In this case it is not hard
to show by using (3.9), (3.10) together with the fact that K;yx > 0 for a simplicial Kéhler cone,
that the case I, actually does not arise in the large volume regime Im#¢! > 1. This matches
the fact that the Type I, corresponds to having a finite distance in moduli space. It arises, for
example, at the conifold point in complex structure moduli space, but not at the large volume
regime where all limits are expected to be at infinite distance. For the remaining three cases,
the singularity type of the individual limits t4 — ioco is evaluated by considering N4 given
in (3.9), an first computing its square and cube

0 0 0 0 0 000
2 0 0 0 0 5 0 000
Ni= Kaaz 0 0 0 | Ni= 0 00 0 (3.17)
0 Kaas 0 0 —Kaaa 0 0 O

Then, one can evaluate the ranks of Ny, Nfl and Ng and use table 3.1 in order to determine
the singularity types. The results are summarized in Table 3.2.

Type 1k(Kaaa) tk(Kaar) 1tk(Kary)

I, 0 0 b
111, 0 1 c+2
v, 1 1 d

Table 3.2: We list the singularity types arising in the large volume regime, when sending a
single coordinate t* — ico. Note that that the ranks rk(Ka44) and k(K 441) are either 0 or 1
depending on whether 444 and K 447 are vanishing or not.

These results can be straightforwardly generalized to the case of sending multiple ¢! to ioco
in K&hler moduli space. As before we relabel the coordinates such that the limit of interest
sends the first n coordinates to ico. The relevant log-monodromy matrix associated to this
limit is N(,), introduced in (3.12). Introducing the notation

KW= Ky, K=Y Ky and KM= 3 Kig, (3.18)
i=1 ij=1 i k=1
we find
0O 0 00 0 000
0 00 0 000
2 _ 3
Nowy = ™ 0 00 | Niny = 0O 00 0 (3.19)
o k%™ 0 o0 —K™ 0 0 0

Evaluating the ranks of N(,), N, (2n) and N (?’n) and using again Table 3.1, one finds the singularity
type. This yields a generalization of Table 3.2, which is presented in Table 3.3.
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Type rkK™ 1k Ian) rk ICY})
11, 0 0 b
11, 0 1 c+2
IVy 1 1 d

Table 3.3: We list the singularity types arising in the large volume regime, when sending multiple
coordinates t!,...,t" — ico. Note that that the ranks rk(number) and rk(vector) are either 0
or 1 depending on whether the number and vector are vanishing or not.

3.2 Infinite distances in Kahler moduli space

Having classified the limits in Ké&hler moduli space we next study the distances along paths as
measured by the Kéahler metric K;;7 = 0,10;s K. Recall that the length of a path connecting
two points ), P in moduli space is determined by

dy(Q, P) = / V2K, 7 i1t ds (3.20)
Y

where the path 7 is parameterized in local coordinates by ¢/ (s) and we abbreviated ¢/ = %—i In

the following we will show that each path approaching a point P that is located at t!, ..., t" —
100, for some n, is infinitely long.

To begin with, we determine the Kéhler potential using (3.5) and inserting the mirror
periods IT given in (3.7) and the intersection form ¥ given in (3.10). This yields the well-known

1 3
K= —1Og<6K[JK’UI’UJUK + %) = —logV, . (3.21)

Clearly, if we consider simplicial Kahler cones, we can use K;jx > 0 to infer that V, diverges

expression

and hence K approaches negative infinity for any limit v',...,v" — oco. If we want to work
more generally and also want to infer the growth of V,, we can apply a result determined in [4]
based on the growth theorem of [17]. More precisely, one shows that the leading growth of Vg
is

Vo~ (Ul)dl (U2)d2_d1 o (Un)dn*dn—l . (3.22)
if one considers the limit v',...,v™ — oo in the growth sector
1 n—1
{”—2>A,...,” >>\,v">>\}, (3.23)
v (L

for some positive X\. Here c is a positive constant and the symbol ~ indicates that we only
focus on the leading term. The integers d; are simply the types occurring in the corresponding
enhancement chain (3.15), i.e. we identify

Type Ay 1, 1L IVy
d; 12 3

(3.24)

With this identification it is now clear that maximally three v’ can appear in (3.22) as expected
from (3.21). It is crucial to point out that the growth of V,; depends on the sector (3.23) into
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which that path v towards P falls. This is not a very restrictive constraint on the considered
paths, since one can reorder the v! ... v" to satisfy the inequalities in (3.23). Accordingly
one then has to also consider an appropriately reordered enhancement chain (3.15) and adjust
the d,

Having determined the growth of the Kéahler potential, let us now determine the growth of
the length of the path. In the following we will establish a lower bound on this growth. To do
that, let us first assume )

2K KK < f72, (3.25)

where f is some constant that might depend on the choice of the path v. We will show below
that this condition is indeed satisfied for the Kahler potential (3.21). In order to find a lower

bound on the length of a cure we use (3.25) and the Cauchy-Schwarz inequality to derive *
(K1) > (2K, 71"t PE KK > f K+ Kt = fIK](3.26)
Using this estimate in (3.20) we find
4.(Q,P) > f/u'(yds > f‘/dK‘ . (3.27)
gl v
We can integrate the last integral to evaluate
dy(Q, P) = fIK(P) — K(Q)| , (3.28)

where K(P), K(Q) is the Kéhler potential evaluated at the two endpoints P, ). This implies
that for a point P with t!,...,#" — ico we see that the growth of d,(Q, P) is dominated by the
divergent contribution near P. Hence, we find that the growth of the length is dominated by

d4(Q,P) 2 flogVy~ f > (di —di_y) logv' (3.29)
i=1

with dg = 0, and d;, i = 1,...,n defined in (3.24). Here we have used the expression (3.22)
for the growth of Vg in a growth sector (3.23). Clearly, this implies that the length is infinite
as soon as we take v!,...,v" — oo. Note, however, that this does not necessarily imply that
every path has a length growing logarithmically in v*, since we only presented a lower bound.

It remains to show that (3.25) is actually satisfied for the Kéhler potential (3.21). By a
straightforward computation one determines

2K KK ;=646 i CB)x " (3.30)
1 167T3]C[JKUIUJUK

Since the non-constant terms are increasingly suppressed in approaching the point P, this
implies that one can easily find a constant f such that (3.25) is satisfied.

We thus conclude that all limits in the large volume regime are at infinite distance. While
this result is not unexpected, it is satisfying to see that it can be explicitly derived. It implies

*The Cauchy-Schwarz inequality reads [|v]| - ||u|| > |(v,u)|, where the norm is related to the inner product
by [|v]] = +/(v,v). In the case at hand one uses v = (i/,¢7), u = (K'Y Kz, K'*Kp), with an inner product
determined by the Kéhler metric.

16



that one cannot find finite lengths paths towards t',...,t" — ioo by using seemingly appearing
cancellations in the volume )V, due to a choice of basis or a consideration of non-simplicial
Kahler cones. It also gives further evidence that limits are at infinite distance if and only if
the arising singularity types are II, III, or IV. These are precisely the types that arise in the
large volume regime, as discussed in subsection 3.1. Note that only the direction that infinite
distance implies type II, III, IV singularities has been proved generally in a multi-dimensional
moduli space [37].

3.3 Infinite charge orbits of states

Having determined the possible infinite distance singularities arsing in the large volume regime,
we next want to identify an infinite set of states that become massless when approaching such
limits. It was suggested in [3] that these states are generated by acting with the monodromy
matrix on a single seed charge qg to generate an infinite tower. In higher-dimensional field
spaces this can be captured by what was called a charge orbit denoted by Q(qo|mi,...,mg)
in [4]. There are two basic requirements on the charge orbit Q(qo|m1, ..., mg) for it to generate
the states necessary in the SDC. Firstly, the states have to become massless when approaching
an infinite distance point. Secondly, there has to be infinitely many states with this feature. It
was suggested in [3] that such states are actually BPS states with mass determined by the central
charge M (Q) = |Z(Q)|. The tricky part of this study is to evaluate the behavior of M (Q) along
every path approaching the infinite distance point. This can be done by splitting the moduli
space near the infinite distance points into growth sectors as we discuss in the following.

To begin with we have to determine the growth sector in which a given path ~ towards
a point P with t!,...,t" — ico lies. A general path can be parameterized by local coordi-
nates t/(s), where s labels the position on . To check the growth sector into which t/(s) falls,
we first introduce it for a specific ordering t', ..., ¢". In this simplest situation it takes the form

1)1 Unfl
— > A,
v (0

Rl...nE{tiZbiﬁ-ivi: >N, 0" > A, b <5}, (3.31)

for some positive \,d. It might be the case that this condition cannot be satisfied for t!(s) even
if we start with very large v*. Then we have to reorder the * by also exchanging the v’ in (3.31).

Once we have determined an appropriate ordering, we get an order (¢, ..., t") for performing
the limit ¢!,...,t" — ioco. For this ordering one then has to determine the singularity chain
4>t21 —vico Type A(l) 4>t22 —ico Type A(Q) 113 vioo . 1 ico Type A(n) . (332)

Clearly, we can always relabel the coordinates ¢ to make the singularity chain look like (3.15)
and the growth sector takes the form (3.31). In the following we will assume that such a
reordering and relabeling has been performed if necessary.

Having identified a growth sector and an associated enhancement chain we next want to
determine the charge orbits relevant in the large volume regime. Later on we will apply this
construction to elliptic fibrations. Let us first note that there are h''(Y3) log-monodromy
matrices Ny arising in the large volume regime. FEach is associated to a coordinate t! as
discussed above. Hence, we expect the general charge orbit to be of the form [4]

hLL(Y:
Q(qolma, ..., mpra(yy)) = eXP(lel( 3)m1N1> q , (3.33)

17



where we take the m;’s to be non-negative integers. Note that this expression simply states that
we apply m; times the monodromy transformations 77 discussed before (3.8) to a suitable seed
charge qo. The challenge is now two-fold: (1) one needs to construct a suitable qg, which ensures
that qg and Q are massless at P; (2) one needs to identify situations when Q describes an infinite
set of states. Both of these issues have been clarified in [4]. However, it should be stressed that
the explicit constructions of [4] uses a significant amount of mathematical technology related
to the construction of a special set of matrices N, that are parts of commuting sl(2) algebras.
While in this picture the existence and properties of qg and Q can be more easily abstractly
analyzed, it is technically involved to construct these special N;". We will therefore follow a
different route here. We will use the conditions found in [4] translated to the N; basis and
construct the qq satisfying them. Let us stress that the construction of qg is not generally
expected to be unique and there can be various different charge orbits labeling the relevant
states for the SDC.

In reference [4] it was shown that there are three singularity patterns for which generally
an infinite charge orbit exists that becomes massless at the considered point P. The first
possibility is that P lies on a Type IV locus. In other words, Type A(,) = IV in the enhancement
chain (3.15). The second possibility is that P lies at a Type II locus, i.e. that Type Ay =11
in (3.15) and along this locus occurs an enhancement IT — IIT or II — IV in the considered region
of field space. Finally, the third possibility is that P lies at a Type III locus, i.e. Type A,y = III
and this singularity enhances as III — IV in the considered region of field space. In the large
volume regime one of these three possibilities is satisfied for every infinite distance point P [4].
This can be deduced from the fact that the highest singularity type in the large volume regime
i IVj1,1(y;). Hence, either one is directly at a type IV singularity or one inherits the orbit from
the large volume point with IVj1,1(y;). This implies that at each infinite distance point in the
large volume regime there exists an infinite charge orbit. Notice that, if these intersections of
the singular divisors allowing the enhancement of the type of singularity had not be present,
there would not be possible to identify an infinite charge orbit at type II and III singularities.
This exemplifies how the Swampland Distance Conjecture is realized in a highly non-trivial and
intricate way in Calabi-Yau compactifications. The conjecture does not constrain only the local
structure of the Calabi-Yau but also the global network of enhanced singularities allowed in the
moduli space.

Masslessness conditions To construct a charge orbit relevant in the large volume regime
let us recall that, since [4]

m(Q) = Z(Q)[ < [1Ql ~ [laoll , (3.34)

a sufficient condition to ensure the masslessness of Q is that qg has vanishing norm. In order to
achieve this for the enhancement chain (3.15) within the growth sector (3.31), we first require
that for every ¢ = 1,...,n there exists some vectors u;, v; and x; satisfying Né)vi = 0 and

N, (3@.)Xi = 0 such that the seed vector takes the form [4]

qQo = V; if Type Ay =11, (3.35a)
Qo = vi + Nypyw if Type Ay =111, (3.35b)
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These conditions might not be strong enough to generally ensure masslessness, since in some
cases ||qo|| might tend to a finite value at the infinite distance point. To make sure that this
does not happen, we need to additionally require that for the last singularity in the chain (3.15)
that ther exists some vectors u, and w,, satisfying an)wn = 0 such that

do = Nnyuy, if Type Ag,y =11, (3.36a)
Q@ = NoyWn + NZyu,  if  Type Ag,y =1V . (3.36¢)

Roughly speaking the conditions (3.36) ensure the necessary suppression of ||qo|| by at least
one coordinate v" that grows to infinity at the infinite distance point.*

Infiniteness conditions In order to assure that an orbit generated, we need to demand that
the action of the exponential in (3.33) on qq is non-trivial, i.e. we need that

Nyoao #0  forsome  J*=1,..., A" (Y3). (3.37)

Notice that it is enough if this is satisfied for at least one Ny«, J* = 1,..., ht1(Y3). In light of
the masslessness conditions (3.35), a simple way how to realize this might be to demand that it
is satisfied for a Type IV singularity. As mentioned above, the large volume point is a Type IV
singularity, so we are ensured that an infinite orbit can be generated, even if Type A,y # IV.
However, let us remark that stricto sensu one does not need to have a Type IV singularity in
order to generate an orbit. Indeed what can happen is that in a sufficiently small neighborhood £
close to the point of interest P, there is another Type II or III singularity, associated to a
coordinate t/ which is not taken to ico, i.e. J > n. We do not need to impose (3.35a) for Ny,
such that we can have N(7qo # 0, generating an orbit. Notice that the sum in (3.33) should
really be only over the N;’s present in £.

Constructing the orbit We now construct explicitly such a seed vector qg. We first split
this 2hb1(Y3) + 2-dimensional vector into four parts

a = (69,6, ¢, N, T=1,.. 85 (V) , (3.38)

where we indicated with the superscript that ¢ will later be interpreted as inducing Dp-brane
charges. Now we enforce the conditions (3.35) and (3.36) by using the explicit forms of the log-
monodromies N;) given in (3.12). The details of the computations can be found in appendix A.
One immediately finds that one needs to demand

¢ =0 forall TypeA, (3.39)

and

¢ =0 for Type A, =1 or IV. (3.40)

“This can be shown by using the results of section 4.3 of reference [4]. A sufficient condition for qo to be
masslessness at the infinite distance point was given in eq. (4.29). Replacing N;; — N(; the condition (4.29)
of [4] is satisfied when imposing (3.35) and (3.36).
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This last condition can also be set for a type II singularity while still satisfying the infinite-
ness condition (3.37). Similarly ¢(*) is not constrained by the masslessness conditions (3.35)
and (3.36) but since it plays no role in (3.37) it can safely be set to zero. That is, we can choose

q§4) =0 for Type A(,y =11 (3.41)
¢® =0 for all  Type A, (3.42)

So we see that the non-trivial sector of these conditions is for q?), already hinting that the
infinite orbit will correspond to D2-brane states. The masslessness conditions (3.35) and (3.36)

are then satisfied, for all singularity types, if

¢ = kM’ (3.43)
for some integer vector w! such that
¢ =0 for i<nm, (3.44)

where nyr labels the first type 111 singularity, and

Zq =KMol =0 if  Type Ay, =11L. (3.45)

This last condition is always satisfied if we extend (3.44) to

qZ(Q) 0 for 1< nry . (3.46)
which we will take for simplicity. Notice that this latter condition is not necessary unlike (3.44)
and (3.45). However, we will see in the appendix that it is possible to find an infinite charge
orbit satisfying (3.46). It would be interesting, though, to investigate what changes if it is
relaxed; but we leave this task for future work.

On the other hand, the condition (3.37) for the orbit to be generated requires that

qJ* #0 for some J*. (3.47)

We outline in appendix A a concrete approach to find some w?! such that egs. (3.44) to (3.47)
are satisfied, ensuring that there always exists a massless infinite charge orbit. It is expected
that this can be always achieved, since the existence of an orbit was already shown in [4] in a
more abstract way. Having determined qg we can derive the charge orbit by acting with the
log-monodromies N7 as in (3.33). This yields

@\7T
Q= (0,0, 0,42, =3 migt ) , (3.48)
@)

where ¢;” meets the above requirements.

In Type II compactifications, this orbit of states has a specific microscopic interpretation
in terms of BPS wrapping D-brane states. For concreteness, in a Type IIB compactification
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on a Calabi-Yau threefold Y3, q would correspond to the charge of a D3-brane wrapped on the
three-cycles 47 and whose mass M = |Z(q)| would be given by the central charge
Kes ITYq

Z(q) = HANQ= —i—— .
(q) =e2 v (iHTﬁH)1/2

(3.49)

Here, H is the three-form with coefficients q in the integral basis «; and the periods IT and
the Kéhler potential K in the complex structure moduli space are defined in (3.5) and (3.6).
The masslessness conditions (3.35) and (3.36) are obtained from requiring that Z(Q) = 0 at
the infinite distance singularity.

By using the mirror map, it is also possible to translate these results to the Kahler moduli
space of Type IIA Calabi-Yau compactifications. The D3-branes will map to different bound
states of Dp-branes with even p. More precisely, notice that we have conveniently chosen a basis
for the mirror period vector in (3.7), which is identified with the following Type ITA K-theory
basis of branes,

(OYSaoDlaCJaOp)a (350)

where p are points, D are h!(Y3) divisors and C7 := 1,0 (Ké/,z) where C are the dual h'!(Y3)
curves, so C” - Dy = 67 (see [38], section 2.3 for their precise definition). Recall that the divi-
sors D are Poincaré-dual to the two forms w; in (3.1) and span the Kéhler cone. In practice,
this implies that the different components of the charge vector q correspond to the charge of
a D6-,D4-,D2- and DO-brane wrapping the whole threefold Y3, a 4-cycle, a 2-cycle or a point
respectively. Therefore, the massless infinite charge orbit at large volume consists of D2-D0

bound states.

It might seem surprising that we are identifying the massless tower predicted by the Swamp-
land Distance Conjecture at the large volume limit of Type ITA with a massless charge orbit
of BPS states consisting of bound states of D-branes instead of Kaluza-Klein states. Clearly,
there can be more than an infinite tower becoming massless at infinite distance as we will also
get a KK tower in this limit. However, it is this charge orbit of BPS states the one that will be
later identified as responsible for emergence of the infinite distance and restoration of a global
symmetry. Let us also remark that these BPS states only become massless with respect to the
Planck scale My, since the central charge gives the value of the mass in Planck units. Since
the Planck mass is also going to infinity in the large volume limit, the states become indeed in-
finitely heavy but their mass diverges exponentially slower than M. The massless requirement
of the Swampland Distance Conjecture only makes sense then in the Einstein frame, where M,
is kept finite.

3.4 Infinite distances and charge orbits in elliptic fibrations

In this section we will determine the singularity types and charge orbits arising in elliptic
fibrations with a single section. This analysis will be very useful in the context of the M/F-
theory duality in section 4. In order to do that one first needs to determine the Kéhler cone
basis for these geometries. This was done, for example, in ref. [39].

We denote the base of this elliptic fibration by Bs and introduce the map 7w : Y3 — By
projecting onto By. We will assume that Bs admits a simplicial Kéahler cone basis, which we
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then pull to two-forms w, on Y3 via 7*. On the threefold Y3 the two-form cohomology naturally
splits as

(:)[ = {(:)o,wa} s (3.51)

where @ is Poincaré-dual to the base divisor By and the w, are Poincaré-dual to divisors D, =
7~ 1(DP), which are inherited from divisors DP in the base. This amounts to say that A (Y3) =
h%1(B3) + 1. One can show that the intersections numbers (3.3) are then given by

Kooo = nasK*K” Kooa = nasK"”
5 3 (3.52)
’COaﬁ = Nap ’Caﬁ'y =0.
where 1,5 = Db . DE = By - D, - Dg is a non-degenerate symmetric matrix with signa-
ture (1,hY1(Bg) — 1) and K% are the expansion coefficients of the first Chern class of the
base c1(Bs) = —K“,.” In order to obtain a Kihler cone generator in the @y direction one has
to perform the shift
wo — (:JO — Kawa s (3.53)
This implies that intersection numbers in the K&hler cone basis w; = {wp,w, } are given by
Kooo = nasK“K” Kooa = —napsK?,
(3.54)
,C(]aﬁ = Nas 5 Icaﬁfy =0.

We note that all these intersection numbers are positive, as required in the K&ahler cone,
for h11(By) < 10, since also f32 wa A c1(Bg) = —nagKB > (0. The Kahler form can be also
expanded in this basis

J = vlwr = v%wq + 00wy , (3.55)

which defines the cone v%, v > 0.

Using these intersection numbers and the rules in Tables 3.2 and 3.3 we can read off the
singularity types if some or all of the h!(Y3) coordinates are taken into a limit. Since Kqg, = 0,
the only way to obtain a Type IV singularity is to send v© — co. Considering first that situation,
we find that there are only two cases, depending on whether v° is the only coordinate taken to
infinity or not. In the first case, the singularity is of Type IVj1,1(p,), while in the second case
we find a singularity of Type IVj1,1(y;), which is the maximal singularity type, already when a
single coordinate is added to the limit. That is, we have

00 = oo Type IVyi1(B,) » (3.56a)

W00l 0" o Type Ivhl,l(Y3) , (3.56b)
where in the second limit, the number n of coordinates v® is non-zero but otherwise arbitrary.
The second situation is when 1° stays finite, i.e. we take the limit v!,...,v" — oo with n
arbitrary.® Here again we find two cases, depending on whether all the 1;; vanish or not:

b0 = oo

Type IIQ if ij = 0 Vv Z,j = 1, e, (357&)
Type IIl;  otherwise (3.57b)

5Note that in this expansion one actually has to use the two-forms on Bs, but we abuse notation slightly.
®Recall that the ordering of the coordinates is also arbitrary, meaning that we do not impose any restriction
on which of the v* we choose.
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With this at hand, we find that there are only three possible enhancement chains (of course
sub-chains of the last one are also possible)

0 et
L IV (By) ——— Vi vy 5

D0 1Ty L TV (3.58)

a B 0
S Ty 25 Ty 25 TV gy

where the conditions on the v®’s for these to happen can easily be read off (3.56) and (3.57).

Having determined the arising singularity types we can use the results of the previous
section to obtain the charge orbit. As described there, this first requires to determine the growth
sector (3.31) in which the considered path ! (s) towards a point P at a limiting point ¢!, ... " —
ico. This might require to reorder the coordinates, in the sense that (3.31) is only satisfied along
a path if we permute the coordinates in (3.31). In elliptic fibrations the crucial information
required to determine the orbit is the growth of v compared to the v®’s. Let us first assume
that we have picked an ordering of the v®’s such that the path is in the corresponding growth
sector. We then relabel these v®’s, such that the ordering is simply (vl, . ,vhl’l(B2)), where
we are free to pick any ordering for the coordinates that are not sent into a limit. We next ask
in between which two elements v»~! and v™ the v lies, i.e. for which 7 one has

Unfl 1)0

S >A > A (3.59)

The integer n determines at which point in the enhancement chain a Type IV singularity occurs,
as explained above. It follows from eq. (3.46) that all q§2), e ,qg_)l are vanishing, while q(()2 is
the first possibly non-vanishing charge, if we order the charges according to the order of the
coordinates appearing in the growth sector. However, for later convenience, we will adopt a
different ordering, namely that q(()Q) is always the last of the q§2)’s, even though v° grows faster
than the v'’s with i > 7, as indicated above. This ordering will be useful when discussing the
interpretation of the charge orbit in F-theory. Using (3.48) with (3.46), we find

1,1 T
Q=(0...0.47 g,y a8 —moas” - LI mig®) (3.60)

where at least one of the q}z) has to be non-vanishing, as required by eq. (3.47).

Actually we show in appendix A that it is always possible to choose the w! in (3.43) such
(2)

that only g5~ is non-vanishing. That is to say, for any path towards the large volume point,
one can find the following massless infinite orbit

T
Q= (o,...,o,qg”,—moqé”) . (3.61)

Furthermore, the presence of this orbit is independent of the intersection numbers, so it is
valid for any Calabi-Yau threefold. This is one of the central results of this section and will be
especially important in section 4.4 when studying the F-theory limit.

Let us close this section by briefly discussing the sector dependence of these results. Cru-
cially, as stated in (3.59), the form of the charge orbit (3.60) in general depends on the
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growth of v¥ relative to the v®. However, it is also immediate from the occurring singular-
ities listed (3.56) and (3.57) that the relative growth of the v*, a < n — 1 and v*, a > n
is irrelevant to the form of Q. Hence, we find that for elliptic fibrations the large volume
charge orbit (3.60) exhibits a much milder path-dependence than what generally arises due to
the presence of growth sectors. In particular, the special choice of orbit (3.61) is completely
independent of the path.

3.5 Transferring the orbit to small volumes

In the previous subsections we have discussed the charge orbits arising in the large volume
regime. In particular, we have generally constructed an infinite orbit Q in (3.48) that becomes
massless at a point P in the large volume regime. We might now ask if we can carry this orbit
to other points in moduli space away from large volume. In general, this is an extremely hard
question, since it requires information about the global properties of the moduli space and the
D-brane states existent at various other points. For elliptic fibrations, however, there is much
literature [39-44] on how to leave the large volume point using the map v — 1/v°, where we
recall that v° is the volume of the elliptic fiber. In the following, we will use these results to
present a charge orbit for the limit

=0. (3.62)

Note that this corresponds to considering a completely different region in moduli space as
indicated in Figure 1. As a byproduct we thus find an example that there can be infinite
massless orbits at singularities in moduli space that do not satisfy the conditions outlined in
subsection 3.3. It was shown in [45] that the monodromy transformation associated to the
small fiber divisor can be of finite order if the number of sections of the mirror dual is not high

O — 0 is of type I (finite distance) and the intersection

enough. In these cases, the divisor v
point with large base volume will be at most type IIIy. Hence, there does not exit any local
monodromy operator that can generate a massless infinite charge orbit at the regime of small
fiber, but still there should be an infinite massless tower of states since the intersection point
with large base volume is always at infinite distance. Interestingly, it turns out that we can still
identify an infinite charge orbit which is transferred from points that satisfy the conditions of
subsection 3.3 as suggested in [4]. In particular, the orbit is transferred from the large volume
point as we explain in the following.

Considering first Type IIA string theory on a two-torus of volume v°, it is well-known that

0 — 1/0° arises from applying T-duality along both torus circles. The basic idea

the map v
is to apply this to elliptic fibrations by performing the double T-duality along the fiber. To
implement this transformation one performs a so-called Fourier-Mukai transformation. This

transformation acts as a non-trivial linear map S acting on the K-theory basis of D-branes
(OY37 ODm ODQ ,CY, CO7 Opt) ) (3.63)

which is the specialization of (3.50) to elliptic fibrations. The form of the matrix S can be
explicitly calculated following [39,46,47] as we show in detail in appendix B. The resulting
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large base volume
and small fiber

large volume

{v°} = 00 regime

Figure 1: The large volume regime is related to the small fiber regime by a double T-duality
along the elliptic fiber. This duality is implemented by a Fourier-Mukai transform.

expression acting on the basis (3.63) takes the form

0 1 0 0 0 0
—1 0 0 0 0 0
- K® 0 0 nh 0 0
S=| k. K. e 0 0 0 . (3.64)
0 0 0 S (KP—nfrn,) [ 01
0 3KV (my — Ky) 5 (nss — Kp) 0 —1 0

where K, = 13K . One checks that this transformation preserves the symplectic inner prod-
uct ¥ given in (3.10), i.e. that ST9S = . Note that S contains, as indicated with the boxes,
the standard S-duality matrix. As we will see momentarily this is in accord with the fact
that the double T-duality along the fiber maps t° — —1/t°, which is the non-linear S-duality
transformation of the complex parameter t°. Furthermore, we also stress that S transforms
the D-brane states supported in the elliptically fibered geometry. Recalling it corresponds to a
double T-duality on the elliptic fiber we find, in particular that

( ]]3)25 > 3, ( ]ggf ) , (3.65)

where D2; are the D2-branes wrapped on the elliptic fiber.

This duality operation also relates the periods IT valid at the large v” regime to the small v°
regime. In particular, it relates the large volume central charges as

z[sTIe, )] = ‘Z[H(to‘ + k-5 (3.66)

where S is the matrix given in (3.64). This expression means that one can equate the central
charges (3.66) when either replacing the periods II — SII or evaluating the periods at a different
coordinate location. Note that if the left-hand side are the large volume periods valid at v9 =
Imt° > 1 and v® = Im#® >> 1 the right-hand side is now valid in the regime Im¢® = 1/v° > 1
and v®* > 1. It is non-trivial to show (3.66), since it equates central charges at different points
in moduli space. However, it was argued in [39-44] that the transformation S effectively maps

A — = 1 4 % k>, (3.67)

0’
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when explicitly evaluating the power series expansions of the periods. An arising overall complex
rescaling of IT can be absorbed by a transformation of the Kéhler potential appearing in the
central charge Z leading to (3.66).

In the previous section we gave in (3.60) the massless infinite charge orbit at the large
volume point for an elliptic fibration. In particular, this orbit is at large fiber volume, v — oo.
In order to obtain the orbit at small fiber volume we note that (3.66) implies that if Qry is the
large volume orbit massless at t°,t!,...,t" — ico, the orbit

Qr = 5Quv (3.68)

will be massless at v* — 0. Using the explicit expressions (3.64) and (3.60) we find

Qr = (0, 0, 17,0, —moal” = X2y mig® + J(K' — ' Kaao)a”, o), (3.69)

where we recall that i > 7 designates the v® that grow slower than v” when taking the limit,
see (3.59). In order to read the actual charge, we need to further contract with
i (2 2 2 2 (2 T

Qe = (= K'q® +af?, —moal’ = Simia®, 0, g™, 0,0) . (3.70)

Hence, the infinite tower of states becoming massless at small volume of the fiber consists

of D2-D0 bound states which differ by the D2-brane charge along the elliptic fiber. The orbit

can also admit a D4-charge although, as remarked in the previous section, is always possible to

choose an infinite orbit in which this D4-charge vanishes. The transfer of the orbit from the large

volume regime to small fiber is highly non-trivial and highlights the intricate global structure

which is required to satisfy the Swampland Distance Conjecture at any infinite distance point
of the moduli space.

4 On infinite distances and charge orbits in M- and F-theory

In this section we will consider M-theory compactified on an elliptically fibered Calabi-Yau
threefold Y3 and the duality of this setting to F-theory on the same threefold Y3 times an
additional circle S'. We will study infinite distances and charge orbits arising near the large
volume point of such an elliptically fibered geometry in M-theory. Subsequently we generalize
the discussion to include the F-theory limit which requires sending the volume of the elliptic
fiber to zero. In the F-theory dual picture this limit corresponds to sending the radius of the
additional S* to infinity. The resulting effective action then describes F-theory compactified on
the elliptically fibered Y3. This leads us to a dual geometric realization of the infinite tower of
Kaluza-Klein states associated to S' in terms of an infinite charge orbit by using the discrete
symmetries associated to the large volume regime in M-theory. These discrete symmetries
are captured by monodromy transformations when considering the complexified Kahler moduli
space.

4.1 6D Supergravity circle compactification and F-theory

In this subsection we review the circle compactification of the 6D N = (1,0) supergravity
effective theory obtained from compactifying F-theory on a Calabi-Yau threefold. We first
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revisit the classical reduction and then include one-loop corrections from the Kaluza-Klein
tower. Our presentation will closely follow [18], but we refer to [48] for an earlier study of this
setting.

In a generic 6D supergravity with (1,0) supersymmetry (8 supercharges), one can have
four type of multiplets (restricting to spin less or equal to two): the gravity multiplet, vector
multiplets, tensors multiplets and hypermultiplets. In order to simplify the discussion, we will
consider a theory that has no vector multiplets and contains in addition to a gravity multiplet np
tensor multiplets as well as nj neutral hypermultiplets. To ensure cancellation of gravitational
anomalies we will set ng = 273 — 29np. Note that this limits the number of tensor multiplets
that one can consider, as it requires np < 9.

The bosonic field content of the theory under consideration consists of the graviton g,,,, nr+
4dn g real scalars, one self-dual and np anti-self-dual two-forms collectively denoted by B o =
1,...,nr+1, whose field-strengths G* =dB a—i—%ao‘djgra‘, contain the gravitational Chern-Simons
form (see e.g. [18] for further details). The bosonic part of the 6D supergravity (pseudo-) action
takes the form

Se = Mgl,ﬁ/ SRAL— 2005G* N3G = 2905 dj* N*dj” — hyy dg* A& dg°
Mg

(4.1)
1 A A
1 Qpa®BP AT (RAR)
where the ¢%, uw =1,...,4ny are the scalars in the hypermultiplets. The np + 1 real scalars j¢
are subject to the constraint
Qupi®i® =1, (4.2)

where Q,4 is a constant SO(1, nr) metric, leaving effectively ng independent real scalars that
reside in the tensor multiplets. The positive definite, and non-constant, metric g,3 of scalar
manifold is defined as

9oB = 250dp — Qap; Jo = Qapi®. (4.3)

The (anti)-self-duality conditions for the two forms B in a SO(1, ny) takes the form GaB * GP =
Qup GP and has to be imposed by hand in addition to the equations of motion derived from
the action (4.1). Let us note that there is a convenient way to introduce the coordinates j¢,
such that (4.2) is automatically satisfied. More precisely, we can introduce real unconstraint

scalars vy and define
‘ vy
=5 Vb= vl (4.4)
Vb

Since the vy are unconstraint there is an extra degree of freedom V. It turns out that in

F-theory compactifications it is actually physical and resides in a hypermultiplet as we discuss
below.

We now proceed to reduce action (4.1) on a circle, focusing on the two-derivative part. The
6D metric and two-forms B® are reduced as

ds? =ds? —r2(dy — A%, B =B"— A%(dy— A", (4.5)

where A0 is the Kaluza-Klein vector and B* and A® are 5D two-forms and one-forms, respec-
tively. Dimensionally reducing the (anti)-self-duality condition to r gaﬁ*Gﬁ = —QupF # we can
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eliminate the two-forms from the 5D action and only retain 5D vectors. The five-dimensional

Einstein frame action at the two derivative level then takes the form *

S5 :TOMSLG/ %R*l — hyp dg* A x dg¥ — %7“72 dr A xdr — ir8/37“62/3F0/\*F0
Ms

(4.6)
—5 Yap (dj“ Axdj® + 1430 PR *Fﬁ> — L1, A A F A FP

Since such a circle reduction does not break any supersymmetry this is a 5D N = 2 su-
pergravity theory (8 supercharges), with one gravity multiplet and ng) = np + 1 vector mul-
tiplets, and ny neutral hypermultiplets. The bosonic field content of such a theory is one
graviton, nVS) +1 vectors® and n%}:’) + 4ngz real scalars. The canonical form of the action is given
by

SErn = MS‘LS /M % R 1 — hy, dg" A x dg”
5

(4.7)
—1G1y (AM" AxdM7 + FT A«F7) — LC i AP NPT AFR,
where all the vectors are denoted collectively as A/, I = 0,... ,ns)), and the ng) + 1 reals
scalars M are subject to the so-called very special geometry constraint
1
= 5 CraxM' M7 M L1, (4.8)

(5)

leaving effectively ny,’ reals scalar degrees of freedom. This cubic potential N specifies entirely
the theory at the two derivatives level, the field metric (which coincide with the gauge coupling
function) and the Chern-Simons coefficients being given by

Gy = [_%aIaJ IOgN]N ) Crix = 019;0kN. (4.9)

Also at the four-derivative level a 5D A = 2 action is known that includes the term arising from
the reduction of the last term in (4.1). Concretely, the 5D action with four-derivative terms
presented in [49] includes the term

1 _
SE = ——/ ct ATATI(RAR) . (4.10)
4 s
The general action (4.7) matches with the action obtained (4.6) by dimensional reduction
if we identify the ng + 1 vector multiplets (M7, A) as
MO — =473 A0 = P40 (4.11a)
M =350 A% =P Ae (4.11b)
together with a cubic potential given by

NE o = QoMM MP (4.12)

class

"This requires a Weyl rescaling of the metric g, = (r/r0)* 3 g,
8The +1 comes from the gravity multiplet, which contains a vector.
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and finally the 5D Planck mass is related to the 6D one as in (2.14), i.e. Mg’l 5= TOMS‘I ¢ Using
the definitions (4.11), one directly finds N} = Q,57%5”, such that the constraint (4.2) indeed

class
F

implies /' = 1. Also straightforward to get from the N7,
zero Chern-Simons coefficient in (4.7) is Cpag = 2Q44. Finally, reducing the higher curvature

defined above is that the only non-

term in (4.1) and comparing with (4.10) leads to the identification ¢, = —12Q,5a°, with cg
vanishing in the classical reduction.

The action (4.7) evaluated with (4.12) includes only the zero modes of the circle reduction.
Higher order massive KK modes have not been written down, however they do run in the loops
and might generate quantum corrections, as we saw in section 2.2. In this work we are inter-
ested by the quantum corrections to the moduli space metric. However, because of the very
special geometry, the field metric G is related to the Chern-Simons coefficients C7 i through
the cubic potential N, such that all the information is already encoded in the Chern-Simons
coefficients. In the case of interest, only Cygg is being generated by loop corrections, because
the KK modes are only electrically charged under A° and not under A®. Furthermore super-
symmetry tells us that there are no further loop corrections beyond one-loop. The KK-modes
contributing to Cpgp are massive spin-1/2, massive spin-3/2 and massive two-form fields. The
computation of this one-loop correction was carried out [20] and shown to yield the contribution

] 9—
Con® = —— - (4.13)

Such a Chern-Simons term leads to a piece in the cubic potential A-10°P = %Cé(_)l(]OOp(M 93 which

in turn gives a one loop correction to the field metric G(l)E]lOOp ~ 1/(M°)%. This contribution
alone already induces an infinite distance singularity at MY — oo, which is thus generated at
one-loop level. Adding the classical result (4.12) and the the one-loop result (4.13), we find the
following total cubic potential for a circle reduction of a 6D theory with np tensor multiplets

and without vector multiplets

9—TLT
24

NE = QoMM MP + (M©)? (4.14)
We will now discuss how this result is arising in the dual M-theory compactification on an
elliptically fibered Calabi-Yau threefold.

4.2 M-theory on a Calabi-Yau threefold and the F-theory match

Having discussed the dimensionally reduced a 6D (1,0) supergravity action arising from F-
theory on a circle, we now briefly recall the match of the resulting effective action with a
reduction of M-theory on an elliptically fibered Calabi-Yau threefold. This implements the
F-theory to M-theory duality. The circle radius will then be part of the Kéhler moduli space
such a threefold.

To begin with, we will briefly summarize the dimensional reduction of eleven-dimensional
supergravity on a Calabi-Yau threefold. This reduction is well-known, see e.g. [50], and we
will follow the notation of [18]. Eleven dimensional supergravity contains in addition to the
metric also a three-form C’g as bosonic fields, where the hat now indicates eleven-dimensional
objects. We now reduce this theory on a Calabi-Yau threefold Y3, i.e. we take M = Rb x Y.
The massless fluctuations around the background Calabi-Yau metric correspond to complex
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structure deformations and Kéhler structure deformations. The former are part of hypermul-
tiplets and not be of relevance in the following. Rather we will focus on the Kéhler structure
deformations. These are obtained as in (3.1) by expanding the Kéhler form J along harmonic
(1,1)-forms as J = v'wy, where I = 1,...,h"!(Y3). Likewise, we expand the three-form Cs in
the same basis

Cs=AlAwr+..., (4.15)

where the A’ are all the vectors of the 5D theory and the dots indicated terms yielding hy-
permultiplet scalars irrelevant in the following. We thus find h'!(Y3) vectors A!, of which

B) _ p11

one resides in the 5D gravity multiplet and ny, (Y3) — 1 reside in 5D vector multiplets.

The h'1(Y3) scalars vl are expected to comprise the scalars in the ng) vector multiplets. The
apparent mismatch in their number is resolved by noting that the overall volume of the Calabi-
Yau threefold V defined in (3.2) actually resides in a hypermultiplet. Accordingly, to separate

the total volume V and the scalars L in the vector multiplets it is natural to define

I v!
These fields indeed parametrize only h%!(Y3) — 1 degrees of freedom, since they satisfy
NM = 2 KL/ LK =1 (4.17)

This condition matches the general very-special Kihler constraint (4.8), such that the fields L!
can be identified with the very special coordinates and N'M the cubic potential of the 5D N = 2
in its canonical form. One checks that this potential indeed allows to match the action obtained
by dimensional reduction [50].

As mentioned above, the volume V is one of the scalars of the hypermultiplets sector, and
its kinetic term is
huw dg" A xg" D § dlog V Axdlog V. (4.18)

The rest of the hypermultiplet sector will not be relevant for us, so we will only mention that the
number of such multiplets is given by ny = h'2(Y3) +1, the remaining 4h'2(Y3) + 3 real scalars
coming from the expansion of C3 (dots in (4.15)) and from the complex structure deformations
of Y3. We refer to e.g. [18] for the full metric.

Up to this point the Calabi-Yau space used in the dimensional reduction was general. In
order apply the duality between M-theory and F-theory we have to further restrict Y3 to be
two-torus or elliptically fibered. This will then allow us to match the 5D setting obtained from
M-theory with the F-theory setting discussed in section 4.1. Furthermore, recalling that we
have restricted our considerations to include only no 6D vector multiplets and only neutral hy-
permultiplets we further demand that Y3 is a smooth elliptic fibration (i.e. without exceptional
divisors resolving singularities of the fiber) with a single section. This is the situation described
in section 3.4 and we refer to it for the notation used.

In the expansion of the Kéhler form J we are free to choose a basis of (1,1)-forms and
hence either can use the basis (3.51) or the Kéhler cone basis (3.53). We will use the latter
in order to easily connect to the analysis of singularities in 3.4, although the former is usually
used in the literature, such as in ref. [18]. Using the intersection numbers (3.54) in the cubic
potential (4.17), we obtain

1 1 1
NM = 3 1ag LOLL? = S nap KO (L0 L7 + G nap KO KP(LY)?. (4.19)
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The M/F theory duality tells us that we should be able to match this result with the one
of section 4.1. While the first term of (4.19) can be matched with the classical term (4.12),
and the last term can be matched with the loop correction (4.13), the term in the middle does
not appear for a circle reduction. This implies that the proper duality match requires to first
perform the shift
[*=1°— KoL, (4.20)
and performing a similar redefinition for the vectors A®. This corresponds in the geometry
to take yet a different basis for the two-forms, namely wy = wg + %K %wqy. This shift indeed
removes the second term in (4.19). Finally, to make the matching more transparent, we note
that st c2(Ba) = 1o K“KP =10 — hb1(By) . The cubic potential now reads

) (L3, (4.21)

This result is now straightforwardly matched with (4.14) by identifying

LO=M°  L*=M% = nas=2%p, and  AYY(By) =nr+1. (4.22)

It can also be checked that the overall volume V in the M-theory compactification is identi-

fied with the volume of the base V, = %nagvﬁ‘vg in the 6D hypermultiplet of the F-theory
compactification,

V="V, (4.23)

Notice, though, that V is given in in 11D Planck units while V}, is given in string units. Finally
we note for completeness that the K¢ have to be matched with the Green-Schwarz parameters a®
present in (4.1) as discussed in [18].

4.3 Large volume limits in M-theory

Infinite distance limits in K&hler moduli space of an elliptically fibered Calabi-Yau threefold
were studied in section 3.4. The same classification obtained at large volume applies here for a
Calabi-Yau threefold compactification of M-theory. However, the microscopic interpretation of
the infinite charge orbits in terms of wrapping branes changes. In this section, we will discuss
the M/F-theory interpretation of the infinite massless charge orbits obtained at the different
large volume limits.

Even if the monodromy transformation has a more obscure meaning in M-theory (since the
5D moduli space is not complex), it is still a very useful tool to classify the infinite distance lim-
its and the tower of states becoming massless. When further compactifying on a circle, we can
complexify the moduli space and connect with the IIA interpretation in which the monodromy
transformation corresponds to a discrete shift of the axion partners of the Kéhler deforma-

I, These axions arise from dimensionally reducing the 5D vector bosons Al along the

tions v
extra circle. Therefore, in the 5D M-theory compactification, the monodromy transformations
capture the change on the geometry under large gauge transformations of these vectors A!. At
infinite distance, the axionic discrete shift symmetries in Type IIA enhance to a continuous
global symmetry. Analogously, in M-theory the discrete shifts of the gauge bosons also become
continuous and we restore a one-form global symmetry at infinite distance. The tower of states
of the SDC can, therefore, again be understood as a quantum gravity obstruction to restore

this generalized global symmetry.
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For the scope of this section, it is enough to recall that we can borrow the results for
the classification on infinite distance singularities and charge orbits of section 3.4. The only
difference is that the infinite charge orbit becoming massless at infinite distance will now consist
of M2-brane states wrapping certain 2-cycles of the compactification manifold. Recall that even
if their masses generically diverge, they become massless with respect to the Planck scale (which
diverges exponentially faster). Notice also that the charge orbits obtained in (3.60) imply that
the tower consists only of particles coming from wrapping M2-branes and not strings coming
from M5-branes, since the Mb5-brane has to vanish in an orbit that satisfies the masslessness
conditions (3.35), (3.36).

In the following, we will translate these limits and orbits to the F-theory setup. We recall
that the real scalar fields 7 in the 6D tensor multiplets together with the circle radius r form the
coordinates that are identified with the Kéhler cone coordinates v°, v® through (4.22), together
with (4.11), (4.16), and (4.20). One finds

UO R v — %K%o

_.2/3
i vis " e (4.24)

In addition, we have to consider the volume V of the Calabi-Yau threefold defined in (3.2),
which is part of a 5D hypermultiplet. In terms of the Kéhler cone coordinates it reads

Y = %ICOangvo‘vﬁ + %Kooavovovo‘ + %’CQOQUOUOUO . (4.25)

As mentioned in (4.23) this volume has to be identified with the volume V}, in the 6D hypermul-
tiplet. To recall the charge orbits we stress that the matching with F-theory should be done in
the basis of two-forms &; = {&g,w, }, as explained in section 4.2. This basis is related to the
Kéhler cone basis {wp,wqs} via

wo = wo + %Ko‘wa . (426)

The charge of the states in the orbit under the 5D vector bosons A/, I = {0,a}, is given
by qr = fy3 H A @y, where A° corresponds to the Kaluza-Klein vector of the circle reduction

and A® arise from dimensionally reducing the 6D tensor gauge fields BY a=1,....,np +1.

We begin our analysis of the limits in F-theory moduli space with the large volume limits,
in which one or several v/ — oco. Notice that they always imply V — oo and thus always require
to take the limit V}, — oo in in F-theory. As seen from the kinetic term (4.18) this limit in the
hypermultiplet sector lies at infinite distance. Therefore, these limits are in general at infinite
distance both in the tensor and hypermultiplet sectors. In section 3.4 we analyzed such limits
for elliptic fibrations and we found that only four possible types of singularities were possible,
listed in equations (3.56) and (3.57). Here we will study what these limits correspond to in the
F-theory moduli space by determining the associated behavior of r and j¢. For simplicity, we
will consider the case that all v*¢ that are taken to a limit grow at the same rate, but note that

the generalization to specific growth sectors is straightforward. The results are summarized in
Table 4.1.

We stress that the first limit ¥ — oo in Table 4.1 is special, since it lies at finite distance in
the tensor moduli space. However, as discussed above, it will be still at infinite distance in the
hypermultiplet sector, since V,, — oo. All the other limits in Table 4.1 correspond to a large
radius limits r — oco. In terms of the volumes of the base, for each volume v® — oo there is
also a volume of a two-cycle of the base that grows to infinity.
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growth of growth of

Singularity v v¥ v g, Type r i e
(3.56a) A - - - WViim,) - - -
=0 )\1/4 )\1/2 )\71/2
5 -

(306b) K R 7& 0 Ivhl,l(y3) )\1/2 ] )\71

(3.57a) - A - =0 I AVA A2 12

(3.57b) - A - 40 Il L Yl
Table 4.1: Large volume singularities in terms of the F-theory coordinates r and j’s. We
collectively denoted v%i, i = 1,...,n the coordinates that are taken in the limit and v®, p =
n+1,...,h " (Bsy) those that are not. In the second line, we defined A = &, /k and assumed \ —

oo. If A — 0, the result is the same as the one of the first line.

Finally, let us briefly comment on the F-theory interpretation of the charge orbits arising
in the large volume limits in the M-theory. Recall that for Type IIA compactifications we
have determined the infinite charge orbits that become massless at the singularity in (3.60).
Considering either of the two situations displayed in the last three lines of Table 4.1, the
corresponding Type ITA charge orbit reads

Q = (0,05 0 0, q(2) Q((] a_mOQO Zmapqap) ) (427)

where we recall that the «,, label the directions in the base that are not taken to a limit. To
lift this result to M-theory we note that D2-D0 bound-states correspond to M2-branes with
a certain KK-charge around the circle S connecting Type ITA and M-theory. The last entry
of (4.27) corresponds to the DO charge, we realize that this orbit simply represents the KK-tower
of an M2-brane state wrapped on the curve q((fp)CO‘P + q((]z)CO in Y3 with all possible KK-charges
along S!. Further following the duality to F-theory the M2-brane state encoded by (4.27) maps
to a particle arising from a 6D string wrapping the F-theory circle S* to 5D, since for qéQ) #0
and some q&? # 0 one finds a charge both under the Kaluza-Klein gauge vector A° and the
gauge bosons A®r associated to the base. These strings arise from D3-branes in Type IIB
wrapping the non-trivial two cycles q(()i,)CaP in the base Whose volume is not sent to infinity. Let

us remark that each tower of particles (one per each q I 7é 0) lifts to a single 6D string. Since
the volume of the base goes to infinity, all such strings become exponentially light compared
to the Planck scale. This is somewhat analogous to the analysis in [5] in which a 6D string
becomes tensionless in the infinite distance limit of sending the gauge coupling of an open string
U(1) to zero. Note, however, that the latter limit does not correspond to a decompactification
limit of the internal space and, in particular, keeps V,, finite. To implement such a limit one
has to send some subset of coordinates to infinity, while sending others to zero. We will discuss
an example of such a mixed limit next.
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4.4 F-theory limit and geometric realization of the Kaluza-Klein tower

In this final subsection we now turn to the discussion of the F-theory limit of sending the fiber
volume v° to zero. Our aim is to show how the infinite charge orbit obtained in section 3.4
corresponds to the Kaluza-Klein tower associated to the circle reduction in the F-theory side.
Note that the F-theory limit corresponds to decompactifying the circle r — oo while keeping V)
finite. In this limit we recover the 6D effective theory of F-theory compactified on a Calabi-Yau
threefold with all 6D fields not taken to any limit in stark contrast to the limits discussed in
subsection 4.3.

To begin with we discuss the F-theory limit in more detail and the map to the M-theory side.
This limit corresponds to sending » — oo while keeping all j¢ and V), fixed. For convenience,
let us assume that the radius diverges as r ~ A — oo. From (4.24) and (4.25) we find that it is
0

implemented in the 5D M-theory moduli space spanned by the coordinates v°,v® as

v ~ A3 o0, W~ AT S0 (4.28)

In other words, all v® become large while v vanishes at a rate v*/v” ~ A2 — oco. This also
implies that the overall volume V in Planck units stays finite and so does the volume of the
base V, in string units on the F-theory side. From the definition of j* in (4.4), one then finds
that v scales as

vp ~ \/vg v (4.29)
in the 7 — oo limit. This is perfectly consistent with (4.23).

Our next task is to compute the infinite charge orbit in the limit (4.28) of the M-theory
geometry. Note that the limit (4.28) is just a special case of the limits studied in subsection 3.5.
In fact, we can use the Fourier-Mukai transform introduced in (3.64) and (3.67) to transfer the
orbits at v? — oo to v? — 0 by sending v — 1/v°. Furthermore, since we know the precise
growth of v® and v°, we can infer which large volume limit we need to consider. To avoid
confusion, let us call the large volume variable 3° = 1/v°. Then (4.28) corresponds to the large
volume limit

0™ ~ A2 o o0, 70 ~ AP o (4.30)

In other words, the fiber volume grows faster than all coordinates v®. This determines the
relevant charge orbit at large volume as discussed in subsection 3.4. Furthermore, we can
employ the transformation (3.68) to transfer the orbit to small fiber volume yielding

T
Qr = (0, 0, 174, 0, —mogl® — Yo maal + LK — 0™ Kgpo)al?, q((f)> ;o (431

which is a special case of the orbit given in (3.69). It was a central result of subsection 3.4

that one is allowed to set q((f) =0, for all @ = 1,...,h%!(By) and take q(()2) # 0 to generate an
infinite orbit becoming massless in the limit (4.30) and valid for any Calabi-Yau. Making this
choice in (4.31) one finds

T
QF = <07 070707 _quSQ)a q(()2)) . (432)

Before turning to the interpretation of this orbit, let us stress that it does not satisfy the
conditions outlined in subsection 3.3 in the small fiber volume regime, since in certain cases
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there is no monodromy operator that can generate an infinite massless orbit in this regime. The
orbit is rather transferred from the large volume regime and involves an SI(2,Z) rotation of the
charges (recall figure 1 in which the F-theory limit corresponds indeed to small fiber and large
base volume).

Finally, let us interpret the orbits (4.31) and (4.32). To begin with, we note that, as in the
previous subsection, the orbits are actually Type ITA orbits and hence their entries correspond
to charges of Dp-branes. Connecting the M-theory setting of this section with the Type ITA
orbit, we compactify on a further St The last entry of the orbits corresponds to DO-brane
charge in Type IIA and lifts to KK-momentum of an M2-brane state in M-theory. In fact,
the orbits also admit non-trivial M2-brane charge as soon as q§2) # 0 and thus describe M2-
branes on the specified curves. The very special orbit (4.32) has in addition to DO-charge
only D2-charge corresponding to a brane wrapped on the curve —mquQ)CO. In M-theory one
thus finds an M2-brane tower wrapping multiple times the elliptic fiber and having a certain
KK-momentum around S'. Clearly, we can also proceed for more general orbits in (4.31) that
admit D4-brane charge. This indicates that M5-branes wrapped on D,n®? qg) and ST will be
relevant in the limit.

In the next step one has to dualize the M-theory states to F-theory. Following the standard
M/F-duality an M2-brane state on the elliptic fiber dualizes to a fundamental Type IIB string
with KK-momentum along the circle S' connecting the 5D M-theory setting with the 6D F-
theory setting. This implies that the orbit (4.32) labels the KK-tower of the 6D fields. To see this
explicitly we need to change into the basis of two-forms as discussed around (4.26). The Kaluza-
Klein vector associated to the S* circle reduction comes from expanding C3 as Cy = AKK A .
The charge of the infinite orbit under the KK vector AXK is then given by

; 1, .o
/HF Noo = Qg V1 (6] + 5K%67) = —mogy” (4.33)

where Hp is an even form with coefficients Q{?. Analogously, it is not hard to check that the
charge under any of the other 5D gauge boson A is zero since (Qp - ¥);9) = 0. Therefore,
the tower of states only differ by their charge under the KK photon associated to the circle
compactification of the 6D F-theory effective action to five dimensions. More generally, for the
orbit (4.31) one has to also follow M5-branes through the M/F-duality. Since these M5-branes
wrap the elliptic fiber they dualize to D3-branes wrapping a curve in By. These D3-branes
yield string states in the 6D effective theory which couple to the tensor fields. This matches
with the fact that in 5D they are charged under A%, i.e. the vector arising from the 6D tensor
fields B,. We leave a more detailed analysis of these strings for the future. At the moment, we
conclude this section by remarking the identification of the Kaluza-Klein tower of the F-theory
circle with the universal infinite massless charge orbit in the M-theory geometry.

5 Conclusions

In this paper we have investigated the Swampland Distance Conjecture, and the associated
notion of emergence of infinite field distances, in the context of Kéhler moduli spaces of Calabi-
Yau manifolds. For the conjecture to hold there should exist an infinite tower of states near
every infinite distance locus of the moduli space whose mass decreases exponentially fast in

35



terms of the proper geodesic field distance to this locus. The proposal of [3] is to identify this
tower with an infinite orbit of states charged under the discrete infinite symmetries which are
part of the duality group of the string compactification. More concretely, this discrete sym-
metry corresponds to the monodromy transformation that the mirror period vector undergoes
when circling the infinite distance locus. As these monodromies enhance to a continuous trans-
formation at infinite distance, the infinite tower can then be understood as a quantum gravity
obstruction to restore a global symmetry. We have also further elucidated the more speculative
proposal of [3] that quantum corrections from integrating out the SDC tower are responsible
for generating the infinite field distance itself.

It was explained in reference [4] that powerful mathematical orbit theorems and the theory of
limiting mixed Hodge structures allows one to classify the infinite distance loci and construct the
massless infinite charge orbits in the complex structure moduli space of Calabi-Yau threefolds
in complete generality. While this gives a general proof of the existence of an orbit under
the stated assumptions, the constructions presented in [4] are technically involved and hard
to apply to explicit examples. In this paper, we have shown that the same mathematical
technology can be used to state the masslessness and infiniteness conditions as vector equations
that then can be solved for concrete examples. In particular, our approach allowed us to
construct the infinite charge orbits at the infinite distance loci of Kéhler moduli spaces. In
the large volume regime, the generic form of the log-monodromies and symplectic form is fully
determined by the topological data of Calabi-Yau manifold, namely its intersection numbers
and Chern classes. We have argued that one can thus classify the possible singularity types
and possible singularity enhancement chains corresponding to partial decompactification limits
entirely using the intersection numbers. With these at hand, we then identified the infinite
charge orbits that are massless when approaching any infinite distance point in the large volume
regime. We provided the general form of the orbit, in terms of the singularity type, valid for
any Calabi-Yau threefold and identified the corresponding D-brane states. This provides yet
another strong piece of evidence for the SDC in the context of String Theory.

Having discussed the general charge orbit in the large volume regime, we then further
focused our study to the cases in which the Calabi-Yau manifold is elliptically fibered. The
special intersection pattern of these geometries allowed us to give a detailed account of the
arising large volume charge orbits. In particular, we were able to identify a universal orbit that
is generically massless if the volume of the elliptic fiber is send to infinity. We then further
exploited the geometry of elliptic fibrations, to ague that the orbits from the large volume regime
can be transferred to regime of small fiber and large base volumes. This is done by applying
two T-dualities along the elliptic fiber and a so-called operation Fourier-Mukai transformation
on the D-brane charges. In this manner, we are able to obtain infinite charge orbits becoming
massless at the small-fiber regime. We stress that this is the first construction that goes beyond
analyzing the SDC in a local region of the moduli space (see also [51] for a very recent analysis
of the SDC beyond perturbative level also using modular symmetries). It explicitly realizes the
transfer of a charge orbit from a region in moduli space which allows for a local construction
to a different regions of the moduli space where no such local construction is possible.

It is important to stress that, as our above constructions show, the infinite charge orbit does
not always have the interpretation of a Kaluza-Klein tower, even if this is the naive candidate for
an infinite tower becoming massless at large volume. In fact, depending on the particular string
theory setup, it can also correspond to particles or strings coming from wrapping branes. If

36



we consider Type ITA compactified in a Calabi-Yau threefold, the charge orbit at large volume
consists of particles arising from bound states of DO-D2 branes wrapping certain two-cycles,
which lift to M2-brane states in M-theory. Even if they get heavy at the large volume limit,
they are exponentially light compared to the Planck scale and hence become massless if we
force the Planck mass to remain finite. There are, therefore, two equivalent ways to avoid the
restoration of the global symmetry, either gravity decouples (Mp — oo) or the infinite tower of
states becomes massless leading to an exponential drop-off of the quantum gravity cut-off. For
the case of Type ITA, this global symmetry corresponds to an axionic continuous shift symmetry
that is lifted to a one-form global symmetry in M-theory.

In the second part of this paper we also analysed the F-theory interpretation of the infinite
massless charge orbit at the different infinite distance loci. For the large volume limits each
charge orbit corresponds to a 6D string wrapping the F-theory circle to five dimensions. Each
such 6D string in turn arises from a D3-brane in Type IIB, which is wrapping a non-trivial two-
cycles in the base of the elliptic fibration whose volume is not sent to infinity. The identification
of this string with an infinite orbit in M-theory makes manifest the fact that the string should
count as infinitely many different particles. This suggests a potential application of these
infinite charge orbits beyond the SDC, as a promising tool to count the number of different
massless excitations of extended objects in F-theory. We then investigate the interpretation of
the infinite massless charge orbits at the small fiber regime, which maps to decompactifying
the additional circle of the F-theory compactification. We find that the infinite massless charge
orbits at the F-theory limit always differ by their charge under the KK photon of the F-theory
circle, hinting the existence of the extra dimension. In particular, we show that there always
exists a universal infinite orbit regardless of the specific intersection numbers of the Calabi-Yau,
that maps to the Kaluza-Klein tower of the 6D fields in F-theory. This provides a geometric
realization of the KK tower in terms of an infinite massless charge orbit in M-theory. We also
get that there could be other infinite towers identified with 6D strings coming from Mb-branes,
whose analysis is left for future work.

Last but not least, we pay special attention to whether the infinite field distance can emerge
from integrating out the infinite tower of states. First, we present a general field theory com-
putation to show that, as long as the tower gets compressed as we move in the moduli space,
quantum corrections from integrating out the tower up to its species bound will generate the
infinite field distance. Remarkably, they will generate a logarithmic divergence of the field dis-
tance as a function of the mass of the tower, regardless of the specific form of the mass, and
yielding the exponential mass behavior required by the SDC. We find that the condition for
these quantum corrections to dominate over the classical piece in the IR matches with the con-
straint on the mass spectrum imposed by the Scalar Weak Gravity Conjecture [12]. If we apply
this reasoning to a Kaluza-Klein circle reduction in field theory, the species bound associated
to the KK tower turns out to be the Planck mass of the higher dimensional theory. However,
quantum corrections from the KK tower can only account at most for part of the infinite field
distance as the radius goes to infinity. The situation changes when considering similar setups in
string theory. As mentioned, the infinite tower of states becoming massless at large volume of
Type ITA Calabi-Yau compactifications consists of D0-D2 branes which could in fact completely
generate the infinite field distance. Notice that this means that the field metric in the Kéahler
moduli space, and consequently the intersection numbers and topological discrete data of the
Calabi-Yau, would be emergent from integrating out these D0-D2 bound states. Finally, the
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emergence of the classical quantities in the M-theory reduction from integrating out states has
also a clear interpretation in the context of the M/F-theory duality. There, it is known [20, 52]
that some of the Chern-Simon terms arising in the M-theory dimensional reduction at classical
level can only be recovered in the F-theory side upon taking into account quantum corrections
from integrating out the KK tower associated to the F-theory circle. These Chern-Simon terms
are related to the field metric by supersymmetry, so at least part of the metric yielding the
infinite field distance in the F-theory limit arises form integrating out the KK tower. While
this nicely supports the idea of emergence in this context, it is only a first step to show that
the infinite distance entirely emerges from integrating out these infinite towers. To confirm the
emergence conjecture one likely needs to keep track of any possible tower of states becoming
massless in this limit as they might all contribute to generate the full divergence of the distance.

There are also a few further points that are interesting to address in future work. First,
we have assumed that the Kéhler cone is simplicial, so the natural next step is to remove this
assumption and generalize the classification of singularities and charge orbits to non-simplicial
cones. Secondly, while we have focused on identifying explicit universal charge orbits that are
present for any Calabi-Yau manifold at the different types of infinite distance singularities, the
structure of all possible existing massless charge orbits is more complicated and can depend
on the topological discrete data of the manifold. It would be interesting to perform a detailed
study of all existing orbits and their microscopic interpretation in string theory, as well as
their possible role in the emergence of the infinite distance. Lastly, we have not shown yet
if the charge orbits are populated by physical states as we approach the singular point. The
monodromy transformation guarantees the presence of an infinite number of physical states
at the singularity as long as a single charge of the orbit is populated. However, the question
remains how the stability of the states changes when approaching the singularity. It would be
then important to realize an analysis of possible walls of marginal stability, as performed in [3],
to check that the number of physical states populating the tower indeed increases exponentially
as we approach the singularity, as the species bound and the idea of emergence suggest.

Finally, in this paper we have focused on the Swampland Distance Conjecture, but re-
cent works are pointing to an interesting emerging network of relations between the different
Swampland Conjectures (see [53] for a relation with the de Sitter swampland conjecture [54]).
In particular, the above infinite distance limits can also correspond to weak coupling limits for
the gauge bosons completing the N = 2 vector multiplets. In that case, the infinite charge orbit
would also correspond to the states satisfying the Weak Gravity Conjecture [31], as discussed
in [3,5,6]. We leave for future work a more detailed analysis of their charge to mass ratio, which
can help to properly define the WGC in the presence of both scalar and gauge fields.
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A Constructing the massless infinite charge orbits

In this appendix, we derive the masslessness conditions (3.35) and (3.36) presented in the main
text, and explicitly construct orbits satisfying them, as well as the infiniteness condition (3.37).

As explained in the main text, since

m(Q) = [Z2(Q)| < [1Qll ~ [lqoll, (A1)

having ||qo|| — 0 is sufficient to ensure masslessness of the BPS states with charge vector Q.
Note that since m(qo) = |Z(qo)| < ||qo||, the states corresponding to qq is also massless. In [4]
it was established that for a singularity t* — 0o, i =1,...,00 a qg € m1(Na)) Nnwy, (N(;)) N
oW, (N(j1 )), where the [;’s are the smallest values for which this is true, has a vanishing
norm if the following condition is satisfied

I, <3 and I, ooylp_1 <3 (A.2)

The conditions for a vector to belong to certain W; = @p+q§l 179 depend on the IP? of the
considered singularity. The I”9 naturally split into primitive parts PP¢ and non-primitive parts,
of the form N*PP:4. This decomposition is given explicitly for the different singularity types in
Table A.1, from which one can also read the conditions for qg to belong to W5 or W3. We refer
the reader to [3,4] for more details.

Masslessness conditions Applying these conditions to (A.2), we find that the conditions
for the seed vector qg to be massless are those stated in the main text, namely (3.35) and (3.36),
which we recall here again for convenience

Type Ay Qo Type Ay Qo
v vi + Npyx; v NyWn + N7y

where Nv; =0, N?

X = 0 and NQn)Wn = 0.

(

Infiniteness conditions In addition, we recall the condition (3.37) for the orbit to be gen-
erated
N(g+yq0 # 0 for some J* = 1,..., hM(Y3) (A.4)

We now proceed to satisfy those conditions, that is, to explicitly give the vectors v;, u;,
X, U, and w, such that eqs. (A.3)-(A.4) hold. Before specializing to the different singularity
types, let us recall here the explicit form of the matrix N; and its powers (given in egs. (3.12)
and (3.19) for i =n)

0 0 0 0 0 0 00 0 000
g 0 0 0 , 0 0 00 , 0 000
Ny = Y A I Ny = kP 0 00 No=1 0o o000
Ll el 55,0 0 k%00 —KD 000

(A.5)
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Sing. type 177 decomposition qo € W3 qo € Ws
0
0 0
0 p22 0
I P30 P21 P12 Po;3 qQ =V qo = Nu
0 NP?2 0
0 0
0
0
0 0
P3’1 P2’2 P1,3
11 0 p21 pl2? qQ =V qo = Nu
NPp31 N Pp22 NPpL3
0 0
0
0
P3,2 P2’3
0 p22 0
111 0 P>l gNP3? P2 NP?3 0 qo=v+Nu qo=Nw
0 NP?2 0
N2P3’2 N2P273
0
P3,3
0 0
0 P22 g NP33 0
v 0 P! pl? qo=Vv+ Nx qo = Nw + N?u
0 NP%2 g N2p33 0
0 0

N3P3’3

Table A.1: We present for each singularity type the explicit splittings of the I”¢ in term of
the primitive subspaces PP, namely I?? = @;>0 N i pptiati - From these one can read off the
conditions for qy € W5 or qg € W3, which are then given in the third and fourth column, where
the vector u is unconstrained, while the vectors v, w and x satisfy Nv = 0, N?>w = 0 and

N3x = 0.

where we defined IC[;] = Zfl:l Koar and Kl = Zfl:l Kaaa.- With these at hand, we find their

action on a generic vector q = (q6, q‘}, q?, qO)
u, v, w and x throughout this appendix — to be

Nua

0

- > bar CIG
L T
%ICMqG + %K‘(IZ?] q4’J _ Z; q2,a

T
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0 0

0 0

) 3 _
ng) q6 ) N(z)q 0
,C(IZ) q*! ) q°



This will allow us to translate the conditions in (A.3) into conditions on the components of
the vectors.The analysis depends on the type of the last singularity in the considered chain, i.e.
Type A, in (3.15). We now specialize to the different possible singularity types.

The first and simplest situation is when Type A,y = II, where the masslessness conditions are,
as can be read from (A.3),

qg =v; where Nyv;=0 for i<n, (A.7a)
q) = Nyt - (A.7b)
Eq. (A.7b) implies
0

— Zn 5a[ 116

I _ a n
qQ = VO /cg’},) (A.8)

1IC["]u + IICS’?, S

Acting on this qf' with Ny we find

0
Neydo = g (A.9)
1 ) Zallcal u,
PMSHTED HCHS SUEY Y

Since Type A,y =1, one has K = ngn) = 0 which implies

]C(") — ’Cc[zn] — ]CSIL) =0 for a, b<n, (AlO)

aa

such that the condition (A.7a) is automatically satisfied. This means that qf! in (A.8) is the
generic form of a massless seed vector. On the other hand The infiniteness condition (A.4) gives

0

0
Ne-yap = S g8 £0. (A.11)

1 * n J* n n
LS g — 50 Chckug - K )
Since rk IC%) # 0, there are some I* and J* such that /C?Z?]* > 0, eq. (A.11) can be satisfied,

both if u # 0 or Zg* IC((;IL)ui’I # 0, in particular one can have a solution with ué = 0.9 As
mentioned in the main text, the last entry of qg plays no role and can safely be set to zero, here

by choosing Y " u? = %ICS J) upy”. Making those choices and renaming w! = —upy’, we find
ai = <O 0 IC%)wJ > . (A.12)

9For instance choosing ux? =1 for all I a possible solution, but it is of course not the only one.
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The next situation is Type A(n) = III, where the masslessness conditions are, as can be read
from (A.3),

q{)H =V; where ]V(Z)VZ =0 1 < NI s (A.13a)
qu =v;+ N(j)llj ni < j<n, (A'13b)
= Niywn  where N(2n)wn =0, (A.13c)

where nyy is the first place where a type III singularity occurs. Equations (A.13) lead to

0 0 0
m _ vir| vir - Zé Oaz u? _ 0
qp VZ'QI = V?z _ 1,C[]] ub — ]ngj) 4,7 = —ICE’}) 4,7 )
0 .
) e+ i s a) bk wi - w
(A.14)
where ¢ < nyr and nip < j < n, and the components of w,, and v; satisfy, for all i < n,
KMwhi = (A.15)
(4) 4,7
Kivi? =0 (A.16)
' i
Kivit =23 "vi, (A.17)
a=1
From (A.14) we must impose qéH = 0, such that
V?’I =0 for @ < nmp (A.18a)
i
= Z(Sa[u? for np<i<n (A.18b)
Condition (A.16) then implies
u? IC&Z) = O, nm <1< n, (A.19)

which leads to u$ = 0 for ny < i < n, since for a type III singularity IC&") # 0. Eq. (A.18)
then implies that V?’I =0 for all i’s. Condition (A.17) then becomes for nyy <i <n
i .
Sk wal =k ut (A.20)
a

(n)

4 is arbitrary and K 7

which can always be satisfied since uj is non-vanishing. So it does not

constrain wi. As before we choose ¢ to vanish by an appropriate choice of V?, u? and w2
I 4,1
and rename w' = —w," such that

(0 0, K w’ 0>T, (A.21)
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together with the conditions (A.17) for i < nyr and (A.15) that now read

’Cz(?) wI =0 1 < NI R (A.22)
Sk W =0, (A.23)

a=1

while the condition (A.4) for the orbit to be generated

J*
Z IC((;IL) w!h #0 for some J*. (A.24)
=1

An easy way to satisfy these equations is to choose

1 I<
Wl = =" (A.25)
0 I>n

which leads to q§2) = Kgn); this is non-vanishing for a type III singularity, meaning that indeed
(A.24) is satisfied, and since in addition K™ =0 for a type III, one has ICZ(?) =0 for all 72 < n,
such that (A.22) and (A.23) are also satisfied.

Finally, when Type A(,,) = IV, the masslessness conditions are, as can be read from (A.3),

a) =v; where Nyvi =0 i < (A.26a)
ay =vi+ Niu; nin < ¢ < nry (A.26b)
qp’ =vi+ Nyx; where N(‘rsl-)xi =0 ny <i<n (A.26¢)
q{)v = NmyWn + N(Zn)un where N(Qn)wn =0, (A.26d)

where nry is the first place where a type IV singularity occurs. Equations (A.26) lead to

0 0
A o 2 Vll_mz] allé?) ubd
‘30[ 0 Ifj 1] u IC 1u](]_ KU
7 Vj+6IC] ICJJ ] z]
0 0
V%[ O
- - Kt R e
vy + IK[k}Xk lelk} Xy —Z’é ui IIC%) - —2a Wi +’C()
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where i < ny, niir < 7 < npy, and nyy < k < n and as in the previous case the components of
w,, and v; satisfy, for all i < n,

KMwh? =0, (A.28)
KN g, (A.29)
%

KV =23 "2, (A.30)

From (A.27) we must impose qéH 4 = 0 such that
v?’l =0 for i<nm and ny <i<n, (A.31a)

1
= Z 5a[11? for ni <i<nuy. (A.31b)
Condition (A.29) then implies

u? IC&Z) = O, nm <1< n, (A.32)

which leads to u¢ = O for nip <7 < npy, since for a type IIT singularity IC 7é 0. Eq. (A.31)
then implies that vi = 0 for all i’s. Relabeling x} = u} when nry < n < n, condition (A.17)
then becomes for nyp <i<n

Z KMl — gcmub = k) u! (A.33)

(n)

4 is arbitrary and K 7

which can always be satisfied since uj

constrain w’ or u®. As before we choose ¢ to vanish by an appropriate choice of V?, u? and

w2. And defining

is non-vanishing. So it does not

6 P <
R ren
0 >n
we find
(0 0, K w’ 0) , (A.35)
together with the conditions (A.30) for i < nyr and (A.28) that now read
’Cz(?) wI =0 1 < Nr, (A.36)
Z ) T = —uf K™ | (A.37)
a=1

Since K™ is non vanishing for a type IV singularity and u® is arbitrary, (A.37) can always be
satisfied by an appropriate choice of u® and does not put any further constrain on w’. So the
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only non-trivial masslessness constraint is (A.36), to be satisfied together with the condition
(A.4) for the orbit to be generated, that is, one needs to find a solution to

KMol =0 i<nu, (A.38a)
J*
Z IC((;IL) wl #£0 for some J*. (A.38D)
a=1

Of course if Type A; = III, i.e. ny = 1, there is no condition (A.38a) and the state corre-
sponding to the seed vector (A.35) is automatically massless. We thus need to show that it
is possible to solve the system (A.38) when Type A; = II. We will show this explicitly in the
case where have only two moduli, and in the case of an elliptic fibration. We leave the general
case for a future analysis, but point out that, the more moduli we have, the bigger becomes the

orthogonal space to Y 7_; ICZ(?), such that it increases the room for solving the system (A.38).

e Two moduli

We first consider a case with two moduli, v! and v?, and the associated enhancement

chain
Type Ay + Type Ay — Type A(y). (A.39)

As mentioned above, we need Type A; = II and, of course, Type Ap) = IV, that is we
have, from Table 3.3, K1) = K117 = 0 and K@) = Kag9 + 3K192 > 0. The system (A.38)

then becomes

C]§2) = le,)wJ = Kizw® =0,
.o (A.40)
C]é ) = /CéJ)wJ = K122 w" + (K122 + Kag2) w® # 0.

It is always possible to find a solution to this system of equations. Indeed, there are 2
possibilities

— K122 = 0, in which case Kgoo # 0 and the system is satisfied with w? # 0,
— K122 # 0, in which case the system is satisfied with w? = 0 and w! # 0.

e Elliptic fibrations

We now turn to the case of an elliptic fibration, which is the most relevant for our analysis,
in particular for sections 3.4 — 3.5 and 4.3 — 4.4. We refer to section 3.4 for the notations
and the possible enhancement chains. Recall that we have the moduli v°, v®’s, with
corresponding singularities types Type Ay = IV and Type A, # IV. We show that we can
always choose
)20 and ¢® =0 A4l
QO 7é an qa - ( . )

which is actually stronger than eqgs. (A.38). Using the intersection numbers (3.54), we
find for the charges in (A.35)

¢ = K"’ = nogu® — (Ko — na)u, (A.42a)
A = K’ = (Ko —na) (K® — w®), (A.42b)
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where we defined n, = Zﬁ Nap and K, = nagKﬁ. Since 744 can be inverted (and we
denote the inverse by 7%%), we can choose w® = n*?(Kjs — ng) w", which yields

6" = Yo (Ko = na) u’, (A.43a)
¢ =0, (A.43D)

since K, < 0 and 7, > 0, we have q(()2) # 0 and equation (A.41) holds, and therefore
(A.38) as well.

Finally, let us remark that we could also choose w® = K*w?, leading to

P =0, (A.44a)
¢? = nou®. (A.44b)

However, this choice would only be compatible with (A.38)if there are no type II in the
chain, i.e. if the first singularity is associated to either a coordinate v® with 7,4 # 0, or
to 0.

B Fourier-Mukai transformation

Let Dg be the divisors generating the Kéahler cone of the base By while the dual basis of curves
generating the Mori Cone is denoted by C’®. For a Calabi-Yau threefold Y3 corresponding to
an elliptic fibration over this base, we can define the curves

C*=En'C® a=1,...,h"(By) (B.1)

where F is the zero-section of the elliptic fiber. A basis of the Mori cone of the Calabi-Yau is
then given by {C1} = {C?, C} where [C”] is the class of the generic fiber. The Kihler cone is
generated by the dual basis {D;} = {Dg, Dy} where

D, =7*D> Dy=E +7*c;(By) (B.2)

such that Dy - C7 = 5}7. The intersection numbers Kjjx = Dy - Dy - D were given in (3.52),
which we recall here for convenience

Kooo = e KK, Kooa = napK”,
or o« s (B.3)
ICOaﬁ = Nap 5 Icaﬁfy =0.

where 1,5 = Db. Dg is the intersection form on the base and the K% appear in the expansion
of the canonical class of the base

K =—ci(By) =—Y KDl =-Y K.C", (B.4)

such that K, = ¢;(B)DP.

Following the conventions of ref. [39,41,55,56], we choose as basis of branes

05 - (OY?),OE’ODQ,C(X’CO’Opt) (B5)
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where C7 := LIOCJ( 1/ ;). This basis coincides with the one in (3.51). The Chern-characters
of the 4-branes are [06]

1 1
ch(Op,) = D1 — 5D} + 5 D} (B.6)
which yields

1 1
Ch(OE) = E + 501E =+ EC%E

. ) (B.7)
ch(Op,) = Da = 57aaC",
while ch(C!) = C1.
The Chern character for a general brane O, can be decomposed as follows
cho(O:) = n,
chi1(O;) =ngE + F,
(B.8)

cho(O:) = EB + n.C*®,
Ch3(06) =S,

where n,ng,n.,s € Q and can be obtained for our basis of branes by comparing these equations
with the above Chern-characters in eqs. (B.7) . Upon performing a Fourier-Mukai transforma-
tion, the Chern-character of the transformed brane reads [46,47]

cho(S(0:)) = ng,
¢hy(S(0.)) = —nE+ B — gnpei,
1 2 1 (B.9)
chs(S(0,)) = (5 ney — F) E+ (s — 2Bt B+ ng clE)C
chg(S(0.)) = —gnE —n. + 3Eci F.
where ¢1 = m*¢; (B). Applying to the basis (B.5), we find
ch(S(Oyy)) = — ch(Op) + Kq ch(CY),
ch(S(Op)) = ch(Oy,),
ch(S(0p,)) = ~1as ch(C%) + 5 (Naa + Ka) ch(Op), (B.10)
ch(S(C%)) = — ch(Opy),
ch(S(Op)) = ch(Ogo).

This implies that the Fourier-Mukai matrix S acting on the basis of branes (B.5) takes the
following matrix form

0-1 0 K, 0 0
10 O 0 0 0
1
S — 00 0 —Nap ) 0 5(7704& + K ) (B.ll)
00 7% 0 S(K*=n*nsp) 0
00 O 0 0 -1
00 O 0 1 0
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This matrix leaves invariant the pairing 9, i.e. ST9.S = 9, where ¥, introduced in (3.10), takes
the form

0 —2bo K — 2by — £Ko0o —2bg 0 0-1
2b5Kﬁ + 2bg + %ICOOO 0 %(’CQOQ — ’Coaa) K*1 0
2b 1(Koss — Koog) 0 Sap 0 0
T _ B 2 N0Bgs 003 af
V= 0 -K? —0up 000 (B.12)
0 ~1 0 000
1 0 0 000

in the basis (B.5).

In the main text, we use a basis of branes different than (B.5), namely we use the K&hler
cone basis (3.50)
Oé = (OYS? ODO? ODZ ) CJa CO) Opt) (B13)

containing Op, instead of Og. Those two basis are related by (3.53), which in terms of the
dual divisors reads
E=Dy—- K*D,. (B.14)

In matrix notation, this change of basis takes the form

10 0 000
01-K“000
00 1 000
=100 0 100 (B.15)
00 0 010
00 0 001

The Fourier-Mukai transformation in this basis, given by S’ = T~1ST, reads

0 1 0 0 00
-1 0 0 0 00
K 0 0 n8 00
ICOOCV _Ka —TNap 0 00 ( )
0 0 0 (K —1Koos) 0 1
0 %Ka (ICOOa + ICOaa) %(’COOQ + ’COaa) 0 -10

where we have displayed the transpose matrix for convenience in the paper. Notice that, in this
derivation, we have considered that the coefficient matrix of the branes transforms when going
to the small fiber regime, while in the main text we work all the time assuming that the basis
transform instead. In practice, this implies that we should work with ST instead of S.
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