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Swampland distance conjecture, inflation and a-attractors
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The Swampland Distance Conjecture (SDC) constraints the dynamics emerging at infinite dis-
tances in field space of any effective field theory consistent with quantum gravity. It provides a
relation between the cut-off in energies and the field range which, as we show, in the context of
inflation it yields a universal upper bound on the inflaton excursion in terms of the tensor-to-scalar
ratio, measured at typical CMB scales. In this note, we investigate the interplay between the SDC
and the emergent inflationary physics around infinite distances singularities in string theory, with
a special look at its significance for the a-attractor scenario of inflation. We show that the conjec-
ture itself suggests that inflation may arise as an infinite distance phenomenon with the asymptotic
kinetic structure typical of a-attractors. Furthermore, we argue that a proper string realisation
of these cosmological models in Calabi-Yau manifolds should occur around infinite field distance
singularities. However, such constructions typically imply that inflation should not take place in the
limit where the inflaton kinetic term develops a pole but rather in the opposite regime. Finally, we
study the constraints that the SDC poses on a-attractors and show that they still leave considerable

room for compatibility with observations.

I. INTRODUCTION

In the effort of extracting precise predictions from
string theory, it has been noticed that there exist some
common patterns, which characterize the string land-
scape of consistent effective field theories! (ETFs). In
contrast, the set of inconsistent EFTs has been termed
as belonging to the swampland [1, 2]. Interestingly, these
observations, elevated to conjectures, have triggered the
scientific community to investigate their phenomenolog-
ical implications, which often translate into constraints
on the low energy effective theory. In fact, one can show
that many seemingly consistent EFTs do not however
admit UV completion in string theory. This definitely
opens up an exciting avenue towards the possibility of
extracting low-energy predictions of quantum gravity.

The Swampland Distance Conjecture (SDC) [2] is a
proposal for such a quantum gravity constraint. It claims
that traversing infinite field distances in string theory al-
ways implies the appearance of an infinite tower of par-
ticles becoming exponentially light, thus invalidating the
EFT. This occurs when approaching a boundary of the
string moduli space. As long as we stay in this regime,
the quantum gravity cut-off of the theory experiences an
exponential drop-off in terms of the field distance due
to the appearance of the infinite tower of states. This
fact automatically translates into an upper bound on the
scalar field range Ay that an effective theory can accom-
modate as a function of the quantum gravity cut-off Aqg
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1 More concretely, these patterns only apply to EFT’s weakly cou-
pled to Einstein gravity and that can be UV embedded in a
consistent theory of quantum gravity like string theory.

in energies, such as
1
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The larger the cut-off, the smaller the field range, so that
infinite field ranges become inconsistent with quantum
gravity. Strong evidence for the SDC has recently been
found in [3, 4] by going to infinite distance limits in the
moduli space of well known string compactifications (see
also [5-15] for previous works and [16, 17] for a recent
analysis in F-theory). The emergent field metric is in
fact consistent with the exponential drop-off behaviour
of the mass tower predicted by the conjecture. Notice
that A in eq. (1) is an unspecified parameter which, in
principle, might depend on the type of trajectory followed
in the scalar field space. It has been conjectured, though,
to be always of order one [2, 18] disfavouring very large
transplanckian distances (this is known as the Refined
Swampland Distance Conjecture [18]). In [19], the entire
rhs of eq. (1) has been encoded as an order one factor
and the corresponding equation denoted as Criterion 1.
Among other things, in this note, we aim to clarify the
significance of this order one factor as well as the evidence
gathered regarding the concrete value of \. We will give
an overview of this topic in Sec. II.

The SDC can therefore become a powerful and con-
crete tool in order to test the regime of validity of ETFs
with scalar fields coupled to gravity. The case of cos-
mological inflation with a scalar field crossing a cer-
tain distance, in order to deliver around 60 e-foldings of
quasi-exponential expansion, is an exemplary situation
to investigate. The simple observation that the success-
ful models of inflation should always satisfy H < Aqg,
with H being the expansion Hubble rate, will allow us
to derive a precise upper bound in terms of the tensor-
to-scalar ratio, measured at typical Cosmic Microwave
Background (CMB) scales. We will discuss this in de-
tails in Sec. III.



Whereas previous studies have mainly focused on the
constraints that the Swampland imposes when inflation
is driven by axionic fields with compact symmetries (see
e.g.[20-26] for some pioneering works), in this paper we
focus on inflationary models which involve saxions (non-
periodic scalars) thus leading to non-compact trajectories
(in this case, the uncertainties regarding the value of A
are much lower and, in certain cases, it is even possible
to give a precise value). Specifically, we show that the
emergent field metric predicted at infinite distances by
the conjecture and confirmed by the asymptotic proper-
ties of infinite distance singularities, approaches the form
of the one typical of the so-called a-attractor scenario of
inflation,
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This class of inflationary models has been first proposed
in the context of supergravity [27, 28] but it has been soon
realized that its fundamental nature is essentially con-
nected to the form of the inflaton kinetic term [29]. The
latter induces an attractor for cosmological observables,
thus making them insensitive to a wide array of micro-
scopical details which characterizes the theory. The uni-
versality regime appears when the scalar potential shows
a certain regularity in the limit when the kinetic term
shows a pole of order two [29-31].

In the present work, we point out that a proper string
theory realization of these cosmological models should be
engineered when the inflaton is identified with a scalar
field which approaches an infinite distance singularity
in field space. This implies, among other things, that
the universality regime of a-attractor models occurs in
the limit where the kinetic Lagrangian eq. (2) becomes
infinitesimally small rather than when approaching the
pole. In fact, in Calabi-Yau (CY) compactification man-
ifolds, the inversion ¢ — 1/¢ is not necessarily a symme-
try and the two scenarios - a-attractors and pole-inflation
- are not equivalent. In this context, inflation can be in-
terpreted as an infinite distance emergent phenomenon
and the parameter « in eq. (2) becomes essentially related
to the properties of the singularity and upper bounded
by the complex dimension of the CY manifold. We will
discuss this in Sec. V.

However, approaching infinite distances is not only the
limit where we expect the universality of a-attractors
to emerge but also the limit where the infinite tower
of particles becomes exponentially light and the cut-off
decreases, signalling the breakdown of the effective the-
ory. It becomes then essential to check consistency of the
a-attractor models within the constraints imposed by the
SDC. In Sec. V, we show that eq. (1) directly translates
into a bound on the total number of e-foldings N dur-
ing inflation, which is independent of the specific value
of A and all the subtleties related to the specific inflaton
trajectory. The result is that the EFT of an a-attractor
model can never support the typical infinite plateau, as
expected by consistency with quantum gravity, but the
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SDC poses nevertheless no restrictions to deliver more
than 60 e-foldings of quasi-exponential expansion. Fur-
thermore, we get a relation such as a ~ A~2. Constraints
on the value of A will therefore have a direct impact on
a-attractor models.

While the above results apply for the case of a single
saxion taking large field values, in Sec. VI we will in-
clude some comments about the multi-field case and its
implications on the cosmological predictions.

In this note, we keep the focus of our investigation on
the kinetic structure of the theory. It is an open question
whether the scalar potential can show some regularity at
infinite distances in string theory in order to actually re-
produce the cosmological properties of a-attractors. No-
tice that recent conjectures [19, 32, 33] would disfavour
such a scenario. We hope to come back to this issue in
the future.

In the following, we will present in detail the arguments
in the same order as outlined above and then we will draw
our conclusions.

II. SWAMPLAND DISTANCE CONJECTURE

The Swampland Distance Conjecture, proposed in [2],
states that in an effective quantum field theory that can
arise from string theory, infinite distances in moduli space
lead to an infinite tower of states becoming massless ex-
ponentially fast in the proper field distance. More con-
cretely, if we consider an effective theory valid at a point
Q in field space and move to a point P, there should ap-
pear an infinite tower of states at P with characteristic
mass scale m such that

m (P)

m (Q)

where A (P, Q) is the geodesic proper distance between
the two points. Here ~ is some positive constant which
depends on the choice of P and @) but which is not spec-
ified in general. A refined version [18, 32] of this conjec-
ture implies, however, v ~ 1 in Planck units. The va-
lidity of this refined version, even if motivated by plenty
of examples in string theory, is under debate and topic
of ongoing research. It is also possible to generalise the
above conjecture to non-geodesic distances by hiding the
path dependence on the value of v. We will comment
more on this in section VI.

The key feature of the conjecture is that it predicts
the existence of an infinite number of particles becoming
light. While a finite number of extra new light states
would not give necessarily rise to a dramatic change of
the theory but to model-dependent corrections, an infi-
nite tower signals the complete breakdown of the effec-
tive theory. A quantum field theory description of in-
finitely many fields weakly coupled to Einstein gravity is
no longer possible. One of the consequences of the conjec-
ture is therefore an exponential drop-off of the quantum
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gravity cut-off as follows,
AQG = Ay e_AA(P’Q) (4)

where Ay < Mp is the original naive cut-off of the EFT,
and A\ ~ 7.

It is also natural to identify this cut-off Aqg with the
species scale? of the tower of particles, as done in [3, 39],
implying A = +/3 in four dimensions. The species scale
indicates the scale at which quantum gravitational effects
cannot be ignored due to the increasing number of light
fields weakly coupled to gravity. Evidence for this identi-
fication can be found in [3] and has also been used in [40].
Notice that this cut-off is conceptually different than the
low energy cut-off of the effective theory corresponding
to the mass of the lightest particle of the tower. Above
the species scale, gravity becomes strongly coupled and
any possible quantum field theory description completely
breaks down. Furthermore, this drop-off of the quantum
gravity cut-off cannot be seen from the point of view
of the effective field theory (in the absence of quantum
gravity), as expected from any swampland criterium.

A. Evidence at infinite distance singularities

The SDC finds confirmation in the analysis of the
physics around infinite distance singularities (bound-
aries) of moduli spaces in string theory compactifications
[3] (see also [4, 16]). In the following, we will briefly sum-
marise the results and general insights of [3]. First, notice
that infinite geodesic distances can only occur when ap-
proaching a singularity in the moduli space, where the
volume of a cycle goes to infinity or to zero. Interest-
ingly, we can use the theory of limiting Mixed Hodge
Structures and the Nilpotent Orbit Theorem by Schmid
[41] to give the local form of the Kéhler potential (and
the field metric) near the singular loci. For Calabi-Yau
manifolds, the Kéahler potential near an infinite distance
singularity in moduli space located at ¢ — oo takes the
following form

K=—1In(p(¢)+0 (e 7)), (5)

where T = ¢ + 10 is the complex field parametrising the
scalar manifold. Here p(¢) = ¢ + B¢%~1 +... is a poly-
nomial depending only on the radial transverse coordi-
nate ¢ (the saxion field) approaching the singular point.
The degree d of the polynomial is fixed in terms of the
properties of the monodromy transformation around the
singularity (see [3] for more technical details), and it is
used to classify the type of singularity. It is always upper
bounded by the complex dimension of the Calabi-Yau,
d < dim¢(CY) and it is non-vanishing only if the singu-
larity is at infinite distance. Notice that the leading term

2 The species scale [34-38] is given by A ~ M, /v N where N is
the number of light fields or species.

of the Kahler potential only depends on the type of singu-
larity and not on the Calabi-Yau in which the singularity
is embedded. We can trivially add longitudinal scalars
directions z, along which the singularity expands by al-
lowing the coefficients ; of the polynomial to depend on
these fields z,, i.e. 8; = Bi(z4). The generalisation to
include more transverse coordinates will be discussed in
section VI.

The kinetic term for the field ¢, associated to the
Kéhler potential eq. (5), reads

d
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which indeed generates a logarithmic divergence of the
proper field distance, as it should be when approaching
an infinite distance singularity [42].

The tower of states can correspond to a KK tower,
winding modes or wrapping branes that become light
when moving towards the infinite distance singularity.
In any case, using the above parametrization, the mass
of the tower of states scales as

(7)

with p ~ O(1). Combining egs.(6) and (7) we can check
that the tower of states becomes exponentially light, in
terms of the canonically normalised field ¢, such as
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as stated by the SDC, with v = 2p/\/g. Notice that
the exponential mass behaviour trivially originates from
the universal local behaviour of the field metric near in-
finite distance singularities. More difficult is to check
that there are indeed infinitely many particles becom-
ing massless at the singular point. This is clear when
thinking of a Kaluza-Klein tower at the large volume
point, but becomes highly non-trivial for other infinite
distance singularities. In [3, 4], this has been checked for
infinite distance singularities at the complex structure
moduli space of four-dimensional Type IIB Calabi-Yau
compactifications by using the theory of limiting Mixed
Hodge Structures at the singular loci. This moduli space
presents a very nice and clean realization of these ideas
where the massless tower corresponds to BPS states aris-
ing from wrapping D3-branes. The same techniques and
ideas can also be generalized, though, to Kahler moduli
spaces [43].

Furthermore, there is a natural relation between this
conjecture and the absence of global symmetries in this
setup. Since the leading term of the Kéhler potential (5)
does not depend on the axionic partner 6, this field en-
joys a global continuous shift symmetry only broken by
exponentially suppressed terms. This global continuous
symmetry becomes exact at the infinite distance singu-
larity, so the SDC can be understood [3] as an obstruction
to recover this symmetry by means of an infinite tower



of light particles yielding the exponential drop-off of the
quantum gravity scale.

Finally, notice that not every singularity is necessarily
at infinite distance. If the singularity is at finite dis-
tance, the leading polynomial term of the K&hler poten-
tial above vanishes implying that the field metric can
never take the form (6). In this case, there is no infinite
tower becoming light and, therefore, we do not expect to
see an exponential drop-off of the quantum gravity cut-
off. Consistently, there is no global continuous symmetry
restored at the finite distance singularity.

To summarise, the scenario that seems to emerge un-
derlying the Swampland Distance Conjecture is as fol-
lows: The conjecture quantifies how close we can get to
the infinite distance point, i.e. how close we can get to
the situation of recovering a global symmetry. It does so
by providing a relation between the cut-off and the field
range due to the appearance of an infinite tower of ex-
ponentially massless particles which were not part of the
effective theory. The exponential mass behaviour origi-
nates from the behaviour of the field metric near the infi-
nite distance singularity, and the infinite number of par-
ticles implies a drop-off of the quantum gravity cut-off.
In other words, above this cut-off quantum gravitational
effects cannot be ignored so the model must drastically
change (the effects of the tower will never be negligible or
subleading). This is very similar to the magnetic Weak
Gravity Conjecture (WGC) [20], which quantifies how
small a gauge coupling can be by providing a relation
between the gauge coupling and the cut-off scale. This
way, the global symmetry limit ¢ — 0 cannot be reached
while keeping a finite cut-off. Finally, it was also observed
in [3, 39] that quantum corrections from integrating out
the tower of exponentially massless particles up to the
species bound have in fact the structure to generate the
infinite field distance. Crucial for this argument is the
role of the species bound, which implies an exponentially
increasing number of light fields as we approach the infi-
nite distance point. Therefore, the global symmetry and
the infinite distance itself might be just emergent phe-
nomena from integrating out infinitely many fields.

B. SDC vs validity of the EFT

Consider the moduli space of some string compactifi-
cation. In general, there does not exist a single effective
field theory that is valid globally over the entire mod-
uli space, but we need to work with different effective
descriptions which are valid over local patches of finite
size. To get these effective theories, we usually expand
the field metric and physical observables around special
points which correspond to singularities of the moduli
space. These singularities can be either at finite or in-
finite distance. The presence of the latter implies that
moduli spaces have finite volume but are non-compact.
When we move away from the special point, corrections
become more and more important and at some point the

local expansion fails. For instance, near an infinite dis-
tance singularity (like large volume, large complex struc-
ture point or weak coupling points®) the Kihler potential
takes the form given in eq. (5). Recall that this is a lo-
cal expansion around the singularity at ¢ — oo. Conse-
quently, the exponentially suppressed terms become more
important as we move away from the singularity, and at
some point (defined as the radius of convergence) the ef-
fective description breaks down and needs to be replaced
by another one.

There is some confusion whether this range of valid-
ity of the effective theory is the same predicted by the
SDC. The answer is no. The SDC is related to a com-
plete breakdown of the effective theory when approach-
ing an infinite distance point (i.e. when moving towards
the boundaries of the moduli space), since the quantum
gravity cut-off also goes to zero there. Hence, we can-
not just find another quantum effective field theory de-
scription (while keeping the same fundamental degrees
of freedom) that works when the first one breaks down,
as quantum gravitational effects become important. Fur-
thermore, notice that the SDC implies the breakdown of
the effective theory when approaching the special point,
instead of when going away from it. In other words,
precisely in the limit where the local expansion is bet-
ter justified, the SDC tells us that the effective theory
must break down due to an additional infinite tower of
particles becoming light, which was not present in the
low energy effective theory. Therefore, as expected from
a swampland constraint, this breakdown cannot be seen
without additional information of the UV completion.

The intuitive reason is because there are global sym-
metries that would be recovered otherwise at the infinite
distance boundaries of the moduli space, and global sym-
metries are not allowed by quantum gravity [44]. There-
fore, even if near the boundary it seems we can always*
find a weakly coupled effective theory description enjoy-
ing approximate global symmetries and which is seem-
ingly under control from the point of view of QFT, it
must still breakdown continuously when approaching the
infinite distance boundary by quantum gravity effects to
avoid the restoration of the exact global symmetry.

Of course, string theory has a way to resolve these infi-
nite distance singularities (e.g. by growing extra dimen-
sions) so the global symmetry is embedded in a higher
group of diffeomorphisms or gauge transformations. But
this changes drastically the effective theory and the fun-
damental light degrees of freedom are intrinsically differ-
ent.

3 Most of effective theories obtained from string theory compact-
ifications usually involve working near one of these limits. This
is why the SDC has the potential to constrain many inflationary
models in string theory. There can be, though, other examples
of infinite distance singularities.

4 The SDC is deeply linked to the appearance of dualities in string
theory.
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FIG. 1. Sketch of a moduli space with different local patches
describing the different regimes of validity of an effective the-
ory. For simplicity, we only draw two singularities, assuming
one of them at infinite distance (¢ = co) and the other one at
finite distance (¢ = 0). The effective field theory is valid at a
finite region around the singularity. When going away (red or
blue arrow), corrections will become important and eventually
has to be replaced by another effective description. Quanti-
fying these corrections defines the radius of validity (dashed
circles) of the EFTs. Contrary, the SDC gives information on
how close we can go to the singular point (yellow arrow). Even
if in this limit the metric at leading order is well described by
1/¢* and corrections are negligible, there is an additional infi-
nite tower of particles which will yield an exponential drop-off
of the energy cut-off. This sets a new boundary (yellow dot-
ted circle) and a corresponding area where the EFT breaks
down by quantum gravity effects (yellow area).

Let us finally remark that the effective theory also
breaks down at finite distance singularities because of
the presence of some new light state. However, since the
number of new degrees of freedom is expected to be finite,
we can always integrate them in and continue working
with the same effective theory plus the new states. There
is no need of changing to a dual picture and, consistently,
the quantum gravity cut-off does not go to zero in these
cases. There have been some works [13] studying if a
Refined SDC [18, 19] forbidding transplanckian geodesic
field distances could still be valid in these regimes, even
if there is no infinite tower becoming light. They find
agreement with the refined conjecture in the sense that
the analysed geodesics trajectories are still subplanckian.

III. SDC AND INFLATION

One of the strongest implications of the SDC, and in
particular of eq. (4), is a limit on moduli space distances
within any effective field theory which is consistent with
string theory and has a finite cut-off. Therefore, it is
of potential phenomenological interest in the context of
inflation where both a high energy scale and a large field
excursion may play an important role.

In order to have a successful inflationary model, we

need the cut-off to stay above the Hubble scale, that is
H < Aqe.- (9)

This simple observation allows us to give a model-
independent upper bound on the proper field distance Ay
that any inflationary model (consistent with quantum
gravity) can accommodate

1 M
Zlog =2
b\ og H
assuming that the conjecture is valid for any scalar field
taking parametrically large values®. Recalling that in the
slow-roll limit we have

M, 2
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H m2A; 7’ (11)

Ap < Apspc = (10)

the bound eq. (10) can be expressed in terms of the
tensor-to-scalar ratio r

2
Ap < Apspc = _1 (log A + logr) , (12)
2\ 2

with A, being the amplitude of scalar perturbations. No-
tice that the quantities H, Ay and r are calculated at
the scales which crossed the Hubble horizon around 60
e-foldings before the end of inflation (the same scales
are entering our present horizon and correspond to the
largest ones of our observable Universe). These are the
only scales of interest for the current analysis as they are
associated with the highest inflationary energy we can
effectively probe through cosmic microwave background
(CMB) experiments, such as the Planck satellite [45, 46].
For the sake of simplicity, here and in the following, we
do not label these quantities with a star, as it is usually
done in literature.

First of all, let us note that the lower the inflation-
ary scale is, the milder the bound becomes. This means
that the EFT of models with a small Hubble parameter,
which generically correspond to scenarios where a sub-
Planckian field excursion is sufficient to generate 50-60
e-foldings of inflation, will be safe in this respect. The
point in field space where the EFT is supposed to break
down reduces to smaller values together with the increase
of the inflationary energy scale, making large-field models
more in tension with such a conjecture. This behaviour
is shown in fig. 2 by the blue line, which represents the
bound eq. (10) for A = 1.

The latest Planck results [45], through the upper
bound on the tensor-to-scalar ratio (dashed green line
in fig. 2), impose

M, .
P 5 37x%x10 13
7 > 37X 107, (13)

5 More concretely, it applies to EFTs where the limit Ap — oo
corresponds to approaching an infinite distance boundary of the
moduli space, as in most of the string theory realizations of large
field inflationary models.
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FIG. 2. The blue line is the universal upper bound predicted
by the SDC as function of the tensor-to-scalar ratio r (we have
assumed A = 1). The orange line is the Lyth bound which
provides a minimum range for generic models of inflation.
Scenarios of inflation whose EFT is consistent with quantum
gravity should have a field range which belongs to the yellow
area. The green area is the one allowed by Planck 18, via the
upper bound r < 0.064 (dashed green line).

which, once plugged into eq. (10), translates into a max-
imum field excursion set by the SDC of around 10 M,
(when A = 1). Interestingly, given the measured value
of the scalar amplitude A, [46], the main contribution is
given by the first addend in eq. (12) which alone provides
a super-Planckian excursion of around 9.19 M, (A =1).
A smaller value of A would allow to traverse a larger field
displacement before the breakdown of the EFT of infla-
tion®.

The bound is therefore yielding a maximum field ex-
cursion which is roughly O(1) in reduced Planck mass
units (we note that while this is a consequence of the Re-
fined SDC [18], it was further emphasized as a swamp-
land criterion in [32]), but it can still leave considerable
room for inflationary models with Ay > 1 allowed by
the current data. In fact, given the latest cosmological
constraints provided by Planck [45], we expect at most
modest super-Planckian excursions and, therefore, deter-
mining the actual value of A becomes of crucial impor-
tance in order to determine any possible tension with the
limit imposed by the SDC. Furthermore, we would like to
emphasize that this conjecture does not provide a univer-
sal strict bound on Ay but rather a relation between Ay
and Aqga, which are two quantities in principle discon-
nected in the absence of gravity. This can have important
implications for inflation, besides the constraint on the

6 There might be some room to make A smaller by travelling along
non-geodesic trajectories in a multi-field scenario. This is dis-
cussed in section VI.

field range, due to the premature breaking down of the
EFT.

It is interesting to compare the upper bound eq. (10)
with the famous Lyth bound [47-49], which provides a
minimum for the field excursion of slow-roll inflationary
models”. Whereas the Lyth bound increases together
with r, the SDC bound decreases and the two functions
define a finite area of validity for inflationary models con-
sistent with quantum gravity (see yellow area in fig. 2).
It is interesting to notice that many models of inflation,
which have been ruled out by the cosmological data of
the last couple of years, are also in very strong tension
with quantum gravity arguments. A primary example of
this situation is provided by the simple quadratic model
[50] of inflation (with r ~ 0.1 and Ap ~ 15), which is ex-
cluded by the swampland distance conjecture for A > 1.

Let us finally remark that the infinite tower of states is
not part of the effective field theory and can only be iden-
tified if one has a UV completion in a consistent theory of
quantum gravity. Therefore, the above bound could have
never be obtained by studying the validity of the model
within the effective field theory itself, without extra input
about the tower of states. Furthermore, the bound dis-
appears when decoupling gravity by sending M, — oo,
as any swampland constraint should.

IV. «a-ATTRACTORS AND STRING THEORY
A. Review: a-attractors = pole inflation

The a-attractors cosmological scenario [27, 28] has
been proposed and developed in the framework of super-
gravity (see also [51-53] for previous investigations with
some working examples for specific values of «) and sub-
sequently studied in a variety of contexts. The crucial
observation is that the kinetic structure of the theory,
and therefore the underlying Kéhler geometry, may act
as an “attractor” thus determining the inflationary ob-
servables unequivocally, irrespective of a certain array of
details. Specifically, the predicted values for the scalar
spectral index ng and the tensor-to-scalar ratio r, mea-
sured by CMB experiments, have universal form

2 12a

N T:Wa (14)

ng=1-—
at large values of the number of e-foldings N and with
a being a numerical parameter directly related to the
curvature of the scalar manifold.

7 The original bound derived by Lyth [47] was taking into account
just the small observable window which CMB experiments have
access to. Assuming that » monotonically increases as inflation
proceeds, one can extend this bound to the whole period of in-
flation (IV =~ 60).



The key ingredient of this universality is a dependence
of the Kahler metric on the inflaton ¢ such that
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This situation appears for typical logarithmic Kahler po-
tentials such as K = —3a/In(T + T) when the inflaton is
identified with the saxion, that is ¢ = ReT.

This class of models is therefore characterized by an
underlying scale invariance [54, 55] which can be bro-
ken by means of various mechanisms (e.g. by a field-
dependend term in the superpotential [27, 28, 56], by
Kéhler [57], loop [68-62] or higher-derivative [63, 64]
corrections) thus generating an inflationary dynamics.
In full generality, the universal cosmological predictions
arise when the scalar potential is regular at small-
distance in field space and can therefore be expanded
as

V=V-V¢+0(¢?), (16)

where the kinetic term eq.(15) shows a pole [29] (indeed,
this class of models is often termed pole inflation [30, 31]).
This regularity translates into an infinite positive plateau
with a first exponential deviation in terms of the canon-
ically normalized variable ¢ = —1/3a/21n¢. However,
in order to solve the standard cosmological puzzles, one
needs just a finite amount of inflation (usually quantified
with 50-60 e-foldings). Therefore, the observational pre-
dictions would not be affected if this regularity holds just
for a certain finite field range, while allowing even singu-
lar behaviour in the limit ¢ — 0. An interesting example
of this situation is the fiber inflation scenario [62], where
power corrections to the originally flat direction enters
the potential with both signs, thus spoiling the infinite
quasi-de Sitter phase at very large field values.

It is therefore useful to give an expression of the canon-
ical field range in terms of the number of e-foldings V.
This has been derived in [49] and reads

Ap =+/3a/2InN — ., (17)

where ¢, is the point where inflation ends and it is usu-
ally a sub-leading contribution at large values of N. As
an example, models with @ = 1 (including the Starobin-
sky model [65]) will deliver 60 e-foldings of inflation when
the scalar field moves of about 5 M,. Therefore, mod-
ifications or breakdown of the EFT beyond this value
will not affect the original inflationary predictions. The
above expression can be obtained by integrating the re-
lation dy/dN = \/ﬂ, with the first slow-roll parameter
being equal to € = 3a/4N?, at leading order in N.

In the following, we would like to argue that a proper
realization of a-attractors in string theory corresponds to
taking the opposite limit ¢ — oo, that is the limit where
the kinetic term goes to zero and then has no pole.

B. String realisation of a-attractors
at infinite distance (i.e. a-attractors # pole inflation)

Let us start with the observation that the key-
ingredient of a-attractors, namely the kinetic term
eq. (15), has the same ¢-dependence of the metric eq. (6)
appearing only when approaching an infinite distance sin-
gularity in field space. This suggests a very natural re-
alization of a-attractors at the boundaries of the string
moduli space. Here below, we discuss this possibility
and highlight the differences and possible issues with the
original pole-inflation scenario described above.

Let us first note that the kinetic term eq. (15) is in-
variant under the inversion ¢ — 1/¢. This implies that
the phenomenology of a-attractors remains the same if
the scalar potential can be expanded at infinite distance
such as

V=Vy—-Vi/¢p+O(1/4%). (18)

Note that, after the inversion, the kinetic term eq. (15)
will have no longer a pole in the deep inflationary phase
limit, rather will be infinitesimally small. Again, also in
this parallel case, positive power corrections might en-
ter the above expression, while still yielding a-attractor
behaviour at infinite distance, if the plateau extends at
least for 50-60 e-foldings.

While this discussion is correct at the level of the effec-
tive theory of inflation with a single real scalar field, one
has to be careful when embedding these models in string
theory, which necessarily implies new degrees of freedom
coupled to ¢.

Let us consider a simple supergravity embedding, in
which the inflaton ¢ is identified with the real part (sax-
ion) of one complex field T parametrising a scalar mani-
fold with Kéahler potential

K=-3alm(T+T+...). (19)

This type of Kéahler potential arises when working in
a local region near an infinite distance singularity (like
e.g. large volume or large complex structure). As men-
tioned earlier in Sec. IT A, we usually have only a local
patch-wise description of the moduli space of a string
compactification. The latter expression should indeed
be understood as an expansion around an infinite dis-
tance singularity where we are neglecting sub-leading cor-
rections denoted by the ellipsis. The local form of the
Kahler potential near infinite distances singularities was
given in eq. (5). Comparing both equations, it is trivial
to check that eq. (19) is a particular case of eq. (5) with
p(9) = (T +T)°* = (2¢9)>*.

If we now perform an inversion transformation such as
T — T' =1/T, the leading term of the K&hler potential
eq. (19) remains invariant (up to a K&hler transforma-
tion). This implies that the kinetic Lagrangian

oToT 3a
Liin = =30——=5 = e

T+ 17 (00)? +(00%)  (20)



is covariant with respect to the inversion, so that
Lyin(T) = Lyin (T =1/T). In terms of the new field
T' = ¢’ +10', the kinetic term for ¢’ looks the same but
the potential changes. Assuming that ¢ enjoys a poten-
tial of the form eq. (18), the potential in terms of ¢’ will
look as in eq. (16). This implies that the inflationary
regime emerges for ¢ — oo, whereas in the primed frame
it does for ¢’ — 0. At this point, it is interesting to
notice that, since the field metric is covariant under the
inversion transformation, the decay constant of 6 goes to
zero as ¢ — oo, while the decay constant of 6’ diverges
as ¢’ — 0. This happens in the same physical situation
(i.e. during inflation). However, only 6 can be identified
with the true axion, as we explain in the following.

In the new primed frame, the separation on K between
a leading polynomial (depending only on the radial vari-
able) and the exponentially suppressed corrections is no
longer true (this is generically the case for prototypical
four-dimensional Calabi-Yau compactifications of Type
IT string theory). In particular, the angular variable 6’
is not an axion in the sense that it does not enjoy an
approximate continuous shift symmetry only broken by
exponentially suppressed corrections. Therefore, even if
its field metric diverges, this does not have the physical
meaning of a “decay constant” and it does not make sense
to apply the bounds derived by the Weak Gravity Con-
jecture. The true axion is only 6, whose decay constant
goes to zero at the infinite distance singularity. There-
fore, a kinetic term of the form (20), where it is assumed
that the corrections are exponentially suppressed so that
0 behaves as an axion, is only valid for ¢ — oo.

The inversion transformation should not be under-
stood as a symmetry but more as a duality (two dif-
ferent descriptions giving the same physics). It is part of
the group of linear transformations GL(2n + 2, R) which
leaves invariant the Kéhler potential up to Kéhler trans-
formations. However, in general, these transformations
do not correspond to symmetries of the effective theory
but rather to a choice of frame (field redefinitions or dual-
ity transformations). The true symmetries of the action
are a discrete subgroup M € GL(2n + 2, R) called the
monodromy group, which does not include in general this
inversion transformation. This is more clear if the scalar
fields are part of N = 2 vector multiplets together with
U(1) gauge fields (as in the complex structure (Kéhler)
moduli space of IIB (ITA) Calabi-Yau compactifications).
The scalar field metric is then related to the gauge cou-
pling, and the inversion transformation implies in turn a
transformation on the gauge coupling g — 1/¢g and the
exchange between electric and magnetic gauge fields. At
a given point of the moduli space, an effective description
in terms of electric gauge fields is dual to a description
of the magnetic gauge variables, but if the electric gauge
coupling goes to zero, the magnetic one will diverge and
there is no weakly coupled effective Lagrangian that we
can write for the magnetic variables. It is more useful
then to work with the electric fields. Similarly, for the
scalar manifold, there are frames which are more useful

than others depending on the point of the moduli space.
When approaching an infinite distance singularity, there
is a “clever” frame for the Kahler potential in which the
corrections are exponentially suppresed with respect to
the leading term, so the shift symmetry of the axion is
manifest. But in this frame, the singularity is located
at ¢ — oo so the result is only valid for large ¢. The
Nilpotent Orbit Theorem naturally selects this “clever”
frame and gives the leading form of the Kahler poten-
tial at any type of infinite distance singularity, regardless
of the specific Calabi-Yau compactification space or the
scalar field under consideration.

Notice that there can be exceptions for particular
scalar manifolds in which the inversion transformation is
indeed a true symmetry of the theory, as in toroidal com-
pactifications. There, the monodromy group is SL(2, Z)
and both limits ¢ — oo and ¢ — 0 correspond to infinite
distance singularities. For Calabi-Yau compactifications,
only special examples exhibit infinite distance singular-
ties at small ¢ which are in fact characterized by small
values of d in eq.(6) (in particular, d < 3 for Calabi-
Yau threefolds [3]) which imply in turn small values of
a. Clearly, one can always choose to work in the frame
in which the singularity is located at infinity, so the pres-
ence of the axion is manifest and everything works as
described above. However, in these cases, both 6 and ¢’
behave as axions in the effective theory.

To sum up, the Kéhler potential in eq. (19) is a local
expansion at ¢ — oo and, in general, it is inconsistent to
work with this effective theory when moving to the pole
¢ — 0 and assume that the corrections will be exponen-
tially suppressed and remain negligible. Furthermore, in
Kahler manifolds, each infinite distance singularity im-
plies the presence of an axion in the effective theory with
an approximate continuous shift symmetry, and whose
decay constant goes to zero at the singularity. This be-
haviour for the decay constant holds for any infinite dis-
tance point that belongs to a single singular divisor in
the moduli space, meaning that we are sending only one
field ¢ to infinity. As we will comment in section VI, the
case of sending several fields to infinity is more techni-
cally involved and has not been proven yet, although we
still expect it to be true. We hope to come back to a
more detailed analysis of the field metrics in this case in
the future. Notice that fiber inflation [62] enters in this
category, as two Kéhler fields are sent to large values
simultaneously.

Finally, as in any inflationary model, it is impor-
tant to discuss the robustness of the effective theory
against higher order corrections. The separation in the
Kahler potential between the leading polynomial and the
exponentially suppressed corrections allows for the flat-
tening of the scalar potential if V' takes the form (18).
Therefore, as far as we can see, only if the inflaton is iden-
tified with a scalar field approaching an infinite distance
singularity, the characteristic plateau of a-attractors can
be safely generated. However, this might not be suffi-
cient. The advantage of identifying the inflaton with an



axion is the presence of an approximate continuous global
symmetry which protects the scalar potential from higher
order corrections. This shift symmetry is inherited from
the monodromy transformation of infinite order present
at any infinite distance singularity, which implies that
the axion does not appear in the Kéahler potential up to
exponentially suppressed corrections. It is then natural
to ask whether there is any analogous protection for a
saxion field. Even if this is generically not possible, the
analogous protection for the saxion would come from an
approximate scaling symmetry, i.e. ¢ — £¢ with £ being
a constant, preserved at leading order in the Kéahler po-
tential. This scaling symmetry indeed corresponds to
a shift symmetry for the canonically normalised saxion
[54, 66]. Unlike the axionic case, this scaling symmetry
will be related to the finite order part of the monodromy
transformation. Whether the monodromy transforma-
tion associated to an infinite distance singularity can in-
deed generate this scaling symmetry, is not clear and
deserves further investigation.

A last cautionary remark regarding the scalar poten-
tial is in order. In this note, we only focus on the ki-
netic structure of the inflaton. Therefore, the proxim-
ity to these types of singularities is a necessary but not
sufficient condition to get the cosmological properties of
a-attractors. The analysis of the asymptotic behaviour
of the scalar potential is left for future work.

V. SWAMPLAND CONSTRAINTS ON
a-ATTRACTORS

The Swampland Distance Conjecture suggests that the
effective theory of any scalar field®, when going to para-
metrically large enough values, exhibits a universal be-
haviour for the kinetic metric. This is also confirmed by
the analysis of the physics around infinite distance singu-
larities [3]. Interestingly, as we have pointed out in the
previous section, this emergent field metric eq. (6) pre-
cisely matches the one required for a-attractors eq. (15).
By comparing both equations, we are then encouraged to
identify

d=3a. (21)

Deviations from the perfect 1/¢? dependence, as it is in
eq. (15), may certainly occur but this would affect the
inflationary dynamics just at smaller values of the field
and, then, far from the CMB window where the obser-
vational predictions conform to eq. (14). If the scalar
potential takes the form (18) with V; # 0, the dynamics
will eventually be characterized by a long enough plateau
and an inflationary a-attractor behaviour. Contrary, if
Vo = 0, there will be an exponential runaway towards
large field values, which might be useful for quintessence.

8 We will comment on the generalisation to axions in section VI.

This latter behaviour would be in agreement with recent
conjectures [19, 32, 33, 40, 67].

The universality features of a-attractors occur at large
values of ¢, i.e. where the scalar potential develops a
quasi-de Sitter plateau in canonical coordinate . How-
ever, this is also in the same limit where the infinite tower
of states predicted by the SDC becomes light and the ef-
fective theory breaks down. It is therefore essential to
check how far we can move along the plateau (towards
the infinite distance point) before the quantum gravity
cut-off decreases such that becomes lower than the Hub-
ble inflationary scale.

A. Universal bound independent of A\

The maximum field range that can be traversed before
the effective theory breaks down is given by eq. (10). We
can combine the latter with eq. (17) in order to obtain

1 M,
Ap =+/3a/2log N < Xlogfp, (22)

which translates into a bound on the total number of
e-foldings

2 1
M 3a X\
<=2 )
N(H) (23)

Let us recall that the parameter A is a combination of
the coefficient d appearing in the field metric eq. (6) and
the power of the mass p for the tower of states eq. (7)
so that A = 2p/(3v/d). Upon using eq. (21), we then
obtain?

oF
ve (M) "

This bound is universal for any a-attractor model and
with a very mild dependence on « through the energy
scale (H o y/a). There is still some dependence on p,
which is an order one factor appearing in eq. (7) and
which depends on the specific structure of the tower of
particles. Typically, p is a (half)-integer upper bounded
by the complex dimension of the internal space, i.e.
p=1/2,1,...,3 for a C'Y3, depending whether the tower
of particles arises from wrapping branes of different di-
mensionality, KK modes, winding modes, etc.

9 A slightly stronger bound can be obtained if we impose that the
lightest state of the infinite tower remains always heavier than H,
such that the flatness of the inflationary potential is preserved.
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In this case we get N < (mo/H) V2P where mg is the mass
of the lightest state at the furthest point from the singularity
during inflation, that is where the inflationary dynamics ends.
This bound is however more model-dependent, thus we prefer to
use the universal criterion given by the species bound.



Clearly, the inequality eq. (24) easily holds for typical
inflationary periods of 60 e-foldings, given the current
experimental bound on the Hubble scale eq. (13) coming
from the constraints on tensor modes. In the next subsec-
tion, we will get a stronger bound by fixing the value of A
in concrete scenarios. It is worth to remark, though, that
eq. (24) is a universal upper bound for a-attractor models
obtained by requiring consistency with quantum gravity
via the SDC, regardless of all the subtleties related to
the exact value of A and independent of whether the field
range is transplanckian or not. Furthermore, since the
dependence on d cancels out, this bound equally applies
to the higher-dimensional moduli spaces and any type of
trajectory approaching an infinite distance point.

B. Bounds on A\, a and r

We can now be more restrictive and comment on the
allowed range for X\. This is not specified by the conjec-
ture, although a refined version of the SDC states that
) should always be of order one for geodesic trajectories.
This would automatically imply that o < 20(1) and

Ap < log(%). Interestingly, we can give more quanti-
tative bounds if using the results for the geometry near
infinite distance singularities of the moduli space. In par-
ticular, in certain cases, we can fix this order one factor
in terms of the type of singularity arising at ¢ — oco.

In this section, for simplicity, we will only consider sin-
gle field inflationary models in one dimensional moduli
spaces. We will comment on the generalization to more
realistic higher dimensional moduli spaces and more gen-
eral trajectories in section VI. For single field, the factor
d appearing in the field metric (6) is simply an integer
that characterises the type of infinite distance singularity
and is given by the properties of the monodromy trans-
formation around the singularity'®. It is upper bounded
by the complex dimension of the compactification space
(for a Calabi-Yau threefold, d = 1,2,3). Then, eq.(21)
implies o« = 1/3,2/3, 1 respectively. The maximum value
d = 3 (o = 1) corresponds to a maximal unipotency
singularitiy, like the large complex structure point (or
large volume). This implies that, a-attractor models de-
scribed by a single scalar field approaching an infinite
distance singularity in a one dimensional moduli space
of Calabi-Yau compactifications of Type II string theory
have necessarily a < 1, implying

r = 12a/N? < 0.003, (25)

for 60 e-folds of inflation. This bound is valid for any
Calabi-Yau manifold, but restricted to a purely saxionic
trajectory approaching the singularity. We will comment
on more general trajectories in the next section.

10 More concretely, d is an integer corresponding to the maximum
power of the nilpotent monodromy operator that does not anni-
hilate the period vector. More details can be found in [3].
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VI. COMMENTS ON THE MULTI-FIELD CASE

The generalisation of the SDC to more than one scalar
field is subject of controversy and open questions. Similar
to the case of a single scalar, one would expect that, as
long as the trajectory in the scalar manifold approaches
an infinite distance point, an infinite tower of states will
become exponentially light and the effective theory will
eventually break down. However, the point at which
these effects become relevant for inflation will depend
on the rate at which the states become light, which is
parametrised by A in eq. (10). From a geometric point
of view, the concrete value of A can in principle depend
on the type of trajectory followed in the field space. Any
attempt to give a universal value for A will imply to con-
strain both the geometry of the scalar manifold as well
as the type of scalar potential that can arise from string
theory, thus effectively constraining the type of trajecto-
ries allowed by quantum gravity. This is a very difficult
question since it would imply to know the full potential
including all possible backreaction effects, to determine
the final trajectory followed in the field space. However,
we can aim at least to determine the value of A associated
to each trajectory, even if we do not know what trajecto-
ries will be eventually allowed by quantum gravity. The
advantage of using the Nilpotent Orbit Theorem to de-
termine the Kéahler potential is that we can avoid part
of the path dependence issues, as we will see below. We
will distinguish a few cases depending on their level of
technical difficulty.

A. Saxionic trajectories

Let us still assume we are moving only along saxionic
fields, i.e. on radial directions to the singularity. In a
higher dimensional moduli space, with multiple saxions,
we can distinguish two cases depending on the number
of transverse coordinates to the singular point.

e One-parameter degenerations: the singular point is
located at a single singular divisor at ¢ — oco. In
other words, there is only one transverse complex
coordinate T to the singularity and, therefore, only
one radial way ¢ to approach it.

e Multi-parameter degenerations: the singular point
is located at the intersection of multiple singular
divisors, each of them located at ¢; — oo where 4
runs over the number of singular divisors. In other
words, there is more than one complex coordinate
transverse T; to the singular point.

These two cases have been schematically shown in fig. 3,
where the point P is a one-parameter degeneration while
R is a multi-parameter degeneration as corresponds to
the intersection of two singular divisors.

It is important to remark that, in this paper, we
have only investigated the cosmological implications of
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FIG. 3. Sketch of different trajectories in the moduli space.
The straight black lines correspond to singular divisors, while
the blue lines correspond to different type of trajectories ap-
proaching the singular loci. The left figure refers to whether
the trajectory is approaching a one-parameter (point P) or a
multi-parameter degeneration (point R). Notice that, even if
each singular divisor has one transverse complex coordinate
T;, the left drawing corresponds to the plane spanned only
by the two real components ¢;. The right figure corresponds
instead to the complex plane spanned by 11 = ¢1 + i6;. It
can be therefore seen as a transversal view of the left figure so
that one of the singular divisors appears as a point. Different
trajectories a, 3, correspond to different mixings of the sax-
ion ¢1 with the axionic field 61, so that v is a purely saxionic
trajectory.

one-parameter degenerations. The Kéhler potential was
given in eq. (5). For multi-parameter degenerations, the
polynomial in e~* will be an expansion over each trans-
verse coordinate. Interestingly, there is a very rich un-
derlying structure of the possible enhancements and in-
tersections which will again constrain the physics and ge-
ometry around these points. This has been analysed in
[4]. Even if path dependence issues become more impor-
tant, it is possible to classify paths into different growth
sectors and to determine how the masses of the tower of
states behave within each growth sector. A more detailed
analysis of the field metrics in these growth sectors is left
for future work.

Even if we restrict ourselves to one-parameter degen-
erations, there can also be additional scalar fields z,
parametrizing the longitudinal directions to the singu-
lar divisor. All the bounds obtained for the single field
case still apply in this case, with the difference that the
constant d appearing in the leading term of the kinetic
term for the saxion is replaced by some d.g which will
also depend on the other spectator fields z,. However,
deg is upper bounded by the integer d, i.e. deg < d, so the
bounds on the field range for purely saxionic trajectories
become even stronger.

B. Saxion-Axionic trajectories

Let us finally consider the case in which we also dis-
place some axionic field. Varying the saxion is equivalent
to moving along the radial direction towards the infinite
distance singularity, while varying the axion corresponds
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to circle around the singularity. In the previous section,
we only considered purely saxionic trajectories, as in the
original models of a-attractors. Here we will comment
on the bounds for more general trajectories in which we
also move along the axionic direction. Different trajec-
tories have been depicted in fig. 3 (right figure). For
simplicity, we will assume that the moduli space is only
parametrised by one complex scalar field T' = ¢+i6. The
leading term for the kinetic field metric near the infinite
distance singularity reads

_ 4
4¢2

It can be proved [42] that any real smooth trajectory
approaching the point ¢ — oo has infinite length,

d
L= *W(%)Q (96)*. (26)

Ap 2 g log(¢) — oo, (27)

even if it has an axionic component. In particular, a
trajectory involving a linear combination of saxion and
axion such that

(6,6) = (60 + 66, ~69) (28)
has a length given by
2
Ap = % log (¢ + 6¢) . (29)

However, it is not enough to know the field metric in
order to determine the drop-off of the cut-off and the
maximum field range consistent with the conjecture. We
also need information about the mass behaviour of the
tower of particles. For a single complex field, it is still
expected that the mass scales at leading order as
mo

Plugging eq. (29) into the species bound for this tower of
particles, and denoting A\ = 2p/v/3d as before, we get

1\/1+a210 M,

A a & (31)

Ap < Apspe =

This is the same formula used in the previous analysis

but with a new effective factor A\eg = )\ﬁ which now

depends on how much we are moving along the axionic di-
rection. For a — oo, the trajectory is mainly saxionic and
we recover the results of section V. The field range cannot
be made parametrically large and it is upper bounded by
A~ For a — 0, the trajectory is mainly axionic and
in principle Aeg < A so Apgpe can be made parametri-
cally larger. This limit is equivalent to consider an axion
monodromy inflationary model [68, 69] in which back-
reaction effects involve some displacement of the saxion
fields which is quantified by the value of a. If a is very
small means that backreaction effects are negligible and



the trajectory is mainly axionic. For this to happen, one
needs to be able to engineer a mass hierarchy such that
the axion is much lighter than the saxion [7]. The ques-
tion, though, is whether there exists a potential in an
effective theory consistent with quantum gravity that al-
lows us to generate this mass hierarchy and move along
this almost purely axionic trajectory. In many cases, it
turns out that the same tuning required to get this mass
hierarchy in string compactifications, also brings the ef-
fective theory away from the perturbative controllable
regime [9, 13] (see though [70]). Therefore, it remains as
an open challenge to fully globally engineer a controllable
model of this type ''. All we can say, though, is that this
type of monodromic axionic trajectories are still the best
candidates to generate larger field excursions as of now.

Regarding the cosmological predictions, in the case of
a mixed saxion-axion trajectory, asymptotic to eq. (28)
at infinite distance, one would generically still expect an
emergent inflationary behaviour typical of a-attractors
(provided the conditions on the potential discussed
above). In fact, the kinetic term has still an effective
1/¢? dependence along that path. In the ideal case of
perfect linearity, with a being a constant along the whole
trajectory, the inflationary predictions will be again given
by eq. (28) but with « being replaced by s such as

2
a = Q= 1—(;01 . (32)
For small a, that is when the axionic component becomes
relevant, the tensor-to-scalar ratio will therefore increase.

However, moving away from the singularity, deviations
from the linear saxion-axion combination are generically
expected. These will depend on the specific details of
the full scalar potential'?, with direct consequences on
the resulting inflationary dynamics. The evolution along
the axionic direction can in fact lead to phenomenologi-
cally distinct scenarios. Here below, we give an account
of quite generic situations, keeping in mind that many
model-dependent subtleties might come into play.

One possibility is that the parameter a effectively in-
creases thus yielding a purely saxionic trajectory. If the
potential is such that the last 60 e-foldings of inflation
happen along this path, then we recover the original pre-
dictions given by eq. (28). On the contrary, if the tra-
jectory becomes mainly axionic (effective reduction of a)
and if the potential is suitable to sustain again at least
60 e-foldings of quasi-exponential expansion, then the
predictions will be strictly dictated by the form of the

11 See, though, the recent work [14] where the backreacted kinetic
term along the axionic trajectory goes as 1/d¢, seemingly imply-
ing a parametrically large axionic field displacement. However,
in this case, the axion varies over a non-compact spatial dimen-
sion.

Deviations from the linear case eq. (28) can be again encoded in
the trajectory-parameter with a dependence such as a = ag +

a1/¢+O(1/¢%).
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axionic potential (with model dependent outcomes). In
fact, CMB observations will ‘see’ just the last stage of in-
flation, thus ignoring the preceding cosmological history.

Another possibility is that the first stage of inflation-
ary attractor along the diagonal is interrupted with a
subsequent phase, which can sustain an insufficient pe-
riod of inflation or even no inflation at all (thus leading
to a premature ending of inflation). In both cases, the
cosmological predictions will read

2 12 e
ng=1-———", r=——"°_ 33
(N +6N) (N +6N)? (33)

with N = 60 and § NV being a positive quantity in case the
inflationary period is prematurely arrested (see e.g. [71]),
while it is a negative number if there is a second stage
of insufficient inflation, with a duration of |[§N| < 60
e-foldings (see e.g. [72, 73]).

VII. CONCLUSIONS

In this paper we have discussed the interplay between
the Swampland Distance Conjecture, the physics at infi-
nite distance singularities and its implications for infla-
tion. Specifically, we have pointed out that the emer-
gent field metric predicted by the SDC (and confirmed
by explicit analysis in the context of Calabi-Yau mani-
folds [3]) is the same as the typical of a-attractor models
of inflation. The SDC therefore suggests that any scalar
field travelling along a non-compact trajectory towards
a boundary of the string moduli space will exhibit the
phenomenology of a-attractors for large enough paramet-
rically field values, provided a certain regularity on the
scalar potential (see Sec. IV). However, the conjecture
implies also that the limit where the universal inflation-
ary behaviour emerges is the same where the effective
field theory is supposed to break down cause of the ap-
pearance of an infinite tower of massless states. We have
investigated these aspects and found a number of inter-
esting results:

e We have first pointed out that assuming validity of
the EFT of inflation (i.e. H < Agg) and eq. (1)
automatically leads to a universal upper bound on
the inflaton field range in terms of the tensor-to-
scalar ratio » measured at horizon exit. This bound
scales as Ap < —log(r) and, when compared with
the Lyth bound (Ap 2 +/r), it defines an area of
inflationary models consistent with the quantum
gravity constraints imposed by the SDC (see fig. 2).

e We have argued that if a-attractors are realised
within string theory and by means of only one ra-
dial transverse direction evolving during inflation,
then the kinetic metric eq. (2) should vanish in
the deep inflationary limit. This happens because
the physics emerges around infinite-distance singu-
larities in field space. In Calabi-Yau string com-



pactifications, the symmetries of these spaces typ-
ically do not include the inversion transformation,
which makes this inflationary construction intrinsi-
cally different from the pole inflation scenario [29-
31] (although with identical predictions). Interest-
ingly, this realization comes together with the addi-
tional feature that the decay constant of the axion
partner goes to zero in this limit, thus implying
consistency also with the bounds imposed by the
WGC. The increase of the axion decay constant to-
wards the end of inflation might lead to interesting
phenomenological consequences.

e We have proven that, although the infinite long
plateau typical of a-attractors is forbidden by the
SDC, these models can still deliver a sufficient
amount of inflation (N > 60) with cosmological
predictions equal to eq. (14). For a-attractor mod-
els arising at infinite distances, the upper bound on
the total number of e-foldings is given by eq. (24).

e The realization of a-attractors at infinite distances,
allowed us to relate, through eq. (21), the parame-
ter a of these inflationary class of models with the
parameter d, the latter being intimately related to
the fundamental geometric properties of the singu-
larity (see eq. (5) and eq. (6)). For saxionic trajec-
tories, d is upper bounded by an integer depend-
ing on the properties of the monodromy transfor-
mation of infinite order around this point (which
translates to the shift symmetry of the axion part-
ner in the effective theory), thus implying an up-
per bound eq. (25) on the tensor-to-scalar ratio. It
is also eventually related to the rate at which the
infinite tower of particles becomes light, as both
parameters are connected to the asymptotic struc-
ture of the kinetic term. More concretely, we get
a ~ A\72 where )\ appears in the definition of the
SDC eq. (1). A bound on X has, therefore, a direct
impact on a-attractors.

Many of the results discussed in this paper are (model-
independent) consequences of applying the Nilpotent Or-
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bit Theorem [41] to the K&hler potential of Calabi-Yau
compactifications. Therefore, the validity of these con-
ditions is restricted to these spaces, although their deep
relation to the SDC suggests that they might be valid
in general. It is important to remark, though, that they
have only been proven for one-parameter degenerations,
meaning that there is only one saxion going to infinity
while all the other fields are kept finite. Even if we ex-
pect them to be true in general, we cannot apply yet our
results to models like fibre inflation [62], which involves
two fields moving towards a singular point located at the
intersection of multiple singular divisors (see e.g. point R
of fig. 3). Although we have already outlined some of the
generic expectations of multi-parameter degenerations in
Sec. VI, we leave this interesting but more involved anal-
ysis for future work.

Finally, we want to remark that much more effort is
still required to prove the conjecture and determine the
parameter A in eq. (1) from first principles. This is essen-
tial in order to ever give precise constraints on inflation
which aim to be universal. Interestingly, the mathemati-
cal structure underlying the infinite distance singularities
can also be used to potentially constrain the asymptotic
structure of the scalar potential in flux string compacti-
fications. This would represent an essential complemen-
tary analysis, since in the present work we have focused
just on the kinetic structure of the inflaton field. We
hope to return soon to these interesting topics.
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