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Abstract

The Swampland Distance Conjecture suggests that an infinite tower of modes becomes ex-
ponentially light when approaching a point that is at infinite proper distance in field space.
In this paper we investigate this conjecture in the Kähler moduli spaces of Calabi-Yau three-
fold compactifications and further elucidate the proposal that the infinite tower of states
is generated by the discrete symmetries associated to infinite distance points. In the large
volume regime the infinite tower of states is generated by the action of the local monodromy
matrices and encoded by an orbit of D-brane charges. We express these monodromy ma-
trices in terms of the triple intersection numbers to classify the infinite distance points and
construct the associated infinite charge orbits that become massless. We then turn to a
detailed study of charge orbits in elliptically fibered Calabi-Yau threefolds. We argue that
for these geometries the modular symmetry in the moduli space can be used to transfer
the large volume orbits to the small elliptic fiber regime. The resulting orbits can be used
in compactifications of M-theory that are dual to F-theory compactifications including an
additional circle. In particular, we show that there are always charge orbits satisfying the
distance conjecture that correspond to Kaluza-Klein towers along that circle. Integrating
out the KK towers yields an infinite distance in the moduli space thereby supporting the
idea of emergence in that context.
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1 Introduction

The term Swampland [1] refers to those quantum effective field theories which cannot be UV

embedded in a consistent theory of quantum gravity. In particular, there are several proposals

for consistency constraints that any effective theory weakly coupled to Einstein gravity must

satisfy to arise from string theory. In this paper, we will focus on the Swampland Distance

Conjecture (SDC) [2], for which infinite distances in field space imply an infinite tower of states

becoming massless exponentially fast in the proper field distance. This infinite tower of states

is associated to a quantum gravity cut-off that goes to zero at infinite distance and above which
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a quantum effective field theory description weakly coupled to Einstein gravity is no longer

possible. Therefore, the conjecture implies an upper bound on the scalar field range that any

effective theory can accommodate in terms of the energy scale up to which the effective theory

is valid. Such a bound can have several potential implications for phenomenology especially

when constructing models of large field inflation.

Due to the importance of the swampland criteria to yield non-trivial quantum gravity con-

straints at low energies as well as to provide new guidelines to make progress in high energy

physics, it is essential to gather more evidence to prove or disprove these conjectures in a rig-

orous way. It is the aim of this paper to continue testing the Swampland Distance Conjecture

in string theory compactifications. As a byproduct of analyzing this conjecture we further elu-

cidate the very rich underlying geometric structure of the moduli space and compactification

manifolds required for the conjecture to hold. This structure, together with the understanding

of the states arising in string theory, implies highly non-trivial correlations between the number

of light states and field distances. In certain cases, as we will see, the SDC seems to be satisfied

in a conspiratorial way by string theory. This invites us to continue exploring the SDC to

reveal the underlying quantum gravity principle responsible for the validity of the conjecture,

and hopefully learn new lessons about quantum gravity itself.

Non-trivial evidence for the SDC was obtained in [3, 4] by studying infinite distance singu-

larities of the complex structure moduli space of Calabi-Yau manifolds. We also refer the reader

to [5,6] for a recent general analysis of weak coupling points in F-theory and [7–16] for a series of

previous works analyzing the conjecture in concrete string compactification setups. The power

of the approach followed in [3,4] was its model independence as the results are valid regardless

the specific Calabi-Yau under consideration. The proposal is to identify the infinite tower of

states with an infinite charge orbit generated by a monodromy action of infinite order. This

infinite order monodromy is a necessary condition for a singular locus to be at infinite field dis-

tance. In one-parameter degenerations the charge orbit was shown in [3] to be populated by an

exponentially increasing number of BPS states that become exponentially light as we approach

the singular locus, providing evidence for the conjecture. Furthermore, it was proposed that

the infinite field distance itself emerges from quantum corrections of integrating out the infinite

tower of states. We will revisit this argument and provide a general field theory computation

that highlights the properties that need to be met by the tower of states. Furthermore, the

monodromy transformation is translated to an axionic discrete shift symmetry in the effective

theory which enhances to a continuous shift symmetry at infinite distance. This provides a

new understanding of the SDC as a quantum gravity obstruction to restore global symmetries.

Everything fits together in a beautiful story linked to the monodromy action. The next obvious

question is how much of this story can be generalized to other moduli spaces.

In this paper, we will explore the Swampland Distance Conjecture in the multi-dimensional

Kähler moduli space of Calabi-Yau compactifications. We will show how the techniques in-

troduced in [3, 4] can also be used to identify an infinite charge orbit becoming massless at

infinite distance in Kähler moduli spaces. The main focus of our paper will be on the study of

infinite distance loci and charge orbits at the large volume regime. The monodromy action can

be written in full generality in terms of the intersection numbers and topological data of the

Calabi-Yau threefold, allowing for a classification of the infinite distance limits at large volume.

We will also provide the general result for the infinite charge orbit becoming massless at these

limits. The existence of such orbits was shown in [4], where it was also argued that this crucially

2



requires to address the issue of path-dependence by applying the powerful mathematical ma-

chinery of [17]. However, in this work we will be able to determine the charge orbit by studying

a comparably simple set of vector equations. This refined approach is valid more generally and

can also be applied to the complex structure moduli space. Subsequently we will discuss the

interesting phenomenon of transferring the charge orbit to other infinite distance points of the

moduli space away from large volume. In the case of elliptic fibrations, it is possible to carry

the charge orbit from large volume to the small fiber point by applying double T-duality along

the fiber.

The tower of states becomes exponentially light with respect to the Planck scale. This means

that, if we are moving along some path in the moduli space which is also sending Mpl → ∞,

they can become very heavy while still satisfying m/Mpl → 0. This is a result of the fact that

the SDC only gives non-trivial implications in the IR effective theory if the Mpl is forced to

remain finite, while all implications go away when gravity decouples. This feature is particularly

visible when moving in the Kähler moduli space, since Mpl → ∞ at large volume. Furthermore,

there can also be more than one tower of states becoming exponentially light with respect

to Mpl at infinite distance. For instance, if we consider type IIA compactified on a Calabi-Yau

threefold, we get that the infinite charge orbits generated by the monodromy action at large

volume consist of a tower of particles arising from bound states of D0-D2 branes. Clearly, there

will also be Kaluza-Klein towers of states becoming massless at large volume. However, it is

the tower of D0-D2 branes that appears to be relevant for the proposals of emergence and

global symmetries in the Kähler moduli space. In particular, the infinite field distance can

be understood as emerging from quantum corrections of integrating out D-brane states rather

than Kaluza-Klein states in this case. Notice also that if the infinite distance emerges from

integrating out the tower of states, this emergence interpretation should be equally applicable

for the intersection numbers and topological discrete data of the Calabi-Yau manifold.

There are other instances, though, in which a Kaluza-Klein tower can be responsible for

(at least part of) the infinite field distance. This is, for example, the case in the circle com-

pactification performed in order to implement the duality of M-theory and F-theory. The 6D

effective theory of F-theory compactified on an elliptically fibered Calabi-Yau threefold can be

derived from compactifying M-theory on the same Calabi-Yau manifold to five dimensions and

sending the volume of the fiber to zero. The limit of shrinking the elliptic fiber corresponds to

decompactifying an additional circle and opening up an extra dimension in the F-theory side. It

is known that quantum corrections from the KK tower in the circle F-theory compactification

are essential to match with the classical M-theory reduction [18–20].1 In this paper, we will

also analyze the infinite distance limits in the M-theory geometry, and recover the KK tower

of the circle compactification of F-theory from following the infinite charge orbit to the small

fiber regime in M-theory. This provides a geometric realization of the Kaluza-Klein tower in

terms of a charge orbit generated by a monodromy action of infinite order.

The outline of the paper goes as follows. We will start in section 2 discussing the general

properties that the tower of states must satisfy and revisiting the idea of emergence. We also

present a new field theory computation that shows how quantum corrections from integrating

out any infinite tower up to its species scale generates an infinite field distance (and consequently,

an exponential mass behavior) as long as the number of species increases as we move in field

1It was recently shown in [21] that this infinite tower of states is also crucial in order to account for the
entropy of certain F-theory black holes.
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space. We will then discuss the microscopic meaning of the species bound in Kaluza-Klein

compactifications. In section 3 we will analyze infinite distances in the large volume regime of

Calabi-Yau threefold compactifications. We will construct the infinite charge orbits becoming

massless at the different large volume limits and their microscopic interpretation in terms of

type IIA string theory. We will also discuss how to carry the charge orbit to the small fiber

volume in elliptic fibrations. In section 4 we will discuss infinite distances and charge orbits

arising in the duality between M-theory and F-theory, providing a geometric realization for

the KK tower in terms of an infinite charge orbit in M-theory. Finally, section 5 contains our

conclusions.

2 Swampland, emergence of infinite distance and global sym-

metries

Consider the moduli space of a consistent quantum gravity effective theory parametrized by

the expectation values of the massless scalar fields in the theory. The Swampland Distance

Conjecture [2] states that any low energy effective theory defined at a particular point of the

moduli space is only valid in a finite domain around that point, because there will be an infinite

tower of states becoming exponentially light when moving infinitely far away and signaling the

complete breakdown of the effective theory. More concretely, when starting with an effective

theory defined at a point Q in the moduli space and moving towards another point P , the mass

of this tower of states behaves as

m(P ) ∼ m(Q)e−γ d(P,Q) (2.1)

in the limit d(P,Q) → ∞. Here, d(P,Q) is the geodesic distance between the two points,

and γ is a positive constant which is not specified in generality. This infinite tower implies

the complete breakdown of the effective theory in the sense that quantum gravitational effects

become important and a quantum field theory description with infinitely many fields weakly

coupled to Einstein gravity is not possible. Therefore, not only the low energy effective theory

breaks down because of the presence of new states, but the quantum gravity cut-off ΛQG also

goes to zero exponentially fast. As it stands, the conjecture leaves many open questions: Can we

universally specify γ and ΛQG? How do they change if we move along a non-geodesic trajectory?

Is there any universal prescription to identify the tower of states? What is the underlying

quantum gravity principle which forces the conjecture to hold? For the latter question, there

are two recent proposals:

• The infinite distance itself emerges from quantum corrections of integrating out the infinite

tower of states up to the species bound of the tower [2, 3, 22].

• The infinite tower is a quantum gravity obstruction to restore a global symmetry at the

infinite distance limit [3].

These two proposals find confirmation [3] at the infinite distance loci of the complex structure

moduli space of Type IIB Calabi-Yau compactifications, where it was also proposed a general

prescription to identify the tower of states in terms of a charge orbit generated by a monodromy

action of infinite order. It is the aim of this paper to extend the discussion to Kähler moduli
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spaces, and to check whether these two proposals, as well as the aforementioned prescription

to identify the tower, are still valid. Before turning to do so, we will first explain in more

detail and revisit these two proposals in view of the new insights gathered in this paper. Let

us remark, though, that the following discussion in this section is empty without the solid

technical work that follows in section 3 and 4. Furthermore, since moving in the Kähler moduli

space usually also implies varying the Planck mass, there are some subtleties that need to be

addressed. Hence, we will first discuss these subtleties in section 2.2 in a toy model example: a

circle Kaluza-Klein compactification.

2.1 Emergence and global symmetries

In the following we will describe in more detail the above two proposals and present a new

computation that shows how the exponential mass behavior (and the infinite field distance)

is an automatic consequence of integrating out any infinite tower of states (regardless their

concrete mass) up to the species bound of the tower, as long as the tower gets compressed as we

move in the moduli space. This leads to a natural identification of the quantum gravity cut-off

with the species bound, as we will next discuss.

Emergence of infinite distance from integrating out a tower Let us consider a D-

dimensional effective theory of a massless scalar field φ plus a tower of heavy particles h whose

mass depends on φ as mn(φ) = n∆m(φ). We will follow very closely [3, 22] but without

assuming any particular form for ∆m(φ). The power of our results will precisely reside in this

independence of the form of ∆m(φ). The Lagrangian is

L = 1
2
(∂φ)2 +

∑

n

[

1
2
(∂hn)

2 + 1
2
mn (φ)

2 h2n

]

. (2.2)

We are interested in the quantum corrections to the field metric of φ when integrating out the

massive infinite tower of states. However, any tower of states weakly coupled to Einstein gravity

has an associated cut-off scale above which quantum gravitational effects become important and

the quantum field theory description breaks down. Since the procedure of integrating out can

only be performed within the realm of an effective quantum field theory, we should only integrate

out the states up to this quantum gravity scale ΛQG. There is a very natural candidate for ΛQG

known as the species scale [23–27],

ΛQG ≃ Mpl,D

N
1

D−2

QG

, (2.3)

whereNQG is the number of species (i.e. elementary particles weakly coupled to gravity) present

below the energy scale ΛQG, and Mpl,D is the D-dimensional Planck mass. For the above tower

of particles of evenly increasing mass, we have

NQG =
ΛQG

∆m(φ)
(2.4)

implying

ΛQG ≃
(

MD−2
pl,D ∆m(φ)

) 1
D−1

and NQG =

(

Mpl,D

∆m(φ)

)
D−2
D−1

. (2.5)
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Therefore, if ∆m depends on the point of the moduli space parametrized by φ, so will the

species scale. In fact if we now consider that the whole tower becomes massless at a particular

point φ0, so ∆mn(φ0) = 0 and NQG → ∞, the species scale will go to zero at that point,

i.e. ΛQG(φ0) = 0.

We can now compute the one-loop quantum corrections to the field metric of φ when inte-

grating out the tower of massive states, given by [2, 3, 22]

g1-loopφφ ∼
∑

n

mn(φ)
D−4 (∂φmn(φ))

2 (2.6)

When summing only over the number of species below ΛQG, we get

g1-loopφφ ∼ ND−1
QG ∆m(φ)D−4

(

∂φ∆m(φ)
)2 ∼ MD−2

pl,D

(

∂φ∆m(φ)

∆m(φ)

)2

. (2.7)

The distance between two points of the moduli space φ0 and φ1 is then given by

d(φ0, φ1) =

∫ φ1

φ0

√
gφφ ∼ log

(

∆m(φ1)

∆m(φ0)

)

(2.8)

which indeed diverges if ∆m(φ1) → 0, and the masses decrease exponentially as we approach

the infinite distance point,

∆m(φ0) ∼ ∆m(φ1) e
−γ d(φ0,φ1). (2.9)

where γ encodes all the numerical factors that we have neglected in the above procedure of

integrating out and that will depend on the properties of the tower. Notice that we did not

need to specify the dependence of the masses on φ. The logarithmic divergence of the proper

field distance, and consequently the exponential mass behavior, emerges from integrating out

any tower of states up to its species bound2. The only thing that matters is that the tower

gets compressed, i.e. ∆m(φ0) goes to zero at the point in question. In terms of the quantum

corrected proper field distance, the number of species then increases exponentially and the

quantum gravity cut-off decreases exponentially fast,

ΛQG ∼ Mpl,D e−λ d(φ0,φ1) (2.10)

where λ ∼ γ/(D − 1). This toy model computation removes part of the mysticism of the

conjecture relating infinite distances and infinite towers of states. If the number of species

increases when approaching a point of the moduli space, quantum corrections from this tower

will automatically generate a logarithmic field distance divergence in terms of the mass of these

states. In [2] it was pointed out that not every infinite massless tower necessarily generates an

infinite field distance. We however think that this will always be the case as long as they count

as different species.

Finally, there are also two possible levels of emergence. It could either be that the infinite

tower generates part of the infinite field distance, a classical divergence being also present, or

that the infinite field distance fully emerges from quantum corrections form integrating out the

tower. In the latter case, the fact that moduli spaces are in general non-compact would be an

2See [3,22,28,29] for the proposal that the Weak Gravity Conjecture is also implied by the idea that the small
gauge coupling emerges from integrating out the massive charged WGC states up to the species bound.
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IR effect from integrating out infinite towers of states that become massless at particular points.

Why these towers should exist will be the question of the next section about global symmetries.

As a final remark, notice that quantum corrections will dominate over the classical piece if the

tower of states satisfies what was called the Scalar Weak Gravity Conjecture [12],

g1-loopφφ ≥ gφφ if gφφ
(

∂φ∆m(φ)

∆m(φ)

)2

& 1 (2.11)

where we have used (2.7). Equivalently, the Scalar WGC is automatically satisfied if the idea

of emergence holds. This also provides a motivation to have γ, λ & 1.

Obstruction to global symmetries A nice relation between the SDC and the absence of

global symmetries was proposed in [3]. As we will explain later on in more detail, the infinite

tower of states is identified with a charge orbit generated by a discrete monodromy transforma-

tion of infinite order. When reaching the infinite distance point, this discrete transformation

enhances to a continuous one, which would imply the presence of a continuous global shift sym-

metry in the effective theory. The presence of the infinite tower, which automatically forces the

quantum gravity cut-off to go to zero, can then be understood as a quantum gravity obstruction

to restore this global symmetry. This is consistent with the common lore that global symme-

tries are not allowed in quantum gravity (recently proved in the context of AdS/CFT [29,30]).

The key point is that the conjecture states how the effective theory breaks down when trying

to recover a global symmetry in a continuous way. Therefore, it quantifies how approximate a

global shift symmetry can be, by providing a quantum gravity cut-off above which no effective

field theory enjoying that approximate global symmetry is valid. It also nicely connects with

the Weak Gravity Conjecture [31], which analogously quantifies what goes wrong when trying

to recover a U(1) global symmetry by sending a gauge coupling to zero. Given that when a

global shift symmetry of a field is broken, the global symmetry of the Hodge dual field is gauged,

both conjectures could just be dual versions of each other.

This intuition of restoring a global symmetry was obtained in [3] by studying infinite distance

singularities in the complex structure moduli space of type IIB Calabi-Yau compactifications.

There, the discrete monodromy transformation generating the infinite tower translates into a

discrete shift symmetry of the axionic complex structure modulus corresponding to the angular

coordinate encircling the singularity. In this paper, we will show how this intuition can be

extrapolated to Kähler moduli spaces. In fact, even if the moduli space is not complex, as

M-theory on a Calabi-Yau threefold or the circle compactification of F-theory, it will still be

possible to have a notion of a monodromy transformation which will generate the tower and will

correspond to some p-form discrete shift symmetry in the effective theory. In particular, we will

see that in M-theory Calabi-Yau threefold compactifications, the discrete symmetry enhances to

a continuous one-form global symmetry at infinite distance. This suggests a generalization of the

SDC by requiring an infinite number of massless degrees of freedom (not necessarily particles) at

every infinite distance point at which a generalized global symmetry would be restored (see [32]

for a detailed explanation of generalized global symmetries). It would be interesting to further

investigate this relation between the SDC and generalized global symmetries in the future.
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2.2 Kaluza-Klein circle compactification

As mentioned, the aim of this paper is to study infinite distance limits in the Kähler moduli

space of a string compactification. The expectation value of the Kähler moduli parametrize

the volumes of non-trivial cycles of the compactification space. Hence, in certain cases, moving

in this moduli space will also correspond to varying the Planck mass as this is given by the

overall volume of the internal space. It is important to remark that the mass of the tower of

states in (2.1) is given in the Einstein frame, which implies that Mpl is assumed to remain fixed.

Otherwise, the mass in (2.1) should be replaced by the ratio m/Mpl. This implies, in particular,

that the tower of states at infinite distance can be very heavy while still satisfying m/Mpl → 0

if Mpl → ∞ at infinite distance. In other words, the tower of states only affects the low energy

effective theory if Mpl is finite, but any effect disappears if gravity decouples, as expected from

a swampland constraint. The simplest example in which this happens corresponds to varying

the radius of a circle compactification. For this reason, we will first describe these observations

on a Kaluza-Klein circle compactification as well as the meaning of the species bound in this

context, before turning to more complicated Kähler moduli spaces in string theory in section 3.

To begin with, we consider the effective theory of a complex scalar field in D+1-dimensions,

SD+1 = MD−1
pl,D+1

∫

MD+1

{

R̂+ ∂µ
¯̂
φ∂µφ̂

}

⋆̂ 1, (2.12)

and dimensionally reduce it on a circle satisfying dŝ2 = ds2 + r2 dy2. Our convention is that

hatted objects areD+1-dimensional, R is the Ricci scalar andMpl,D is theD-dimensional Planck

mass. A circle has a single modulus r whose expectation value parametrizes the radius of the

circle. The kinetic term for r only appears after performing the Weyl rescaling gEab =
(

r
r0

) 2
D−2 gab

to go to the Einstein frame of the D-dimensional theory,

SD = MD−2
pl,D

∫

MD

{

RE + D−1
D−2

1

r2
∂ar ∂

ar +
∑

n∈Z

(

∂aφ̄n ∂
aφn +mn(r)

2φ̄nφn

)

}

⋆E 1 , (2.13)

where the introduction of the scale r0 is required to keep the metric dimensionless and can

be later fixed to the expectation value of r. The field metric for r exhibits infinite distance

singularities at r → 0 and r → ∞; the Planck masses in D and D+1 dimensions are related by

MD−2
pl,D ∼ r0 M

D−1
pl,D+1. (2.14)

The D + 1-dimensional scalar field leads to a massless scalar field plus a tower of massive

Kaluza-Klein modes of mass mn(r) =
n
r

(

r0
r

) 1
D−2 . This tower of KK modes becomes massless

in the decompactification limit r → ∞ and their mass decreases exponentially in terms of the

proper field distance ∆ = α log r, where α =
√

D−1
D−2 ,

mn = n r
1

D−2

0 exp
(

− α∆
)

, (2.15)

consistent with the Swampland Distance Conjecture. The species bound (2.3) for the KK tower

reads

ΛQG .

(

MD−2
pl,D

r0

) 1
D−1 (r0

r

)
1

D−2 ∼ Mpl,D+1

(r0
r

)
1

D−2
, (2.16)
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where we have used that ∆m = 1
r

(

r0
r

)
1

D−2 . Therefore, the true quantum gravity cutoff ΛQG is

indeed dictated by Mpl,D+1 and not Mpl,D, which fits with the fact that the UV of the theory is

in fact higher dimensional. In other words, for an observer in D-dimensions, the presence of the

tower of KK modes lowers the quantum gravity cut-off from Mpl,D to ΛQG ∼ Mpl,D+1 and this

matches with the fact that this is also the scale at which quantum gravitational effects become

important for an observer in D + 1. The number of species present at this scale is

NQG ∼ r

(

MD−2
pl,D

r0

)
1

D−1

∼ rMpl,D+1 . (2.17)

Notice also that the quantum gravity cut-off ΛQG goes to zero only if one insists on keepingMpl,D

fixed. However, in the usual picture one rather keeps Mpl,D+1 fixed so that Mpl,D goes to infinity

as r → ∞.

We can also compute the quantum corrections from the KK tower to the field metric in-

tegrating up to NQG. Notice that this is not a standard regularization method as we want

to explicitly keep the dependence on the UV cut-off. Recall that ΛQG depends on r and this

dependence is crucial to generate the infinite field distance. Using (2.6) we obtain

δg1-loop ∼
NQG
∑

n=−NQG

mn(r)
D−4 ∂φmn(r)

2 ∼ ND−1
QG r0r

−D−1 ∼ MD−2
pl,D

1

r2
(2.18)

which has the same parametric dependence as the classical piece in (2.13). Therefore, we find

that integrating out the infinite tower of KK modes up to the species bound, one generates a

metric that forces the limit r → ∞ to be at infinite distance. This is expected as it corresponds

to a particular case of the general computation performed in the previous section. However,

notice that this is a mild version of emergence, as the metric already has a classical divergence.

One could wonder if this classical piece could also emerge from integrating out another infinite

tower of states. Even if this is not possible in a Kaluza-Klein compactification, it might be

possible in a consistent theory of quantum gravity. We will discuss this issue again when

studying a circle compactification of 6D F-theory in section 4. It would also be interesting to

study how typical regularization methods applied to UV-dependent quantities change when we

assume that the UV cut-off varies. Let us also recall that if we keep ΛQG fixed instead and apply

usual regularization methods, we do not get any quantum divergence for the field distance, but

in return, the D-dimensional Planck mass tends to infinity and gravity decouples. Only if we

insist on keeping Mpl,D fixed, we generate the infinite field distance at quantum level.

The possibility of having different towers becoming massless at infinite distance raises new

questions: is there any preferred tower that should be identify as the candidate for the SDC?

Is it always possible to find a tower responsible for the quantum emergence of the infinite field

distance? We think that the best way to identify the tower is to look for the objects that are

charged under the discrete symmetry that becomes continuous at infinite distance. And this

is what will do in the rest of the paper, by identifying the charge orbit of states generated by

a monodromy transformation of infinite order. This monodromy is part of the discrete duality

group of the compactification which enhances to a continuous group at the infinite field distance

singularities. Sometimes this tower will correspond to KK modes but in general it will consist

of more exotic objects, namely wrapping D-branes.

As a final comment, let us recall that the limit r → 0 is also at infinite distance. From

the point of view of this quantum field theory, there is not any additional tower that become
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massless in this limit. However, if the theory has a stringy UV-completion, one has indeed

the tower of winding modes becoming massless as r → 0 (this is actually a motivation for a

theory of extended objects [2], if one assumes the SDC to hold). Even if this limit is usually

not accessible in a supergravity effective theory, we can analyze it in the context of string

theory, by making use of the T-duality. Since under T-duality winding modes and KK states

are exchanged, and that the metric 1
r2
(∂r)2 is left invariant, one can conclude from the above

analysis of integrating out the KK-modes that, at small radius values, the result of integrating

out the winding modes will also yield a metric ∼ 1
r2
(∂r)2, thereby also forcing the limit r → 0

at infinite distance. We will come back to such arguments involving dualities in section 3.5.

3 Infinite distances and charge orbits at large volume in Type IIA

In this section we shift to the discussion of the SDC in string theory. More precisely, we will

consider Type IIA string theory compactified on a Calabi-Yau threefold Y3. Focusing vector

multiplet sector of the resulting N = 2 four-dimensional theory we study infinite distances in

Kähler moduli space. Note that the Kähler moduli, henceforth denoted by vI , parameterize

the volumes of geometrical submanifolds of Y3. Limits sending one or more vI to infinity hence

correspond to decompactification limits in generalization of the discussion of section 2.2. We

will classify such limits in subsection 3.1 and show that they always lead to infinite distances

in subsection 3.2. The candidate charge orbits of states that become massless in the limits

are determined in subsection 3.3. They can be explicitly constructed and studied for elliptic

fibrations, as we show in subsection 3.4. Finally, we show in subsection 3.5 that in the latter

case the orbits can be transferred from large to small elliptic fiber volume.

3.1 Classifying infinite distance limits in the large volume regime

To start with we briefly review some basic aspects of the Kähler moduli space of Type IIA Calabi-

Yau compactifications. The moduli space MKs is a Kähler manifold of complex dimension h1,1,

where hp,q = dim(Hp,q(Y3,C)) are the Hodge numbers of the Calabi-Yau threefold Y3. The

complexified Kähler structure deformations tI parametrizing MKs are given by

B2 + iJ = tIωI , I = 1, . . . , h1,1(Y3) , (3.1)

where the ωI ’s form a basis of the harmonic (1,1)-forms of Y3, B2 = bIωI is the NS 2-form

and J = vIωI is the Kähler form, so tI = bI+ivI . The Kähler potential is given byK = − log 8V
with the overall volume V is defined as

V =
1

3!

∫

Y3

J ∧ J ∧ J =
1

3!
KIJKvIvJvK , (3.2)

where the triple intersection numbers are defined as

KIJK =

∫

Y3

ωI ∧ ωJ ∧ ωK . (3.3)

Furthermore it is useful to introduce bI =
1
24

∫

Y3
ωI∧c2(Y3), with c2(Y3) being the second Chern

class of the Calabi-Yau threefold. The scalars tI comprise nv = h1,1(Y3) vector multiplets
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together with the vectors AI coming from expanding the RR three-form C3 in the same basis

C3 = AI ∧ ωI + . . . . (3.4)

Note that there is one further vector in the spectrum arising from the dimensional reduction of

the RR one-form C1. This additional vector, or rather an appropriate linear combination of all

vectors, will be part of the gravity multiplet and is often denoted as the graviphoton.

Let us next introduce the machinery to classify the types of infinite distances that appear

in the large volume regime vA ≫ 1 of Calabi-Yau compactifications. The basic idea is to

translate the data specifying the large volume compactification given in (3.3), i.e. the triple

intersection numbersKIJK and the second Chern class bI , into h
1,1(Y3) so-called log-monodromy

matrices NI and an anti-symmetric inner product ϑ. Together NI , ϑ capture all relevant

information concerning the metric on the scalar field space spanned by the tI ’s.

To begin with we briefly discuss the construction of a monodromy matrix in Kähler moduli

space by using mirror symmetry. More precisely, recall that under mirror symmetry the large

volume point is mapped to the large complex structure point by identifying the complexified

Kähler structure deformations tI with the complex structure deformations zI of IIA and IIB

compactifications. The Kähler potential for complex structure moduli space of the mirror

Calabi-Yau threefold Ỹ3 is given by

K(z, z̄) = − log(iΠ̄IϑIJΠ
J ) (3.5)

where ΠI are the periods of the holomorphic (3,0)-form Ω into a real integral basis γI , I =

1, . . . , h2,1(Ỹ3) + 2 of three-cycles as follows,

Ω = ΠIγI , ϑIJ = −
∫

Ỹ3

γI ∧ γJ . (3.6)

The mirror map implies that, at the large volume point, one can introduce the following 2h1,1(Y3)+

2-dimensional period vector Π depending on these complex variables

Π (tI) =









1
tI

1
2KIJKtJ tK + 1

2KIJJt
J − bI

1
6KIJKtItJtK − (16KIII + bI)t

I + iζ(3)χ
8π3









, (3.7)

where χ =
∫

Y3
c3(Y3) is the Euler number of Y3. It is crucial in this identification that we consider

a basis ωI spanning (part of) the Kähler cone. In other words, we need to ensure that when

taking vI > 0, the Kähler form J = vIωI measures a positive volume
∫

C J > 0 for all irreducible

proper curves C in Y3. While much of the following discussion is general, we will assume that the

Kähler cone of the considered manifold is simplicial, i.e. spanned by exactly h1,1(Y3) generators.

This implies, in particular, that all KIJK ≥ 0, which will significantly simply the discussion

below.

Then one defines the monodromy transformation to be the matrix arising in the transforma-

tion Π(t1, . . . , tA−1, . . .) = TAΠ(t1, . . . , tA, . . .). From the point of view of the four dimensional

effective theory, this transformation corresponds to a discrete shift of the axionic field Re(tI).

Instead of displaying the matrix TA (see [4] for an explicit expression and references), we rather

show the nilpotent matrix NA obtained from TA by setting

NA = log(TA) . (3.8)
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These NA are known as the log-monodromy matrices and can be used to classify singularity

types arising in Calabi-Yau moduli spaces. For the large complex structure periods (3.7) they

are readily determined to be

NA =









0 0 0 0
−δAI 0 0 0

−1
2KAAI −KAIJ 0 0

1
6KAAA

1
2KAJJ −δAJ 0









. (3.9)

The corresponding pairing ϑ that can be used to contract the periods, takes the form

ϑ =









0 −1
6KJJJ − 2bJ 0 −1

1
6KIII + 2bI

1
2(KIIJ −KIJJ) δIJ 0

0 −δIJ 0 0
1 0 0 0









. (3.10)

where bI was introduced below (3.3). It is important to stress that displayed (2h1,1(Y3) + 2)×
(2h1,1(Y3)+2) matrices NA, ϑ are determined in a special basis of even forms on the Calabi-Yau

manifold Y3, which also requires the Kähler cone condition introduced above. We will not go

into details how this basis is derived, but rather stress that the following considerations are

invariant under basis transformations. Let us also notice that the above nilpotent matrix has

also been derived in a different avenue by analysing the structure of the flux induced scalar

potential when written in terms of Minkowski 3-form fields [33–35], as it also deeply relies on

the presence of the discrete axionic shift symmetries.

The crucial point is that we can now associate a log-monodromy matrix to each limit of

the tI taken in the Kähler cone. The simplest situation is to consider only a specific tI taken

to i∞ for some chosen index I. Let us relabel the coordinates such that this is the direction t1.

Then one has to associate the matrix N1 to this limit. However, if one takes the limit in two

directions, which we choose after relabeling to be t1 → i∞ and t2 → i∞, then one associates

the matrix N1+N2, or any other positive linear combination of N1, N2, to this limit. In general,

if one takes the limit of n coordinates labeled by t1, . . . , tn, one thus associates

t1, . . . , tn → i∞ −→ N(n) = N1 + . . .+Nn , (3.11)

where N(n) is the relevant log-monodromy matrix in this limit. For future reference, we give

here its explicit form in terms of the intersection numbers

N(n) =









0 0 0 0
−∑n

i δiI 0 0 0
−1

2

∑n
i KiiI −∑n

i KiIJ 0 0
1
6

∑n
i Kiii

1
2

∑n
i KiJJ −∑n

i δiJ 0









. (3.12)

Note that in order to extract the crucial properties of the limit one can also replace the

above N(n) with any other linear combination of all N1, . . . , Nn with positive coefficient. The

crucial point about this map is the fact that one now has a handle on classifying infinite

distances by analyzing the associated log-monodromy matrix [3, 4] In fact, since the allowed

log-monodromy matrices can be classified [36] one also finds a classification of limits in the

Kähler cone and of infinite distances.
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Let us briefly introduce the general classification of log-monodromy matrices for Calabi-Yau

threefolds. In general these do not have to arise from the large volume regime, even though

we will immediately return to this specific situation after this brief general interlude. More

precisely, they can arise at any limit in an m-dimensional complex structure moduli space, of

which the large volume regime is just a single patch identified via mirror symmetry. Let us

denote a log-monodromy matrix by N and the inner product by ϑ. The allowed pairs (N,ϑ)

can be classified into 4m types denoted by

Ia , a = 0, . . . ,m ,

IIb , b = 0, . . . ,m− 1 ,

IIIc , c = 0, . . . ,m− 2 ,

IVd , d = 1, . . . ,m .

(3.13)

In fact, these types classify singularities that can arise at the boundaries of the moduli space.

Near such a boundary one can introduce local coordinates tI , and the limits are taken as above

in (3.11). The singularity types are distinguished [4] by the relations displayed in Table 3.1,

where we included the extra condition allowing us to distinguish the cases Ia and IIb by using

only ϑ and N .

Type
rank of

eigenvalues ofϑN
N N2 N3

Ia a 0 0 a negative
IIb 2 + b 0 0 2 positive, b negative
IIIc 4 + c 2 0 not needed
IVd 2 + d 2 1 not needed

Table 3.1: Classification of the arising limits and singularities occurring in the complex moduli
space of Calabi-Yau threefolds.

Let us stress that the N appearing in Table 3.1 does not have to be the log-monodromy

matrix arising from sending a single coordinate into a limit. Rather, it can be extracted when

sending any number of coordinates tI to i∞ as in (3.11). Hence, we can also study what happens

if we send step-wise one after the other coordinate to i∞. At the jth step we can determine

the singularity type by associating the appropriate N(j) using (3.11), i.e. we consider

t1, . . . , tj → i∞ −→ N(j) = N1 + . . . +Nj , j = 1, . . . , n , (3.14)

and then determined the type using Table 3.1. As a place-holder for the possible types (3.13)

we will write Type A(j) for the singularity type occurring at the jth step. We then find an

enhancement chain of the form

t1→i∞−−−−−→ Type A(1)
t2→i∞−−−−−→ Type A(2)

t3→i∞−−−−−→ . . .
tn→i∞−−−−−−→ Type A(n) . (3.15)

In fact, one can show that the type only can increase or stay the same, i.e. a general chain of

singularity enhancements takes the form

Ia1 → . . . → Iak → IIb1 → . . . → IIbl →
→ IIIc1 → . . . → IIIcp → IVd1 → . . . → IVdq .

(3.16)
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The precise rules of which enhancements can occur in principle have been worked out in [36]

and a concise summary can be found in [4], Table 3.3.

This general classification can immediately be applied to the large volume log-monodromies

determined in (3.9) in the limit tA → i∞ for a single coordinate tA. In this case it is not hard

to show by using (3.9), (3.10) together with the fact that KIJK ≥ 0 for a simplicial Kähler cone,

that the case Ia actually does not arise in the large volume regime Im tI ≫ 1. This matches

the fact that the Type Ia corresponds to having a finite distance in moduli space. It arises, for

example, at the conifold point in complex structure moduli space, but not at the large volume

regime where all limits are expected to be at infinite distance. For the remaining three cases,

the singularity type of the individual limits tA → i∞ is evaluated by considering NA given

in (3.9), an first computing its square and cube

N2
A =









0 0 0 0
0 0 0 0

KAAI 0 0 0
0 KAAJ 0 0









, N3
A =









0 0 0 0
0 0 0 0
0 0 0 0

−KAAA 0 0 0









. (3.17)

Then, one can evaluate the ranks of NA, N
2
A and N3

A and use table 3.1 in order to determine

the singularity types. The results are summarized in Table 3.2.

Type rk(KAAA) rk(KAAI) rk(KAIJ)

IIb 0 0 b
IIIc 0 1 c+ 2
IVd 1 1 d

Table 3.2: We list the singularity types arising in the large volume regime, when sending a
single coordinate tA → i∞. Note that that the ranks rk(KAAA) and rk(KAAI) are either 0 or 1
depending on whether KAAA and KAAI are vanishing or not.

These results can be straightforwardly generalized to the case of sending multiple tI to i∞
in Kähler moduli space. As before we relabel the coordinates such that the limit of interest

sends the first n coordinates to i∞. The relevant log-monodromy matrix associated to this

limit is N(n), introduced in (3.12). Introducing the notation

K(n)
IJ ≡

n
∑

i=1

KiIJ , K(n)
I ≡

n
∑

i,j=1

KijI and K(n) ≡
n
∑

i,j,k=1

Kijk , (3.18)

we find

N2
(n) =











0 0 0 0
0 0 0 0

K(n)
I 0 0 0

0 K(n)
J 0 0











, N3
(n) =









0 0 0 0
0 0 0 0
0 0 0 0

−K(n) 0 0 0









. (3.19)

Evaluating the ranks of N(n), N
2
(n) and N3

(n) and using again Table 3.1, one finds the singularity

type. This yields a generalization of Table 3.2, which is presented in Table 3.3.
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Type rkK(n) rkK(n)
I rkK(n)

IJ

IIb 0 0 b
IIIc 0 1 c+ 2
IVd 1 1 d

Table 3.3: We list the singularity types arising in the large volume regime, when sending multiple
coordinates t1, . . . , tn → i∞. Note that that the ranks rk(number) and rk(vector) are either 0
or 1 depending on whether the number and vector are vanishing or not.

3.2 Infinite distances in Kähler moduli space

Having classified the limits in Kähler moduli space we next study the distances along paths as

measured by the Kähler metric KIJ̄ = ∂tI∂t̄JK. Recall that the length of a path connecting

two points Q,P in moduli space is determined by

dγ(Q,P ) =

∫

γ

√

2KIJ̄ ṫI ˙̄tJ ds , (3.20)

where the path γ is parameterized in local coordinates by tI(s) and we abbreviated ṫI = ∂tI

∂s . In

the following we will show that each path approaching a point P that is located at t1, . . . , tn →
i∞, for some n, is infinitely long.

To begin with, we determine the Kähler potential using (3.5) and inserting the mirror

periods Π given in (3.7) and the intersection form ϑ given in (3.10). This yields the well-known

expression

K = −log
(1

6
KIJKvIvJvK +

ζ(3)χ

32π3

)

≡ −logVq . (3.21)

Clearly, if we consider simplicial Kähler cones, we can use KIJK ≥ 0 to infer that Vq diverges

and hence K approaches negative infinity for any limit v1, . . . , vn → ∞. If we want to work

more generally and also want to infer the growth of Vq, we can apply a result determined in [4]

based on the growth theorem of [17]. More precisely, one shows that the leading growth of Vq

is

Vq ∼ c
(

v1
)d1 (v2

)d2−d1 · · · (vn)dn−dn−1 . , (3.22)

if one considers the limit v1, . . . , vn → ∞ in the growth sector

{

v1

v2
> λ , . . . ,

vn−1

vn
> λ , vn > λ

}

, (3.23)

for some positive λ. Here c is a positive constant and the symbol ∼ indicates that we only

focus on the leading term. The integers di are simply the types occurring in the corresponding

enhancement chain (3.15), i.e. we identify

Type A(i) IIb IIIc IVd

di 1 2 3
(3.24)

With this identification it is now clear that maximally three vi can appear in (3.22) as expected

from (3.21). It is crucial to point out that the growth of Vq depends on the sector (3.23) into
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which that path γ towards P falls. This is not a very restrictive constraint on the considered

paths, since one can reorder the v1, . . . , vn to satisfy the inequalities in (3.23). Accordingly

one then has to also consider an appropriately reordered enhancement chain (3.15) and adjust

the di.

Having determined the growth of the Kähler potential, let us now determine the growth of

the length of the path. In the following we will establish a lower bound on this growth. To do

that, let us first assume

2KIK
IJ̄KJ̄ ≤ f−2 , (3.25)

where f is some constant that might depend on the choice of the path γ. We will show below

that this condition is indeed satisfied for the Kähler potential (3.21). In order to find a lower

bound on the length of a cure we use (3.25) and the Cauchy-Schwarz inequality to derive 3

(2KIJ̄ ṫ
I ˙̄tJ)1/2 ≥ f (2KIJ̄ ṫ

I ˙̄tJ)1/2(2KIK
IJ̄KJ̄)

1/2 ≥ f |KI ṫ
I +KJ̄

˙̄tJ | = f |K̇| (3.26)

Using this estimate in (3.20) we find

dγ(Q,P ) ≥ f

∫

γ
|K̇|ds ≥ f

∣

∣

∣

∫

γ
dK

∣

∣

∣
. (3.27)

We can integrate the last integral to evaluate

dγ(Q,P ) ≥ f |K(P )−K(Q)| , (3.28)

where K(P ), K(Q) is the Kähler potential evaluated at the two endpoints P , Q. This implies

that for a point P with t1, . . . , tn → i∞ we see that the growth of dγ(Q,P ) is dominated by the

divergent contribution near P . Hence, we find that the growth of the length is dominated by

dγ(Q,P ) & f logVq ∼ f

n
∑

i=1

(di − di−1) log v
i , (3.29)

with d0 = 0, and di, i = 1, . . . , n defined in (3.24). Here we have used the expression (3.22)

for the growth of Vq in a growth sector (3.23). Clearly, this implies that the length is infinite

as soon as we take v1, . . . , vn → ∞. Note, however, that this does not necessarily imply that

every path has a length growing logarithmically in vi, since we only presented a lower bound.

It remains to show that (3.25) is actually satisfied for the Kähler potential (3.21). By a

straightforward computation one determines

2KIK
IJ̄KJ̄ = 6 + 6

∞
∑

n=1

(

ζ(3)χ

16π3KIJKvIvJvK

)n

. (3.30)

Since the non-constant terms are increasingly suppressed in approaching the point P , this

implies that one can easily find a constant f such that (3.25) is satisfied.

We thus conclude that all limits in the large volume regime are at infinite distance. While

this result is not unexpected, it is satisfying to see that it can be explicitly derived. It implies

3The Cauchy-Schwarz inequality reads ||v|| · ||u|| ≥ |〈v, u〉|, where the norm is related to the inner product

by ||v|| =
√

〈v, v〉. In the case at hand one uses v ∼= (ṫI , ˙̄tJ ), u ∼= (KIL̄KL̄,K
J̄LKL), with an inner product

determined by the Kähler metric.
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that one cannot find finite lengths paths towards t1, . . . , tn → i∞ by using seemingly appearing

cancellations in the volume Vq due to a choice of basis or a consideration of non-simplicial

Kähler cones. It also gives further evidence that limits are at infinite distance if and only if

the arising singularity types are II, III, or IV. These are precisely the types that arise in the

large volume regime, as discussed in subsection 3.1. Note that only the direction that infinite

distance implies type II, III, IV singularities has been proved generally in a multi-dimensional

moduli space [37].

3.3 Infinite charge orbits of states

Having determined the possible infinite distance singularities arsing in the large volume regime,

we next want to identify an infinite set of states that become massless when approaching such

limits. It was suggested in [3] that these states are generated by acting with the monodromy

matrix on a single seed charge q0 to generate an infinite tower. In higher-dimensional field

spaces this can be captured by what was called a charge orbit denoted by Q(q0|m1, . . . ,mk)

in [4]. There are two basic requirements on the charge orbit Q(q0|m1, . . . ,mk) for it to generate

the states necessary in the SDC. Firstly, the states have to become massless when approaching

an infinite distance point. Secondly, there has to be infinitely many states with this feature. It

was suggested in [3] that such states are actually BPS states with mass determined by the central

charge M(Q) = |Z(Q)|. The tricky part of this study is to evaluate the behavior of M(Q) along

every path approaching the infinite distance point. This can be done by splitting the moduli

space near the infinite distance points into growth sectors as we discuss in the following.

To begin with we have to determine the growth sector in which a given path γ towards

a point P with t1, . . . , tn → i∞ lies. A general path can be parameterized by local coordi-

nates tI(s), where s labels the position on γ. To check the growth sector into which tI(s) falls,

we first introduce it for a specific ordering t1, . . . , tn. In this simplest situation it takes the form

R1...n ≡
{

ti = bi + ivi :
v1

v2
> λ , . . . ,

vn−1

vn
> λ , vn > λ , |bi| < δ

}

, (3.31)

for some positive λ, δ. It might be the case that this condition cannot be satisfied for tI(s) even

if we start with very large vi. Then we have to reorder the ti by also exchanging the vi in (3.31).

Once we have determined an appropriate ordering, we get an order (ti1 , . . . , tin) for performing

the limit t1, . . . , tn → i∞. For this ordering one then has to determine the singularity chain

ti1→i∞−−−−−−→ Type A(1)
ti2→i∞−−−−−−→ Type A(2)

ti3→i∞−−−−−−→ . . .
tin→i∞−−−−−−→ Type A(n) . (3.32)

Clearly, we can always relabel the coordinates ti to make the singularity chain look like (3.15)

and the growth sector takes the form (3.31). In the following we will assume that such a

reordering and relabeling has been performed if necessary.

Having identified a growth sector and an associated enhancement chain we next want to

determine the charge orbits relevant in the large volume regime. Later on we will apply this

construction to elliptic fibrations. Let us first note that there are h1,1(Y3) log-monodromy

matrices NI arising in the large volume regime. Each is associated to a coordinate tI as

discussed above. Hence, we expect the general charge orbit to be of the form [4]

Q
(

q0|m1, . . . ,mh1,1(Y3)

)

= exp
(

∑h1,1(Y3)
I=1 mINI

)

q0 , (3.33)
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where we take the mI ’s to be non-negative integers. Note that this expression simply states that

we apply mI times the monodromy transformations TI discussed before (3.8) to a suitable seed

charge q0. The challenge is now two-fold: (1) one needs to construct a suitable q0, which ensures

that q0 andQ are massless at P ; (2) one needs to identify situations whenQ describes an infinite

set of states. Both of these issues have been clarified in [4]. However, it should be stressed that

the explicit constructions of [4] uses a significant amount of mathematical technology related

to the construction of a special set of matrices N−
I that are parts of commuting sl(2) algebras.

While in this picture the existence and properties of q0 and Q can be more easily abstractly

analyzed, it is technically involved to construct these special N−
I . We will therefore follow a

different route here. We will use the conditions found in [4] translated to the NI basis and

construct the q0 satisfying them. Let us stress that the construction of q0 is not generally

expected to be unique and there can be various different charge orbits labeling the relevant

states for the SDC.

In reference [4] it was shown that there are three singularity patterns for which generally

an infinite charge orbit exists that becomes massless at the considered point P . The first

possibility is that P lies on a Type IV locus. In other words, Type A(n) = IV in the enhancement

chain (3.15). The second possibility is that P lies at a Type II locus, i.e. that Type A(n) = II

in (3.15) and along this locus occurs an enhancement II→ III or II→ IV in the considered region

of field space. Finally, the third possibility is that P lies at a Type III locus, i.e. Type A(n) = III

and this singularity enhances as III → IV in the considered region of field space. In the large

volume regime one of these three possibilities is satisfied for every infinite distance point P [4].

This can be deduced from the fact that the highest singularity type in the large volume regime

is IVh1,1(Y3). Hence, either one is directly at a type IV singularity or one inherits the orbit from

the large volume point with IVh1,1(Y3). This implies that at each infinite distance point in the

large volume regime there exists an infinite charge orbit. Notice that, if these intersections of

the singular divisors allowing the enhancement of the type of singularity had not be present,

there would not be possible to identify an infinite charge orbit at type II and III singularities.

This exemplifies how the Swampland Distance Conjecture is realized in a highly non-trivial and

intricate way in Calabi-Yau compactifications. The conjecture does not constrain only the local

structure of the Calabi-Yau but also the global network of enhanced singularities allowed in the

moduli space.

Masslessness conditions To construct a charge orbit relevant in the large volume regime

let us recall that, since [4]

m(Q) = |Z(Q)| ≤ ‖Q‖ ∼ ‖q0‖ , (3.34)

a sufficient condition to ensure the masslessness of Q is that q0 has vanishing norm. In order to

achieve this for the enhancement chain (3.15) within the growth sector (3.31), we first require

that for every i = 1, . . . , n there exists some vectors ui, vi and xi satisfying N2
(i)vi = 0 and

N3
(i)xi = 0 such that the seed vector takes the form [4]

q0 = vi if Type A(i) = II , (3.35a)

q0 = vi +N(i)ui if Type A(i) = III , (3.35b)

q0 = vi +N(i)xi if Type A(i) = IV . (3.35c)
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These conditions might not be strong enough to generally ensure masslessness, since in some

cases ‖q0‖ might tend to a finite value at the infinite distance point. To make sure that this

does not happen, we need to additionally require that for the last singularity in the chain (3.15)

that ther exists some vectors un and wn satisfying N2
(n)wn = 0 such that

q0 = N(n)un if Type A(n) = II , (3.36a)

q0 = N(n)wn if Type A(n) = III , (3.36b)

q0 = N(n)wn +N2
(n)un if Type A(n) = IV . (3.36c)

Roughly speaking the conditions (3.36) ensure the necessary suppression of ‖q0‖ by at least

one coordinate vn that grows to infinity at the infinite distance point.4

Infiniteness conditions In order to assure that an orbit generated, we need to demand that

the action of the exponential in (3.33) on q0 is non-trivial, i.e. we need that

N(J∗)q0 6= 0 for some J∗ = 1, . . . , h1,1(Y3) . (3.37)

Notice that it is enough if this is satisfied for at least one NJ∗ , J∗ = 1, . . . , h1,1(Y3). In light of

the masslessness conditions (3.35), a simple way how to realize this might be to demand that it

is satisfied for a Type IV singularity. As mentioned above, the large volume point is a Type IV

singularity, so we are ensured that an infinite orbit can be generated, even if Type A(n) 6= IV.

However, let us remark that stricto sensu one does not need to have a Type IV singularity in

order to generate an orbit. Indeed what can happen is that in a sufficiently small neighborhood E
close to the point of interest P , there is another Type II or III singularity, associated to a

coordinate tJ which is not taken to i∞, i.e. J > n. We do not need to impose (3.35a) for N(J),

such that we can have N(J)q0 6= 0, generating an orbit. Notice that the sum in (3.33) should

really be only over the NI ’s present in E .

Constructing the orbit We now construct explicitly such a seed vector q0. We first split

this 2h1,1(Y3) + 2-dimensional vector into four parts

q0 =
(

q(6), q
(4)
I , q

(2)
I , q(0)

)T
, I = 1, . . . , h1,1(Y3) , (3.38)

where we indicated with the superscript that q(p) will later be interpreted as inducing Dp-brane

charges. Now we enforce the conditions (3.35) and (3.36) by using the explicit forms of the log-

monodromies N(i) given in (3.12). The details of the computations can be found in appendix A.

One immediately finds that one needs to demand

q(6) = 0 for all Type A(n) (3.39)

and

q
(4)
I = 0 for Type A(n) = III or IV . (3.40)

4This can be shown by using the results of section 4.3 of reference [4]. A sufficient condition for q0 to be
masslessness at the infinite distance point was given in eq. (4.29). Replacing N−

(i) → N(i) the condition (4.29)

of [4] is satisfied when imposing (3.35) and (3.36).
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This last condition can also be set for a type II singularity while still satisfying the infinite-

ness condition (3.37). Similarly q(0) is not constrained by the masslessness conditions (3.35)

and (3.36) but since it plays no role in (3.37) it can safely be set to zero. That is, we can choose

q
(4)
I = 0 for Type A(n) = II (3.41)

q(0) = 0 for all Type A(n) (3.42)

So we see that the non-trivial sector of these conditions is for q
(2)
I , already hinting that the

infinite orbit will correspond to D2-brane states. The masslessness conditions (3.35) and (3.36)

are then satisfied, for all singularity types, if

q
(2)
I = K(n)

IJ ωJ (3.43)

for some integer vector ωI such that

q
(2)
i = 0 for i < nIII , (3.44)

where nIII labels the first type III singularity, and

n
∑

a=1

q(2)a = K(n)
I ωI = 0 if Type A(n) = III . (3.45)

This last condition is always satisfied if we extend (3.44) to

q
(2)
i = 0 for i < nIV . (3.46)

which we will take for simplicity. Notice that this latter condition is not necessary unlike (3.44)
and (3.45). However, we will see in the appendix that it is possible to find an infinite charge
orbit satisfying (3.46). It would be interesting, though, to investigate what changes if it is
relaxed; but we leave this task for future work.

On the other hand, the condition (3.37) for the orbit to be generated requires that

q
(2)
J∗ 6= 0 for some J∗. (3.47)

We outline in appendix A a concrete approach to find some ωI such that eqs. (3.44) to (3.47)

are satisfied, ensuring that there always exists a massless infinite charge orbit. It is expected

that this can be always achieved, since the existence of an orbit was already shown in [4] in a

more abstract way. Having determined q0 we can derive the charge orbit by acting with the

log-monodromies NI as in (3.33). This yields

Q =
(

0, 0, . . . , 0, q
(2)
I ,−∑

I mIq
(2)
I

)T
, (3.48)

where q
(2)
I meets the above requirements.

In Type II compactifications, this orbit of states has a specific microscopic interpretation

in terms of BPS wrapping D-brane states. For concreteness, in a Type IIB compactification
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on a Calabi-Yau threefold Ỹ3, q would correspond to the charge of a D3-brane wrapped on the

three-cycles γI and whose mass M = |Z(q)| would be given by the central charge

Z(q) = e
Kcs
2

∫

Y3

H ∧ Ω =
ΠT ϑq

(

iΠ̄TϑΠ)1/2
. (3.49)

Here, H is the three-form with coefficients q in the integral basis γI and the periods Π and

the Kähler potential Kcs in the complex structure moduli space are defined in (3.5) and (3.6).

The masslessness conditions (3.35) and (3.36) are obtained from requiring that Z(Q) = 0 at

the infinite distance singularity.

By using the mirror map, it is also possible to translate these results to the Kähler moduli

space of Type IIA Calabi-Yau compactifications. The D3-branes will map to different bound

states of Dp-branes with even p. More precisely, notice that we have conveniently chosen a basis

for the mirror period vector in (3.7), which is identified with the following Type IIA K-theory

basis of branes,

(OY3 ,ODI
, CJ ,Op), (3.50)

where p are points,DJ are h1,1(Y3) divisors and CJ := ι!OCJ

(

K
1/2

CJ

)

where CI are the dual h1,1(Y3)

curves, so CJ ·DI = δJI (see [38], section 2.3 for their precise definition). Recall that the divi-

sors DI are Poincaré-dual to the two forms ωI in (3.1) and span the Kähler cone. In practice,

this implies that the different components of the charge vector q correspond to the charge of

a D6-,D4-,D2- and D0-brane wrapping the whole threefold Y3, a 4-cycle, a 2-cycle or a point

respectively. Therefore, the massless infinite charge orbit at large volume consists of D2-D0

bound states.

It might seem surprising that we are identifying the massless tower predicted by the Swamp-

land Distance Conjecture at the large volume limit of Type IIA with a massless charge orbit

of BPS states consisting of bound states of D-branes instead of Kaluza-Klein states. Clearly,

there can be more than an infinite tower becoming massless at infinite distance as we will also

get a KK tower in this limit. However, it is this charge orbit of BPS states the one that will be

later identified as responsible for emergence of the infinite distance and restoration of a global

symmetry. Let us also remark that these BPS states only become massless with respect to the

Planck scale Mpl, since the central charge gives the value of the mass in Planck units. Since

the Planck mass is also going to infinity in the large volume limit, the states become indeed in-

finitely heavy but their mass diverges exponentially slower than Mpl. The massless requirement

of the Swampland Distance Conjecture only makes sense then in the Einstein frame, where Mpl

is kept finite.

3.4 Infinite distances and charge orbits in elliptic fibrations

In this section we will determine the singularity types and charge orbits arising in elliptic

fibrations with a single section. This analysis will be very useful in the context of the M/F-

theory duality in section 4. In order to do that one first needs to determine the Kähler cone

basis for these geometries. This was done, for example, in ref. [39].

We denote the base of this elliptic fibration by B2 and introduce the map π : Y3 → B2

projecting onto B2. We will assume that B2 admits a simplicial Kähler cone basis, which we
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then pull to two-forms ωα on Y3 via π∗. On the threefold Y3 the two-form cohomology naturally

splits as

ω̃I = {ω̃0, ωα} , (3.51)

where ω̃0 is Poincaré-dual to the base divisor B2 and the ωα are Poincaré-dual to divisors Dα =

π−1(Db
α), which are inherited from divisors Db

α in the base. This amounts to say that h1,1(Y3) =

h1,1(B2) + 1. One can show that the intersections numbers (3.3) are then given by

K̃000 = ηαβK
αKβ , K̃00α = ηαβK

β ,

K̃0αβ = ηαβ , K̃αβγ = 0 .
(3.52)

where ηαβ = Db
α · Db

β = B2 · Dα · Dβ is a non-degenerate symmetric matrix with signa-

ture (1, h1,1(B2) − 1) and Kα are the expansion coefficients of the first Chern class of the

base c1(B2) = −Kαωα.
5 In order to obtain a Kähler cone generator in the ω̃0 direction one has

to perform the shift

ω0 = ω̃0 −Kαωα , (3.53)

This implies that intersection numbers in the Kähler cone basis ωI = {ω0, ωα} are given by

K000 = ηαβK
αKβ , K00α = −ηαβK

β,

K0αβ = ηαβ , Kαβγ = 0 .
(3.54)

We note that all these intersection numbers are positive, as required in the Kähler cone,

for h1,1(B2) ≤ 10, since also
∫

B2
ωα ∧ c1(B2) = −ηαβK

β ≥ 0. The Kähler form can be also

expanded in this basis

J = vIωI = vαωα + v0ω0 , (3.55)

which defines the cone v0, vα > 0.

Using these intersection numbers and the rules in Tables 3.2 and 3.3 we can read off the

singularity types if some or all of the h1,1(Y3) coordinates are taken into a limit. Since Kαβγ = 0,

the only way to obtain a Type IV singularity is to send v0 → ∞. Considering first that situation,

we find that there are only two cases, depending on whether v0 is the only coordinate taken to

infinity or not. In the first case, the singularity is of Type IVh1,1(B2), while in the second case

we find a singularity of Type IVh1,1(Y3), which is the maximal singularity type, already when a

single coordinate is added to the limit. That is, we have

v0 → ∞ : Type IVh1,1(B2) , (3.56a)

v0, v1, . . . , vn → ∞ : Type IVh1,1(Y3) , (3.56b)

where in the second limit, the number n of coordinates vα is non-zero but otherwise arbitrary.

The second situation is when v0 stays finite, i.e. we take the limit v1, . . . , vn → ∞ with n

arbitrary.6 Here again we find two cases, depending on whether all the ηij vanish or not:

v1, . . . , vn → ∞ :

{

Type II2 if ηij = 0 ∀ i, j = 1, . . . , n (3.57a)

Type III0 otherwise (3.57b)

5Note that in this expansion one actually has to use the two-forms on B2, but we abuse notation slightly.
6Recall that the ordering of the coordinates is also arbitrary, meaning that we do not impose any restriction

on which of the vα we choose.
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With this at hand, we find that there are only three possible enhancement chains (of course

sub-chains of the last one are also possible)

v0→∞−−−−→ IVh1,1(B2)
vα→∞−−−−→ IVh1,1(Y3) ,

vα→∞−−−−→ II2
v0→∞−−−−→ IVh1,1(Y3) ,

vα→∞−−−−→ II2
vβ→∞−−−−→ III0

v0→∞−−−−→ IVh1,1(Y3) ,

(3.58)

where the conditions on the vα’s for these to happen can easily be read off (3.56) and (3.57).

Having determined the arising singularity types we can use the results of the previous

section to obtain the charge orbit. As described there, this first requires to determine the growth

sector (3.31) in which the considered path tI(s) towards a point P at a limiting point t1, . . . , tn →
i∞. This might require to reorder the coordinates, in the sense that (3.31) is only satisfied along

a path if we permute the coordinates in (3.31). In elliptic fibrations the crucial information

required to determine the orbit is the growth of v0 compared to the vα’s. Let us first assume

that we have picked an ordering of the vα’s such that the path is in the corresponding growth

sector. We then relabel these vα’s, such that the ordering is simply
(

v1, . . . , vh
1,1(B2)

)

, where

we are free to pick any ordering for the coordinates that are not sent into a limit. We next ask

in between which two elements vn̂−1 and vn̂ the v0 lies, i.e. for which n̂ one has

vn̂−1

v0
> λ ,

v0

vn̂
> λ . (3.59)

The integer n̂ determines at which point in the enhancement chain a Type IV singularity occurs,

as explained above. It follows from eq. (3.46) that all q
(2)
1 , . . . , q

(2)
n̂−1 are vanishing, while q

(2)
0 is

the first possibly non-vanishing charge, if we order the charges according to the order of the

coordinates appearing in the growth sector. However, for later convenience, we will adopt a

different ordering, namely that q
(2)
0 is always the last of the q

(2)
I ’s, even though v0 grows faster

than the vi’s with i ≥ n̂, as indicated above. This ordering will be useful when discussing the

interpretation of the charge orbit in F-theory. Using (3.48) with (3.46), we find

Q =
(

0, . . . , 0, q
(2)
n̂ , . . . , q

(2)
h1,1(B2)

, q
(2)
0 ,−m0q

(2)
0 −∑h1,1(B2)

i=n̂ miq
(2)
i

)T
, (3.60)

where at least one of the q
(2)
I has to be non-vanishing, as required by eq. (3.47).

Actually we show in appendix A that it is always possible to choose the wI in (3.43) such

that only q
(2)
0 is non-vanishing. That is to say, for any path towards the large volume point,

one can find the following massless infinite orbit

Q =
(

0, . . . , 0, q
(2)
0 ,−m0q

(2)
0

)T
. (3.61)

Furthermore, the presence of this orbit is independent of the intersection numbers, so it is

valid for any Calabi-Yau threefold. This is one of the central results of this section and will be

especially important in section 4.4 when studying the F-theory limit.

Let us close this section by briefly discussing the sector dependence of these results. Cru-

cially, as stated in (3.59), the form of the charge orbit (3.60) in general depends on the
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growth of v0 relative to the vα. However, it is also immediate from the occurring singular-

ities listed (3.56) and (3.57) that the relative growth of the vα, α ≤ n̂ − 1 and vα, α ≥ n̂

is irrelevant to the form of Q. Hence, we find that for elliptic fibrations the large volume

charge orbit (3.60) exhibits a much milder path-dependence than what generally arises due to

the presence of growth sectors. In particular, the special choice of orbit (3.61) is completely

independent of the path.

3.5 Transferring the orbit to small volumes

In the previous subsections we have discussed the charge orbits arising in the large volume

regime. In particular, we have generally constructed an infinite orbit Q in (3.48) that becomes

massless at a point P in the large volume regime. We might now ask if we can carry this orbit

to other points in moduli space away from large volume. In general, this is an extremely hard

question, since it requires information about the global properties of the moduli space and the

D-brane states existent at various other points. For elliptic fibrations, however, there is much

literature [39–44] on how to leave the large volume point using the map v0 → 1/v0, where we

recall that v0 is the volume of the elliptic fiber. In the following, we will use these results to

present a charge orbit for the limit

v0 ≡ 1

ṽ0
→ 0 . (3.62)

Note that this corresponds to considering a completely different region in moduli space as

indicated in Figure 1. As a byproduct we thus find an example that there can be infinite

massless orbits at singularities in moduli space that do not satisfy the conditions outlined in

subsection 3.3. It was shown in [45] that the monodromy transformation associated to the

small fiber divisor can be of finite order if the number of sections of the mirror dual is not high

enough. In these cases, the divisor v0 → 0 is of type I (finite distance) and the intersection

point with large base volume will be at most type III0. Hence, there does not exit any local

monodromy operator that can generate a massless infinite charge orbit at the regime of small

fiber, but still there should be an infinite massless tower of states since the intersection point

with large base volume is always at infinite distance. Interestingly, it turns out that we can still

identify an infinite charge orbit which is transferred from points that satisfy the conditions of

subsection 3.3 as suggested in [4]. In particular, the orbit is transferred from the large volume

point as we explain in the following.

Considering first Type IIA string theory on a two-torus of volume v0, it is well-known that

the map v0 → 1/v0 arises from applying T-duality along both torus circles. The basic idea

is to apply this to elliptic fibrations by performing the double T-duality along the fiber. To

implement this transformation one performs a so-called Fourier-Mukai transformation. This

transformation acts as a non-trivial linear map S acting on the K-theory basis of D-branes

(OY3 ,OD0 ,ODα , Cα, C0,Opt) , (3.63)

which is the specialization of (3.50) to elliptic fibrations. The form of the matrix S can be

explicitly calculated following [39, 46, 47] as we show in detail in appendix B. The resulting
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{vα} → ∞

v0 → ∞

v0 → 0

large volume
regime

large base volume
and small fiber

v0 → 1
v0

Figure 1: The large volume regime is related to the small fiber regime by a double T-duality
along the elliptic fiber. This duality is implemented by a Fourier-Mukai transform.

expression acting on the basis (3.63) takes the form

S =

















0 1 0 0 0 0
−1 0 0 0 0 0
Kα 0 0 ηαβ 0 0
−Kα −Kα −ηαβ 0 0 0
0 0 0 1

2

(

Kβ − ηβγηγγ
)

0 1
0 1

2K
γ (ηγγ −Kγ)

1
2 (ηββ −Kβ) 0 −1 0

















, (3.64)

where Kα = ηαβK
β. One checks that this transformation preserves the symplectic inner prod-

uct ϑ given in (3.10), i.e. that STϑS = ϑ. Note that S contains, as indicated with the boxes,

the standard S-duality matrix. As we will see momentarily this is in accord with the fact

that the double T-duality along the fiber maps t0 → −1/t0, which is the non-linear S-duality

transformation of the complex parameter t0. Furthermore, we also stress that S transforms

the D-brane states supported in the elliptically fibered geometry. Recalling it corresponds to a

double T-duality on the elliptic fiber we find, in particular that
(

D2f
D0

)

S−→
(

D0
D2f

)

, (3.65)

where D2f are the D2-branes wrapped on the elliptic fiber.

This duality operation also relates the periods Π valid at the large v0 regime to the small v0

regime. In particular, it relates the large volume central charges as

∣

∣

∣Z
[

SΠ(tα, t0)
]

∣

∣

∣ =

∣

∣

∣

∣

Z
[

Π
(

tα + 1
2
kα,− 1

t0

)]

∣

∣

∣

∣

, (3.66)

where S is the matrix given in (3.64). This expression means that one can equate the central

charges (3.66) when either replacing the periodsΠ → SΠ or evaluating the periods at a different

coordinate location. Note that if the left-hand side are the large volume periods valid at v0 =

Im t0 ≫ 1 and vα = Im tα ≫ 1 the right-hand side is now valid in the regime Im t̃0 = 1/v0 ≫ 1

and vα ≫ 1. It is non-trivial to show (3.66), since it equates central charges at different points

in moduli space. However, it was argued in [39–44] that the transformation S effectively maps

t0 7→ − 1
t0

, t̃α 7→ t̃α + 1
2
kα , (3.67)
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when explicitly evaluating the power series expansions of the periods. An arising overall complex

rescaling of Π can be absorbed by a transformation of the Kähler potential appearing in the

central charge Z leading to (3.66).

In the previous section we gave in (3.60) the massless infinite charge orbit at the large

volume point for an elliptic fibration. In particular, this orbit is at large fiber volume, v0 → ∞.

In order to obtain the orbit at small fiber volume we note that (3.66) implies that if QLV is the

large volume orbit massless at t0, t1, . . . , tn → i∞, the orbit

QF = SQLV (3.68)

will be massless at v0 → 0. Using the explicit expressions (3.64) and (3.60) we find

QF =
(

0, 0, ηαiq
(2)
i , 0, −m0q

(2)
0 −∑

i miq
(2)
i + 1

2(K
i − ηiαKαα0)q

(2)
i , q

(2)
0

)T
, (3.69)

where we recall that i ≥ n̂ designates the vα that grow slower than v0 when taking the limit,

see (3.59). In order to read the actual charge, we need to further contract with ϑ

QF · ϑ =
(

−Kiq
(2)
i + q

(2)
0 , −m0q

(2)
0 −∑

imiq
(2)
i , 0, ηαiq

(2)
i , 0, 0

)T
. (3.70)

Hence, the infinite tower of states becoming massless at small volume of the fiber consists

of D2-D0 bound states which differ by the D2-brane charge along the elliptic fiber. The orbit

can also admit a D4-charge although, as remarked in the previous section, is always possible to

choose an infinite orbit in which this D4-charge vanishes. The transfer of the orbit from the large

volume regime to small fiber is highly non-trivial and highlights the intricate global structure

which is required to satisfy the Swampland Distance Conjecture at any infinite distance point

of the moduli space.

4 On infinite distances and charge orbits in M- and F-theory

In this section we will consider M-theory compactified on an elliptically fibered Calabi-Yau

threefold Y3 and the duality of this setting to F-theory on the same threefold Y3 times an

additional circle S1. We will study infinite distances and charge orbits arising near the large

volume point of such an elliptically fibered geometry in M-theory. Subsequently we generalize

the discussion to include the F-theory limit which requires sending the volume of the elliptic

fiber to zero. In the F-theory dual picture this limit corresponds to sending the radius of the

additional S1 to infinity. The resulting effective action then describes F-theory compactified on

the elliptically fibered Y3. This leads us to a dual geometric realization of the infinite tower of

Kaluza-Klein states associated to S1 in terms of an infinite charge orbit by using the discrete

symmetries associated to the large volume regime in M-theory. These discrete symmetries

are captured by monodromy transformations when considering the complexified Kähler moduli

space.

4.1 6D Supergravity circle compactification and F-theory

In this subsection we review the circle compactification of the 6D N = (1, 0) supergravity

effective theory obtained from compactifying F-theory on a Calabi-Yau threefold. We first
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revisit the classical reduction and then include one-loop corrections from the Kaluza-Klein

tower. Our presentation will closely follow [18], but we refer to [48] for an earlier study of this

setting.

In a generic 6D supergravity with (1,0) supersymmetry (8 supercharges), one can have

four type of multiplets (restricting to spin less or equal to two): the gravity multiplet, vector

multiplets, tensors multiplets and hypermultiplets. In order to simplify the discussion, we will

consider a theory that has no vector multiplets and contains in addition to a gravity multiplet nT

tensor multiplets as well as nH neutral hypermultiplets. To ensure cancellation of gravitational

anomalies we will set nH = 273 − 29nT . Note that this limits the number of tensor multiplets

that one can consider, as it requires nT ≤ 9.

The bosonic field content of the theory under consideration consists of the graviton ĝµν , nT +

4nH real scalars, one self-dual and nT anti-self-dual two-forms collectively denoted by B̂α, α =

1, . . . , nT+1, whose field-strengths Ĝα = dB̂α+1
2a

αω̂grav contain the gravitational Chern-Simons

form (see e.g. [18] for further details). The bosonic part of the 6D supergravity (pseudo-) action

takes the form

S6 = M4
pl,6

∫

M6

1
2
R̂ ⋆̂ 1− 1

4
gαβĜ

α ∧ ⋆̂ Ĝβ − 1
2
gαβ dj

α ∧ ⋆̂ djβ − huv dq̂
u ∧ ⋆̂ dq̂v

−1
4
Ωαβ a

αB̂β ∧ Tr
(

R̂ ∧ R̂
)

,

(4.1)

where the q̂u, u = 1, . . . , 4nH are the scalars in the hypermultiplets. The nT +1 real scalars jα

are subject to the constraint

Ωαβj
αjβ = 1, (4.2)

where Ωαβ is a constant SO(1, nT ) metric, leaving effectively nT independent real scalars that

reside in the tensor multiplets. The positive definite, and non-constant, metric gαβ of scalar

manifold is defined as

gαβ = 2jαjβ − Ωαβ; jα = Ωαβj
β . (4.3)

The (anti)-self-duality conditions for the two forms B̂α in a SO(1, nT ) takes the form gαβ ⋆̂ Ĝ
β =

Ωαβ Ĝ
β and has to be imposed by hand in addition to the equations of motion derived from

the action (4.1). Let us note that there is a convenient way to introduce the coordinates jα,

such that (4.2) is automatically satisfied. More precisely, we can introduce real unconstraint

scalars vαb and define

jα =
vαb

V1/2
b

, Vb = Ωαβ v
α
b v

β
b . (4.4)

Since the vαb are unconstraint there is an extra degree of freedom Vb. It turns out that in

F-theory compactifications it is actually physical and resides in a hypermultiplet as we discuss

below.

We now proceed to reduce action (4.1) on a circle, focusing on the two-derivative part. The

6D metric and two-forms B̂α are reduced as

dŝ2 = ds2 − r2(dy −A0)2 , B̂α = Bα −Aα(dy −A0) , (4.5)

where A0 is the Kaluza-Klein vector and Bα and Aα are 5D two-forms and one-forms, respec-

tively. Dimensionally reducing the (anti)-self-duality condition to r gαβ ⋆G
β = −ΩαβF

β we can
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eliminate the two-forms from the 5D action and only retain 5D vectors. The five-dimensional

Einstein frame action at the two derivative level then takes the form 7

S5 = r0M
4
pl,6

∫

M5

1
2
R ⋆ 1− huv dq

u ∧ ⋆ dqv − 2
3
r−2 dr ∧ ⋆dr − 1

4
r8/3r

−2/3
0 F 0 ∧ ⋆F 0

−1
2
gαβ

(

dja ∧ ⋆djβ + r−4/3r
−2/3
0 Fα ∧ ⋆F β

)

− 1
2
r−1
0 ΩαβA

0 ∧ Fα ∧ F β.

(4.6)

Since such a circle reduction does not break any supersymmetry this is a 5D N = 2 su-

pergravity theory (8 supercharges), with one gravity multiplet and n
(5)
V = nT + 1 vector mul-

tiplets, and nH neutral hypermultiplets. The bosonic field content of such a theory is one

graviton, n
(5)
V +1 vectors8 and n

(5)
V +4nH real scalars. The canonical form of the action is given

by

Scan
5 = M3

pl,5

∫

M5

1
2
R ⋆ 1− huv dq

u ∧ ⋆ dqv

−1
2
GIJ

(

dM I ∧ ⋆dMJ + F̄ I ∧ ⋆F̄ J
)

− 1
12
CIJKĀI ∧ F̄ J ∧ F̄K ,

(4.7)

where all the vectors are denoted collectively as ĀI , I = 0, . . . , n
(5)
V , and the n

(5)
V + 1 reals

scalars M I are subject to the so-called very special geometry constraint

N ≡ 1

3!
CIJKM IMJMK !

= 1, (4.8)

leaving effectively n
(5)
V reals scalar degrees of freedom. This cubic potential N specifies entirely

the theory at the two derivatives level, the field metric (which coincide with the gauge coupling

function) and the Chern-Simons coefficients being given by

GIJ =
[

−1
2
∂I∂J logN

]

N=1
, CIJK = ∂I∂J∂KN . (4.9)

Also at the four-derivative level a 5D N = 2 action is known that includes the term arising from

the reduction of the last term in (4.1). Concretely, the 5D action with four-derivative terms

presented in [49] includes the term

Sgrav
5 = −1

4

∫

M5

cI Ā
I ∧ Tr (R ∧R) . (4.10)

The general action (4.7) matches with the action obtained (4.6) by dimensional reduction

if we identify the nT + 1 vector multiplets (M I , ĀI) as

M0 = r−4/3 , Ā0 = r
−1/3
0 A0 , (4.11a)

Mα = r2/3jα , Āα = r
−1/3
0 Aα , (4.11b)

together with a cubic potential given by

N F
class = ΩαβM

0MαMβ , (4.12)

7This requires a Weyl rescaling of the metric gEµν = (r/r0)
2/3gµν .

8The +1 comes from the gravity multiplet, which contains a vector.
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and finally the 5D Planck mass is related to the 6D one as in (2.14), i.e. M3
pl,5 = r0M

4
pl,6. Using

the definitions (4.11), one directly finds N F
class = Ωαβj

αjβ , such that the constraint (4.2) indeed

implies N = 1. Also straightforward to get from the N F
class defined above is that the only non-

zero Chern-Simons coefficient in (4.7) is C0αβ = 2Ωαβ. Finally, reducing the higher curvature

term in (4.1) and comparing with (4.10) leads to the identification cα = −12Ωαβa
β, with c0

vanishing in the classical reduction.

The action (4.7) evaluated with (4.12) includes only the zero modes of the circle reduction.

Higher order massive KK modes have not been written down, however they do run in the loops

and might generate quantum corrections, as we saw in section 2.2. In this work we are inter-

ested by the quantum corrections to the moduli space metric. However, because of the very

special geometry, the field metric GIJ is related to the Chern-Simons coefficients CIJK through

the cubic potential N , such that all the information is already encoded in the Chern-Simons

coefficients. In the case of interest, only C000 is being generated by loop corrections, because

the KK modes are only electrically charged under A0 and not under Aα. Furthermore super-

symmetry tells us that there are no further loop corrections beyond one-loop. The KK-modes

contributing to C000 are massive spin-1/2, massive spin-3/2 and massive two-form fields. The

computation of this one-loop correction was carried out [20] and shown to yield the contribution

C1-loop
000 =

9− nT

4
. (4.13)

Such a Chern-Simons term leads to a piece in the cubic potential N 1-loop = 1
6C

1-loop
000 (M0)3 which

in turn gives a one loop correction to the field metric G1-loop
00 ∼ 1/(M0)2. This contribution

alone already induces an infinite distance singularity at M0 → ∞, which is thus generated at

one-loop level. Adding the classical result (4.12) and the the one-loop result (4.13), we find the

following total cubic potential for a circle reduction of a 6D theory with nT tensor multiplets

and without vector multiplets

N F
tot = ΩαβM

0MαMβ +
9− nT

24
(M0)3 (4.14)

We will now discuss how this result is arising in the dual M-theory compactification on an

elliptically fibered Calabi-Yau threefold.

4.2 M-theory on a Calabi-Yau threefold and the F-theory match

Having discussed the dimensionally reduced a 6D (1, 0) supergravity action arising from F-

theory on a circle, we now briefly recall the match of the resulting effective action with a

reduction of M-theory on an elliptically fibered Calabi-Yau threefold. This implements the

F-theory to M-theory duality. The circle radius will then be part of the Kähler moduli space

such a threefold.

To begin with, we will briefly summarize the dimensional reduction of eleven-dimensional

supergravity on a Calabi-Yau threefold. This reduction is well-known, see e.g. [50], and we

will follow the notation of [18]. Eleven dimensional supergravity contains in addition to the

metric also a three-form Ĉ3 as bosonic fields, where the hat now indicates eleven-dimensional

objects. We now reduce this theory on a Calabi-Yau threefold Y3, i.e. we take M11 = R1,5×Y3.

The massless fluctuations around the background Calabi-Yau metric correspond to complex
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structure deformations and Kähler structure deformations. The former are part of hypermul-

tiplets and not be of relevance in the following. Rather we will focus on the Kähler structure

deformations. These are obtained as in (3.1) by expanding the Kähler form J along harmonic

(1,1)-forms as J = vIωI , where I = 1, . . . , h1,1(Y3). Likewise, we expand the three-form Ĉ3 in

the same basis

Ĉ3 = AI ∧ ωI + . . . , (4.15)

where the AI are all the vectors of the 5D theory and the dots indicated terms yielding hy-

permultiplet scalars irrelevant in the following. We thus find h1,1(Y3) vectors AI , of which

one resides in the 5D gravity multiplet and n
(5)
V = h1,1(Y3) − 1 reside in 5D vector multiplets.

The h1,1(Y3) scalars v
I are expected to comprise the scalars in the n

(5)
V vector multiplets. The

apparent mismatch in their number is resolved by noting that the overall volume of the Calabi-

Yau threefold V defined in (3.2) actually resides in a hypermultiplet. Accordingly, to separate

the total volume V and the scalars LI in the vector multiplets it is natural to define

LI =
vI

V1/3
. (4.16)

These fields indeed parametrize only h1,1(Y3)− 1 degrees of freedom, since they satisfy

NM ≡ 1

3!
KIJKLILJLK = 1 . (4.17)

This condition matches the general very-special Kähler constraint (4.8), such that the fields LI

can be identified with the very special coordinates and NM the cubic potential of the 5D N = 2

in its canonical form. One checks that this potential indeed allows to match the action obtained

by dimensional reduction [50].

As mentioned above, the volume V is one of the scalars of the hypermultiplets sector, and

its kinetic term is

huv dq
u ∧ ⋆ qv ⊃ 1

4
dlog V ∧ ⋆dlog V . (4.18)

The rest of the hypermultiplet sector will not be relevant for us, so we will only mention that the

number of such multiplets is given by nH = h1,2(Y3)+1, the remaining 4h1,2(Y3)+3 real scalars

coming from the expansion of Ĉ3 (dots in (4.15)) and from the complex structure deformations

of Y3. We refer to e.g. [18] for the full metric.

Up to this point the Calabi-Yau space used in the dimensional reduction was general. In

order apply the duality between M-theory and F-theory we have to further restrict Y3 to be

two-torus or elliptically fibered. This will then allow us to match the 5D setting obtained from

M-theory with the F-theory setting discussed in section 4.1. Furthermore, recalling that we

have restricted our considerations to include only no 6D vector multiplets and only neutral hy-

permultiplets we further demand that Y3 is a smooth elliptic fibration (i.e. without exceptional

divisors resolving singularities of the fiber) with a single section. This is the situation described

in section 3.4 and we refer to it for the notation used.

In the expansion of the Kähler form J we are free to choose a basis of (1,1)-forms and

hence either can use the basis (3.51) or the Kähler cone basis (3.53). We will use the latter

in order to easily connect to the analysis of singularities in 3.4, although the former is usually

used in the literature, such as in ref. [18]. Using the intersection numbers (3.54) in the cubic

potential (4.17), we obtain

NM =
1

2
ηαβL

0LαLβ − 1

2
ηαβK

α(L0)2Lβ +
1

6
ηαβK

αKβ(L0)3. (4.19)
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The M/F theory duality tells us that we should be able to match this result with the one

of section 4.1. While the first term of (4.19) can be matched with the classical term (4.12),

and the last term can be matched with the loop correction (4.13), the term in the middle does

not appear for a circle reduction. This implies that the proper duality match requires to first

perform the shift

Ľα = Lα − 1

2
KαL0, (4.20)

and performing a similar redefinition for the vectors Aα. This corresponds in the geometry

to take yet a different basis for the two-forms, namely ω̌0 = ω0 +
1
2K

αωα. This shift indeed

removes the second term in (4.19). Finally, to make the matching more transparent, we note

that
∫

Y3
c21(B2) = ηαβK

αKβ = 10− h1,1(B2) . The cubic potential now reads

NM =
1

2
ηαβL

0ĽαĽβ +
10− h1,1(B2)

24
(L0)3. (4.21)

This result is now straightforwardly matched with (4.14) by identifying

L0 = M0, Ľα = Mα, ηαβ = 2Ωαβ, and h1,1(B2) = nT + 1. (4.22)

It can also be checked that the overall volume V in the M-theory compactification is identi-

fied with the volume of the base Vb = 1
2ηαβv

α
b v

β
b in the 6D hypermultiplet of the F-theory

compactification,

V = Vb . (4.23)

Notice, though, that V is given in in 11D Planck units while Vb is given in string units. Finally

we note for completeness that theKα have to be matched with the Green-Schwarz parameters aα

present in (4.1) as discussed in [18].

4.3 Large volume limits in M-theory

Infinite distance limits in Kähler moduli space of an elliptically fibered Calabi-Yau threefold

were studied in section 3.4. The same classification obtained at large volume applies here for a

Calabi-Yau threefold compactification of M-theory. However, the microscopic interpretation of

the infinite charge orbits in terms of wrapping branes changes. In this section, we will discuss

the M/F-theory interpretation of the infinite massless charge orbits obtained at the different

large volume limits.

Even if the monodromy transformation has a more obscure meaning in M-theory (since the

5D moduli space is not complex), it is still a very useful tool to classify the infinite distance lim-

its and the tower of states becoming massless. When further compactifying on a circle, we can

complexify the moduli space and connect with the IIA interpretation in which the monodromy

transformation corresponds to a discrete shift of the axion partners of the Kähler deforma-

tions vI . These axions arise from dimensionally reducing the 5D vector bosons AI along the

extra circle. Therefore, in the 5D M-theory compactification, the monodromy transformations

capture the change on the geometry under large gauge transformations of these vectors AI . At

infinite distance, the axionic discrete shift symmetries in Type IIA enhance to a continuous

global symmetry. Analogously, in M-theory the discrete shifts of the gauge bosons also become

continuous and we restore a one-form global symmetry at infinite distance. The tower of states

of the SDC can, therefore, again be understood as a quantum gravity obstruction to restore

this generalized global symmetry.
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For the scope of this section, it is enough to recall that we can borrow the results for

the classification on infinite distance singularities and charge orbits of section 3.4. The only

difference is that the infinite charge orbit becoming massless at infinite distance will now consist

of M2-brane states wrapping certain 2-cycles of the compactification manifold. Recall that even

if their masses generically diverge, they become massless with respect to the Planck scale (which

diverges exponentially faster). Notice also that the charge orbits obtained in (3.60) imply that

the tower consists only of particles coming from wrapping M2-branes and not strings coming

from M5-branes, since the M5-brane has to vanish in an orbit that satisfies the masslessness

conditions (3.35), (3.36).

In the following, we will translate these limits and orbits to the F-theory setup. We recall

that the real scalar fields jα in the 6D tensor multiplets together with the circle radius r form the

coordinates that are identified with the Kähler cone coordinates v0, vα through (4.22), together

with (4.11), (4.16), and (4.20). One finds

v0

V1/3
= r−4/3 ,

vα − 1
2K

αv0

V1/3
= r2/3jα . (4.24)

In addition, we have to consider the volume V of the Calabi-Yau threefold defined in (3.2),

which is part of a 5D hypermultiplet. In terms of the Kähler cone coordinates it reads

V = 1
2K0αβv

0vαvβ + 1
2K00αv

0v0vα + 1
6K000v

0v0v0 . (4.25)

As mentioned in (4.23) this volume has to be identified with the volume Vb in the 6D hypermul-

tiplet. To recall the charge orbits we stress that the matching with F-theory should be done in

the basis of two-forms ω̌I = {ω̌0, ωα}, as explained in section 4.2. This basis is related to the

Kähler cone basis {ω0, ωα} via

ω̌0 = ω0 +
1

2
Kαωα . (4.26)

The charge of the states in the orbit under the 5D vector bosons AI , I = {0, α}, is given

by qI =
∫

Y3
H ∧ ω̌I , where A0 corresponds to the Kaluza-Klein vector of the circle reduction

and Aα arise from dimensionally reducing the 6D tensor gauge fields B̂α, α = 1, . . . , nT + 1.

We begin our analysis of the limits in F-theory moduli space with the large volume limits,

in which one or several vI → ∞. Notice that they always imply V → ∞ and thus always require

to take the limit Vb → ∞ in in F-theory. As seen from the kinetic term (4.18) this limit in the

hypermultiplet sector lies at infinite distance. Therefore, these limits are in general at infinite

distance both in the tensor and hypermultiplet sectors. In section 3.4 we analyzed such limits

for elliptic fibrations and we found that only four possible types of singularities were possible,

listed in equations (3.56) and (3.57). Here we will study what these limits correspond to in the

F-theory moduli space by determining the associated behavior of r and jα. For simplicity, we

will consider the case that all vαi that are taken to a limit grow at the same rate, but note that

the generalization to specific growth sectors is straightforward. The results are summarized in

Table 4.1.

We stress that the first limit v0 → ∞ in Table 4.1 is special, since it lies at finite distance in

the tensor moduli space. However, as discussed above, it will be still at infinite distance in the

hypermultiplet sector, since Vb → ∞. All the other limits in Table 4.1 correspond to a large

radius limits r → ∞. In terms of the volumes of the base, for each volume vαi → ∞ there is

also a volume of a two-cycle of the base that grows to infinity.
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growth of growth of

Singularity v0 vαi vαp ηαiαj Type r jαi jαp

(3.56a) λ - - - IVh1,1(B2) - - -

= 0 λ1/4 λ1/2 λ−1/2

(3.56b) κ κα -
6= 0

IVh1,1(Y3)
λ1/2 - λ−1

(3.57a) - λ - = 0 II2 λ1/4 λ1/2 λ−1/2

(3.57b) - λ - 6= 0 III0 λ1/2 - λ−1

Table 4.1: Large volume singularities in terms of the F-theory coordinates r and j’s. We
collectively denoted vαi , i = 1, . . . , n the coordinates that are taken in the limit and vαp , p =
n+1, . . . , h1,1(B2) those that are not. In the second line, we defined λ = κα/κ and assumed λ →
∞. If λ → 0, the result is the same as the one of the first line.

Finally, let us briefly comment on the F-theory interpretation of the charge orbits arising

in the large volume limits in the M-theory. Recall that for Type IIA compactifications we

have determined the infinite charge orbits that become massless at the singularity in (3.60).

Considering either of the two situations displayed in the last three lines of Table 4.1, the

corresponding Type IIA charge orbit reads

Q =
(

0, 0, . . . , 0, 0, q(2)αp
, q

(2)
0 ,−m0q

(2)
0 −

∑

αp

mαpq
(2)
αp

)T
, (4.27)

where we recall that the αp label the directions in the base that are not taken to a limit. To

lift this result to M-theory we note that D2-D0 bound-states correspond to M2-branes with

a certain KK-charge around the circle Ŝ1 connecting Type IIA and M-theory. The last entry

of (4.27) corresponds to the D0 charge, we realize that this orbit simply represents the KK-tower

of an M2-brane state wrapped on the curve q
(2)
αp Cαp + q

(2)
0 C0 in Y3 with all possible KK-charges

along Ŝ1. Further following the duality to F-theory the M2-brane state encoded by (4.27) maps

to a particle arising from a 6D string wrapping the F-theory circle S1 to 5D, since for q
(2)
0 6= 0

and some q
(2)
αp 6= 0 one finds a charge both under the Kaluza-Klein gauge vector A0 and the

gauge bosons Aαp associated to the base. These strings arise from D3-branes in Type IIB

wrapping the non-trivial two cycles q
(2)
αp Cαp in the base whose volume is not sent to infinity. Let

us remark that each tower of particles (one per each q
(2)
I 6= 0) lifts to a single 6D string. Since

the volume of the base goes to infinity, all such strings become exponentially light compared

to the Planck scale. This is somewhat analogous to the analysis in [5] in which a 6D string

becomes tensionless in the infinite distance limit of sending the gauge coupling of an open string

U(1) to zero. Note, however, that the latter limit does not correspond to a decompactification

limit of the internal space and, in particular, keeps Vb finite. To implement such a limit one

has to send some subset of coordinates to infinity, while sending others to zero. We will discuss

an example of such a mixed limit next.
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4.4 F-theory limit and geometric realization of the Kaluza-Klein tower

In this final subsection we now turn to the discussion of the F-theory limit of sending the fiber

volume v0 to zero. Our aim is to show how the infinite charge orbit obtained in section 3.4

corresponds to the Kaluza-Klein tower associated to the circle reduction in the F-theory side.

Note that the F-theory limit corresponds to decompactifying the circle r → ∞ while keeping Vb

finite. In this limit we recover the 6D effective theory of F-theory compactified on a Calabi-Yau

threefold with all 6D fields not taken to any limit in stark contrast to the limits discussed in

subsection 4.3.

To begin with we discuss the F-theory limit in more detail and the map to the M-theory side.

This limit corresponds to sending r → ∞ while keeping all jα and Vb fixed. For convenience,

let us assume that the radius diverges as r ∼ λ → ∞. From (4.24) and (4.25) we find that it is

implemented in the 5D M-theory moduli space spanned by the coordinates v0, vα as

vα ∼ λ2/3 → ∞, v0 ∼ λ−4/3 → 0 . (4.28)

In other words, all vα become large while v0 vanishes at a rate vα/v0 ∼ λ2 → ∞. This also

implies that the overall volume V in Planck units stays finite and so does the volume of the

base Vb in string units on the F-theory side. From the definition of jα in (4.4), one then finds

that vαb scales as

vαb ∼ √
v0 v

α (4.29)

in the r → ∞ limit. This is perfectly consistent with (4.23).

Our next task is to compute the infinite charge orbit in the limit (4.28) of the M-theory

geometry. Note that the limit (4.28) is just a special case of the limits studied in subsection 3.5.

In fact, we can use the Fourier-Mukai transform introduced in (3.64) and (3.67) to transfer the

orbits at v0 → ∞ to v0 → 0 by sending v0 → 1/v0. Furthermore, since we know the precise

growth of vα and v0, we can infer which large volume limit we need to consider. To avoid

confusion, let us call the large volume variable ṽ0 = 1/v0. Then (4.28) corresponds to the large

volume limit

vα ∼ λ2/3 → ∞, ṽ0 ∼ λ4/3 → ∞ . (4.30)

In other words, the fiber volume grows faster than all coordinates vα. This determines the

relevant charge orbit at large volume as discussed in subsection 3.4. Furthermore, we can

employ the transformation (3.68) to transfer the orbit to small fiber volume yielding

QF =
(

0, 0, ηαβq(2)α , 0, −m0q
(2)
0 −∑

α mαq
(2)
α + 1

2 (K
α − ηαβKββ0)q

(2)
α , q

(2)
0

)T
, (4.31)

which is a special case of the orbit given in (3.69). It was a central result of subsection 3.4

that one is allowed to set q
(2)
α = 0, for all α = 1, . . . , h1,1(B2) and take q

(2)
0 6= 0 to generate an

infinite orbit becoming massless in the limit (4.30) and valid for any Calabi-Yau. Making this

choice in (4.31) one finds

QF =
(

0, 0, 0, 0, −m0q
(2)
0 , q

(2)
0

)T
. (4.32)

Before turning to the interpretation of this orbit, let us stress that it does not satisfy the

conditions outlined in subsection 3.3 in the small fiber volume regime, since in certain cases
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there is no monodromy operator that can generate an infinite massless orbit in this regime. The

orbit is rather transferred from the large volume regime and involves an Sl(2,Z) rotation of the

charges (recall figure 1 in which the F-theory limit corresponds indeed to small fiber and large

base volume).

Finally, let us interpret the orbits (4.31) and (4.32). To begin with, we note that, as in the

previous subsection, the orbits are actually Type IIA orbits and hence their entries correspond

to charges of Dp-branes. Connecting the M-theory setting of this section with the Type IIA

orbit, we compactify on a further Ŝ1. The last entry of the orbits corresponds to D0-brane

charge in Type IIA and lifts to KK-momentum of an M2-brane state in M-theory. In fact,

the orbits also admit non-trivial M2-brane charge as soon as q
(2)
I 6= 0 and thus describe M2-

branes on the specified curves. The very special orbit (4.32) has in addition to D0-charge

only D2-charge corresponding to a brane wrapped on the curve −m0q
(2)
0 C0. In M-theory one

thus finds an M2-brane tower wrapping multiple times the elliptic fiber and having a certain

KK-momentum around Ŝ1. Clearly, we can also proceed for more general orbits in (4.31) that

admit D4-brane charge. This indicates that M5-branes wrapped on Dαη
αβq

(2)
β and Ŝ1 will be

relevant in the limit.

In the next step one has to dualize the M-theory states to F-theory. Following the standard

M/F-duality an M2-brane state on the elliptic fiber dualizes to a fundamental Type IIB string

with KK-momentum along the circle S1 connecting the 5D M-theory setting with the 6D F-

theory setting. This implies that the orbit (4.32) labels the KK-tower of the 6D fields. To see this

explicitly we need to change into the basis of two-forms as discussed around (4.26). The Kaluza-

Klein vector associated to the S1 circle reduction comes from expanding C3 as C3 = AKK ∧ ω̌0.

The charge of the infinite orbit under the KK vector AKK is then given by

∫

HF ∧ ω̌0 = QI
F ϑIJ

(

δJ1 +
1

2
KαδJα

)

= −m0q
(2)
0 , (4.33)

where HF is an even form with coefficients QI
F. Analogously, it is not hard to check that the

charge under any of the other 5D gauge boson Aα is zero since (QF · ϑ)JδJα = 0. Therefore,

the tower of states only differ by their charge under the KK photon associated to the circle

compactification of the 6D F-theory effective action to five dimensions. More generally, for the

orbit (4.31) one has to also follow M5-branes through the M/F-duality. Since these M5-branes

wrap the elliptic fiber they dualize to D3-branes wrapping a curve in B2. These D3-branes

yield string states in the 6D effective theory which couple to the tensor fields. This matches

with the fact that in 5D they are charged under Aα, i.e. the vector arising from the 6D tensor

fields B̂α. We leave a more detailed analysis of these strings for the future. At the moment, we

conclude this section by remarking the identification of the Kaluza-Klein tower of the F-theory

circle with the universal infinite massless charge orbit in the M-theory geometry.

5 Conclusions

In this paper we have investigated the Swampland Distance Conjecture, and the associated

notion of emergence of infinite field distances, in the context of Kähler moduli spaces of Calabi-

Yau manifolds. For the conjecture to hold there should exist an infinite tower of states near

every infinite distance locus of the moduli space whose mass decreases exponentially fast in
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terms of the proper geodesic field distance to this locus. The proposal of [3] is to identify this

tower with an infinite orbit of states charged under the discrete infinite symmetries which are

part of the duality group of the string compactification. More concretely, this discrete sym-

metry corresponds to the monodromy transformation that the mirror period vector undergoes

when circling the infinite distance locus. As these monodromies enhance to a continuous trans-

formation at infinite distance, the infinite tower can then be understood as a quantum gravity

obstruction to restore a global symmetry. We have also further elucidated the more speculative

proposal of [3] that quantum corrections from integrating out the SDC tower are responsible

for generating the infinite field distance itself.

It was explained in reference [4] that powerful mathematical orbit theorems and the theory of

limiting mixed Hodge structures allows one to classify the infinite distance loci and construct the

massless infinite charge orbits in the complex structure moduli space of Calabi-Yau threefolds

in complete generality. While this gives a general proof of the existence of an orbit under

the stated assumptions, the constructions presented in [4] are technically involved and hard

to apply to explicit examples. In this paper, we have shown that the same mathematical

technology can be used to state the masslessness and infiniteness conditions as vector equations

that then can be solved for concrete examples. In particular, our approach allowed us to

construct the infinite charge orbits at the infinite distance loci of Kähler moduli spaces. In

the large volume regime, the generic form of the log-monodromies and symplectic form is fully

determined by the topological data of Calabi-Yau manifold, namely its intersection numbers

and Chern classes. We have argued that one can thus classify the possible singularity types

and possible singularity enhancement chains corresponding to partial decompactification limits

entirely using the intersection numbers. With these at hand, we then identified the infinite

charge orbits that are massless when approaching any infinite distance point in the large volume

regime. We provided the general form of the orbit, in terms of the singularity type, valid for

any Calabi-Yau threefold and identified the corresponding D-brane states. This provides yet

another strong piece of evidence for the SDC in the context of String Theory.

Having discussed the general charge orbit in the large volume regime, we then further

focused our study to the cases in which the Calabi-Yau manifold is elliptically fibered. The

special intersection pattern of these geometries allowed us to give a detailed account of the

arising large volume charge orbits. In particular, we were able to identify a universal orbit that

is generically massless if the volume of the elliptic fiber is send to infinity. We then further

exploited the geometry of elliptic fibrations, to ague that the orbits from the large volume regime

can be transferred to regime of small fiber and large base volumes. This is done by applying

two T-dualities along the elliptic fiber and a so-called operation Fourier-Mukai transformation

on the D-brane charges. In this manner, we are able to obtain infinite charge orbits becoming

massless at the small-fiber regime. We stress that this is the first construction that goes beyond

analyzing the SDC in a local region of the moduli space (see also [51] for a very recent analysis

of the SDC beyond perturbative level also using modular symmetries). It explicitly realizes the

transfer of a charge orbit from a region in moduli space which allows for a local construction

to a different regions of the moduli space where no such local construction is possible.

It is important to stress that, as our above constructions show, the infinite charge orbit does

not always have the interpretation of a Kaluza-Klein tower, even if this is the naive candidate for

an infinite tower becoming massless at large volume. In fact, depending on the particular string

theory setup, it can also correspond to particles or strings coming from wrapping branes. If
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we consider Type IIA compactified in a Calabi-Yau threefold, the charge orbit at large volume

consists of particles arising from bound states of D0-D2 branes wrapping certain two-cycles,

which lift to M2-brane states in M-theory. Even if they get heavy at the large volume limit,

they are exponentially light compared to the Planck scale and hence become massless if we

force the Planck mass to remain finite. There are, therefore, two equivalent ways to avoid the

restoration of the global symmetry, either gravity decouples (Mpl → ∞) or the infinite tower of

states becomes massless leading to an exponential drop-off of the quantum gravity cut-off. For

the case of Type IIA, this global symmetry corresponds to an axionic continuous shift symmetry

that is lifted to a one-form global symmetry in M-theory.

In the second part of this paper we also analysed the F-theory interpretation of the infinite

massless charge orbit at the different infinite distance loci. For the large volume limits each

charge orbit corresponds to a 6D string wrapping the F-theory circle to five dimensions. Each

such 6D string in turn arises from a D3-brane in Type IIB, which is wrapping a non-trivial two-

cycles in the base of the elliptic fibration whose volume is not sent to infinity. The identification

of this string with an infinite orbit in M-theory makes manifest the fact that the string should

count as infinitely many different particles. This suggests a potential application of these

infinite charge orbits beyond the SDC, as a promising tool to count the number of different

massless excitations of extended objects in F-theory. We then investigate the interpretation of

the infinite massless charge orbits at the small fiber regime, which maps to decompactifying

the additional circle of the F-theory compactification. We find that the infinite massless charge

orbits at the F-theory limit always differ by their charge under the KK photon of the F-theory

circle, hinting the existence of the extra dimension. In particular, we show that there always

exists a universal infinite orbit regardless of the specific intersection numbers of the Calabi-Yau,

that maps to the Kaluza-Klein tower of the 6D fields in F-theory. This provides a geometric

realization of the KK tower in terms of an infinite massless charge orbit in M-theory. We also

get that there could be other infinite towers identified with 6D strings coming from M5-branes,

whose analysis is left for future work.

Last but not least, we pay special attention to whether the infinite field distance can emerge

from integrating out the infinite tower of states. First, we present a general field theory com-

putation to show that, as long as the tower gets compressed as we move in the moduli space,

quantum corrections from integrating out the tower up to its species bound will generate the

infinite field distance. Remarkably, they will generate a logarithmic divergence of the field dis-

tance as a function of the mass of the tower, regardless of the specific form of the mass, and

yielding the exponential mass behavior required by the SDC. We find that the condition for

these quantum corrections to dominate over the classical piece in the IR matches with the con-

straint on the mass spectrum imposed by the Scalar Weak Gravity Conjecture [12]. If we apply

this reasoning to a Kaluza-Klein circle reduction in field theory, the species bound associated

to the KK tower turns out to be the Planck mass of the higher dimensional theory. However,

quantum corrections from the KK tower can only account at most for part of the infinite field

distance as the radius goes to infinity. The situation changes when considering similar setups in

string theory. As mentioned, the infinite tower of states becoming massless at large volume of

Type IIA Calabi-Yau compactifications consists of D0-D2 branes which could in fact completely

generate the infinite field distance. Notice that this means that the field metric in the Kähler

moduli space, and consequently the intersection numbers and topological discrete data of the

Calabi-Yau, would be emergent from integrating out these D0-D2 bound states. Finally, the
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emergence of the classical quantities in the M-theory reduction from integrating out states has

also a clear interpretation in the context of the M/F-theory duality. There, it is known [20,52]

that some of the Chern-Simon terms arising in the M-theory dimensional reduction at classical

level can only be recovered in the F-theory side upon taking into account quantum corrections

from integrating out the KK tower associated to the F-theory circle. These Chern-Simon terms

are related to the field metric by supersymmetry, so at least part of the metric yielding the

infinite field distance in the F-theory limit arises form integrating out the KK tower. While

this nicely supports the idea of emergence in this context, it is only a first step to show that

the infinite distance entirely emerges from integrating out these infinite towers. To confirm the

emergence conjecture one likely needs to keep track of any possible tower of states becoming

massless in this limit as they might all contribute to generate the full divergence of the distance.

There are also a few further points that are interesting to address in future work. First,

we have assumed that the Kähler cone is simplicial, so the natural next step is to remove this

assumption and generalize the classification of singularities and charge orbits to non-simplicial

cones. Secondly, while we have focused on identifying explicit universal charge orbits that are

present for any Calabi-Yau manifold at the different types of infinite distance singularities, the

structure of all possible existing massless charge orbits is more complicated and can depend

on the topological discrete data of the manifold. It would be interesting to perform a detailed

study of all existing orbits and their microscopic interpretation in string theory, as well as

their possible role in the emergence of the infinite distance. Lastly, we have not shown yet

if the charge orbits are populated by physical states as we approach the singular point. The

monodromy transformation guarantees the presence of an infinite number of physical states

at the singularity as long as a single charge of the orbit is populated. However, the question

remains how the stability of the states changes when approaching the singularity. It would be

then important to realize an analysis of possible walls of marginal stability, as performed in [3],

to check that the number of physical states populating the tower indeed increases exponentially

as we approach the singularity, as the species bound and the idea of emergence suggest.

Finally, in this paper we have focused on the Swampland Distance Conjecture, but re-

cent works are pointing to an interesting emerging network of relations between the different

Swampland Conjectures (see [53] for a relation with the de Sitter swampland conjecture [54]).

In particular, the above infinite distance limits can also correspond to weak coupling limits for

the gauge bosons completing the N = 2 vector multiplets. In that case, the infinite charge orbit

would also correspond to the states satisfying the Weak Gravity Conjecture [31], as discussed

in [3,5,6]. We leave for future work a more detailed analysis of their charge to mass ratio, which

can help to properly define the WGC in the presence of both scalar and gauge fields.
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A Constructing the massless infinite charge orbits

In this appendix, we derive the masslessness conditions (3.35) and (3.36) presented in the main

text, and explicitly construct orbits satisfying them, as well as the infiniteness condition (3.37).

As explained in the main text, since

m(Q) = |Z(Q)| ≤ ‖Q‖ ∼ ‖q0‖ , (A.1)

having ‖q0‖ → 0 is sufficient to ensure masslessness of the BPS states with charge vector Q.

Note that since m(q0) = |Z(q0)| ≤ ‖q0‖, the states corresponding to q0 is also massless. In [4]

it was established that for a singularity ti → ∞, i = 1, . . . ,∞ a q0 ∈ Wl1(N
−
(1)) ∩Wl2(N

−
(2)) ∩

. . . ∩ Wln(N
−
(n)), where the li’s are the smallest values for which this is true, has a vanishing

norm if the following condition is satisfied

ln < 3 and l1, . . . , ln−1 ≤ 3 (A.2)

The conditions for a vector to belong to certain Wl =
⊕

p+q≤l I
p,q depend on the Ip,q of the

considered singularity. The Ip,q naturally split into primitive parts P p,q and non-primitive parts,

of the form NkP p,q. This decomposition is given explicitly for the different singularity types in

Table A.1, from which one can also read the conditions for q0 to belong to W2 or W3. We refer

the reader to [3, 4] for more details.

Masslessness conditions Applying these conditions to (A.2), we find that the conditions

for the seed vector q0 to be massless are those stated in the main text, namely (3.35) and (3.36),

which we recall here again for convenience

Type A(i) q0 Type A(n) q0

II vi II N(n)un

III vi +N(i)ui III N(n)wn

IV vi +N(i)xi IV N(n)wn +N2
(n)un

(A.3)

where N(i)vi = 0, N3
(i)xi = 0 and N2

(n)wn = 0.

Infiniteness conditions In addition, we recall the condition (3.37) for the orbit to be gen-

erated

N(J∗)q0 6= 0 for some J∗ = 1, . . . , h1,1(Y3) (A.4)

We now proceed to satisfy those conditions, that is, to explicitly give the vectors vi, ui,

xi, un and wn such that eqs. (A.3)-(A.4) hold. Before specializing to the different singularity

types, let us recall here the explicit form of the matrix N(i) and its powers (given in eqs. (3.12)

and (3.19) for i = n)

N(i) =











0 0 0 0

−∑i
a δaI 0 0 0

−1
2K

[i]
I −K(i)

IJ 0 0
1
6K[i] 1

2K
(i)
JJ −∑i

a δaJ 0











N2
(i) =











0 0 0 0
0 0 0 0

K(i)
I 0 0 0

0 K(i)
J 0 0











N3
(i) =









0 0 0 0
0 0 0 0
0 0 0 0

−K(i) 0 0 0









.

(A.5)
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Sing. type Ip,q decomposition q0 ∈ W3 q0 ∈ W2

I

0
0 0

0 P 2,2 0
P 3,0 P 2,1 P 1,2 P 0,3

0 NP 2,2 0
0 0

0

q0 = v q0 = Nu

II

0
0 0

P 3,1 P 2,2 P 1,3

0 P 2,1 P 1,2 0
NP 3,1 NP 2,2 NP 1,3

0 0
0

q0 = v q0 = Nu

III

0
P 3,2 P 2,3

0 P 2,2 0
0 P 2,1 ⊕NP 3,2 P 1,2 ⊕NP 2,3 0

0 NP 2,2 0
N2P 3,2 N2P 2,3

0

q0 = v +Nu q0 = Nw

IV

P 3,3

0 0
0 P 2,2 ⊕NP 3,3 0

0 P 2,1 P 1,2 0
0 NP 2,2 ⊕N2P 3,3 0

0 0
N3P 3,3

q0 = v +Nx q0 = Nw +N2u

Table A.1: We present for each singularity type the explicit splittings of the Ip,q in term of
the primitive subspaces P p,q, namely Ip,q = ⊕i≥0N

iP p+i,q+i. From these one can read off the
conditions for q0 ∈ W2 or q0 ∈ W3, which are then given in the third and fourth column, where
the vector u is unconstrained, while the vectors v, w and x satisfy Nv = 0, N2w = 0 and
N3x = 0.

where we defined K[i]
I =

∑i
a=1 KaaI and K[i] =

∑i
a=1 Kaaa. With these at hand, we find their

action on a generic vector q = (q6,q4
I ,q

2
I ,q

0)T — a convention will also adopt for the vectors

u, v, w and x throughout this appendix — to be

N(i)q =











0

−∑i
a δaI q

6

−1
2K

[i]
I q6 −K(i)

IJ q
4,J

1
6K[i]q6 + 1

2K
(i)
JJ q

4,J −∑i
a q2,a











, N2
(i)q =











0
0

K(i)
I q6

K(i)
I q4,I











, N3
(i)q =









0
0
0

−K(i) q6









.

(A.6)
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This will allow us to translate the conditions in (A.3) into conditions on the components of

the vectors.The analysis depends on the type of the last singularity in the considered chain, i.e.

Type A(n) in (3.15). We now specialize to the different possible singularity types.

A.1 Type A(n) = II

The first and simplest situation is when Type A(n) = II, where the masslessness conditions are,

as can be read from (A.3),

qII
0 = vi where N(i)vi = 0 for i ≤ n , (A.7a)

qII
0 = N(n)un . (A.7b)

Eq. (A.7b) implies

qII
0 =











0
−∑n

a δaI u
6
n

−1
2K

[n]
I u6

n −K(n)
IJ u

4,J
n

1
6K[n] u6

n + 1
2K

(n)
JJ u

4,J
n −∑n

a u
2,a
n











. (A.8)

Acting on this qII
0 with N(i) we find

N(i)q
II
0 =











0
0

∑i
aK

(n)
aI u6

n

−1

2

∑i
aK

(n)
aa u6

n −∑i
a(−1

2K
[n]
a u6

n −K(n)
aI u

4,I
n )











. (A.9)

Since Type A(n) = II, one has K(n) = K(n)
I = 0 which implies

K(n)
aa = K[n]

a = K(n)
aI = 0 for a, b ≤ n , (A.10)

such that the condition (A.7a) is automatically satisfied. This means that qII
0 in (A.8) is the

generic form of a massless seed vector. On the other hand The infiniteness condition (A.4) gives

N(J∗)q
II
0 =











0
0

∑J∗

a K(n)
aI u6

n

−1

2

∑J∗

a K(n)
aa u6

n −∑J∗

a (−1
2K

[n]
a u6

n −K(n)
aI u

4,I
n )











6= 0 . (A.11)

Since rkK(n)
IJ 6= 0, there are some I∗ and J∗ such that K(n)

I∗J∗ > 0, eq. (A.11) can be satisfied,

both if u6
n 6= 0 or

∑J∗

a K(n)
aI u

4,I
n 6= 0, in particular one can have a solution with u6

n = 0.9 As

mentioned in the main text, the last entry of q0 plays no role and can safely be set to zero, here

by choosing
∑n

a u
2
n = 1

2K
(n)
JJ u

4,J
n . Making those choices and renaming ωI = −u

4,I
n , we find

qII
0 =

(

0, 0,K(n)
IJ ωJ , 0

)T
. (A.12)

9For instance choosing u
4,I
n = 1 for all I a possible solution, but it is of course not the only one.
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A.2 Type A(n) = III

The next situation is Type A(n) = III, where the masslessness conditions are, as can be read

from (A.3),

qIII
0 = vi where N(i)vi = 0 i < nIII , (A.13a)

qIII
0 = vj +N(j)uj nIII ≤ j < n , (A.13b)

qIII
0 = N(n)wn where N2

(n)wn = 0 , (A.13c)

where nIII is the first place where a type III singularity occurs. Equations (A.13) lead to

qIII
0 =









0
v4
i I

v2
i I

v0
i









=











0

v4
j I −

∑j
a δaI u

6
j

v2
j I − 1

2K
[j]
I u6

j −K(j)
IJ u

4,J
j

v0
j +

1
6K[j] u6

j +
1
2K

(j)
JJ u

4,J
j −∑j

a u2
j a











=











0
0

−K(n)
IJ w

4,J
n

1
2K

(n)
JJ w

4,J
n −∑n

a w
2,a
n











,

(A.14)

where i < nIII and nIII ≤ j < n, and the components of wn and vi satisfy, for all i < n,

K(n)
I w4,I

n = 0 (A.15)

K(i)
IJv

4,J
i = 0 (A.16)

K(i)
II v

4,I
i = 2

i
∑

a=1

v2
i a (A.17)

From (A.14) we must impose q
III,4
0 = 0, such that

v
4,I
i = 0 for i < nIII (A.18a)

v
4,I
i =

i
∑

a

δaIu
6
i for nIII ≤ i < n (A.18b)

Condition (A.16) then implies

u6
i K(i)

I = 0, nIII ≤ i < n , (A.19)

which leads to u6
i = 0 for nIII ≤ i < n, since for a type III singularity K(n)

I 6= 0. Eq. (A.18)

then implies that v4,I
i = 0 for all i’s. Condition (A.17) then becomes for nIII ≤ i < n

i
∑

a

K(n)
aI w4,I

n = K(i)
I u

4,I
i , (A.20)

which can always be satisfied since u4
i is arbitrary and K(n)

I is non-vanishing. So it does not

constrain w4
n. As before we choose q(0) to vanish by an appropriate choice of v0

i , u
2
i and w2

n

and rename ωI = −w
4,I
n such that

qIII
0 =

(

0, 0,K(n)
IJ ωJ , 0

)T
, (A.21)
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together with the conditions (A.17) for i < nIII and (A.15) that now read

K(n)
iI ωI = 0 i < nIII , (A.22)

n
∑

a=1

K(n)
aI ωI = 0 , (A.23)

while the condition (A.4) for the orbit to be generated

J∗

∑

a=1

K(n)
aI ωI 6= 0 for some J∗ . (A.24)

An easy way to satisfy these equations is to choose

ωI =

{

1 I ≤ n

0 I > n
, (A.25)

which leads to q
(2)
I = K(n)

I ; this is non-vanishing for a type III singularity, meaning that indeed

(A.24) is satisfied, and since in addition K(n) = 0 for a type III, one has K(n)
iI = 0 for all i ≤ n,

such that (A.22) and (A.23) are also satisfied.

A.3 Type A(n) = IV

Finally, when Type A(n) = IV, the masslessness conditions are, as can be read from (A.3),

qIV
0 = vi where N(i)vi = 0 i < nIII (A.26a)

qIV
0 = vi +N(i)ui nIII ≤ i < nIV (A.26b)

qIV
0 = vi +N(i)xi where N3

(i)xi = 0 nIV ≤ i < n (A.26c)

qIV
0 = N(n)wn +N2

(n)un where N2
(n)wn = 0 , (A.26d)

where nIV is the first place where a type IV singularity occurs. Equations (A.26) lead to

qIV
0 =









0
v4
i I

v2
i I

v0
i









=











0

v4
j I −

∑j
a δaI u

6
j

v2
j I − 1

2K
[j]
I u6

j −K(j)
IJ u

4,J
j

v0
j +

1
6K[j] u6

j +
1
2K

(j)
JJ u

4,J
j −∑j

a u2
j a











=











0
v4
kI

v2
kI −K(k)

IJ x
4,J
k

v0
k +

1
6K[k] x6

k +
1
2K

(k)
JJ x

4,J
k −∑k

a u2
ka











=











0
0

−K(n)
IJ w

4,J
n +K(n)

I u6
n

1
2K

(n)
JJ w

4,J
n −∑n

a w
2,a
n +K(n)

I u
4,I
n











,

(A.27)
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where i < nIII, nIII ≤ j < nIV, and nIV ≤ k < n and as in the previous case the components of

wn and vi satisfy, for all i < n,

K(n)
I w4,J

n = 0 , (A.28)

K(i)
IJv

4,J
i = 0 , (A.29)

K(i)
II v

4,I
i = 2

i
∑

a=1

v2
i a . (A.30)

From (A.27) we must impose q
III,4
0 = 0 such that

v
4,I
i = 0 for i < nIII and nIV ≤ i < n , (A.31a)

v
4,I
i =

i
∑

a

δaIu
6
i for nIII ≤ i < nIV . (A.31b)

Condition (A.29) then implies

u6
i K

(i)
I = 0, nIII ≤ i < n , (A.32)

which leads to u6
i = 0 for nIII ≤ i < nIV, since for a type III singularity K(n)

I 6= 0. Eq. (A.31)

then implies that v4,I
i = 0 for all i’s. Relabeling x4

i = u4
i when nIV ≤ n < n, condition (A.17)

then becomes for nIII ≤ i < n

i
∑

a

K(n)
aI w4,I

n −K(n)
a u6

n = K(i)
I u

4,I
i , (A.33)

which can always be satisfied since u4
i is arbitrary and K(n)

I is non-vanishing. So it does not

constrain w4
n or u6

n. As before we choose q(0) to vanish by an appropriate choice of v0
i , u

2
i and

w2
n. And defining

ωI = w4,I
n −

{

u6
n i ≤ n

0 i > n
, , (A.34)

we find

qIV
0 =

(

0, 0,K(n)
IJ ωJ , 0

)T
, (A.35)

together with the conditions (A.30) for i < nIII and (A.28) that now read

K(n)
iI ωI = 0 i < nIII , (A.36)

n
∑

a=1

K(n)
aI ωI = −u6

nK(n) . (A.37)

Since K(n) is non vanishing for a type IV singularity and u6
n is arbitrary, (A.37) can always be

satisfied by an appropriate choice of u6
n and does not put any further constrain on ωI . So the
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only non-trivial masslessness constraint is (A.36), to be satisfied together with the condition

(A.4) for the orbit to be generated, that is, one needs to find a solution to

K(n)
iI ωI = 0 i < nIII , (A.38a)

J∗

∑

a=1

K(n)
aI ωI 6= 0 for some J∗ . (A.38b)

Of course if Type A1 = III, i.e. nIII = 1, there is no condition (A.38a) and the state corre-

sponding to the seed vector (A.35) is automatically massless. We thus need to show that it

is possible to solve the system (A.38) when Type A1 = II. We will show this explicitly in the

case where have only two moduli, and in the case of an elliptic fibration. We leave the general

case for a future analysis, but point out that, the more moduli we have, the bigger becomes the

orthogonal space to
∑j

i=1K
(n)
iI , such that it increases the room for solving the system (A.38).

• Two moduli

We first consider a case with two moduli, v1 and v2, and the associated enhancement

chain

Type A1 + Type A2 −→ Type A(2). (A.39)

As mentioned above, we need Type A1 = II and, of course, Type A(2) = IV, that is we

have, from Table 3.3, K(1) = K111 = 0 and K(2) = K222 + 3K122 > 0. The system (A.38)

then becomes

q
(2)
1 = K(2)

1J ω
J = K122 ω

2 = 0 ,

q
(2)
2 = K(2)

2J ω
J = K122 ω

1 + (K122 +K222)ω
2 6= 0 .

(A.40)

It is always possible to find a solution to this system of equations. Indeed, there are 2

possibilities

– K122 = 0, in which case K222 6= 0 and the system is satisfied with ω2 6= 0,

– K122 6= 0, in which case the system is satisfied with ω2 = 0 and ω1 6= 0.

• Elliptic fibrations

We now turn to the case of an elliptic fibration, which is the most relevant for our analysis,

in particular for sections 3.4 – 3.5 and 4.3 – 4.4. We refer to section 3.4 for the notations

and the possible enhancement chains. Recall that we have the moduli v0, vα’s, with

corresponding singularities types Type A0 = IV and Type Aα 6= IV. We show that we can

always choose

q
(2)
0 6= 0 and q(2)α = 0, (A.41)

which is actually stronger than eqs. (A.38). Using the intersection numbers (3.54), we

find for the charges in (A.35)

q(2)α = K(n)
αJw

J = ηαβw
β − (Kα − ηα)w

0, (A.42a)

q
(2)
0 = K(n)

0J wJ = (Kα − ηα)(K
αw0 −wα), (A.42b)
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where we defined ηα =
∑

β ηαβ and Kα = ηαβK
β. Since ηαβ can be inverted (and we

denote the inverse by ηαβ), we can choose wα = ηαβ(Kβ − ηβ)w
0, which yields

q
(2)
0 =

∑

α(Kα − ηα)w
0, (A.43a)

q(2)α = 0. (A.43b)

since Kα ≤ 0 and ηα > 0, we have q
(2)
0 6= 0 and equation (A.41) holds, and therefore

(A.38) as well.

Finally, let us remark that we could also choose wα = Kαw0, leading to

q
(2)
0 = 0, (A.44a)

q(2)α = ηα w
0. (A.44b)

However, this choice would only be compatible with (A.38)if there are no type II in the

chain, i.e. if the first singularity is associated to either a coordinate vα with ηαα 6= 0, or

to v0.

B Fourier-Mukai transformation

Let Db
α be the divisors generating the Kähler cone of the base B2 while the dual basis of curves

generating the Mori Cone is denoted by C ′α. For a Calabi-Yau threefold Y3 corresponding to

an elliptic fibration over this base, we can define the curves

Cα = E π−1C ′α, α = 1, . . . , h1,1(B2) (B.1)

where E is the zero-section of the elliptic fiber. A basis of the Mori cone of the Calabi-Yau is

then given by {CI} = {C0, Cα} where [C0] is the class of the generic fiber. The Kähler cone is

generated by the dual basis {DI} = {D0,Dα} where

Dα = π∗Db
α D0 = E + π∗c1(B2) (B.2)

such that DI · CJ = δJI . The intersection numbers KIJK = DI ·DJ ·DK were given in (3.52),

which we recall here for convenience

K000 = ηαβK
αKβ , K00α = ηαβK

β,

K0αβ = ηαβ , Kαβγ = 0 .
(B.3)

where ηαβ = Db
α ·Db

β is the intersection form on the base and the Kα appear in the expansion

of the canonical class of the base

K = −c1(B2) = −
∑

α

KαDb
α = −

∑

α

KαC
′α, (B.4)

such that Kα = c1(B2)D
b
α.

Following the conventions of ref. [39, 41,55,56], we choose as basis of branes

Oε = (OY3 ,OE ,ODα , Cα, C0,Opt) (B.5)
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where CJ := ι!OCJ

(

K
1/2

CJ

)

. This basis coincides with the one in (3.51). The Chern-characters

of the 4-branes are [56]

ch(ODI
) = DI − 1

2
D2

I +
1

6
D3

I (B.6)

which yields

ch(OE) = E +
1

2
c1E +

1

6
c21E

ch(ODα) = Dα − 1

2
ηααC

0,
(B.7)

while ch(CI) = CI .

The Chern character for a general brane Oε can be decomposed as follows

ch0(Oε) = n,

ch1(Oε) = nEE + F,

ch2(Oε) = EB + neC
e,

ch3(Oε) = s,

(B.8)

where n, nE, ne, s ∈ Q and can be obtained for our basis of branes by comparing these equations

with the above Chern-characters in eqs. (B.7) . Upon performing a Fourier-Mukai transforma-

tion, the Chern-character of the transformed brane reads [46,47]

ch0(S(Oε)) = nE,

ch1(S(Oε)) = −nE +B − 1

2
nE c1,

ch2(S(Oε)) =
(

1

2
n c1 − F

)2
E +

(

s− 1

2
Bc1E,+

1

12
nE c21E

)

C0,

ch3(S(Oε)) = −1

6
n c21E − ne +

1

2
E c1F.

(B.9)

where c1 = π∗c1(B2). Applying to the basis (B.5), we find

ch(S(OY3)) = − ch(OE) +Kα ch(Cα),

ch(S(OE)) = ch(OY3),

ch(S(ODα)) = −ηαβ ch(Cβ) +
1

2

(

ηαα +Kα

)

ch(Opt),

ch(S(C0)) = − ch(Opt),

ch(S(Opt)) = ch(OC0).

(B.10)

This implies that the Fourier-Mukai matrix S acting on the basis of branes (B.5) takes the

following matrix form

S =



















0 −1 0 Kα 0 0
1 0 0 0 0 0

0 0 0 −ηαβ 0
1

2
(ηαα +Kα)

0 0 ηαβ 0
1

2
(Kα − ηαβηββ) 0

0 0 0 0 0 −1
0 0 0 0 1 0



















. (B.11)
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This matrix leaves invariant the pairing ϑ, i.e. STϑS = ϑ, where ϑ, introduced in (3.10), takes

the form

ϑT =

















0 −2bαK
α − 2b0 − 1

6K000 −2bα 0 0 −1
2bβK

β + 2b0 +
1
6K000 0 1

2 (K00α −K0αα) K
α 1 0

2bβ
1
2 (K0ββ −K00β) 0 δαβ 0 0

0 −Kβ −δαβ 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0

















(B.12)

in the basis (B.5).

In the main text, we use a basis of branes different than (B.5), namely we use the Kähler

cone basis (3.50)

O′
ε = (OY3 ,OD0 ,ODi , CJ , C0,Opt) (B.13)

containing OD0 instead of OE . Those two basis are related by (3.53), which in terms of the

dual divisors reads

E = D0 −KαDα. (B.14)

In matrix notation, this change of basis takes the form

T =

















1 0 0 0 0 0
0 1 −Kα 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















. (B.15)

The Fourier-Mukai transformation in this basis, given by S′ = T−1ST , reads

S′T =

















0 1 0 0 0 0
−1 0 0 0 0 0
Kα 0 0 ηαβ 0 0
K00α −Kα −ηαβ 0 0 0
0 0 0 1

2(K
α − ηαβK00β) 0 1

0 1
2K

α(K00α +K0αα)
1
2 (K00α +K0αα) 0 −1 0

















(B.16)

where we have displayed the transpose matrix for convenience in the paper. Notice that, in this

derivation, we have considered that the coefficient matrix of the branes transforms when going

to the small fiber regime, while in the main text we work all the time assuming that the basis

transform instead. In practice, this implies that we should work with ST instead of S.
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[45] I. Garćıa-Etxebarria, T. W. Grimm and I. Valenzuela, Special Points of Inflation in Flux

Compactifications, Nucl. Phys. B899 (2015) 414–443, [1412.5537].

[46] B. Andreas, G. Curio, D. H. Ruiperez and S.-T. Yau, Fourier-mukai transform and

mirror symmetry for d-branes on elliptic calabi-yau, arXiv preprint math/0012196 (2000)

.
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