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Abstract

We discuss the implications of the recent discovery of CP violation in two-body SCS D decays
by LHCb. We show that the result can be explained within the SM without the need for any large
SU(3) breaking effects. It further enables the determination of the imaginary part of the ratio of the
AU = 0 over AU = 1 matrix elements in charm decays, which we find to be (0.65 & 0.12). Within
the standard model, the result proves the non-perturbative nature of the penguin contraction of
tree operators in charm decays, similar to the known non-perturbative enhancement of AT = 1/2
over Al = 3/2 matrix elements in kaon decays, that is, the AT = 1/2 rule. As a guideline for
future measurements, we show how to completely solve the most general parametrization of the

D — PTP~ system.
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I. INTRODUCTION

In a recent spectacular result, LHCb discovered direct CP violation in charm decays

at 5.30 [1]. The new world average of the difference of CP asymmetries [2-13]
Aadl = afp(D° — KTK™) —alp(D° — wfn), (1)

where

_JAD 5 P - JAD = f)P?
LA(D® = )P +]AD" =

agp(f) (2)

and which is provided by the Heavy Flavor Averaging Group (HFLAV) [14], is given as [15]
Aadt, = —0.00164 =+ 0.00028 . (3)

Our aim in this paper is to study the implications of this result. In particular, working
within the Standard Model (SM) and using the known values of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements as input, we see how Eq. (3) can be employed in order to
extract low energy QCD quantities, and learn from them about QCD.

The new measurement allows for the first time to determine the CKM-suppressed am-
plitude of singly-Cabibbo-suppressed (SCS) charm decays that contribute a weak phase
difference relative to the CKM-leading part, which leads to a non-vanishing CP asymmetry.
More specifically, Aadl, allows to determine the imaginary part of the AU = 0 over AU = 1
matrix elements.

As we show, the data suggest the emergence of a AU = 0 rule, which has features that
are similar to the known “AJl = 1/2 rule” in kaon physics. This rule is the observation
that in K — 7w the amplitude into a I = 0 final state is enhanced by a factor ~ 20
with respect to the one into a I = 2 final state [16-26]. This is explained by large non-
perturbative rescattering effects. Analogous enhancements in charm decays have previously
been discussed in Refs. [27-34]. For further recent theoretical work on charm CP violation
see Refs. [35-51].

In Sec. II we review the completely general U-spin decomposition of the decays D° —
K+t*K~=, D’ — nt7~ and D° — K*7F. After that, in Sec. III we show how to completely
determine all U-spin parameters from data. Our numerical results which are based on the

current measurements are given in Sec. IV. In Sec. V we interpret these as the emergence of
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a AU = 0 rule, and in Sec. VI we compare it to the Al = 1/2 rules in K, B and D decays.
The different effect of AU = 0 and Al = 1/2 rules on the phenomenology of charm and

kaon decays, respectively, is discussed in Sec. VII. In Sec. VIII we conclude.

II. MOST GENERAL AMPLITUDE DECOMPOSITION

The Hamiltonian of SCS decays can be written as the sum
A
He ~ 2(1,0) — ?(0,0) , (4)

where (7,7) = Oﬁg::ij, and the appearing combination of CKM matrix elements are

o ViV = ViV M ViV _ ViViet ViaVi -
N 2 ' 2 2 2 '

where numerically, |X| > |\y|. The corresponding amplitudes have the structure

A=5(4g - AL~ L4, (6)

where A, A% and A, contain only strong phases and we write also Ay, = A3, — A%

For the amplitudes we use the notation

AEm) = AD’ = Ktr7), (7)

A(rm) = AD° — 777, (8)
AKK)= AD" = KTK™), (9)
A(rK) =AD" — 7t K™). (10)

The U-spin related quartet of charm meson decays into charged final states can then be

written as [30, 37, 52]

A(Kﬂ') ‘/cs (to — %h) s (11)

.A(T('ﬂ‘) = - <t0 + 51+ §t2) — )‘b (po - 5]91) ) (12)
1 1

AKK) =% (to — 51+ 5752) - X (po + §p1) : (13)

A(rK) = VgV, (to + %tl) . (14)



The subscript of the parameters denotes the level of U-spin breaking at which they en-
ter. We write A(K7) and A(wK) for the Cabibbo-favored (CF) and doubly Cabibbo-
suppressed (DCS) amplitude without the CKM factors, respectively. We emphasize that
the SM parametrization in Eqgs. (11)—(14) is completely general and independent from U-
spin considerations. For example, further same-sign contributions in the CF and DCS decays
can be absorbed by a redefinition of ¢y and t3, see Ref. [30]. The meaning as a U-spin ex-
pansion only comes into play if we assume a hierarchy for the parameters according to their

subscript.

The letters used to denote the amplitudes should not be confused with any ideas about
the diagrams that generate them. That is, the use of pg and ¢, is there since in some limit p,
is dominated by penguin diagrams and ¢y by tree diagrams. Yet, this is not always the case,
and thus it is important to keep in mind that all that we do know at this stage is that the
above is a general reparametrization of the decay amplitudes, and that each amplitude arises
at a given order in the U-spin expansion. In the topological interpretation of the appearing
parameters, ¢y includes both tree and exchange diagrams, which are absorbed [52]. Moreover,
s1 contains the broken penguin and pq includes contributions from tree, exchange, penguin

and penguin annihilation diagrams [30, 52|.

We note that the U-spin parametrization is completely general when we assume no CPV
in the CF and DCS decays, which is also the case to a very good approximation in the SM.
Beyond the SM, there can be additional amplitude contributions to the D’ = K*+r~ and
D’ = K- decays which come with a relative weak phase from CP violating new physics.

We do not discuss this case any further here.

In terms of the above amplitudes, the branching ratios are given as

BR(D — P,P,) = |A]* x P(D, P, P,),

o V0 — (= mn ), — (=) (15)

P(D,Pl,Pg):TDX

The direct CP asymmetries are [29, 35, 53|



III. SOLVING THE COMPLETE U-SPIN SYSTEM

We discuss how to extract the U-spin parameters of Eqs. (11)—(14) from the observables.
We are mainly interested in the ratios of parameters and less in their absolute sizes and

therefore we consider only quantities normalized on ¢, that is
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We choose, without loss of generality, the tree amplitude ¢, to be real. The relative phase
between A(K7) and A(7K) is physical and can be extracted in experimental measurements.
However, the relative phases between A(7nm), A(KK) and A(K) are unphysical, i.e. not
observable on principal grounds. This corresponds to two additional phase choices that can
be made in the U-spin parametrization. Consequently, without loss of generality, we can also
choose the two parameters §; and £, to be real. Altogether, that makes eight real parameters,
that we want to extract, not counting the normalization ¢,. Of these, four parameters are in
the CKM-leading part of the amplitudes and four in the CKM-suppressed one. In the CP
limit Im), — 0 we can absorb p, and §; into ¢, and 3; respectively, which makes four real

parameters in that limit.

The eight parameters can be extracted from eight observables that can be used to com-
pletely determine them. Additional observables can then be used in order to overconstrain
the system. We divide the eight observables that we use to determine the system into four

categories:

(1) Branching ratio measurements (3 observables) [16]. They are used to calculate the

squared matrix elements. We neglect the tiny effects of order |\,/%| and we get

,  B(D' = KtKY))

B(EO — )
2 _
B(EO — Kt7n™)
2 _
|A(Kﬂ-)| _ |‘/CSVJd|2P(DO,K+,7T_> ) (2())
—0 g
AR = oD T (21)

| VaViPP(DY, K- mt)
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We consider three ratios of combinations of the four branching ratios, which are

_ AT~ AR
e = Ta(Km) P+ JAEOP -
_ JABKK)P — [ A(rm)P
ke = [A(KE)P 1 | Arm)P )
e JAUSK)R 4 |G~ [AGKT)P — AP o
K = TAKR)P + AP+ AR+ AR

(1) Strong phase which does not require CP violation (1 observable). The relative strong

phase between CF and DCS decay modes

B AD’ = K-7)\ AD® = K+77)
O = arg <A(D0 = K—w+)) - e (A(DO = K-ﬁ)) (25)

can be obtained from time-dependent measurements [40, 54-63] or correlated DD’ de-
cays [64-69] at a charm-7 factory.

(7i1) Integrated direct CP asymmetries (2 observables). In particular we use [27-31, 33—
42, 4451

Aall, = o (DY - KTK™) — af%(D° — 7n777), (26)
Yadt, = af(D® — KTK™) +adn (D% — 7r7). (27)
(iv) Strong phases that require CP violation (2 observables) [36, 40, 60, 62, 64-67|. These

are the relative phases of the amplitudes of a D’ and D° going into one of the CP eigenstates.

They are proportional to CPV effects and thus very hard to extract. In particular,

O = arg (A(E - K+K_)> , Onn = arg (A(E - W+7T_)> ) (28)

A(D? — K+K~) A(D — 7t77)

These can be obtained from time-dependent measurements or measurements of correlated
DD’ pairs.

In principle, using the above observables the system Eqs. (11)—(14) is exactly solvable as
long as the data is very precise. In the CP limit the branching ratio measurements (i) and
the strong phase (i) are sufficient to determine ¢, ¢, and 3;, which are the complete set of
independent parameters in this limit.

For our parameter extraction with current data, we expand the observables to first non-
vanishing order in the U-spin expansion. We measure the power counting of that expansion

with a generic parameter ¢, which, for nominal U-spin breaking effects is expected to be
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g ~ 25%. All of the explicit results that we give below have the nice feature that the pa-
rameters can be extracted from them up to relative corrections of order O(g?). Below it is
understood that we neglect all effects of that order.

In terms of our parameters the ratios of branching ratios are given as

RK7r = —Re(t~1) s (29)
RKKJTT( = _2§1> (30)

1 /. 1. -
Rk rnkn = 5 <5% - Z|t1|2 + tz) . (31)

By inserting the expressions for Rk, and Rik .. into Eq. (24) we can solve the above

equations for the independent parameter combinations. The result up to O(g?) is

Re(t)) = —Rgkxr, (32)
~ 1
51 = _§RKK,7T7T7 (33)
1 ~\2 o~ 1 9 1 9
_Z (Imtl) + t2 - 2RKK,7T7r,K7r - ERKKJ”T + ZRKﬂ_ . (34)

We are then able to determine #; with Eq. (32) and the strong phase between the CF
and DCS mode, see also Ref. [60],

1— 1t

5K7r = arg <_1 T l£1> = _Im(gl) ) (35>
2

where in the last step we neglect terms of relative order of £2.

After that we can determine 5; and #, from Eqs. (33) and (34), respectively. The sum
and difference of the integrated direct CP asymmetries can be used together with the phases

0k and 0., to determine py and p;. We have

Aadl, = Im (%) x 41m (py) , (36)
and
dir )\b ~ 0\~ ~
Yagp =2Im 5 ) [2Im(po)s1 + Im(py)] - (37)

Note that also Aad, and Yadl, share the feature of corrections entering only at the relative

order O(g?) compared to the leading result. The measurement of Aadl, is basically a direct

measurement of Im py,

1

dir
(/Y Aagp . (38)

Imﬁo =



The phases dx i and 0, give (see e.g. Ref. [36])

Ap(D° — KTK™) Ap(D® = 7rr)\ _
e (i) e (s o) e

and

0 I 0 +o—
Re(Ab(D — KTK ))+Re<Ab(D —tnT)

= 2Re(2031 +
As(DY = K*K-) As(D0 = 7T+7r—)) Re(270%1 +71)

= 2[2Re(po)51 + Re(pr)] . (40)

As §; is already in principle determined from the other observables, this gives us then the
full information on py and p;.

As the observables dx i and J,, are the hardest to measure, we are not providing here the
explicit relation of Eq. (39) and Eq. (40) to these observables, acknowledging just that the
corresponding parameter combinations can be determined from these in a straight forward
way.

Taking everything into account, we conclude that the above system of eight observables
for eight parameters can completely be solved. This is done where the values of the CKM
elements are used as inputs. We emphasize that in principle with correlated double-tag
measurements at a future charm-tau factory [64-66, 68-76| we could even overconstrain the

system.

IV. NUMERICAL RESULTS

We use the formalism introduced in Sec. IIT now with the currently available measure-
ments. As not all of the observables have yet been measured, we cannot determine all of the
U-spin parameters. Yet, we use the ones that we do have data on to get useful information

on some of them.

e Using Gaussian error propagation without taking into account correlations, from the

branching ratio measurements [16]

BR(D® — KTK™) = (3.9740.07) - 107?, (41)

BR(D° — 77~) = (1.407 £ 0.025) - 1072, (42)
BR(D® — K*77) = (1.366 & 0.028) - 107*, (43)
BR(D® — K 7") = (3.89 4 0.04) - 1072, (44)



we obtain the normalized combinations

Ricw = —0.11 4 0.01, (45)
Ricen = 0.534 4 0.009, (46)
Rk mmscr = 0.071 £ 0.009 . (47)

e The strong phase between DCS and CF mode for the scenario of no CP violation in

the DCS mode is [14]
e = (3673 (a9

e The world average of Aadh, is given in Eq. (3).

e The sum of CP asymmetries Yadk in which CP violation has not yet been observed.
In order to get an estimate we use the HFLAV averages for the single measurements

of the CP asymmetries [2-7, 11, 14]

Acp(D° — 7777) = 0.0000 £ 0.0015, (49)
Acp(D® — KTK™) = —0.0016 4 0.0012, (50)
and subtract the contribution from indirect charm CP violation %% = (0.028 +

0.026)% [15]. We obtain

Yadt, = Agp(D® — KTK™) + Acp(D® — 7777) — 2455

= —0.002 £ 0.002, (51)
where we do not take into account correlations, which may be sizable.

e The phases dxx and d,, have not yet been measured, and we cannot get any indirect

information about them.

From Egs. (32)—(35) it follows that

Re(;) = 0.109 + 0.011, (52)
Im(f)) = ~0.157517, (53)
5, = —0.2668 + 0.0045 (54)
1, - N
- (Tmiy)* + Re(fy) = 0.075 4 0.018. (55)



Employing [16]

Im <%) =(-6.3+£0.3)-107*, (56)

and inserting the measurement of Aal?, into Eq. (38), we obtain

Impy = 0.65£0.12. (57)
Using Yadlt, we get
2Im(pg)$1 + Im(p;) = 1.7+ 1.6. (58)

Few remarks are in order regarding the numerical values we obtained.

1. Among the five parameters defined in Eq. (17), p; is the least constrained parameter

as we have basically no information about it. In order to learn more about it we need

measurements of Yad, as well as of the phases dxr and &y

2. The higher order U-spin breaking parameters are consistently smaller than the first
order ones, and the second order ones are even smaller. This is what we expect

assuming the U-spin expansion.

3. Eqgs. (52)-(55) suggest that the SU(3)r breaking of the tree amplitude #; is smaller

than the broken penguin contained in §.

4. Using Egs. (52)-(55) we can get a rough estimate for the O(g?) corrections that enter

the expression for Aad, in Eq. (36). The results on the broken penguin suggest that

these corrections do not exceed a level of ~ 10%. We cannot, however, determine

these corrections completely without further knowledge on p;.

V. THE AU =0 RULE

We now turn to discuss the implications of Eq. (57). We rewrite Eq. (36) as
dir >\b ~ :
Aagp = 4Tm = Dol sin(Jstrong ) (59)
with the unknown strong phase

5strong = arg(ﬁ(]) : (6())
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Then the numerical result in Eq. (57) reads
|Do] sin(Ostrong) = 0.65 £ 0.12. (61)

Recall that in the group theoretical language the parameters ¢, and py are the matrix ele-
ments of the AU = 1 and AU = 0 operators, respectively [51|. For the ratio of the matrix

elements of these operators we employ now the following parametrization
Po =B+ Ce?, (62)

such that B is the short-distance (SD) ratio and the second term arises from long-distance
(LD) effects. While the separation between SD and LD is not well-defined, what we have
in mind here is that diagrams with a b quark in the loop are perturbative and those with
quarks lighter than the charm are not.

In Eq. (73) of Sec. VI below we apply the same decomposition into a “no QCD” part
and corrections to that also to the Al = 1/2 rules in K, D and B decays to pions. It is
instructive to compare all of these systems in the same language.

We first argue that in Eq. (62) to a very good approximation B = 1. This is basically the
statement that perturbatively, the diagrams with intermediate b are tiny. More explicitly,
in that case, that is when we neglect the SD b penguins, we have

QAU:l _ Qgs _ QJd QAU:O _ Q§s + QJd |

— 5 (63)

2 Y
Setting C' = 0 then corresponds to the statement that only Q** can produce K*K~ and
only Q‘zd can produce 77w~ . This implies that for C' =0

(K*K~|Q™|D% = (rtr~|Q* |D°) =0, (64)
and
(K*K=|Q*|D°) #0,  (at7~|Q¥|D°) #0. (65)

We then see that B = 1 since

(K| QA= | DY) (mt | Q=0 |DY)

FKQS=T D0 ' (e (3T [De) 190

We note that in the SU(3)z limit we also have
<K+K_} QAUZI }D0> — <7T+7T_‘ QAUZI ‘D0> ’ (67)
<K+K—‘ QAU:O ‘D0> _ <ﬂ_+ﬂ.—‘ QAUZO ‘D0> ’ (68)
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but this is not used to argue that B = 1.

We then argue that 6 ~ O(1). The reason is that non-perturbative effects involve on-shell
particles, or in other words, rescattering, and such effects give rise to large strong phases to
the LD effects independent of the magnitude of the LD amplitude.

In the case that B =1, § ~ O(1) and using the fact that the CKM ratios are small we

conclude that the CP asymmetry is roughly given by the CKM factor times C
- A
Aadl, = 41Im (Eb) x C' x sind . (69)

Now the question is: what is C7 As at this time no method is available in order to calculate
C with a well-defined theoretical uncertainty, we do not employ here a dynamical calculation
in order to provide a SM prediction for C' and Aadk,. We rather show the different principal
possibilities and how to interpret them in view of the current data. In order to do so we

measure the order of magnitude of the QCD correction term C' relative to the “no QCD”

limit pp = 1. Relative to that limit, we differentiate between three cases

1. C' = O(a,/m): Perturbative corrections to py.

2. C'= O(1): Non-perturbative corrections that produce strong phases from rescattering

but do not significantly change the magnitude of py.

3. C > O(1): Large non-perturbative effects with significant magnitude changes and

strong phases from rescattering to py.

Note that category (2) and (3) are in principle not different, as they both include non-
perturbative effects, which differ only in their size.

Some perturbative results concluded that C' = O(a, /), leading to Aad, ~ 1074 [40, 77].
Note that the value Aadl, = 1 x 107*, assuming O(1) strong phase, would correspond
numerically to C' ~ 0.04. We conclude that if there is a good argument that C is of
category (1), the measurement of Aadlk, would be a sign of beyond the SM (BSM) physics,
because it would indicate a relative O(10) enhancement.

If the value of Aad, would have turned out as large as suggested by the central value
of some (statistically unsignificant) earlier measurements [8, 9|, we would clearly need cat-
egory (3) in order to explain that, i.e. penguin diagrams that are enhanced in magnitude,
see e.g. Refs. [30, 34, 44-48, 51]. Another example for category (3) is the Al = 1/2 rule in

the kaon sector which is further discussed in sections VI and VII.
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The current data, Eq. (61), is consistent with category (2). In the SM picture, the
measurement of Aallk, proves the non-perturbative nature of the AU = 0 matrix elements
with a mild enhancement from O(1) rescattering effects. This is the AU = 0 rule for charm.

Note that the predictions for Aad, of category (i) and (ii) differ by O(10), although
category (ii) contains only an (O(1) nonperturbative enhancement with respect to the “no
QCD” limit pp = 1. We emphasize that a measure for a (QCD enhancement is not necessarily
its impact on an observable, but the amplitude level comparison with the absence of QCD
effects.

We also mention that we do not need SU(3)r breaking effects to explain the data. Yet,
the observation of [3;| > |#;| in Eqs. (52)-(54) provide additional supporting evidence that
rescattering is significant. Though no proof of the AU = 0 rule on its own, this matches its
upshot and is indicative of the importance of rescattering effects also in the broken penguin
which is contained in §;.

With future data on the phases dxx and d,, we will be able to determine the strong

phase § of Eq. (62). In that way it will be possible to completely determine the characteristics
of the emerging AU = 0 rule.

VI. AI =1/2 RULES IN K, D AND B DECAYS

It is instructive to compare the AU = 0 rule in charm with the AI = 1/2 rule in kaon
physics, and furthermore also to the corresponding ratios of isospin matrix elements of D
and B decays. For a review of the Al = 1/2 rule see e.g. Ref. [21].

In kaon physics we consider K — n7 decays. Employing an isospin parametrization we
have [21]

3

AKT = 777%) = 5145{6"65( :

. 1 .
A(K® = 7tn7) = AKeC 4 \/;Aé(e“g( :
A(K? — 707%) = AKe — \/2AK 5 (70)

Note that the strong phases of Af and Af are factored out, so that Af, contain weak phases

only. The data give

~ 2235, 0N — 68 = (47.540.9)°, (71)

K
0
i

13



see Ref. [21] and references therein for more details. A{, have a small imaginary part
stemming from the CKM matrix elements only. To a very good approximation the real

parts Re(AL) and Re(AL) in the Al = 1/2 rule depend only on the tree operators |25, 26]

Q1 = (Baug)v_a(tpda)v_a, Q2 = (5u)y_a(ud)y_a . (72)

The lattice results Refs. [22-24| show an emerging physical interpretation of the Al = 1/2
rule, that is an approximate cancellation of two contributions in Re(AZ), which does not
take place in Re(AL). These two contributions are different color contractions of the same
operator.

The isospin decompositions of D — 77 and B — 77 are completely analog to Eq. (70).
To differentiate the charm and beauty isospin decompositions from the kaon one, we put
the corresponding superscripts to the respective analog matrix elements. Leaving away the
superscripts indicates generic formulas that are valid for all three meson systems.

In order to understand better the anatomy of the Al = 1/2 rule we use again the form
2 =B+ Ce?, (73)

analogously to Eq. (62) in Sec. V for the AU = 0 rule. Here, B is again the contribution in
the limit of “no QCD”, and Ce* contains the corrections to that limit. Now, as discussed
in Refs. [21, 78|, in the limit of no strong interactions only the (s operator contributes in
Eq. (73). Note that the operator @) is only generated from QCD corrections. When we
switch off QCD, the amplitude into neutral pions vanishes and we have for K, D, B — 7w
equally [21, 78]

B=V2. (74)

This corresponds to the limit py = 1 that we considered in Sec. V for the AU = 0 rule.
The exact numerical value in Eq. (74) of course depends on the convention used for the
normalization of Ago in the isospin decomposition Eq. (70), where we use the one present

in the literature.

For the isospin decomposition of D* — 7#77% D° — 777~ and D° — 7%7°, we simply
combine the fit of Ref. [33] to get
AOD D D o
Ap| = 2ATEO0T, AP -0 = (203 £ 3. (75)
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Reproducing the AI = 1/2 rule for charm Eq. (75) is an optimal future testing ground
for emerging new interesting non-perturbative methods [42]. Very promising steps on a
conceptual level are also taken by lattice QCD [79].

In K and D decays the contributions of penguin operators to A, is CKM-suppressed,
i.e. to a good approximation A, is generated from tree operators only. In B decays the
situation is more involved because there is no relative hierarchy between the relevant CKM
matrix elements. However, one can separate tree and penguin contributions by including
the measurements of CP asymmetries within a global fit, as done in Ref. [31]. From Fig. 3
therein we find for the ratio of matrix elements of tree operators that

Ay

an| ™ V2 (76)

is well compatible with the data, the best fit point having |AF/AP| = 1.5. The fit result for
the phase difference 68 — 0% is not given in Ref. |31].

The emerging picture is: The Al = 1/2 rule in B decays is compatible or close to the
“no QCD” limit. The AI = 1/2 rule in kaon physics clearly belongs to category (3) of
Sec. V. Here, the non-perturbative rescattering affects not only the phases but also the
magnitudes of the corresponding matrix elements. Finally, the Al = 1/2 rule in charm
decays is intermediate and shows an O(1) enhancement, similar to the AU = 0 rule that we
found in Sec. V.

We can understand these differences from the different mass scales that govern K, D
and B decays. Rescattering effects are most important in K decays, less important but still

significant in D decays, and small in B decays.

VII. PHENOMENOLOGY OF THE AU =0 VS. Al =1/2 RULE

An interesting difference between the Al = 1/2 rule in kaon decays and the AU = 0 rule
in charm decays is their effect on the phenomenology. Large rescattering enhances the CP
violation effects in D decays, but it reduces the effect in kaon decays. The reason for the
difference lies in the fact that in kaon decays the SD decay generates only a uu final state,
while in charm decays it generates to a very good approximation the same amount of dd

and ss states.
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We write the amplitudes very generally and up to a normalization factor as
A=1+rae'@®t (77)

such that r is real and depends on CKM matrix elements, a is real and corresponds to the
ratio of the respective hadronic matrix elements, ¢ is a weak phase and 0 is a strong phase.
For kaons a is the ratio of matrix elements of the operators Q=2 over Q=32 while for
charm it is the ratio of matrix elements of the operators Q2V=0 over Q~V=1.

We first consider the case where we neglect the third generation. In that limit for kaons

we have the decomposition
Ak = VusVay(Aij2 + recAs)e) (78)
where r¢¢ is the CG coefficient that can be read from Eq. (70). For charm we have
Ap = VeV Ar (79)

That means that in the two-generational limit for kaons we have r = 1 and in charm r = 0.
If we switch on the third generation we get small corrections to these values in each case:
r < 1 for charm and |r — 1| < 1 for kaons. These effects come from the non-unitarity of
the 2 x 2 CKM. For the kaon case there is an extra effect that stems from SD penguins that
come with ViV, In both cases we have § ~ O(1) from non-perturbative rescattering, as
well as ¢ ~ O(1).

The general formula for direct CP asymmetry is given as [16]

2rasin(4) sin(¢) 2rasin(d) sin(¢) for ra < 1,

2 ~ (80)
1+ (ra)? + 2ra cos(d) cos(¢) 2(ra)~tsin(d) sin(¢) for ra > 1.

Acp = —

Non-perturbative effects enhance a in both kaon and charm decays. This means the effect
which is visible in the CP asymmetry is different depending on the value of r. For ra < 1
increasing a results in enhancement of the CP asymmetry, while for ra > 1 it is suppressed.
These two cases correspond to the charm and kaon cases, respectively. It follows that the
Al = 1/2 rule in kaons reduces CP violating effects, while the AU = 0 rule in charm

enhances them.
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VIII. CONCLUSIONS

From the recent determination of Aadll, we derive the ratio of AU = 0 over AU = 1

amplitudes as
Dol sin(dstrong) = 0.65 £ 0.12. (81)

In principle two options are possible in order to explain this result: In the perturbative
picture beyond the SM (BSM) physics is necessary to explain Eq. (81). On the other hand,
in the SM picture, we find that all that is required in order to explain the result is a mild
non-perturbative enhancement due to rescattering effects. Therefore, it is hard to argue
that BSM physics is required.

Our interpretation of the result is that the measurement of Aadl, provides a proof for
the AU = 0 rule in charm. The enhancement of the AU = 0 amplitude is not as significant
as the one present in the AI = 1/2 rule for kaons. In the future, with more information on
the strong phase of py from time-dependent measurements or measurements of correlated
DD’ decays, we will be able to completely determine the extent of the AU = 0 rule.

Interpreting the result within the SM implies that we expect a moderate non-perturbative
effect and nominal SU(3) breaking. The former fact implies that we expect U-spin invariant
strong phases to be O(1). The latter implies that we anticipate the yet to be determined
SU(3)r breaking effects not to be large. Thus, there are two qualitative predictions we can

make
Sstrong ~ O(1), adt (D’ —» KYK™) ~ —adL(D° — 7tn™) . (82)

Verifying these predictions will make the SM interpretation of the data more solid.
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